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Abstract

Several previous studies on explanation for re-
current neural networks focus on approaches
that find the most important input segments
for a network as its explanations. In that case,
the manner in which these input segments
combine with each other to form an explana-
tory pattern remains unknown. To overcome
this, some previous work tries to find patterns
(called rules) in the data that explain neural
outputs. However, their explanations are often
insensitive to model parameters, which limits
the scalability of text explanations. To over-
come these limitations, we propose a pipeline
to explain RNNs by means of decision lists
(also called rules) over skipgrams. For eval-
uation of explanations, we create a synthetic
sepsis-identification dataset, as well as apply
our technique on additional clinical and senti-
ment analysis datasets. We find that our tech-
nique persistently achieves high explanation fi-
delity and qualitatively interpretable rules.

1 Introduction

Understanding and explaining decisions of com-
plex models such as neural networks has recently
gained a lot of attention for engendering trust in
these models, improving them, and understanding
them better (Montavon et al., 2018; Alishahi et al.,
2019; Belinkov and Glass, 2019). Several previous
studies developing interpretability techniques pro-
vide a set of input features or segments that are the
most salient for the model output. Approaches such
as input perturbation and gradient computation are
popular for this purpose (Ancona et al., 2018; Ar-
ras et al., 2019). A drawback of these approaches
is the lack of information about interaction be-
tween different features. While heatmaps (Li et al.,
2016b,a; Arras et al., 2017) and partial dependence
plots (Lundberg and Lee, 2017) are popularly used,
they only provide a qualitative view which quickly
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gets complex as the number of features increases.
To overcome this limitation, rule induction for
model interpretability has become popular, which
accounts for interactions between multiple features
and output classes (Lakkaraju et al., 2017; Puri
et al., 2017; Ming et al., 2018; Ribeiro et al., 2018;
Sushil et al., 2018; Evans et al., 2019; Pastor and
Baralis, 2019). Most of these work treat the ex-
plained models as black boxes, and fit a separate
interpretable model on the original input to find
rules that mimic the output of the explained model.
However, because the interpretable model does not
have information about the parameters of the com-
plex model, global explanation is expensive, and
the explaining and explained models could fit dif-
ferent curves to arrive to the same output. Sushil
et al. (2018) incorporates model gradients in the
explanation process to overcome these challenges,
but this technique cannot be used with current state-
of-the-art models that use word embeddings due
to their reliance on interpretable model input in
the form of bag-of-words. Murdoch and Szlam
(2017) explain long short term memory networks
(LSTMs) (Hochreiter and Schmidhuber, 1997) by
means of ngram rules, but their rules are limited
to presence of single ngrams and do not capture
interaction between ngrams in text. To learn ex-
planation rules for RNNs while overcoming the
limitations of the previous approaches, we have the
following contributions in the paper:

1. We induce explanation rules over important
skipgrams in text, while ensuring that these
rules generalize to unseen data. To this end,
we quantify skipgram importance in LSTMs
by first pooling gradients across embedding
dimensions to compute word importance, and
thereby aggregating them into skipgram im-
portance. Skipgrams incorporate word order
in explanations and increase interpretability.

2. To overcome existing limitations with au-
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tomated explanation evaluation (Lertvit-
tayakumjorn and Toni, 2019; Poerner et al.,
2018), we provide a synthetic clinical text clas-
sification dataset for evaluating interpretabil-
ity techniques. We construct this dataset ac-
cording to existing medical knowledge and
clinical corpus. We validate our explanation
pipeline on this synthetic dataset by recover-
ing the labeling rules of the dataset. We then
apply our pipeline to two clinical datasets for
sepsis classification, and one dataset for sen-
timent analysis. We confirm that the expla-
nation results obtained on synthetic data are
scalable to real corpora.

