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A B S T R A C T

We have three contributions in this work: 1. We explore the utility of a stacked denoising autoencoder and a
paragraph vector model to learn task-independent dense patient representations directly from clinical notes. To
analyze if these representations are transferable across tasks, we evaluate them in multiple supervised setups to
predict patient mortality, primary diagnostic and procedural category, and gender. We compare their perfor-
mance with sparse representations obtained from a bag-of-words model. We observe that the learned generalized
representations significantly outperform the sparse representations when we have few positive instances to learn
from, and there is an absence of strong lexical features. 2. We compare the model performance of the feature set
constructed from a bag of words to that obtained from medical concepts. In the latter case, concepts represent
problems, treatments, and tests. We find that concept identification does not improve the classification per-
formance. 3. We propose novel techniques to facilitate model interpretability. To understand and interpret the
representations, we explore the best encoded features within the patient representations obtained from the
autoencoder model. Further, we calculate feature sensitivity across two networks to identify the most significant
input features for different classification tasks when we use these pretrained representations as the supervised
input. We successfully extract the most influential features for the pipeline using this technique.

1. Introduction

Representation learning refers to learning features of data that can
be used by machine learning algorithms for different tasks. Sparse re-
presentations, such as a bag of words from textual documents, treat
every dimension independently. For example, in one-hot sparse re-
presentations, the terms ‘pain’ and ‘ache’ correspond to separate di-
mensions despite being synonyms of each other. Several techniques
exist to model such dependence and reduce sparsity. The generalized or
distributed representations learned using these techniques are referred
to as low dimensional, or dense data representations. Unsupervised
techniques for representation learning have become popular due to
their ability to transfer the knowledge from large unlabeled corpora to
the tasks with smaller labeled datasets, which can help circumvent the
problem of overfitting [1].

Representation learning techniques have been used extensively
within and outside the clinical domain to learn the semantics of words,
phrases, and documents [2,3]. We apply such techniques to create a
patient semantic space by learning dense vector representations at the
patient level. In a patient semantic space, “similar” patients should have

similar vectors. Patient similarity metrics are widely used in several
applications to assist clinical staff. Some examples are finding similar
patients for rare diseases [4], identification of patient cohorts for dis-
ease subgroups [5], providing personalized treatments [6,7], and pre-
dictive modeling tasks such as patient prognosis [8,9] and risk factor
identification [10]. The notion of patient similarity is defined differ-
ently for different use cases. When it is defined as an ontology-guided
distance between specific structured properties of patients such as
diseases and treatments, it represents patient relationships corre-
sponding to those properties. For example, if patient similarity is cal-
culated as a hierarchical distance between the primary diagnostic codes
of patients in the UMLS®metathesaurus [11], the value represents a
diagnostic similarity. When it is defined as an intersection between the
sets of blood tests performed on patients, patient similarity maps to
blood test similarity. If patient similarity value is 1 for the patients of
the same gender and 0 otherwise, groups of similar patients are gender-
specific patient cohorts. However, when we calculate similarity be-
tween distributed patient representations, the different properties that
influence the similarity value are unknown. Within the learned patient
representations, we aim to capture similarity on multiple dimensions,
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such as complaints, diagnoses, procedures performed, etc., which
would encapsulate a holistic view of the patients.

In this work, we create unsupervised dense patient representations
from clinical notes in the freely available MIMIC-III database [12]. We
aim to learn patient representations that can later be used to identify
sets of similar patients based on representation similarity. We focus on
different techniques to learn patient representations using only textual
data. We explore the usage of two neural representation learning ar-
chitectures—a stacked denoising autoencoder [13], and a paragraph
vector architecture [14]—for unsupervised learning. We then transfer
the representations learned from the complete patient space to different
supervised tasks, with an aim to generalize better on the tasks for which
we have limited labeled data.

Dense representations can capture semantics, but at a loss of in-
terpretability. Yet, it is critical to understand model behavior when
statistical outputs influence clinical decisions [15]. We take a step to-
wards bridging this gap by proposing different techniques to interpret
the information encoded in the patient vectors, and to extract the fea-
tures that most influence the classification output when these re-
presentations are used as the input.

