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Abstract

This paper describes continuing work on
semantic frame slot filling for a com-
mand and control task using a weakly-
supervised approach. We investigate the
advantages of using retraining techniques
that take the output of a hierarchical hid-
den markov model as input to two in-
ductive approaches: (1) discriminative se-
quence labelers based on conditional ran-
dom fields and memory-based learning
and (2) probabilistic context-free gram-
mar induction. Experimental results show
that this setup can significantly improve F-
scores without the need for additional in-
formation sources. Furthermore, qualita-
tive analysis shows that the weakly super-
vised technique is able to automatically in-
duce an easily interpretable and syntacti-
cally appropriate grammar for the domain
and task at hand.

1 Introduction

The basic task of a command and control (C&C)
interface is to convert a language user’s unstruc-
tured input into some structured format that can
be unambiguously interpreted by a controller. Ex-
cept for the simplest of devices, this requires at
some point in the processing chain some kind of
syntactic component that is aware of such issues
as compositionality and word order. For example,
in the home automation C&C phrase turn on the
lights, the system needs to at least be aware that
the input language is SVO to trigger the difference
between action and patient. In many cases, this is
done through the use of a context-free grammar in
the decoding process (Jurafsky et al., 1995), as il-
lustrated in Figure 1 for the task of controlling a
television using natural language.

While this approach has proved to be quite ef-
fective for many applications, such devices are

limited in the sense that they require the user to ad-
here to the grammar and lexicon as predefined by
the designers of the device. This paper describes
research conducted in the context of the ALADIN
project, which investigates a command and control
interface that is not bound by predefined linguistic
constraints, but rather adapts to the user in a lan-
guage and domain independent way. The aim of
the project is to find techniques that minimize the
training phase for such a self-learning system, so
that it can be easily deployed as a home automa-
tion C&C system for people with a physical im-
pairment, who are often challenged by (progres-
sively aggravating) speech impediments. A self-
learning C&C interface that is able to automati-
cally learn and adapt to an individual user’s lin-
guistic characteristics, can provide an important
means for a physically impaired person to regain
some independence in a domestic setting.

In this paper, we will investigate the syntactic
component of the ALADIN-system, where we de-
fine “syntax” loosely as a means to interface be-
tween the surface utterance and its underlying se-
mantic representation. Our semantic representa-
tion of choice is that of a semantic frame with
slots that need to be filled with values (Section
2). Previous research efforts show that this can be
done with a fair degree of accuracy using a hier-
archical hidden markov model architecture (Sec-
tion 3) under a minimal amount of supervision.
The research described in this paper improves on
this accuracy, through means of retraining using
two different techniques: a shallow approach us-
ing sequence labeling (Section 4.1) and a more
traditional parsing approach employing stochas-
tic context-free grammar induction (Section 4.2).
We will quantitatively and qualitatively evaluate
these techniques on the basis of comparative ex-
periments (Section 5) and finish with a discussion
of the results and pointers to future work (Section
6).
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<sentence> = <volume command> | <channel command>
<volume command> = (set | change) volume [VOL] to <number>
<channel command> = (select | change to) channel [CH] (<number> | <name>)
<number> = one [1] | two [2] | three [3] | four [4] | five [5]
<name> = BBC [4] | CNN [2] | EuroSports [1]

Figure 1: Context-free grammar for a television command & control interface.

2 The PATCOR Corpus

The experiments described in this paper were con-
ducted on the PATCOR corpus1. PATCOR is a col-
lection of command and control utterances for
the single-player card game Patience. This con-
trol task was chosen because the disambiguation
of these types of sentences requires awareness
of compositionality and word order, while at the
same time the domain and vocabulary are fairly
restricted. The corpus contains audio recordings
of nine players, totaling around 3000 spoken com-
mands (Belgian Dutch) and their associated action
in the game (represented as a semantic frame; cf.
infra). All of the spoken commands were manu-
ally transcribed.

PATCOR consists of a core data set of eight
speakers, for which around 250 utterances were
collected. We will refer to this core set as the P1-8
set. Additional data was gathered for one player to
study the effect of increasing training sizes. This
data set, referred to as the P9 set contains over
1,000 utterances. In the experiments below, P1-
8 is used for development purposes, while P9 is
used for evaluation in learning curve experiments.
More details about the data set and the command
structures that were used by the speakers are de-
scribed in van de Loo et al. (2012a).