2 Explanation pipeline

We propose a method to find decision lists as expla-
nation rules for RNNs with word embedding input.
We quantify word importance in an RNN by com-
paring multiple pooling operations (qualitatively
and quantitatively). After establishing a desired
pooling technique, we move to finding importance
of skipgrams, which provides larger context around
words in explanations. We then find decision lists
that associate the relative importance of multiple
skipgrams in the RNN to an output class. This is
an extension of our prior work (Sushil et al., 2018)
where we find if-then-else rules for feedforward
neural networks. However, the previous approach
relies on using interpretable inputs independent of
word order and is not scalable to the current state-
of-the-art approaches that use word embeddings
instead. Moreover, explanation of binary classifiers
is not supported by that pipeline, and the explana-
tion rules are not generalized to unseen examples.
Furthermore, the previous explanation rules are
hierarchical, and hence cannot be understood inde-
pendently without parsing the entire rule hierarchy.
In the proposed research, we address all these limi-
tations and extend the explanations to binary cases,
unseen data, and to sequential neural networks with
word embedding input. Additionally, these expla-
nation rules can be understood as an independent
decision path. We present the complete pipeline for
our approach, which we name UNRAVEL, in Fig-
ure 1. Code for the paper is available on https:
//github.com/clips/rnn_expl_rules.

2.1 Word importance computation

Saliency (importance) scores of input features are
often computed as gradients of the predicted out-

Figure 1: The complete UNRAVEL pipeline for
gradient-informed rule induction in recurrent neural
networks. The underlined terms in point 4 refer to dif-
ferent important skipgrams in the text.

put node w.r.t. all the input nodes for all the in-
stances (Simonyan et al., 2013; Adebayo et al.,
2018). In neural architectures that have an embed-
ding layer, interpretable input features are replaced
by corresponding low-dimensional embeddings.
Due to this, we obtain different saliency scores
for different embedding dimensions of a word in a
document. Because embedding dimensions are not
interpretable, it is difficult to understand what these
multiple saliency scores mean. To instead obtain
a single score for a word by combining saliency
values of all the dimensions, we consider the fol-
lowing commonly used pooling techniques:

• L2 norm of the gradient scores (Bansal et al.,
2016; Hechtlinger, 2016; Poerner et al., 2018).

saliencyL2 = Σdimgrad2

• Sum of gradients across all the dimensions.

saliencysum = Σdimgrad

• Dot product between the embeddings and the
gradient scores (Denil et al., 2014; Montavon
et al., 2018; Arras et al., 2019). This addition-
ally accounts for the embedding value itself.

saliencydot = Σdim(emb� grad)

We also experimented with max pooling, but
we omit the discussion here because they have

https://github.com/clips/rnn_expl_rules
https://github.com/clips/rnn_expl_rules
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the same patterns as the L2 norm, albeit with
higher magnitudes.

In Section 4.1, we analyze the importance scores
obtained with these techniques qualitatively and
quantitatively to identify the preferred one.

2.2 Skipgrams to incorporate context

One of the contributions of this work is to find
explanation rules for sequential models such as
RNNs. Conjunctive clauses of if-then-else rules
are order independent although this order is critical
for RNNs. To account for word order in input docu-
ments, some previous approaches find the most im-
portant ngrams instead of the top words only (Mur-
doch and Szlam, 2017; Jacovi et al., 2018). To in-
corporate word order also in explanation rules, we
compute the importance of subsequences in the doc-
uments before combining different subsequences
into conjunctive rules. We define importance of a
subsequence as the mean saliency of all the tokens
in that subsequence. We represent subsequences as
skipgrams with length in the range [1,4] and with
maximum two skip tokens1. After computing the
scores, we retain the 50 most important skipgrams
for every document (based on absolute importance
scores). The number of unique skipgrams obtained
in this manner is very high. To limit the complexity
of explanations, we retain 5k skipgrams with the
highest total absolute importance score across the
entire training set and learn explanation rules over
these. To this end, we create a bag-of-skipgram-
importance representation of the documents, where
the vocabulary corresponds to the 5k most impor-
tant skipgrams across the training set. For ease of
understanding, we discretize the importance scores
of the skipgrams to represent five different levels
of importance: {−−, −, 0, +, ++}. Here −− and
++ represent a high negative and positive impor-
tance, respectively, for the predicted output class, 0
means that the skipgram is absent in the document,
and − and + indicate low negative and positive
importance scores, respectively. This skipgram set,
along with the output predictions of a model, is
then input to a rule induction module to obtain
decision lists as explanations.