2. Related work

Dense representations of words [16–19] and documents [14,20] have
become popular because they are learned using unsupervised techni-
ques, they capture the semantics in the content, and they generalize
well across multiple tasks and domains. An autoencoder learns the data
distribution and the corresponding dense representations in the process
of first encoding data into an intermediate form and then decoding it.
Miotto et al. [21] first proposed the use of a stacked denoising auto-
encoder to learn patient representations. They have shown promising
results when patient vectors are first learned by a stacked denoising
autoencoder from structured data combined with 300 topics from un-
structured data, and are then used with Random Forests classifiers to
identify future disease categories of patients. Following their work,
Dubois et al. [22] have proposed two techniques to obtain patient re-
presentations from clinical notes. The first technique is unsupervised
and performs an aggregation of concept embeddings into note and
patient level representations, known as ‘embed-and-aggregate’. The
second technique uses a recurrent neural network (RNN) with a bag-of-
concepts representation of patient notes as time steps. The RNN is
trained to predict disease categories of patients. The representations
learned in this supervised setup are then transferred to other tasks.
Apart from these works, Suresh et al. [23] have performed a pre-
liminary exploration of the use of sequence-to-sequence autoencoders
to induce patient phenotypes using structured time-series data. They
have compared different autoencoder architectures based on their re-
construction error when they are trained to encode patient phenotypes.
An application of these phenotypes to different clinical prediction tasks
has been reserved for future work. In the same vein as these previous
works, we investigate the applicability of a stacked denoising auto-
encoder to learn patient representations directly from unstructured data,
and analyze the tasks that these representations can be successfully
applied to.

One of the evaluation tasks for us is patient mortality prediction.
Johnson et al. [24] provide a good overview of the previous approaches
for mortality prediction on the MIMIC datasets with an aim of re-
plicating the experiments. Following the work by Ghassemi et al. [25],
Grnarova et al. [26] have shown significant improvements for mortality
prediction tasks on using a two-level convolutional neural network
(CNN) architecture, as compared to the use of topic models and
doc2vec representations as inputs to linear support vector machines
(SVMs). Besides these works, Jo et al. [27] have recently used long
short term memory networks (LSTMs) and topic modeling for mortality
prediction. They treat topics for patient notes as time steps for LSTMs.
These topics are learned jointly using an encoder network. They have

shown performance gains when the topics are jointly learned, com-
pared to those pretrained using LDA [28].

3. Methods

3.1. Learning patient representations

In this section, we describe a stacked denoising autoencoder and a
paragraph vector architecture doc2vec, in the context of learning task-
independent dense patient representations in an unsupervised manner.
The corresponding methodology for learning these dense representa-
tions is illustrated in Fig. 1.

3.1.1. Stacked denoising autoencoder
Given the previous success of autoencoders for representation

learning using structured data with or without topic models learned
from unstructured data, we explore the use of a stacked denoising au-
toencoder (SDAE) [13] to learn task-independent patient representa-
tions from raw clinical text, forgoing the use of intermediate techniques
like topic modeling. Although the premise of learning patient re-
presentations using an SDAE is not novel in itself, our contribution lies
in analyzing if such a model is also successful when used only with
clinical notes, and if the learned representations can be successfully
applied for a range of tasks that are different from patient prognosis.
This analysis gives us insight into successful and transferable patient
representation architectures for unstructured data.

During the pretraining phase, every layer of an SDAE is sequen-
tially trained as an independent denoising autoencoder. An auto-
encoder learns to first encode the input data I into an intermediate
representation R, and then decode R into I. Denoising refers to the
process of first adding noise to corrupt the input I into ∼I , and then
training an autoencoder to reconstruct I using ∼I as the input. We use the
dropout noise [29], where a random proportion of the input nodes are
set to 0. In the process of denoising, the model also learns the data
distribution. In an SDAE, the intermediate representations obtained
from the autoencoder at layer −n 1 are used as the uncorrupted input to
the autoencoder at layer n, for all the layers in the SDAE. To pretrain
patient representations using an SDAE, high-dimensional (sparse) pa-
tient data are used as the input to the autoencoder at the first layer of
the SDAE. The intermediate representations obtained from the auto-
encoder at the final layer are treated as the low-dimensional (dense)

Fig. 1. An overview of the patient representation pipeline. The dashed lines
indicate one of several operations, and are not performed in parallel.
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representations R p( ) for a patient p. The number of layers is determined
through a random search [30] based on the results for primary diag-
nostic category prediction using a perceptron.

Finetuning can be performed in multiple ways [1]. In one ap-
proach, all the encoder layers can be stacked on top of each other, and a
logistic regression layer can be added on the top to finetune the entire
pretrained network for an end task as a feedforward neural network. In
such a setup, the input features in the finetuning phase are the same as
the input features during the pretraining phase. In another approach,
instead of the entire network, only the preliminary task-independent
representations R can be finetuned for an end task. In this approach, R
is used as the input to a separate classifier. In our experiments, we train
separate classifiers for different tasks using R as the input features.

We use the sigmoid activation function for the encoding layers, and
the linear activation function to decode real values. During the pre-
training phase, we train each layer of the SDAE to minimize the mean
squared reconstruction error using the RMSProp optimizer [31]. During
the finetuning phase, we train the classifiers to minimize the categorical
cross-entropy error using the same optimizer. We determine the
number of layers, the dimensionality, and the dropout proportion also
using a randomized hyperparameter search. These values are depen-
dent on the feature sets and the finetuning process, and can be found in
Table A.1 in the Appendix.

