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ABSTRACT
Neural machine translation (NMT) is nowadays commonly
applied at the subword level, using byte-pair encoding. A
promising alternative approach focuses on character-level
translation, which simplifies processing pipelines in NMT
considerably. This approach, however, must consider rela-
tively longer sequences, rendering the training process pro-
hibitively expensive. In this paper, we discuss a Transformer-
based approach, that we compare, both in speed and in
quality to the Transformer at subword and character lev-
els, as well as previously developed character-level models.
We evaluate our models on 4 language pairs from WMT’15:
DE-EN, CS-EN, FI-EN and RU-EN. The proposed architec-
ture can be trained on a single GPU and is 34% faster than
the character-level Transformer; still, the obtained results
are at least on par with it. In addition, our proposed model
outperforms the subword-level model in FI-EN and shows
close results in CS-EN. To stimulate further research in this
area and close the gap with subword-level NMT, we make
all our code and models publicly available.
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1. INTRODUCTION
Sequence-to-sequence models are nowadays a mainstream
approach in Neural Machine Translation (NMT). Such mod-
els are typically applied at the subword level based on byte-
pair encoding (BPE), originally proposed by Sennrich et al.
[26]. This algorithm mitigates the problem of rare and out-
of-vocabulary words that present a significant issue for word-
level models. BPE builds a vocabulary of the most frequent
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subword units of different lengths, starting from a single
character. Then, the input sentence is divided into a se-
quence of the longest possible subword fragments matching
the constructed vocabulary. This approach is appealing be-
cause of its strong empirical results and computational effi-
ciency. However, the segmentation is language- and corpus-
dependent and, hence, requires considerable hyperparam-
eter tuning. The problem of finding an optimal subword
segmentation is especially challenging for multilingual and
zero-short translation [12].
Another recent direction in NMT focuses on character-level
translation. This approach is conceptually attractive be-
cause it can help mitigate the previously mentioned short-
comings of subword-level models. Character-level models do
not rely on an explicit segmentation of the input sentence (be
it rule-based or statistical) and resort to plain characters as
a sentence’s basic units. As such, models are implicitly en-
forced to learn the inner structure of complex words. Hence,
such models are more robust in the face of out-of-vocabulary
words and in translating noisy and out-of-domain text. In
comparison to subword-level models, they should be able to
model more accurately rare morphological variants of words
[7, 17, 10]. In addition, character-level models may work
better in some fine-tuning scenarios, where the amount of
available data is challengingly small [2].
In spite of its conceptual elegance, the character-level ap-
proach also presents considerable challenges, that help ex-
plain why this approach did not receive much attention yet.
Character sequences are significantly longer and, consequently,
more challenging to model. Moreover, the level of seman-
tics in character-level representation becomes even more ab-
stract and, hence, larger models with a highly non-linear
mapping function are required. Finally, the training and de-
coding time for such models is much longer. However, some
of these issues can be tackled through resorting to new NMT
architectures. Lee et al. [17] have shown that is possible to
train a character-level model, within a reasonable time span,
by reducing the length of the source representation. We uti-
lize this publicly available model, henceforth: CharRNN, as
a baseline in our experiments.
We base our work on the well-known Transformer architec-
ture [29], which has shown state-of-the-art performance on
several language pairs in NMT. The model is intrinsically
very attractive for the character level due to the high train-
ing speed it enables and its strong modelling capacity with
respect to longer-range dependencies. The Transformer re-
lies on self-attention and does not include any recurrence
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in training. Therefore, the Transformer can be fully paral-
lelized during training, leading to considerable speed-ups in
comparison to recurrent networks.
We aim to stimulate further research in this direction, by
demonstrating the computational feasibility of training fast
character-level models, even on a single GPU. Below, we
propose a new variant (CharTransformer) of a publicly avail-
able, Transformer-based network and apply it at the charac-
ter level. Our models applies the same source length reduc-
tion technique as Lee et al. [17] and introduces a six-layer
Transformer at the encoder and decoder sides instead of re-
current layers as in CharRNN, making our network fully par-
allelizable. The main contribution of the paper is two-fold:
(i) We demonstrate the feasibility of training high-quality
and fast character-level translation models, even on a single
GPU; (ii) we propose a novel character-level Transformer-
based architecture that is at least as accurate as the Trans-
former, yet is up to 34% faster.