1Length and skip values in skipgrams were manually de-
cided to include sufficient context while limiting complexity.
As these values increase further, the phrases become more
sparse, resulting into a larger explanation vocabulary. Feature
selection step hence selects a smaller proportion of phrases to
retain the same computational complexity, which can limit the
explanation coverage/recall.

2.3 Learning transferable explanations

In the prediction phase, a model merely applies
the knowledge it has learned from the training data.
Hence, an explanation technique should not require
prior knowledge of the test set to find global expla-
nations of a model. We hypothesize that explana-
tion rules should be consistently accurate between
the training data and the predictions on unseen data.
In accordance to this hypothesis, instead of learn-
ing explanations directly from validation or test
instances, which is common in interpretability re-
search (Ribeiro et al., 2018; Sushil et al., 2018), we
modify the explanation procedure to learn accurate,
transferable explanations only from the training set.
We first feed the training data to our neural network
and record the corresponding output predictions.
These output predictions, combined with the corre-
sponding set of top discretized skipgrams, are used
to fit the rule inducer. The hyperparameters of the
rule inducer are optimized to best explain the vali-
dation set outputs. Finally, we report a score that
quantifies how well the learned rules transfer to the
test predictions. This training scheme ensures that
the explanations are generalizable to unseen data,
instead of overfitting the test set.

We obtain decision lists using PART (Frank and
Witten, 1998), which finds simplified paths of par-
tial C4.5 decision trees. These decision lists can
be comprehended independent of the order, and
support both binary and multi-class cases.

3 Datasets and Models

3.1 Synthetic dataset

A big challenge for interpretability research is the
evaluation of the results (Lertvittayakumjorn and
Toni, 2019). Human evaluation is not ideal because
a model can learn correct classification patterns
that are counter-intuitive for humans (Poerner et al.,
2018). In complex domains like healthcare, such an
evaluation is additionally infeasible. To overcome
existing limitations with automated evaluation of
explanations, we create a synthetic binary clini-
cal document classification dataset. We base the
dataset construction on the sepsis screening guide-
lines2. This is a critical task for preventing deaths
in ICUs (Futoma et al., 2017) and new insights
about the problem are important in the medical do-
main. The synthetic dataset includes a subset of
sentences from the freely available clinical corpus

2https://bit.ly/3575e3d

https://bit.ly/3575e3d
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MIMIC-III (Johnson et al., 2016). Dataset con-
struction process is described here:

• From the MIMIC-III corpus, we sample 3–15
words long sentences that mention the key-
words discussed in the screening guidelines,
grouped into the following sets:

1. I: Contains sentences that mention these
infection-related keywords: {pneumonia
and3 empyema, meningitis, endocarditis,
infection}.

2. Infl: Contains sentences that mention
these inflammation-related keywords:
{hypothermia or4 hyperthermia, leukocy-
tosis or leukopenia, altered mental status,
tachycardia, tachypnea, hyperglycemia}.

3. Others: Sentences that do not mention
any of the previously stated keywords:
Sentence /∈ {I ∪ Infl}.

• We populate 50k documents with 17 sentences
each by randomly sampling one sentence from
set I , one sentence for each comma-separated
term in set Infl, and 10 sentences from set
Others. We additionally populate 20k docu-
ments with 17 sentences, all from set Others.

• We then run the CLAMP clinical NLP
pipeline (Soysal et al., 2017) to identify if
these keywords are negated in the documents.