The semantic representation of the controls in
PATCOR takes the form of semantic frames. This
is illustrated in Figure 2: the semantic frame de-
scribes the card that is moved (as a suit/value pair),
the card that it is moved onto, as well as the re-
spective columns that are involved in the move.
Additional slots are available for moves from the
hand and the foundation (respectively at the bot-
tom and top of Figure 2). An action on the playing
field is thus described as a collection of slot-value
pairs. There are two types of semantic frames: the
movecard frame exemplified in Figure 2 and an ad-
ditional dealcard frame that denotes the action of
asking for a new hand of cards. The latter frame
has no slots or values to be filled.

Note that the automatically generated semantic
1https://github.com/clips/patcor

Put the jack of clubs on the red queen

movecard
Slot value
<FS> c
<FV> 11
<FF> -
<FC> 3
<FH> -
<TS> h
<TV> 12
<TF> -
<TC> 4

Figure 2: Example of a Patience command in PAT-
COR, the corresponding action on the playing field
and the associated semantic frame. A move is de-
fined as a combination of a from slot (<F?>) and
a to slot (<T?>). A card is defined as the com-
bination of a suit (<?S>) and a value (<?V>).
Also defined are slots for the ‘hand’ at the bottom
(<FH>), the seven columns (<?C>) in the play-
ing field and the four foundation stacks at the top
right (<?F>).

frame is overspecified with respect to the com-
mand: in the command in Figure 2, columns are
not mentioned, although this information is in-
cluded in the automatically generated frame. We
will use the utterances and their associated frames
as training material to trigger the mapping from
words onto slot-value pairs. The difficulty for the
induction task therefore lies in identifying which
words can be linked to which slots and associated
values. Furthermore, a word might underspecify
its slot-value in the semantic frame: for instance in
Figure 2, the word “rood” (red) can refer to suits
hearts and diamonds alike, while only the former
is represented in the associated semantic frame.

3 Related Research

In this section we will provide some pointers to
related research on mapping tokens to semantic
frames in C&C interfaces. We will also discuss
previous research efforts on the PATCOR data us-
ing two different techniques.

https://github.com/clips/patcor


3.1 Semantic frame induction

There are many studies in spoken language under-
standing that use semantic frames or an equiva-
lent to encode the meaning of utterances. Map-
ping new utterances to these semantic representa-
tions has been attempted using a variety of tech-
niques, such as generatively associating word se-
quences with concept sequences (Pieraccini et al.,
1991; Wang et al., 2011), using a discriminative
technique to perform concept tagging (Hahn et
al., 2011), or applying alignment techniques from
the field of statistical machine translation to re-
late words with semantic concepts (Epstein et al.,
1996; Macherey et al., 2001).

The research described in this paper differs
from these previous approaches in that our seman-
tic representation is overspecified with respect to
the utterance and that we do not assume the ready
availability of gold-standard alignments between
tokens and concepts. With respect to the latter is-
sue, our research is more akin to the unsupervised
alignment of utterances and concepts in the ATIS

corpus, as described in Huet and Lefèvre (2011).
The PATCOR task itself on the other hand, is more
similar to that of the ROBOCUP data (Chen and
Mooney, 2008), for which a variety of approaches
have been coined, ranging from learning the align-
ment between utterances and frames (Liang et al.,
2009) to learning semantic parsers (Chen et al.,
2010).

3.2 Supervised concept tagging

Previous work on PATCOR data is described in
van de Loo et al. (2012a) and van de Loo et al.
(2012b). These papers approach the problem of
inducing semantic frame slots from (transcribed)
utterances as a concept/sequence labeling task that
can be learned by a machine learning classifier.
To this end, the transcriptions of PATCOR were
manually annotated with IOB-concept tags, where
each word is associated with a concept tag that de-
notes its association to a specific type of frame
slot and its relative position in the text chunk
(Inside, Outside or at the Beginning). This is il-
lustrated in the following command (English: put
the hearts five on the clubs six) which denotes a
move from a <From Suit> <From Value> card
to a <Target Suit> <Target Value> card.

(1) legO deO hartenI FS vijfI FV opO deO

klaverenI TS zesI TS

The eight data sets of the P1-8 set were each
used individually as training data for a memory-
based concept tagger and learning curves were
plotted using the last 50 utterances in the respec-
tive data sets. Almost all of the data sets achieve
an I-chunk F-score between 95% and 100% af-
ter around 130 training utterances, underlining the
learnability of the task. However, this approach
relies on the existence of a gold-standard map-
ping between the observed tokens and their rele-
vant frame slots and values. This type of supervi-
sion is not available in a C&C interface that is to be
trained through the association of an utterance in
its entirety with an (overspecified) semantic frame.
Furthermore, (van de Loo et al., 2012a; van de Loo
et al., 2012b) only report tag and chunk accuracy
scores, which only gives us an indirect indication
of how well semantic frame slots and values can
be filled by this technique. In the experiments be-
low, we consider this supervised sequence labeler
as the upperbound of the level of performance that
can be expected for this data set.