2. RELATED WORK
In this section, we survey recent work in the field of character-
level NMT that is directly relevant to the present paper.
Costa-jussà and Fonollosa [8] utilized a convolutional net-
work to extract local dependencies from character embed-
dings and, downstream, applied a Highway network [27]
to construct segmented embeddings. This model showed
promising results but, crucially, still relied on a word-level
segmentation at the decoder and encoder sides. Ling et
al. [18] assembled word embeddings from character embed-
dings via bidirectional long short-term memory units (LSTM)
[11]. The model decoded the target words character-by-
character and outperformed a comparable word-based base-
line. However, the training time was substantially longer
and, still, explicit segmentation was required.
Luong and Manning [19] used character-level information
to mitigate out-of-vocabulary issues in a word-based model.
Additionally, they compared a fully character-level model
with a word-level baseline. Notwithstanding comparable re-
sults, the fully character-level model was significantly slower.
Chung et al. [7] compared character-level and subword-level
decoders, while the encoder still worked at the subword level.
Their experiments demonstrated that the character-level de-
coder could outperform the subword-level one.
Lee et al. [17] were the first to propose a fully character-level
model that came with computational requirements compa-
rable to those of subword-level models. At the encoder side,
they efficiently reduced the length of the input sequences
via the use of a convolutional layer, a max-pooling layer
and a stack of Highway layers. On top of the encoder, they
used bidirectional gated recurrent units (GRU) [6]. In this
paper too, the character-level NMT model was able to out-
perform the subword-level baseline. Finally, and in the same
spirit, Cherry et al. [4] showed that standard character-level
models of sufficient depth are able to outperforms compa-
rable subword-level models. However, they utilized a pro-
hibitively expensive training regime with 16 GPUs (training
times were not explicitly reported for each network) and did
not make their models publicly available. Hence, we do not
consider these models below and restrict ourselves to pub-
licly available implementations. Gupta et al. [10] demon-
strated that the character-level Transformer is competitive
to the subword-level Transformer, but does not outperform
it.

Here, we take inspiration from Chen et al. [3], who investi-
gated different NMT architectures, including hybrid models
with Transformers. They demonstrated the superiority of
the Transformer encoder over the recurrent encoder at the
subword level. We hypothesize that the CharRNN model
may be easily improved by incorporating the Transformer
approach, instead of the more conventional, recurrent lay-
ers. In addition, the architecture can be sped up at the
training phase by using the Transformer decoder (as in Char-
Transformer). Our work is therefore the first to assess the
effectiveness and efficiency of CharTransformer.

3. BACKGROUND

Table 1: Encoder and decoder parameters of the investigated
models. At the encoder side, the models utilize 200 filters
of width 1, 200 filters of width 2 etc. dff corresponds to
the inner-layer has dimensionality. dm corresponds to the di-
mensionality of input and output. dk, dv correspond to the
dimensionality of keys and values for attention heads, respec-
tively.

Encoder
Param. Transformer CharTrans.
Emb. 512 128
Conv. 200-200-250-250
filters 300-300-300-300
Pool stride 5
Highway 2
Layers 6
dm, dk, dv 512
Heads 8
dff 2048

Decoder
Param. Transformer CharTrans.
Emb. 512
Layers 6
dm, dk, dv 512
Heads 8
dff 2048

In this section, we briefly discuss two of the commonly used
architectures in NMT.

3.1 Recurrent Neural Networks
Recurrent models nowadays generally utilize GRU or LSTM
memory cells, and follow the encoder-decoder paradigm. They
consist of an encoder and an (attentional) decoder [1, 28, 20,
5]. The encoder processes a source sentence and constructs
a continuous representation of it, which is sometimes con-
sidered a summarized meaning of the input sentence. The
decoder generates the output sentence. These models are
usually trained by minimizing the negative conditional log-
likelihood of outputs given the corresponding source sen-
tences and the previously observed target tokens.

3.1.1 Encoder
The encoder processes a source sentence step by step and
the current state of the encoder depends on its previous
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hidden state. A common practice is to apply bidirectional
recurrent layers. A forward recurrent layer processes the
input sequence from left to right and a backward recurrent
layer processes it from right to left. Further, the outputs
of the layers are concatenated in order to assemble the final
source sentence representation.

3.1.2 Attentional Decoder
Depending on the specific architecture, the input of the de-
coder may include the previously generated token, its previ-
ous hidden states and the the context vector. The context
vector is built by the attention mechanism. It searches parts
of the source sentence that are relevant for each decoding
time step. The context vector is calculated as a weighted
sum of the source hidden states. Hence, the weights rep-
resent an importance of the input tokens given the current
target token.