• Next, we assign class labels to the documents
using the following rule:

if the infection term sampled from
set I is not negated and at least 2
responses sampled from set Infl
are not negated
=⇒ Class label is septic,
Class label is non-septic otherwise.

49% of the documents are thus labeled as septic.
Sampling sentences from the MIMIC-III corpus

introduces language diversity through a large vo-
cabulary and varied sentence structures. Use of
an imperfect tool to identify negation for docu-
ment labeling also adds noise to the dataset. These
properties are desirable because they allow for con-
trolled explanation evaluation while also simulating
real world corpora and tasks, unlike several syn-
thetic datasets used for explanation evaluation (Ar-
ras et al., 2019; Chrupala and Alishahi, 2019).

3Sentences mentioning both the keywords are sampled.
4Sentences mentioning either of the keywords are sampled.

3.1.1 Gold important terms
For every document, the set of words that are used
to assign it a class label includes all the keyword
terms about infection from set I that are mentioned
in that document, keyword terms about inflamma-
tory response from set Infl, and their correspond-
ing negation markers as identified by the CLAMP

pipeline. We mark these sets of terms, one set per
document, as the gold set of important terms for
this task. For example in the document:

No signs of infection were found.
Altered mental status exists. Patient is
suffering from hypothermia,

the set of gold terms would include all the under-
lined words. Among these words, infection, altered,
mental, status, and hypothermia are keyword terms,
and no, signs, and of are terms corresponding to
the negation scope.

3.1.2 Model:
We split the dataset into subsets of 80-10-10% as
training-validation-test sets. We obtain a vocabu-
lary of 47,015 tokens after lower-casing the docu-
ments without removing punctuation. We replace
unknown words in validation and test sets with the
〈unk〉 token. We train LSTM classifiers to predict
the document class from the hidden representation
after the final timestep, which is obtained after
processing the entire document as a sequence of
tokens5. The classifiers use randomly initialized
word embeddings and a single RNN layer without
attention. The hidden state size and embedding
dimension are set to either 50 or 100. We use
the Adam optimizer (Kingma and Ba, 2014) with
learning rate 0.001 and a batch size of 64 (with-
out hyperparameter optimization). Classification
performance is shown in Table 1.

3.2 Real clinical datasets
We additionally find explanation rules for sepsis
classifiers on the MIMIC-III clinical corpus. We
define sepsis label as all the cases where patients
are assigned one of the following diagnostic codes:

• 995.91 (Sepsis): Two or more systemic in-
flammatory response criteria plus a known or
suspected infection. 2% of the cases.

5We do not experiment with other types of classifiers be-
cause the focus of the work is to find and evaluate explanation
rules for sequential models that use word embeddings as input,
as opposed to comparing different classifiers.
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• 995.92 (Severe Sepsis): Sepsis with acute or-
gan dysfunction. 3% of the cases.

• 785.52 (Septic Shock): Form of severe sep-
sis where the organ dysfunction involves the
cardiovascular system. 4% of the cases.

We analyze two different setups after removing
blank notes and the notes marked as error in the
MIMIC-III corpus:

1. We use the last discharge note for every pa-
tient to classify whether the patient has sepsis.
Class distribution among 58,028 instances is
90-10% for non-septic and septic cases respec-
tively, and the vocabulary size is 229,799. The
task is easier in this setup because 70% of sep-
tic cases mention sepsis directly, whereas only
13% of non-septic cases mention sepsis.

2. We classify whether a patient has a sepsis
diagnosis or not using the last note about a pa-
tient excluding the categories discharge notes,
social work, rehab services and nutrition. We
obtain 52,691 patients in this manner, out of
which only 9% are septic. The vocabulary
size is 87,753. In this setup, only 17% of sep-
tic cases mention sepsis, as opposed to 6% of
non-septic cases mentioning sepsis.