3.1.2. Paragraph vector
Doc2vec, or ‘Paragraph Vector’ [14], learns dense fixed-length re-

presentations of variable length texts such as paragraphs and docu-
ments. It supports two algorithms—a distributed bag-of-words (DBOW)
algorithm, and a distributed memory (DM) algorithm. For both the
algorithms, word representations are shared among all the occurrences
of a word across all the paragraphs, and paragraph vectors are shared
among all the contexts that occur in a given paragraph. In the DBOW
algorithm, word and paragraph vectors are jointly trained when the
paragraph vectors are used to predict the context words for all the
contexts in the paragraph. In the DM algorithm, these vectors are jointly
trained by predicting the next word from a concatenation of the para-
graph vectors and the vectors of the context words. During the in-
ference phase of both the algorithms, word vectors are fixed, and
paragraph vectors are trained until convergence.

We use the DBOW algorithm for 5 iterations, with a window size of
3, a minimum frequency threshold of 10, and 5 negative samples per
positive sample to train 300-dimensional patient vectors. We de-
termined these settings also using randomized hyperparameter search.

3.2. Feature extraction

When statistical models are deployed for clinical decision support, it
is crucial to understand the features that influence the model output
[15]. A ranked list of the most influential features can assist such un-
derstanding, while facilitating error analysis; it can also enable ex-
ploratory analysis when unexpected features are ranked high. However,
neural networks are notorious for being black boxes due to their com-
plex architectures. Given the impact of automated decisions, there has
been a recent surge of interest to make neural architectures inter-
pretable. Different techniques include visualization of weights and
embeddings [32,33], representation erasure and feature occlusion
[34,35], input perturbation [36], and visualization of attention weights
in recurrent neural networks [37–40]. The technique of visualizing
hidden weights and embeddings is a qualitative approach to inter-
pretability. Furthermore, techniques like input feature erasure train a
new model in absence of a given feature. When retrained, these models
can learn to rely on a completely different set of features. Moreover, the
attention mechanism is not applicable to feedforward neural networks.
Within the scope of our work, we propose two techniques to bridge the
existing gap in model interpretability when we train unsupervised
dense representations, and when we use these representations to get

classification decisions using feedforward neural networks. To the best
of our knowledge, we are the first to propose these techniques to make
dense representations interpretable.

3.2.1. Average feature reconstruction error: pretraining phase
We calculate the squared reconstruction error of all the input

features in the first layer of the pretrained autoencoder, averaged across
all the training instances. The value of the reconstruction error of the
individual features gives us an estimate of the features that are encoded
the best and the worst in the patient vectors learned through the SDAE.
This knowledge facilitates an analysis of model behavior to make the
vectors more interpretable.

3.2.2. Input significance calculation using sensitivity analysis: classification
phase

Sensitivity analysis, or gradient-based analysis, is often used to
identify the most influential features of a trained model [41–43]. For a
given model and a given instance, the sensitivity of an output node with
respect to an input node refers to the observed variation in the output
on varying the input. This is equivalent to the gradient of the output
with respect to the input. The inputs that cause larger variations in the
output are more significant for the model.

This analysis has so far been used to identify the most influential
features for a single network, such as a single classifier. However, in our
work, we are confronted with two neural networks. The first network
learns the dense patient representations, and the second network uses
these dense representations as the input for different classification
tasks. We extend the work by Engelbrecht and Cloete [41] and propose
a technique to compute the significance of the original (sparse) features
on the final classification decisions. We use the chain rule across two
networks to compute the sensitivity of the output node in the second
network to the input of the first network. This allows us to identify the
most influential features in the entire pipeline.

We demonstrate this technique for different classification tasks
when the task-independent dense patient representations R are first
induced by the SDAE from the original input z, and R is then used as the
input to the classifiers. The significance of the ith input feature (ϕzi) is
defined as the maximum significance of the input feature i across all the
K output units (o) of the classifier with respect to the N instances:
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In (2), we thus calculate the mean squared sensitivity across different N
instances and take the root. The sensitivity for a particular instance (3)
is obtained by first taking the derivative of an output node value w.r.t. a
value in a patient representation; then taking the derivative of the pa-
tient representation value w.r.t. the original input value; and then
multiplying them. This technique allows us to identify the most sig-
nificant features in a trained model for an arbitrary number of instances
and output classes. It is also transferable to the doc2vec representations,
but we reserve this for future research.

4. Dataset construction and preprocessing

We retrieve a set of adult patients (⩾18 years age) with only one
hospital admission, with at least one associated textual note (excluding
discharge reports) from the MIMIC-III critical care database [12]. We
restrict to the patients with a single admission to remove ambiguity
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when the labels are dependent on discharge time. We exclude discharge
reports from analyses to remove the direct indication of in-hospital
death of a patient, which is one of the tasks that we are interested in.
We obtain a range of 1–879 notes per patient, with average of 29.51
notes. This corresponds to 13–789,906 tokens per patient, with an
average of 13,064 tokens. We split the dataset into 80-10-10% as
training, validation, and test subsets, to get a set of 24,650 patients for
training, and 3081 patients each for validation and testing. We re-
present patients with a concatenation of all the notes associated with
them (excluding discharge reports). We tokenize the dataset using the
Ucto tokenizer [44] and lowercase it.