3.2 Transformer

N x Highway Layers

Segment 
Embeddings

Max Pooling
with Stride 5

Single-layer
Convolution + ReLU

Segment 
Embeddings

Figure 1: Scheme of the source length reduction technique.

The Transformer [29] model aims to overcome some of the
issues induced by recurrent and convolutional sequence-to-
sequence models. Compared to convolutional models, which
have a limited receptive field, the Transformer utilizes self-
attention networks. Thereby, the model is able to access
all position of the previous layer. In addition, the Trans-
former does not have any recurrent connections at the train-
ing phase that allows to make training process fully parallel.
These NMT models still rely on encoder-decoder scheme,
which follows the same purpose as for recurrent networks.
Transformers are commonly trained using the Noam decay
schedule [24], also by minimizing the negative conditional
log-likelihood.

3.2.1 Encoder
The encoder processes the full sequence simultaneously, as
opposed to recurrent approaches. It starts with a positional

encoding and processes the full sequence at once. As the
Transformer contains no recurrence and no convolution, this
step is required to provide information about the position
of the tokens in the sequence. The encoder in each layer
consists of 2 sub-layers: a self-attention network and a feed-
forward neural network. In addition, a residual connection
around each sub-layer is utilized. Downstream, layer nor-
malization is applied. The encoder, because of its immedi-
acy, is fully parallelizable in training and decoding phases.

3.2.2 Decoder
In comparison to the encoder, decoder layers have an addi-
tional self-attention network between 2 sub-layers that at-
tend to the encoder. The decoder is fully parallelizable in
the training phase. However, decoding is conducted step by
step similarly to recurrent networks.

4. MACHINE TRANSLATION MODELS
In this work, we compare three character-level and one subword-
level NMT systems. First, we report results for the character-
level model proposed by Lee et al. [17] and use it as a
baseline (CharRNN). In this model, the decoder consists of
two unidirectional GRU layers and the attention score is
computed by a single-layer feedforward network. The en-
coder part implements an efficient source length reduction
technique (detailed below), and adds a single-layer, bidi-
rectional GRU on top. Second, we train a character-level
Transformer and a subword-level Transformer [29] without
any architectural modifications. And finally, we apply the
source length reduction technique to the Transformer and
build CharTransformer. We implemented this model in Py-
Torch [23], inside the OpenNMT-py framework [15]. Fur-
ther information about the parameters of the encoders and
the decoders of the Transformer and CharTransformer are
summarized in Table 1. Layer sizes of the models are kept
maximally comparable. Below, we highlight the important
details of the models.

4.1 Source Length Reduction
As a recurrent baseline model, we use the model proposed by
Lee et al. [17]. The encoder employs one-dimensional con-
volutions, following with max-pooling layers and a Highway
network, in order to reduce the substantial length (up to 450
characters) of the input sentence by a factor of 5 and effi-
ciently construct representation of local features. We briefly
highlight the main properties of the source length reduction
technique below, which is schematically depicted in Figure 1.

4.1.1 Embedding layer
The embedding layer takes the form of a lookup table, which
maps a sequence of source tokens to a sequence of embed-
dings in order to build a continuous representation of each
token.

4.1.2 Convolutions
One-dimensional convolutional filters (with padding) are ap-
plied to the sequence of the input embeddings produced by
the embedding layer. Filter widths range from 1 to 8, which
allows to construct representation of n-grams up to 8 char-
acters. Downstream, the outputs of the convolutional filters
are stacked and the rectified linear activation is applied.

4.1.3 Max pooling
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Conventional max pooling is applied to non-overlapping parts
of the convolutional layer output. Thus, the layer reduces
the length of the source representation and constructs seg-
ment embeddings, containing the most salient features of
the source sub-sequences.

4.1.4 Highway layers
The Highway network is introduced after the convolutional
part of the encoder. Highway layers [27] have been shown
to improve the quality of character-level models [13].

4.2 CharTransformer Encoder
In the CharTransformer encoder, we implement the source
length reduction technique from Lee et al. [17] (Figure 1)
and inherit the following layers from the baseline: the em-
bedding layer, the convolution layer, the max pooling, the
Highway network. On the top of the encoder, we employ a
six-layer Transformer.