3.2.1 Models:

We train 2-layer bidirectional LSTM classifiers
with 100 dimensional randomly initialized word
embeddings and 100 dimensional hidden layer. We
train for 50 epochs with early stopping with pa-
tience 5. The remaining data processing and im-
plementation details are the same as discussed for
synthetic dataset. Macro F1 score of classification
when using discharge notes is 0.68 (septic class F1
is 0.41), and without using discharge notes is 0.60
(septic class F1 is 0.27). Majority baseline is 0.5.

3.3 Sentiment analysis

Following Murdoch and Szlam (2017), we explain
LSTM classifiers initialized with 300 dimensional
Glove (Pennington et al., 2014) embeddings and
150 hidden nodes for binary sentiment classifica-
tion on the Stanford sentiment analysis (SST2)
dataset (Socher et al., 2013). We obtain 84.13%
classification accuracy, and our vocabulary size is
13,983.

3.4 Baseline explanation rules

Several existing approaches for global rule-based
interpretability (Lakkaraju et al., 2017; Puri et al.,
2017) have one common aspect—they directly use
the original input to find explanation rules for com-
plex classifiers without making use of the param-
eters of the complex models. However, these ap-
proaches don’t scale to NLP tasks due to combina-
torial computational complexity in finding explana-
tion rules. For comparison, as baseline rules, we
induce explanations directly from the input data
without using gradients of neural models. To this
end, we create a bag-of-skipgrams by binarizing the
most frequent skipgrams to represent whether they
are present in a document. We then train rule in-
duction classifiers on this binarized skipgram data
to explain neural outputs.

We also compare to Anchors (Ribeiro et al.,
2018) for SST2 explanations by implementing their
submodular pick algorithm for obtaining global
explanations. Anchors does not scale to longer
documents used for sepsis classification.

3.5 Evaluation metrics

We record fidelity scores of the explanation rules
on the test set, and the complexity of these explana-
tions. Fidelity scores refer to how faithful the expla-
nations are to the test output predictions of the ex-
plained neural network. Like our prior work (Sushil
et al., 2018), we use macro F1-measure of explana-
tions compared to original predictions to quantify
it. We define explanation complexity as the number
of rules in an explanation.

4 Evaluation

4.1 Comparing pooling techniques

To compare different pooling techniques described
in Section 2.1, we evaluate sets of most important
words obtained by different techniques against gold
sets of important terms for the documents.

4.1.1 Qualitative analysis
In Figure 2, we compare word importance distribu-
tion for the pooling techniques for an instance in
the validation set of the synthetic corpus. The L2
norm provides distributions over the positive values
only and the importance scores are low because it
squares the gradients. Sum pooling and dot product
instead return a distribution over both positive and
negative values, with dot product returning a more
peaked distribution. However, as we can see, sum
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Classification Pooling
Classifier Acc. L2 sum dot
LSTM100, E100 96.5 17.8 13.7 26.0
LSTM100, E50 95.5 23.7 21.5 35.4
LSTM50, E100 92.0 38.2 33.5 50.2
LSTM50, E50 92.4 26.5 25.1 36.1

Table 1: Classification accuracy of different LSTM
classifiers and the average accuracy for the top k words
in documents in the synthetic dataset obtained with
L2, sum and dot product pooling techniques. LSTMx,
Ey refers to LSTM with x hidden nodes and y dimen-
sional word embeddings.

and dot product often provide opposite importance
signs for the same words. This is caused due to
presence of word embeddings while computing dot
product, which can take both positive and negative
values. In this instance, both true and predicted
classes are non-septic. Looking at Figure 2c, we
find positive peaks over negative and infection, and
negative peaks over altered mental status and hy-
perglycemia. This corresponds to the class labeling
rule in the synthetic data, where non-septic class is
assigned when infection terms are negated. These
directions of influence are counter-intuitive for sum
pooling in Figure 2b. Due to its intuitive, peaked
importance distributions, dot product seems to be
better than other techniques. However, we move
to quantitative evaluation for a global perspective
because this qualitative analysis is biased towards
a specific instance and model.