To obtain patient representations using the SDAE and for the
baseline experiments, we replace the numbers, and certain token-level
time and measurement matches with placeholders. We remove the
punctuations, and the terms with corpus frequency less than 5. We

represent the out-of-vocabulary terms obtained after the preprocessing
in the test set with a common token. We use two feature sets—a bag-of-
words (BoW), and a bag-of-medical-concepts (BoCUI)—with their cor-
responding TF-IDF scores as feature values. We use the TF-IDF values to
give high weights to frequent features for a patient relative to all the
patients in the dataset. For the BoCUI, we use the CLAMP toolkit [45] to
identify Concept Unique Identifiers (CUIs) in the UMLS®metathesaurus
[11] corresponding to medical concept mentions of the types problems,
treatments, and tests as defined in the i2b2 annotation guidelines [46],
along with their assertion labels. Here, problems also include findings
and symptoms. CUIs appended with ‘present’ and ‘absent’ assertion
labels are the vocabulary terms for this feature set. A bag-of-medical-
concepts is a common featurization technique used in clinical NLP re-
search [21,47]. We use a bag representation instead of a sequence
model because the final document length for different patients is highly

Fig. 2. Primary diagnostic and procedural category distribution in the data.
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variable, going up to very large document sizes. We obtain a vocabulary
size of 71,001 for the BoW feature set, and 83,310 for the BoCUI feature
set.

To train the doc2vec models, we remove the numbers and the to-
kens matching certain time and measurement regex patterns. We have
determined these settings based on the initial results on the validation
set. We obtain a vocabulary size of 48,950 for this model. We have not
trained a doc2vec model using only the medical concepts because if we
represent a document as a sequence of CUIs only, we remove the in-
dicators of language semantics from the context window, which the
doc2vec model relies on during the learning process. If we keep addi-
tional terms along with the concept identifiers to train a doc2vec model,
the available information is not comparable to a BoCUI feature set.

5. Evaluation

5.1. Task description

We use the dense patient representations as input features to train
feedforward neural network classifiers on multiple independent tasks.
We evaluate the performance on a range of tasks to gain insight into the
task independent nature of the representations, and the information
encoded within the vectors. We disregard the instances that do not have
a task label. We minimize the categorical cross-entropy error using the
RMSProp optimizer, and determine the hyperparameters using rando-
mized search, which can be found in Table A.2 in the Appendix.

1. Patient mortality prediction: Whether a patient dies within a
given time frame. This prediction gives an estimate of the severity of
a patient’s condition to decide the amount of attention required.
(a) In-hospital mortality (In_hosp): Patient death during the

hospital stay—13.14% of the instances in the dataset.
(b) 30 days mortality (30_days): Patient death within 30 days of

discharge—3.85% of the instances in the dataset.
(c) 1 year mortality (1_year): Patient death within 365 days of

discharge—12.19% of the instances in the dataset. This includes
the patients who died within 30 days of discharge.

2. Primary diagnostic category prediction (Pri_diag_cat): Correctly
diagnosing patients is essential for deciding further course of action.
We evaluate if the proposed technique can be used to predict the
generic category of the most relevant diagnostic code for a patient,
corresponding to the 20 categories in the first volume of the 9th
revision of the International Classification of Diseases, Clinical
Modification (ICD-9-CM) database [48]. A distribution of these ca-
tegories in the dataset is given in Fig. 2.

3. Primary procedural category prediction (Pri_proc_cat):
Predicting the generic category of the most relevant procedure
performed on a patient, corresponding to the 18 categories present
in the third volume of the ICD-9-CM database. A distribution of
these categories in the dataset is given in Fig. 2. These procedural
categories reflect different surgeries performed on patients. Predic-
tion of the recommended procedure would assist the medical staff,
while enabling optimal resource allocation for the same.

4. Gender: Gender of a patient—male (56.87% of the instances) or
female (43.13% of the instances), as encoded in the dataset.

We evaluate the models using the area under the ROC curve (AUC-
ROC) for patient death for the mortality tasks. The ROC curve gives us
insight into the trade-off between the true positive rate and the false
positive rate at different thresholds for different models. For the other
tasks, we compute the weighted F-score to correct for class imbalance.
We present the classification pipeline in Fig. 3.