5. EXPERIMENTAL SETTINGS

5.1 Datasets and Preprocessing
We applied the NMT models to the four language pairs from
WMT’15: DE-EN, CS-EN, FI-EN and RU-EN. We obtained
the datasets1 already preprocessed by Lee et al. [17], using
a script from Moses [16]. Although this step is not strictly
required for character-level translation, we kept it for the
sake of comparison. In addition, we created a tokenized
dataset, using another reference routine [26], with 20,000
BPE operations for each of the source and target corpora.
We allowed a vocabulary size of 300 tokens for the character-
level translation and 20k−24k tokens for the subword-level
models. We limit the length of sentences to 450 characters or
50 subword tokens. For the FI-EN language pair, we utilized
newsdev-2015 as a development set and newstest-2015 as a
test set. For other language pairs, we used newstest-2013
as a development set and the combination of newstest-2014
and newstest-2015 as test sets.

5.2 Metrics
Notwithstanding its reliability, human assessment in ma-
chine translation is expensive and slow to obtain. In NMT,
a number of automated metrics have therefore been pro-
posed to measure the performance of models. Generally
speaking, these measure the quality of a system’s output by
comparing it to human judgments. Recently, character-level
metrics demonstrated the best performance among the non-
trainable metrics in the field [21]. Therefore, we utilized
not only the popular metric BLEU [22], but also Charac-
TER [30] and CHRF [25].

5.3 Training Details
We mostly followed the settings recommended by the Open-
NMT-py framework2. The models were trained by minimiz-
ing the negative conditional log-likelihood using the Adam
optimizer [14] with an initial learning rate of 2 and the Noam
decay schedule [24]. The models were initialized using the
method proposed by Glorot and Bengio [9]. We did not
change any settings for the subword-level models. Below,

1https://github.com/nyu-dl/dl4mt-c2c
2https://opennmt.net/OpenNMT-py/FAQ.html

the parameters that we altered for the character-level mod-
els are explicitly listed. As character tokens contain less in-
formation compared to subwords, we utilized a larger batch
size of 6144 tokens and an accumulation count of 4, to get
a more faithful gradient approximation. Additionally, we
set dropout to 0 to make the models converge faster. We
used -max generator batches with default parameters. We
trained the models for 100,000 updates. Each model was
trained on a single GeForce GTX 1080 Ti with 11 GB of
memory.

5.4 Encoding Details
We slightly altered the implementation of the original source
length reduction used by Lee et al. [17] in CharRNN to re-
duce the memory consumption of the model. Highway lay-
ers significantly improve the performance of character-level
language models based on convolutional networks. Even
though, the Highway layers significantly improve the perfor-
mance of convolution based character-level language models,
Kim et al. [13] demonstrated that they saturate in perfor-
mance after 2 layers. Therefore, we utilized only 2 (instead
of the original 4) layers in CharTransformer to reduce the
complexity of the models under consideration.

5.5 Decoding Details
In the decoding part, we utilized beam search with beam
size of 20 for character-level models and beam size of 5 for
subword-level models.

6. RESULTS AND DISCUSSION

6.1 Quantitative Analysis

6.1.1 Instability of metrics
Interestingly, we can observe a high variation in metrics (see
Table 2). However, it is expected due to different degree of
correlation between metrics and human scores. If we rely
solely on highly popular BLEU conclusions may be mislead-
ing as it is not the best metric for three out of four language
pairs (see Table 4). From Table 2, we can see that improve-
ment of 1 BLEU point does not necessary lead to improve-
ments in other metrics. Hence, we make our conclusions
based on least two metrics out of three where it is possible.

6.1.2 RNN vs. Transformer
Lee et al. [17] reported a training time for CharRNN of ap-
proximately 2 weeks on a single GPU. However, we can not
directly compare training time of CharRNN to our character-
level models due to usage of different frameworks, GPUs,
batch sizes and depth of models. From Table 3, we can ob-
serve that it takes roughly 38 and 25 hours to train the
character-level Transformer and CharTransformer respec-
tively. In addition, the character-level Transformer and Char-
Transformer show better results for all language pairs (see
Table 2). Hence, we train our deeper character-level mod-
els substantially faster and outperform previously obtained
results by a large margin. We conclude that Transformer ap-
plied at the character level and CharTransformer are better
than CharRNN.

6.1.3 Character-level Transformer vs. CharTrans-
former
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Table 2: Results of the models on 4 language pairs. The best performing models are shown in bold. Results for CharRNN are
obtained from Lee et al. [17].