4.1.2 Quantitative analysis

We find the top k tokens for test documents in the
synthetic dataset by ranking absolute word impor-
tance scores, where k is the number of gold impor-
tant terms used to label the document. We ignore
the 20k documents that only consist of sentences
that do not mention any keyword term, and hence
have an empty gold set. We compute the accuracy
of the set of most important words for every doc-
ument compared to their corresponding gold set.
Later, we take a mean across all the documents
and report it in Table 1. We find that dot product
consistently recovers more important tokens than
other pooling techniques across all the classifiers,
confirming the qualitative analysis earlier and the
findings of Arras et al. (2019). Hence we use dot
product for computing word importance before in-
ducing explanation rules.

We additionally see that the mean accuracy is

nearly twice for the classifier with 50 hidden nodes
and 100 dimensional word embeddings as com-
pared to the the larger classifier that uses 100 hid-
den units instead, although the latter classifier is
nearly 5% more accurate. This suggests that the
larger network obtains higher performance by fo-
cusing on tokens that are not incorporated within
the gold keywords. The reason behind different
tokens being considered important could be that
our gold set of important terms is noisy:

• Some tokens such as punctuation symbols are
missing from the gold set, although they are
important for identifying the scope of nega-
tion, as seen in Figure 3.

• Some terms in the gold set are not required
for correct classification. For example: 1. Too
many words are included as negation triggers.
For example, in the sentence no signs of in-
fection were found., ‘no’, ‘signs’, and ‘of’ are
all added to the gold set as negation markers
although the subset {‘no’, ‘infection’} may
be sufficient. 2. Similarly, the keyword al-
tered mental status could already be recog-
nized from a subset of these terms.

4.2 Explaining synthetic data classifiers

We obtain explanations of all the LSTM classifiers
for the synthetic dataset. We record fidelity scores
of explanations and the corresponding complexity
in Table 2. We find that when we use the proposed
pipeline UNRAVEL for learning gradient-informed
rules, we obtain explanations with high fidelity
scores also on the test data. On the other hand, with
the baseline approach, we obtain nearly 15% lower
fidelity scores. In addition, explanations are more
complex with the baseline approach. This confirms
that making use of model parameters by means of
gradients acts as an additional useful cue for the
rule-based explainability module, thus resulting in
more faithful explanations.

We present some examples of explanation rules
for the most accurate LSTM classifier for the syn-
thetic dataset in Figure 3. Here, we indicate in-
fection keywords that were used to populate the
dataset with a single underline, and the inflamma-
tory response keywords with a double underline.
The first rule in the figure indicates that if two in-
flammatory response criteria are highly important
for the network, the term infection is highly impor-
tant, and phrases negating the presence of infection
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(a) L2 norm

(b) Sum

(c) Dot

Figure 2: Heatmap visualization of word importance distribution for a single validation set instance in LSTM
classifier with 50 hidden nodes and 100 dimensional word embeddings when L2, sum, and dot pooling techniques
are used. Blue reflects positive importance and red indicates negative importance.

Explanation Eval type LSTM100,E100 LSTM100,E50 LSTM50,E100 LSTM50,E50

Baseline(sg)
Fidelity 75.65 77.67 83.19 84.30
Complexity 63 60 26 46

UNRAVEL(sg)
Fidelity 98.90 99.46 99.97 98.24
Complexity 32 13 2 49

UNRAVEL(1gram)
Fidelity 98.83 99.51 99.97 97.22
Complexity 23 18 2 51

Table 2: Test set fidelity scores of explanations (in %macro-F1), and number of explanation rules as the measure
of explanation complexity for different LSTM classifiers on the synthetic dataset using our approach compared
to the baseline approach. LSTMx,Ey refers to LSTM with x hidden nodes and y dimensional word embeddings.
sg in parenthesis refers to skipgram-based explanations.