5.2. Results and discussion

5.2.1. Supervised representation evaluation
In Table 1, we compare the classification performance when we use

the dense patient representations obtained from the SDAE-BoW (the
initial SDAE input is BoW), the SDAE-BoCUI (the initial SDAE input is
BoCUI), and the doc2vec models as input features for different tasks, as
opposed to using the BoW and the BoCUI sparse features. In Fig. 4, we
show the ROC curves for the mortality prediction tasks. Further, we
analyze the agreement between the SDAE-BoW and the doc2vec model
outputs by calculating Cohen’s κ score [49] between them on the va-
lidation set. We find that the agreement scores are not high, which may
indicate that the models learn complimentary information. We then
concatenate the two dense representations (model ensemble) to analyze
model complementarity. We calculate the statistical significance be-
tween the 9 different feature sets for the 6 tasks using the two-tailed
pairwise approximate randomization test [50] with a significance level
of 0.05 before the Bonferroni correction for 54 hypotheses.1

Our main finding is that all the dense representation techniques
significantly outperform the BoW baseline for 30 days mortality pre-
diction. However, although we see a large numerical improvement over
the BoW baseline on using the dense representations for 1 year mor-
tality prediction (where the set of instances with the label ‘death’ is a
superset of those for 30 days mortality), the differences are not statis-
tically significant. The SDAE-BoCUI model is significantly better than
the BoCUI model for both 30 days and 1 year mortality prediction tasks.
We believe that the poor performance of the sparse models for 30 days
mortality prediction may be due to the low number of positive in-
stances. The generalization afforded by the dense representation tech-
niques assists feature identification in such cases. The sparse BoW in-
puts perform better than the SDAE-BoW representations for all the
other tasks, and better than the doc2vec representations for in-hospital
mortality and primary procedural category prediction. One probable
reason is that the best predictors for the other tasks are the direct lexical
mentions in the notes, which makes the BoW model a very strong
baseline. Examples of such features obtained using the χ2 feature
analysis are ‘autopsy’, ‘expired’, ‘funeral’, and ‘unresponsive’ for in-
hospital mortality prediction, and ‘himself’, ‘herself’, ‘ovarian’, and
‘testicular’ for gender prediction. It is interesting to point out that the
direct mentions of in-hospital death are present in the notes even
though discharge reports have been excluded from analysis.

The agreement scores between the doc2vec and the SDAE-BoW
models are not high for any task, which may indicate that the two
models are complementary to each other. The results obtained from
concatenation of the vectors learned by both models is not significantly
different from the sparse representations for any task except 30 days
mortality prediction, where the concatenation is better. This ensemble
model significantly outperforms both individual models for primary
procedural category prediction. For primary diagnostic category and
gender prediction, the ensemble model is significantly better than the
SDAE model, but not the doc2vec model. In these cases, there is no
significant difference between the doc2vec and the BoW models. Hence,
we observe that the concatenation helps in some cases and we re-
commend combining the two dense representations for unknown tasks.
The doc2vec model uses a local context window in a log-linear classi-
fier, whereas the SDAE model uses only the global context information
and non-linear encoding layers. This may be one of the factors gov-
erning the differences between the two techniques.

Furthermore, we observe that the BoCUI sparse features perform
significantly worse than the BoW sparse features for in-hospital

1 These hypotheses are the comparisons of the doc2vec, the SDAE-BoW, and the en-
semble dense representations respectively with the BoW model, the ensemble with the
doc2vec model, the ensemble with the SDAE-BoW model, the BoCUI with the BoW
models, the SDAE-BoW model with the SDAE-BoCUI model, and the BoCUI model with
the SDAE-BoCUI model for the 6 tasks.
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mortality, 1 year mortality, and gender prediction. For the other tasks,
there is no statistical difference between the performance of the BoW
and the BoCUI features, although we see a large numerical drop of
about 9% with the BoCUI model for 30 days mortality prediction.
Moreover, the SDAE-BoW and SDAE-BoCUI representations are also not
significantly different from each other for any of the tasks. These results
suggest that there is no advantage of using a bag-of-concepts over a bag-
of-words feature set, either as sparse inputs, or to learn dense re-
presentations. There are a few possible reasons behind the observed
performance drop on using the BoCUI feature set. First, these features
are restricted to the medical concepts of types ‘problem’, ‘treatment’,
and ‘test’. These concepts are important features for diagnostic and
procedural category identification. However, when we remove the
terms that do not belong to these types, we also remove some useful
features for other tasks, e.g., pronouns for gender prediction, and terms
like ‘expired’ and ‘post-mortem’ for in-hospital mortality prediction,
which in turn affects the classification performance. Next, when we
identify medical concepts mentions with their corresponding CUIs and
assertion labels, we also propagate the errors along in the pipeline,
while adding to the sparsity of the terms. These factors additionally
contribute to a difference in the classification performance.