Lang. Model Seg. Test1 Test2
BLEU↑ C-TER↓ CHRF↑ BLEU↑ C-TER↓ CHRF↑

DE-EN CharRNN char 25.77 NA NA 25.83 NA NA
Transformer char 28.32 47.41 53.14 28.70 45.44 53.08
CharTransformer char 28.63 46.54 53.70 28.08 45.16 53.18
Transformer bpe 29.72 46.35 54.26 29.76 45.36 54.11

CS-EN CharRNN char 24.08 NA NA 22.46 NA NA
Transformer char 24.77 48.13 50.91 23.51 51.34 48.20
CharTransformer char 26.89 45.40 53.66 25.24 49.44 50.47
Transformer bpe 28.41 45.62 54.02 26.14 49.92 50.56

FI-EN CharRNN char NA NA NA 13.10 NA NA
Transformer char NA NA NA 18.72 55.95 44.97
CharTransformer char NA NA NA 17.52 57.70 43.46
Transformer bpe NA NA NA 17.35 58.21 42.90

RU-EN CharRNN char 26.80 NA NA 22.73 NA NA
Transformer char 30.87 42.55 56.80 26.99 46.17 52.96
CharTransformer char 30.31 42.78 56.35 26.19 46.72 52.21
Transformer bpe 31.39 43.21 56.75 28.01 46.40 53.41

Table 3: Speed comparison for the character-level models.
The second column shows the time of one update in sec-
onds. The third column reports the total training time in
hours. The last column shows speed difference in percents.
The models make one update after processing four batches.

Model Speed Overall Percent
Trans.
CharTrans.

Table 4: WMT15 system-level correlations of automatic eval-
uation metrics and the official human scores [30]. The best
results are in bold.

Metric FI-EN DE-EN CS-EN RU-EN
C-TER 0.888 0.972 0.960 0.884
CHRF 0.903 0.956 0.968 0.898
BLEU 0.929 0.865 0.957 0.851

According to Table 2, Transformer applied at character level
is the best performer in FI-EN and RU-EN. CharTrans-
former shows better results in DE-EN and CS-EN. In the
experiments, we do not observe superiority of CharTrans-
former in results over Transformer. However, CharTrans-
former is 34% faster. We conclude that CharTransformer is
promising and worth further investigation.

6.1.4 Character- vs. subword-level
From Table 2, we can observe that character-level models in
some cases outperform subword-level models. CharTrans-
former and character-level Transformer outperform subword-
level Transformer in FI-EN. In addition, character-level Trans-
former shows comparable results in RU-EN and CharTrans-
former is slightly worse in CS-EN than subword-level Trans-
former. The subword-level model is convincingly the best
only in DE-EN. Similarly to Gupta et al. [10], we ob-

serve that the character-level models are competitive to the
subword-level models, but do not outperform them. It shows
that these models are promising and should get more atten-
tion.

6.2 Qualitative Analysis
We have performed a qualitative inspection of 100 randomly
sampled sentences from newstest-2014 of the Russian-English
language pair for the four models compared (CharRNN,
subword-level and character-level Transformer, and Char-
Transformer). We selected this language pair because of the
relatively large typological distance between both languages,
as well as the challenging transliteration issues that might
arise from the mapping of two alphabets. Overall, Char-
RNN displays a clear inferiority to the Transformer archi-
tectures. The quality of CharTransformer is indeed slightly
lower than the Transformers (in accordance with the quanti-
tative results), but not much. Noteworthy are the following,
persisting error categories (referencing examples a–d drawn
from Table 5)

6.2.1 Entities and transliteration
Named entities, especially proper nouns, are a classic hin-
drance in NMT, especially when source and target language
use a different alphabet. All systems suffer from artifacts in
this area, but CharRNN most heavily. In many cases, sys-
tems propose entirely different transliterations of the proper
nouns in the source language (a).

6.2.2 Length-related artifacts
CharRNN translations often feature the unnecessary repe-
titions of chunks (‘flooding’), as well as incomplete words
(b). Likewise, CharRNN often produces incorrect syntac-
tic constructions which is rare with the other architectures.
Overall, the Transformers yield slightly more concise trans-
lations than the CharTransformer (121.58±59.92 (bpe) vs.
125.18±64.80 (char) vs. 126.11±64.94 characters on aver-
age) (d), which might be related to the settings of the beam
search.

1.362 37.71 100
0.894 24.76 66
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Table 5: Examples of translation from CharRNN, Transformer and CharTransformer, illustrating the main error types, observed
in a random sample of 100 sentences for the Russian to English language pair.