(a) if hyperglycemia = ++ AND to exclude = 0 AND evidence infection . = 0 AND infection = ++ AND

no infection .= 0 AND no infection = 0 AND negative infection = 0 AND or of infection = 0 AND fungal
infection other = 0 AND of infection in the = 0 AND altered = ++ =⇒ septic (17466/17466)

(b) if tachypnea = 0 AND meningitis = 0 AND urinary tract = 0 AND endocarditis = 0 AND hyperglycemia
= 0 =⇒ non-septic (16015/16015)

(c) if no = ++ AND urinary = 0 AND bacterial = 0 AND mental = − =⇒ non-septic (1277/1345)

Figure 3: Example explanation rules for the best LSTM classifier on the synthetic dataset. Infection keywords
from set I are marked with a single underline, and the corresponding inflammatory response keywords from set
Infl are marked with double underline. ++ refers to high positive importance of a term, 0 represents absence of
a term, and − means that the term gets a low negative importance, i.e., presence of the term reduces the output
probability. The numbers (a/b) mean that b training instances are explained by the rule, of which a are correct. The
first two rules are obtained with skipgrams, and the third one is obtained on using only unigrams for explanations.
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Dataset Explanation Fidelity N_rules

+discharge
Baseline(sg) 61.7 825
UNRAVEL(sg) 97.9 16

-discharge UNRAVEL(sg) 77.3 196

SST2
Anchors 70.3 10
UNRAVEL(sg) 80.2 87

Table 3: Explanation fidelity (% macro F1) and com-
plexity for sepsis classification: 1) With discharge
notes 2) Without discharge notes, and on the SST2
dataset. The baseline method did not converge (in sev-
eral weeks) for sepsis classification without discharge
note and for SST2 classification. Anchors did not scale
(in memory usage) to document-level sepsis datasets.

are absent, then the class is recognized as septic.
This is similar to the rule we have used to label the
synthetic dataset, which requires at least one infec-
tion term and at least two inflammatory response
criteria to not be negated in the document for being
assigned a septic class. In the next rule—applied af-
ter all the cases from the previous rule have been ex-
cluded from the dataset—if several keyword terms
are absent, the document is classified as non-septic.
It is useful to remember that urinary tract is usually
followed by the word infection in the dataset, and
several instances mentioning infection have already
been explained by the previous rule and hence have
been ignored by this rule. This explanation rule is
also in accordance to the synthetic dataset, where
20k documents do not contain any keyword term
and are labeled as non-septic.

The third rule is an example rule for the same
model when explanations are based on unigrams
only as opposed to skipgrams. In this case, we
lose the context of the negation marker no. When
using skipgrams, this context of negation is avail-
able, which makes the negation scope clearer. Fur-
ther, terms like evidence, fungal and urinary tract
captured by skipgrams provide additional context
for understanding the rules. This illustrates that
even though the fidelity scores of explanations are
similar, skipgram based explanations are more in-
terpretable than only unigram-based explanations.
Hence, we use skipgrams for further analysis.

4.3 Explaining clinical models

We rerun our explainability pipeline on both clini-
cal models for sepsis classification—with and with-
out using discharge notes (Section 3.2). For the
first classifier with discharge notes, we again obtain
very high fidelity scores of explanations (Table 3).

if sepsis major surgical = ++ =⇒ septic (209/209)
if complaint : sepsis = 0 AND chief hypotension
major = ++ =⇒ septic (169/169)

Figure 4: First two explanation rules for the clinical
dataset that uses discharge notes to classify sepsis. ++
refers to high positive importance, and 0 refers to an ab-
sent term in the document. (a/b) in parentheses show
that a of b examples explained by this rule are correct.