Our work on mortality prediction is related to Grnarova et al. [26].
The closest comparison between our results is the evaluation of the
doc2vec representations. They have reported the AUC-ROC scores of
0.930, 0.831, and 0.824 for in-hospital mortality, 30 days mortality,
and 1 year mortality prediction respectively, and have shown an im-
provement over the LDA baseline for the latter two. These scores are
higher than what we have obtained with doc2vec. However, this may
be due to different data subsets2, different classifiers (feedforward
neural networks vs. linear SVMs), or different training schemes. They
have further reported significant improvement on all the tasks when

using a CNN architecture. This setup is supervised for the mortality
tasks, and it is unclear whether supervision plays a role in the observed
improvement. Similarly, Jo et al. [27] have shown significant im-
provements for mortality prediction tasks on using their supervised
LSTM architecture that jointly learns topic models as opposed to using
LDA with linear SVMs. Again, the results are not directly comparable.
They have predicted in-hospital, 30 days post-discharge, and 1 year
post-discharge mortality at the end of every 12 h window during a
patient stay. Instead, we predict these mortality values using all the
notes (except discharge reports) until the end of the patient stay. They
have not reported the AUC-ROC scores for patient mortality at the end
of the patient stay.

Furthermore, Dubois et al. [22] have evaluated their embed-and-
aggregate and RNN architectures for patient representation learning on
multiple tasks. They have found that the RNN trained in a supervised
manner for diagnostic code prediction outperforms the other archi-
tectures for predicting future diagnostic codes. However, when these
representations are transferred to other tasks, this advantage is not
visible. For mortality prediction (within the time period of the patient
records) on large datasets, the bag-of-concepts and embed-and-ag-
gregate methods performed equally well, and outperformed the RNN
architectures. The RNN architecture performed poorly also for predic-
tion of future patient admission, and had a comparable performance to
embed-and-aggregate method for future ER visit prediction. One ex-
planation for better RNN performance for future diagnostic code pre-
diction is that the representations obtained from the RNN encode im-
portant information about patient diagnoses due to their supervised
training on a similar task. This is not the case for the other tasks where
there is no improvement.

5.2.2. Feature analysis
In Table 2, we present a list of features based on their mean squared

reconstruction error when we pretrain the patient representations using
the SDAE-BoW model. We observe that infrequent terms such as spel-
ling errors are reconstructed very well, as opposed to the frequent

Fig. 3. Representation evaluation pipeline. The dashed lines indicate one of several operations, and are not performed in parallel.

Table 1
Classification results on different tasks using the BoW features, the SDAE representations computed from the BoW (SDAE-BoW), the doc2vec representations, the
concatenated SDAE-BoW and doc2vec representations ([doc2vec, SDAE-BoW]) with Cohen’s κ score (in italics), the BoCUI features, and the SDAE vectors computed
from the BoCUI (SDAE-BoCUI). AUC-ROC values are reported for the mortality tasks, and weighted F-score for the others.

No. Approach Mortality Pri_diag_cat Pri_proc_cat Gender

In_hosp 30_days 1_year

(1) BoW 0.9457 0.5949 0.7942 0.7016 0.7366 0.9847
(2) SDAE-BoW 0.9194 0.7965 0.7980 0.6500 0.6746 0.8775
(3) doc2vec 0.9195 0.7680 0.8134 0.6807 0.6583 0.9770
(4) [doc2vec, SDAE-BoW] 0.9383 0.8113 0.8302 0.6788 0.7030 0.9747

(κ) 0.5865 0.0000 0.1581 0.6438 0.5891 0.7200
(5) BoCUI 0.9088 0.5065 0.6993 0.7104 0.7265 0.7504
(6) SDAE-BoCUI 0.9007 0.7832 0.8016 0.6647 0.6777 0.6245

2 We were unable to reconstruct exact data subsets and obtain comparable results
because we did not have access to their data processing scripts and the complete pipeline.
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features in the dataset. To check for a correlation between the mean
squared reconstruction error and the feature frequency, we calculate
the Spearman’s and the Kendall-tau rank-order correlation coefficients
[51] between the two parameters, reported in Table 3. These techni-
ques check for a correlation between the parameters irrespective of a
linear relationship and use different algorithms to generate the ranked

lists in case of a tie. Using both techniques, we obtain very high positive
correlation coefficients. We believe that this behavior may be either due
to the high entropy of the frequent terms, or because the model
memorizes the infrequent terms. Jo et al. [27] also obtain misspellings
and rare words as the top features when they use recurrent neural
networks for patient mortality prediction in the MIMIC-III dataset.

In Table 4, we list the most significant features for the model output
for one instance each in the test set, when the SDAE-BoW patient re-
presentations R are used as the classification input. In italics are the
vocabulary terms that are not present in the notes for the patient, but
are treated as the most influential features. We find that the classifiers
give high importance to sensible frequent features for most of the tasks,
although the SDAE reconstructs low frequent terms such as spelling
errors better during the pretraining phase. Several features for in-hos-
pital mortality point towards the overall patient condition and treat-
ments for the patient. Terms like ‘brbpr’ (bright red blood per rectum)
for primary diagnostic category prediction, and the top features for
gender prediction indicate the true class. The absence of several fea-
tures is used as an important clue to identify the right class. For ex-
ample, most of the top ranking features for 30 days and 1 year mortality
prediction are not present in the patient notes. Similarly, the absence of
the terms related to the female gender implies the male class. Ad-
ditionally, the absence of numbers (‘numeric_val’) in notes is the most
useful feature for diagnostic and procedural category identification,
which may have been used by the model to identify certain lab tests
with numeric results that were not carried out.