(a) Named Entities and transliteration (Russian→English )

transliteration Ostaviv ej golosovoe soobshhenie 18 ijunja 2005-go , Koulson skazal : [...]
target Leaving the voice message on June 18 , 2005 , Caulsen said : ’ [...]
CharRNN Having left her voicemail on 18 June 2005 , Coleson said , ’ [...]
Transformer (char) Having left her voicemail on 18 June 2005 , Coleson said , ’ [...]
CharTransformer Leaving her voice message on June 18 , 2005 , Cowlson said , ’ [...]
Transformer (bpe) Leaving her a voice message on 18 June 2005 , Colson said , ’ [...]

(b) Flooding of chunks and incomplete words (Russian→English )

transliteration Sirija unichtozhila oborudovanie dlja himoruzhija
target Syria destroyed equipment for chemical weapons
CharRNN Syria destroyed the equipment for the equipment for chemothera
Transformer (char) Syria has destroyed chemo-weapons equipment
CharTransformer Syria Destroyed Chemical Equipment
Transformer (bpe) Syria Destructed Chemical Weapons

(c) Fixed expressions (Russian→English )

transliteration V Kineshme i rajone dvoe muzhchin pokonchili zhizn’ samoubijstvom
target In Kineshma and environs two men have committed suicide
CharRNN In Kineshma and the area of two men committed suicide behavior
Transformer (char) In Kineshma and the region , two men have committed suicide .
CharTransformer In Kineshma and the region , two men have ended their lives of suicide
Transformer (bpe) In Kineshma and environs two men have committed suicide

(d) Conciseness of Transformer (Russian→English )

transliteration Ko vremeni podvedenija itogov tendera byla opredelena arhitekturnaja koncepcija ajerovokzal’nogo
kompleksa ’ Juzhnyj ’ , kotoruju razrabotala britanskaja kompanija Twelve Architects

target By the time the tender results were tallied , the architectural concept of the ’ Yuzhniy ’ air terminal
complex , which was developed by the British company Twelve Architects , had been determined .

CharRNN By the time the tender ’s results were defined an architectural concept of the ’ South ’ architecture
complex , which was developed by the British company Twelve Architects .

Transformer (char) By the time of summing up the results of the tender the architectural concept of the Yuzhny terminal
complex was developed by Twelve Architects .

CharTransformer By the time of the summing up of the tender , the architectural concept of the ’ South ’ terminal
complex developed by the British company Twelve Architects was identified .

Transformer (bpe) By the time the tender results were summed up the architectural concept of the Yuzhny airport
terminal complex developed by British company Twelve Architects.

6.2.3 Fixed expressions
In comparison to the Transformer architectures, CharRNN
sometimes struggles to translate figurative language use and
idiomatic expressions. The same is true for the CharTrans-
former, but to a lesser extent (c).

6.2.4 Overall quality
We conclude that CharRNN is relatively less capable of mod-
elling longer-range sequences at the character level. To the
human eye, and however small the sample size, the differ-
ences between the Transformers and CharTransformer are
limited, although the Transformers generally yields mini-
malist translations, that are of a slightly higher quality.

7. CONCLUSION AND FUTURE WORK
In this work, we applied Transformer from OpenNMT-py at

character level and proposed a new character-level Transformer-
based NMT architecture, CharTransformer. We evaluated
it on four languages from WMT’15 corpora and compared
these models to the character-level architecture previously
proposed by Lee et al. [17]. We showed that character-level
Transformer and CharTransformer outperform this model
in all tasks. We demonstrated that character-level transla-
tion does not require weeks of training and expensive multi
GPU training scheme anymore to obtain strong results. In
addition, we showed that CharTransformer performs com-
parably with character-level Transformer and is 34% faster.
CharTransformer outperforms the subword-level model in
FI-EN and shows competitive results in CS-EN. We conclude
that both models are promising for character-level transla-
tion and can stimulate further research in this field.
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We provide the following repository3 that contains the source
code of the implemented models and the corresponding weights.
In future research, we would like to investigate multilin-
gual character-level translation with Transformer and Char-
Transformer. In addition, we will research different proper-
ties of these models. Finally, we should emphasize that our
results that we might close the gap between character-level
and subword-level NMT in a very near future.
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[5] K. Cho, B. van Merriënboer, D. Bahdanau, and
Y. Bengio. On the properties of neural machine
translation: Encoder–decoder approaches. In
Proceedings of SSST-8, Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation,
pages 103–111, 2014.

[6] K. Cho, B. van Merriënboer, C. Gulcehre,
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