3.3 FramEngine

Research on the acoustic part of PATCOR focuses
on finding descriptive word units in the utterances,
using non-negative matrix factorization. To map
observed units to frame slots (frame decoding),
early research (Gemmeke et al., 2012) employed
a hand-crafted grammar, which encoded expected
word order patterns. This approach obtained slot-
value recall scores between 37% and 85% on the
P1-8 set. One of the major bottlenecks in achiev-
ing higher accuracies was the method’s limited
ability to build a robust acoustic representation on
the basis of a limited amount of training data.

To streamline frame decoding, a semantic frame
induction engine was developed (FramEngine)
that uses a combination of non-negative matrix
factorization and a hierarchical hidden markov
model (HHMM) to simultaneously detect recur-
ring patterns in commands (words, morphemes,
acoustic units) and relate them to their relevant
slots and values in semantic frames. This is a
weakly supervised induction task, as there is only
supervision at the utterance level and no relations
between the components of the utterances and the
semantic frame slots are specified in advance.

Previous work (Ons et al., 2013) demonstrated
the performance of an early implementation of this
system on pathological speech input for a simple



home automation command & control task and
non-pathological PATCOR speech data. The results
show that the system has a promising learning po-
tential even with small amounts of training data,
but that enhancements are needed in order to pro-
duce practically usable accuracies for more com-
plex utterances, such as the ones found in PATCOR.
Work described in van de Loo et al. (2019) focused
on improvements with respect to the system archi-
tecture. Extensions regarding the HMM structure
and a technique called “expression sharing” were
added to FramEngine’s workings and were shown
to significantly improve on the frame-slot filling
abilities on transcribed PATCOR data.

van de Loo et al. (2019) describes parameter se-
lection experiments on P1-8, while a final evalua-
tion was conducted on the basis of learning curve
experiments on the P9 set. FramEngine was able
to score over 95% frame-slot F-score using around
200 utterances as training data. While these re-
sults are encouraging, there are reasons to believe
we can still increase accuracy by means of retrain-
ing. FramEngine’s slot-value allocation technique
is limited in the context that it can consider dur-
ing disambiguation. And while word order is in-
directly modeled through the structural setup of
the hierarchical hidden markov model, a further
explicitation of the syntactic properties of the ob-
served utterances may provide additional insights
into the induction process proper.

In the context of this paper, we refer to retrain-
ing as the process of using an automatically la-
beled data set as input data for another inductive
processing step. Typically, retraining techniques
attempt to label large volumes of unlabeled data
to increase the volume of available training data
(self-training (McClosky et al., 2006)) or adapt a
classifier to a new domain (co-training (Blum and
Mitchell, 1998)). The work in this paper investi-
gates retraining as the process of using successive
classifiers on the same training data to improve re-
sults. This approach has been successfully applied
to a variety of problems, including morphologi-
cal analysis (De Pauw and de Schryver, 2008) and
spoken language understanding (Wu et al., 2006).

4 Retraining

This paper explores two different retraining tech-
niques: inductive sequence labeling (Section 4.1)
and stochastic context-free grammar induction
(Section 4.2). As described in van de Loo et

al. (2019), FramEngine can be shown to exhibit
a more than decent performance on the task of
frame-slot filling for the PATCOR data. For retrain-
ing purposes, we can use FramEngine to decode its
own training set, linking each word in the training
set with a frame slot/value label through Viterbi
decoding of the utterance. This means we can now
also associate each word with an automatically as-
signed IOB-tag, expressing its frame-slot and in
addition also its value:

(2) legO deO hartenI FS=h vijfI FV=5 opO

deO klaverenI TS=c zesI TS=6

This information is consequently used as source
data for retraining purposes.