Furthermore, many top features extracted for primary diagnostic
category prediction are the terms corresponding to text segments like
“Sinus rhythm. Compared to the previous tracing of …”, which is a
common pattern in the notes for the patient. When evaluated without
the context, many of these terms do not make sense. However, although
we input a bag-of-words representation to the SDAE, co-occurrence of
the terms is reflected in the extracted features. We further observe that
there is a minimal overlap between the sets of important features for
different tasks. This shows that the learned representations R are task-
independent, and that the classifiers can identify task-specific im-
portant information when they are trained for a particular task.

To illustrate the applicability of the feature extraction technique to

Fig. 4. Receiver operating characteristic (ROC) for patient mortality prediction
tasks.

Table 2
The best and the worst feature reconstructions during un-
supervised pretraining of SDAE-BoW.

Best reconstruction Worst reconstruction

stumnz picc
jajhnx woman
a-fibril osh
lsc.o fall
potentiallly man
yesh stent
forcal he
contbributing wife
hyponatremia-on repair
pre-exiusting bleed

Table 3
Correlation between the mean squared reconstruction error of the first layer of
the SDAE during the unsupervised pretraining phase and feature frequency. All
the p-values are lower than 0.001.

Feature set Spearman Kendall-Tau

BoW 0.8738 0.7287
BoCUI 0.8836 0.7334
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understand relative model behavior, we compare the set of the most
important features for a) one instance where the bag-of-words model
predicts in-hospital death correctly, whereas the SDAE dense re-
presentations fail to make that prediction, and b) one instance where
both the models make correct predictions. These features are presented
in Table 5. We find that the BoW model identifies the direct indicators
of patient death such as ‘expired’, ‘autopsy’, ‘morgue’, and ‘death’ as the
top features along with certain features related to the procedures per-
formed on the patient. Instead, the generalized SDAE-BoW model uses
the features related to the holistic patient condition as the more im-
portant features. Examples are ‘cad (Coronary Artery Disease)’, ‘cabg
(Coronary Artery Bypass Graft surgery)’, ‘vasopressin’, ‘dopamine’, ‘dnr
(do not resuscitate)’, and ‘cvvhd (Continuous Veno-Venous Hemofil-
tration Dialysis)’. This shows us that the models operate in very dif-
ferent feature spaces. The generalized models are good when we want a
comprehensive view of the patient condition. However, the sparse BoW
model may be better if we want to pick up the strong lexical features
present for a task.

5.2.3. Visualization of unsupervised representations
In Fig. 5, we present 2D visualizations of the unsupervised re-

presentations learned by the SDAE and the doc2vec architectures. It is
important to note that the SDAE-BoW and the doc2vec representations
were learned in an unsupervised manner, and were not finetuned to
represent a particular property of the data. Hence, they encode in-
formation that represent patient notes in a holistic manner, and span
many different properties. We use t-SNE3 [52] to generate the

visualizations, after first reducing the representations to 50 dimensions4

using Principal Component Analysis. In the figure, as an example, we
color the representations according to the corresponding primary di-
agnostic category. For the purpose of clarity, we limit to the 5 most
frequent diagnostic categories in the dataset. We observe that the pa-
tients with the same diagnostic category are frequently close together,
forming clusters. This suggests that using the proposed techniques,
“similar” patients result in similar representations.

6. Conclusions and future work

Our research provides insight into the suitability of learning patient
representations only from clinical notes, for an arbitrary task, while
understanding model performance. We have shown that the generalized
dense patient representations significantly improve the classification
performance for 30 days mortality prediction, a task where we are
confronted with a very low proportion of positive instances. For the
other tasks, this advantage is not visible. Moreover, we have shown that
a combination of the stacked denoising autoencoder and the doc2vec
representations improves over the individual models for some tasks,
without any harm to the others tasks. We recommend combining these
representations for unknown tasks. We have further shown that there is
no advantage of using a bag-of-concepts feature set as opposed to a bag-
of-words feature set as either sparse inputs or to learn dense re-
presentations. Expensive concept identification process is not required
for these setups.

Furthermore, we have proposed novel techniques to interpret model
performance to overcome the black-box nature of neural networks.
During representation analysis, we have found that frequent terms are
not encoded well during the pretraining phase of the stacked denoising
autoencoder. However, when we use these pretrained vectors as the
input, sensible frequent features are selected as the most significant
features for the classification tasks. Some vocabulary items that are
absent from patient notes are often deemed important, while at the
same time, co-occurrence of the features present in the notes is also
learned by the model. We have also shown that the unsupervised re-
presentations are task-independent and distinct features are extracted
for different tasks when these representations are used as supervised
inputs.