The baseline explanations have significantly lower
fidelity scores while also being extremely complex.
On inspecting the corresponding explanation rules
given in Figure 4, we find that they refer to the
direct mentions of sepsis in the discharge notes. In
the first rule, if sepsis major surgical is mentioned,
the class is directly septic. In the second condi-
tion, it first rules out the mention of a complaint
of sepsis and then checks for additional conditions.
This confirms that not only does the classifier pick
up on these direct mentions, but the explanations
also recover this information. This illustrates the
utility of UNRAVEL in understanding our models,
which is the first step towards improving them. For
example, if our model is learning direct mentions
of sepsis as a discriminating feature, we could re-
move these direct mentions from the dataset before
training new models to ensure that they generalize.

Next, for the more difficult case where we use
only the final non-discharge note about patients
to classify whether they have sepsis, the fidelity
score is 77.33%. Although this score is good as an
absolute number, it is much lower than other two
cases. Explanations for this model are also much
more complex. This highlights that more complex
classifiers and explanations have lower explanation
fidelity. While manually inspecting these explana-
tions, we find that absence of terms such as diag-
nosis : sepsis, indication endocarditis . valve, indi-
cation bacteremia, admitting diagnosis fever and
pyelonephritis are used to rule out sepsis. These are
similar to the explanations of the other two datasets,
albeit enriched with information about additional
infections and body conditions. This confirms that
the synthetic dataset closely models a real clinical
use case, and suggests that these explanations rules
could result into useful hypothesis generation.

4.4 Explaining sentiment classifier

Results of the SST2 explanations are given in Ta-
ble 3. Our pipeline provides ∼10% more accurate
explanations compared to Anchors. Moreover, on
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if ? = 0 AND bad . = 0 AND too = ++ AND one = 0 =⇒ negative (159/159)

if ? = ++ =⇒ negative (81/82)

if bad . = 0 AND worst = 0 AND fails = 0 AND feels = ++ =⇒ negative (54/54)

if bad . = 0 AND worst = 0 AND fails = 0 AND is bad = 0 AND flat = 0 AND mess = 0 AND stupid = 0 AND

suffers = 0 AND pointless = 0 AND dull = ++ =⇒ negative (38/38)

if bad . = ++ =⇒ negative (36/36)

Figure 5: Example explanation rules for the SST2 dataset. ++ refers to high positive importance, and 0 refers to
an absent term in the document. (a/b) in parentheses show that a of b examples explained by this rule are correct.

if the is present =⇒ negative

if a is present =⇒ positive

if civility is present =⇒ positive

if of is present =⇒ positive

if this is present =⇒ negative

if just is present =⇒ negative

if good is present =⇒ positive

if with is present =⇒ positive

if no is present =⇒ negative

if little is present =⇒ positive

Figure 6: Explanation rules for the LSTM classifier on
the SST2 dataset with the Anchors submodular pick al-
gorithm. The rules check the presence of words in the
input to map to an output class.

inspecting the explanation rules for our method
and Anchors respectively presented in Figures 5
and 6, we find that Anchors rules consist only of
single words, as opposed to UNRAVEL, which finds
conjunctions of different phrases. Furthermore,
explanation rules with UNRAVEL obtain 71% clas-
sification accuracy on the original task. This perfor-
mance drop compared to LSTM is ∼7% lower than
gradient decomposition-based performance drop
reported by Murdoch and Szlam (2017), although
the numbers aren’t strictly comparable because we
explain different classifiers6.

6Their implementation is not openly available for direct
comparison.

5 Conclusions and Future Work

We have successfully developed a pipeline to ob-
tain transferable, accurate gradient-informed expla-
nation rules from RNNs. We have constructed a
synthetic dataset to qualitatively and quantitatively
evaluate the results, and we obtain informative ex-
planations with high fidelity scores. We obtain
similar results on clinical datasets and sentiment
analysis. Our approach is transferable to all similar
neural models. In future, it would be interesting to
extend the capabilities of this approach to obtain
more accurate, less complex and scalable explana-
tions for classifiers with more complex patterns.
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