4.1 Sequence Labeling

The first type of retraining technique recalls the re-
search described in Section 3.2: words annotated
with IOB-tags are considered as training material
for a discriminative sequence tagger. Fully super-
vised (i.e. with manually attributed IOB-tags), this
approach can be observed to obtain near perfect
accuracy scores on the PATCOR data. Using train-
ing data labeled by a weakly supervised technique
(i.e. FramEngine), a sequence labeler can be ex-
pected to perform less accurately than the fully su-
pervised approach, but more accurately than Fra-
mEngine itself, since it can take into account more
contextual information. We consider two different
machine learning techniques driving the sequence
labeler: we compare a memory-based tagger (MBT

(Daelemans et al., 2010)) with one based on con-
ditional random fields (WAPITI (Lavergne et al.,
2010)).

Figure 3 displays learning curves for ex-
ploratory experiments, in which we compared
fully supervised sequence labeling (using gold-
standard labels), weakly supervised decoding us-
ing FramEngine, and retrained sequence label-
ers. As expected, the accuracy of the retrained
sequence labeler eventually ends up somewhere
between that of the supervised labeler and that
of FramEngine. But this result is not obtained
until rather late in the learning curve, and even
the fully supervised labeler trails compared to the
weakly supervised FramEngine until training data
hits around 400 utterances.

This is due to the fact that the sequence labelers
consider the IOB-tags holistically. FramEngine as
described in van de Loo et al. (2019), uses the
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Figure 3: Learning curves for P9 data FramEngine
vs Single-Step Sequence labeling.

method of expression sharing, in which the hid-
den markov model is aware of the fact that certain
frame slots (such as the suit or value of a card) may
be expressed using the same tokens, regardless
of whether it occurs in a from-clause or a target-
clause. This means that if a certain value has only
occurred in one particular context in the training
set (e.g. vijfI FV=5), the tagger would not be able
to predict the correct tag when it occurs in the
other context in held-out data (e.g. vijfI TV=5),
as it is simply unaware this tag even exists.

We therefore implement a two-step tagging ap-
proach that implicitly introduces expression shar-
ing in the workings of the sequence labelers. The
process is illustrated in Figure 4. The tags are de-
composed into two parts: first a tagger attributes to
the words slot-value tags that generalize over slots
of the same type (in this case: ignoring ‘from’ and
‘target’ information). In the second step, a tag-
ger is trained using the slot-portion of the tag from
step 1 as the token to be tagged and the remain-
der of the original tag as the target tag. The origi-
nal word in the utterance is used as an extra infor-
mation layer towards disambiguation. The tags of
both steps are then combined into the conglomer-
ate tag. In case of incompatible tag-parts, the word
is attributed the O-tag. We will use the two-step
tagging approach in the experiments described in
Section 5.

4.2 PCFG Induction

The utterances tagged automatically by Fra-
mEngine (cf. Example 2) can also be trans-
formed into tree-structures, given information

about which expressions can be shared. Slot-
values (=? in Example 2) can be considered as
terminals, while suit/value and from/target indica-
tors can function as nonterminals. Two consecu-
tive clauses headed by the same nonterminal are
joined. As such, the tagged sentence in Exam-
ple 2 can be algorithmically transformed into the
phrase structure in Figure 5. These phrase struc-
tures can then be transformed into a (probabilis-
tic) context free grammar (Figure 5), by observing
the productions used to construct the tree struc-
tures for the utterances in the training set. Finally,
a Viterbi parser is used to assign tree structures to
new utterances and a reversal of the tree construc-
tion process outlined above, can be used to assign
IOB-labels that refer to frame slot/value pairs.

5 Experimental Results

5.1 Experimental Setup
We compare four different approaches on the basis
of their ability to fill slots with the correct values
in semantic frames:

1. Fully supervised sequence labeling (MBT and
WAPITI)

2. FramEngine

3. Retraining using sequence labeling (MBT and
WAPITI)

4. Retraining using PCFG-induction

FramEngine fills frame slots by choosing slot-
value tags with the highest summed probability
observed during decoding, exceeding a certain
threshold (established during development experi-
ments). If no slot value tag with sufficient proba-
bility mass occurs in the utterance, the slot remains
empty. Approaches 1, 3 and 4 fill frames in a sim-
ilar vein, except that these techniques predict for
each token in the utterance a single slot-value tag
without a probability score (i.e. probability = 1).
To solve ties, we add a small bias proportional to
the time index to each single tag probability (t *
10-5).

5.2 Evaluation
An important requirement for the ALADIN sys-
tem is that the amount of effort involved for the
user in training the system be kept to a mini-
mum. To evaluate our techniques in this vein, we
perform learning curve experiments to see which



Figure 4: Illustration of the two-step tagging approach.