This work lays down the path for more applied research in the
clinical domain. In future, we plan to compute patient similarity from
the generalized patient representations to identify patient cohorts. We
also plan to add structured information to analyze their comparative
contribution to the learned representations for the different tasks.
Furthermore, the techniques that we have proposed to understand the

Table 4
The most significant features in ranked order for the classifiers for one instance each when the SDAE-BoW representations are used as the input. The true classes are
‘patient death’ for the mortality tasks (a common instance for 30 days and 1 year mortality prediction), and ‘diseases of the digestive system’, ‘operations on the
digestive system’, and ‘male’ respectively for a common patient for the other tasks.

In_hosp 30_days 1_year Pri_diag_cat Pri_proc_cat Gender

vasopressin leaflet magnevist numeric_val numeric_val woman
pressors structurally signal previous no female
focused pacemaker decisions rhythm of she
dnr sda periventricular no enzymes man
dopamine periventricular embolus flexure extubated he
acidosis excursion underestimated dementia rhythm male
levophed non-coronary calcified brbpr and her
pressor dosages screws of the his
cvvhd microvascular rib sinus vent wife
cvvh left-sided shadowing for uncal uterus
emergency chronic gadolinium to mso him
pneumatosis extubation mri tracing to urinal

Table 5
Comparison of the best features for one instance of in-hospital patient death,
where the BoW model makes the correct prediction and the SDAE-BoW model
fails, and for one instance where both the models make the correct prediction.

BoW (correct) SDAE-BoW (correct) BoW (correct) SDAE-BoW(correct)

expired cad expired vasopressin
autopsy cabg autopsy pressors
cmo pre-op morgue focused
pre-bypass preop cmo dnr
morgue numeric_val toradol dopamine
diseasecoronary no diseasecoronary acidosis
deline bypass deline levophed
prebypass sternotomy prebypass pressor
death lat pre-bypass cvvhd
decannulation ptx asystolic cvvh

3 We experimented with different values of perplexity and the number of iterations for
the t-SNE. After converging at 5000 iterations, the resulting visualizations were similar
across most perplexity values, albeit often rotated. We chose a perplexity of 50 for the
SDAE-BoW representations, and 30 for the doc2vec representations. 4 Nearly 70% of the variation was explained by these 50 dimensions.
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behavior of statistical models are transferable to different architectures
and facilitate further research in this crucial direction.
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Appendix A. Model hyperparameters

See Tables A.1 and A.2

Table A.2
Hyperparameters for feedforward neural network classifiers for different tasks and feature sets, obtained after a randomized search. The default learning rate of 0.001
is used.

Task Feature set Number of
layers

Hidden
dimensions

Activation
function

In_hosp BoW 7 980 sigmoid
SDAE-BoW 7 160 relu
doc2vec 10 410 sigmoid
[doc2vec,
SDAE-BoW]

7 340 tanh

BoCUI 3 680 sigmoid
SDAE-BoCUI 3 560 sigmoid

30_days BoW 10 220 relu
SDAE-BoW 3 820 sigmoid
doc2vec 2 900 sigmoid
[doc2vec,
SDAE-BoW]

8 430 sigmoid

BoCUI 7 510 tanh
SDAE-BoCUI 3 750 sigmoid

1_year BoW 1 650 sigmoid
SDAE-BoW 10 570 sigmoid
doc2vec 3 1000 sigmoid
[doc2vec,
SDAE-BoW]

5 920 sigmoid

BoCUI 1 290 sigmoid
SDAE-BoCUI 6 290 relu

Pri_diag_cat BoW 4 100 sigmoid
SDAE-BoW 2 110 sigmoid
doc2vec 9 600 relu
[doc2vec,
SDAE-BoW]

8 700 relu

BoCUI 4 80 sigmoid
SDAE-BoCUI 8 230 relu

Pri_proc_cat BoW 2 220 sigmoid
SDAE-BoW 5 890 relu
doc2vec 3 980 relu
[doc2vec,
SDAE-BoW]

8 520 relu

BoCUI 10 760 relu
SDAE-BoCUI 6 540 relu

Gender BoW 0 NA NA
SDAE-BoW 8 160 relu
doc2vec 0 NA NA
[doc2vec,
SDAE-BoW]

7 280 sigmoid

BoCUI 5 410 relu
SDAE-BoCUI 1 210 relu

Table A.1
Hyperparameters for stacked denoising autoencoder to learn dense patient representations, obtained after a randomized search. The default learning
rate of 0.001 is used.

Feature set Number of layers Hidden dimensions Dropout proportion

Bag-of-words 1 800 0.05
Bag-of-concepts 1 300 0.4
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