ROOT

O

leg de

F

S

h

harten

V

5

vijf

O

op de

T

S

c

klaveren

V

6

zes

Figure 5: Phrase-Structure tree derived from Ex-
ample 2.

ROOT → O F O T
F → S V
T → S V
S → h | c
V → 5 | 6
O → leg de | op de
h → harten
c → klaveren
5 → vijf
6 → zes

Figure 6: Context-free grammar sample and lexi-
con derived from Figure 5.

techniques learn the required task the fastest with
the least amount of training data. The experiments
were performed on the P9 set, which consists of
1142 commands and corresponding action frames
of one single speaker. The last third of the data
set is used as evaluation data, while the remaining
training data is divided into partitions of 50 utter-
ances. We preserve the order of the training utter-
ances as they have been recorded, to mimic how
the actual system would be trained in practice.

The training partitions in the P9 set are used in-
crementally as training data for FramEngine. Op-
timal parameters and information sources for Fra-
mEngine were obtained during expansive exper-
iments on the P1-8 (van de Loo et al., 2019).
The trained hierarchical hidden markov model is
then used to transcode the training utterances into
slot-value tag sequences. These automatically
tagged utterances, derived through a weakly super-
vised induction process, are then used to train the
memory-based and CRF-based sequence taggers
and to induce a PCFG respectively. Finally, the
retrained techniques are evaluated on the held-out
data, creating a data point on the learning curve.

We evaluate against gold-standard semantic
frames in which only the slots mentioned in the
utterance have been specified (in contrast to the
overspecified frame in Figure 2) and which slot
values can be ambiguous: e.g. in the case of ’aas
opzij leggen’ (‘put ace aside’), the reference frame
includes all four possible foundation values (tar-
get foundation=1,2,3,4), because no specific value
is specified in the command. We use frame slot F-
score as our metric of choice, which is calculated
as follows:

• slot precision: #correctly filled slots / #total
filled slots in predicted frame

• slot recall: #correctly filled slots / #total filled
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Figure 7: Learning curve experiments for the original FramEngine labeling, supervised and retrained
sequence labeling (a) and retraining using PCFG induction (B)

slots in reference frame

• slot Fβ=1-score: 2* slot precision * slot recall
/(slot precision + slot recall)

Finally, as FramEngine’s performance is af-
fected by random initializations of the system, the
experiments with FramEngine and the retrained
systems are carried out ten times, with different
random initializations. Scores are averaged across
the ten runs and 95% confidence levels for the
scores are reported as well.

5.3 Results

Figure 7 displays the learning curves for the P9
data. We consider the fully supervised sequence
labelers as the upper bound, since they are trained
on gold-standard data. We notice that they achieve
optimal F-score at around 250 utterances. Be-
fore that, their accuracy scores are marred by un-
seen words in the evaluation set, something that
the weakly supervised FramEngine approach is
able to overcome through its looser generaliza-
tion properties. Retraining using the sequence la-
belers (Figure 7(a)), trained on the automatically
tagged data, improves F-scores for nearly all train-
ing sizes over FramEngine. For this task, re-
training using conditional random fields generally
yields more favorable learning curves than using
memory-based learning.

The large leaps in the curves in Figure 7 are to
a great extent related to a shift in the user’s lexi-

con over time. In the test set (featuring recordings
during the end of the data collection process), the
card value ‘king’ is always referred to as ’heer’
(English: Sir), whereas initially, this card value is
always referred to as ’koning’ (English: ‘king’).
The word ’heer’ starts to appear in the training set
after the 200th utterance, thereby causing a signif-
icant leap for all of the approaches.

Retraining through PCFG induction (Figure
7(b)) similarly suffers from out-of-vocabulary
words and, additionally, unseen grammatical pro-
ductions in the evaluation set on smaller training
sizes. Its continuing performance is fairly con-
stant, although it seldom outperforms FramEngine
in a convincing manner. Figure 7(b) shows two
PCFG-curves: one that expresses performance of
10 individual PCFGs for each FramEngine initial-
ization (single run) and one that joins the data
from all the runs and induces one single PCFG
(all runs). Joining data over initializations dra-
matically improves the number of structures in the
evaluation set that are covered by the grammars,
while precision does not seem to suffer, thereby
yielding higher F-scores for most training set sizes
over 250.

These experiments show that, although Fra-
mEngine achieves workable F-scores using a
weakly supervised approach, we can automati-
cally increase F-scores through retraining. For this
task, sequence labeling is the recommended re-
training technique, although PCFGs can also be



observed to increase F-scores for this task. The
latter result is encouraging, since it allows for
the weakly supervised induction of a classic com-
mand & control interface that restricts the acoustic
search space by means of a context-free grammar.

5.4 PCFG induction: a qualitative analysis

While the F-scores of the PCFG-retraining ap-
proach trail compared to those of the retrained se-
quence labelers, the former presents an interesting
opportunity for interpretability. Looking at the in-
duced PCFGs can provide us with further insight
into how the structural properties of the language
are being modeled.

The grammar in Figure 8 corresponds rather
well with our intuitions for this task. Apart from
an artifact (production T→TF cannot reach termi-
nal nodes) and a needlessly ambiguous handling of
the tokens nieuwe (new), kaarten (cards) and om-
draaien (turn over), the induced PCFG presents a
clean description of the grammar used in the utter-
ances of the training set. The probabilities for the
different card suits are evenly distributed, as are
their card values. The two different frame types
are triggered by three ROOT rules, two for the
DEALCARD frame, one for the MOVECARD frame.
Interestingly, while the grammar in Figure 8 ex-
cludes infrequent rules (such as ROOT→ F T O T
O F O T), applying this kind of filtering in practice
yields significantly lower F-scores during the ex-
periments, as these productions provide coverage
for idiosyncratic utterances containing repairs and
the like.

6 Conclusion and Future work

This paper described research on data collected
for a command & control interface for the card
game Patience. The task of associating compo-
nents of a command to slots in semantic frame rep-
resentations of the intended control was already
established with a fair degree of accuracy using
a semantic frame induction technique based on
non-negative matrix factorization and a hierarchi-
cal hidden markov model (FramEngine). This pa-
per improves on this result by applying retrain-
ing using a discriminative sequence labeler as a
post-processing step. Additional retraining exper-
iments using probabilistic context-free grammar
induction likewise show improvements when used
as a post-processing step.

Next steps in this research should investigate

ROOT → DC [0.0824324]
ROOT → O DC [0.331081]
ROOT → F O T [0.586486]
DC → kaarten omdraaien [0.593054]
DC → nieuwe kaarten omdraaien [0.131062]
DC → omdraaien [0.275885]
F → S V [1.0]
T → TF [0.0909515]
T → S V [0.909049]
S → c [0.249707]
S → d [0.264478]
S → h [0.233763]
S → s [0.252052]
V → 1 [0.0763444]
V → 2 [0.0617492]
V → 3 [0.0617492]
V → 4 [0.084428]
V → 5 [0.0911643]
V → 6 [0.0862243]
V → 7 [0.0739868]
V → 8 [0.0817335]
V → 9 [0.086112]
V → 10 [0.0793758]
V → 11 [0.0673627]
V → 12 [0.0718536]
V → 13 [0.0779162]
O → kaarten [0.13268]
O → nieuwe [0.252725]
O → op [0.614595]
1 → aas [1.0]
2 → twee [1.0]
3 → drie [1.0]
4 → vier [1.0]
5 → vijf [1.0]
6 → zes [1.0]
7 → zeven [1.0]
8 → acht [1.0]
9 → negen [1.0]
10 → tien [1.0]
11 → boer [1.0]
12 → dame [1.0]
c → klaveren [1.0]
d → ruiten [1.0]
h → harten [1.0]
s → schoppen [1.0]

Figure 8: Probabilistic Context-Free Grammar
and lexicon (induced in a weakly supervised man-
ner). For display purposes, only productions that
occur more than 0.5% of the time were used to
compile the PCFG. The non-terminals are ROOT,
DealCard, From, Target, Suit, Value, O. (induced
in run-1 at training set size 761)



whether these retraining techniques can yield sim-
ilar accuracy increases when applied on the acous-
tic portion of the PATCOR data. It will be par-
ticularly interesting to see whether the PCFG in-
duction technique can yield a similarly transparent
collection of productions as displayed in Figure 8,
when confronted with a noisy set of observations.

We will also investigate the advantage of the
retraining techniques on other data sets, such as
the grammatically less complex home automation
data, collected in the context of the ALADIN
project (Ons et al., 2013), but also the ROBOCUP
data (Chen and Mooney, 2008), which in recent
years has become an interesting benchmark to
gauge advances in this field. Finally, further re-
search efforts should investigate whether the re-
training techniques, now used as a post-processing
step, can be compiled into FramEngine so that
decoding can be achieved in a single processing
sweep.
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