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Abstract
This paper gives an overview of research within the ALADIN
project, which aims to develop an assistive vocal interface for
people with a physical impairment. In contrast to existing ap-
proaches, the vocal interface is trained by the end-user himself,
which means it can be used with any vocabulary and grammar,
and that it is maximally adapted to the — possibly dysarthric
— speech of the user. This paper describes the overall learn-
ing framework, the user-centred design and evaluation aspects,
database collection and approaches taken to combat problems
such as noise and erroneous input.
Index Terms: vocal user interface, user-centred design, self-
taught learning, speech database, dysarthric speech

1. Introduction
These days, Automatic Speech Recognition (ASR) is firmly
rooted in everyday life, with ample examples such as talking
to your iPhone using Siri, vocal interfaces for home automation
or directing your navigation device by voice while driving. Still,
voice control of the technology that we use in our daily lives is
perceived as a luxury and more common interactions and input
methods are often considered more suitable. A remote control,
for instance, can be better suited for home automation because
often, it is easier to push a button than to say a command.

Physically impaired people with restricted (upper) limb mo-
tor control, however, are permanently in the situation where
voice control could significantly simplify some of the tasks they
want to perform [1]. By regaining the ability to control de-
vices in the living environment, voice control could contribute
to their independence of living and their quality of life. Unfor-
tunately, even state-of-the-art speech recognition systems are
restricted in their vocabulary and grammar (mostly application
determined), and offer little, if any, robustness to dialectic or
dysarthric speech often encountered with disabled users.

While a solution to this lack of robustness might be to col-
lect training material from a specific user and build custom
acoustic and language models, in practice such effort is too
great to make this a financially viable solution. The alternative
currently used, adaptation of existing acoustic models, is lim-
ited to only very mild speech pathologies [2, 3, 4, 5, 6]. More-
over, the user’s voice may change over time due to progressive
speech impairments.

∗ Authors are ordered by institute.

Input:
Audio

Grammar
induction

Frame
 Description 

Grammar

Input:
Manual
control

Vocabulary
+ Acoustic

model

Input:
Audio ALADIN Frame

Description

Word
finding

Device

Usage phase

Training phase

Figure 1: Overview of the ALADIN vocal interface framework.
The white boxes indicate events or systems outside the ALADIN
framework. The top panel shows the training phase, and the
bottom panel indicates the usage phase.

In contrast, the ALADIN project aims to build a Vocal User
Interface (VUI) that is trained by the end-user himself, which
means it can be used with any vocabulary and grammar, and
that it is maximally adapted to the — possibly dysarthric —
speech of the user. This approach, while attractive, poses sev-
eral challenges such as the lack of detailed annotation, since
only the associated actions (such as a button push) are known,
but not the words that are used to express the command. Other
challenges include having to learn both acoustics and grammar
from a (very) small number of examples, robustness against en-
vironmental noise or erroneous input from the end-users.

In this paper we give an overview of the ALADIN project
[28]. Section 2 describes the overall learning framework, fol-
lowed by a description of the user-centred design in Section 3.
In Section 4 we outline the collection of several databases col-
lected for evaluation, while in Sections 5 and 6 we describe the
acoustic and language model induction from the user’s speech,
respectively. In Section 7 we discuss how we plan on valorising
the developed technology and we end with our conclusions and
plans for future work in Section 8.

2. Overall framework
A schematic overview of the ALADIN vocal interface frame-
work is shown in Fig. 1. For now, we distinguish two phases: a
training phase and a usage phase. In the training phase, a user is
assumed to be able to still use a manual control, possibly with



some effort or through the help of a caretaker. A command is
learned by giving the desired vocal command (“Input: Audio”),
followed by demonstrating the action with the manual control
(“Input: Manual control”). For example, the user could give the
vocal command “Turn on the television” together with pressing
the standby button on the television remote control. The manual
control is represented using a semantic frame (“Frame Descrip-
tion”) [7], a data structure that represents the semantic concepts
that are relevant to the execution of the action and which end-
users are likely to refer to in their commands.

The vocal command is processed into low level and inter-
mediate level acoustic representations processed in the module
“Word finding”. The Word finding module, described in Sec-
tion 5, uses the semantic frame descriptions together with the
vocal commands to find recurring acoustic units such as words,
that constitute the user’s commands. Using these audio pat-
terns, again together with the frame descriptions describing the
user’s actions, the module “Grammar induction” described in
Section 6, attempts to build a grammar that describes the re-
lation between parts of complex commands. For example, the
learned vocabulary could become “Turn on” and “the televi-
sion” and the learned grammar could be <turn on><device>.

Using the knowledge acquired in the training phase, de-
picted by the boxes “Grammar” and “Vocabulary + Acoustic
model”, in the usage phase the most likely command is induced
from a vocal command (“Input: Audio”). This recognized com-
mand is expressed once again as a semantic frame (“Frame De-
scription”) which is sent to the target device (“Device”), for ex-
ample a television.

Although we distinguished a training and usage phase in
this description, in fact the training phase is more or less op-
tional since the training of the system does not stop after the
training phase: In the usage phase, the system keeps updating
itself when a new training item is provided by the user. Any
use of a manual control together with a voice command will be
treated as a training item. Likewise, the use of a manual control
shortly after executing a spoken command, will be regarded as
a correction, causing the system to undo its last command and
treat the spoken command as a training item.

3. User-centred design
Both VUI design (as a non-standard interface) and designing for
users with disabilities require a thorough User-Centred Design
(UCD) approach [8, 9]. In this approach, the end-users are the
central focus in the design and development of new products
or applications. This way, the match between the products or
applications under development on the one hand and the user
needs on the other hand can be optimized from an early stage
onwards. In the ALADIN project, the problems, needs, and tasks
faced by the end users in their daily lives are queried using var-
ious techniques. To establish the user’s needs, users and their
caregivers were invited to talk about their daily life in interview
sessions, focusing explicitly on activities they regard as being
important, difficult or even dangerous. Additionally, partici-
pants were asked to guide us through their homes while talking
about and performing their daily tasks, e.g. explaining the tools
they use, difficulties they encounter, etc. This research showed
that voice controlled home automation systems were most in
demand. Perhaps unexpected, there was also a large demand
for voice control of leisure activities such as playing games.

To further guide the design process, we created a set of per-
sonas. Personas can be described as archetypes based on real
users. Though fictional, they represent real people, summa-

rizing the detailed richness from user research activities (con-
textual inquiry, interviews,...) into short archetype descriptions
that can be referred to in the remainder of the development pro-
cess. They are a tool that allows developers and researchers to
avoid designing technology for featureless users, but instead al-
lows them to tailor it to distinct user types. Over the first two
years of the ALADIN project, these persona descriptions have
been updated based on a deepened understanding of the end
user population on the one hand, and on an alignment with the
technological project focus on the other hand.

To get an understanding of how people address voice-
controlled technology, test sessions were held with scenario vi-
sualizations in the form of storyboards. The storyboards, as a
translation of a conceptual model into a narrative, were used
to ask the respondents to formulate relevant voice commands.
Participants were told not to worry about system limitations,
and the visualisations made sure respondents were not biased
towards specific words or sentence structures while formulating
their commands. During these sessions, significant variation
was found, for instance concerning the addressee of user’s com-
mands: some respondents addressed individual devices directly,
without addressing the voice-control system (“door, open”),
while other respondents addressed the voice-controlled system
as a whole, telling it to act on the environment and control other
devices (“[SYSTEM], open the door”). For this last group, ad-
dressing separate objects such as doors felt very unnatural.

Additionally, respondents used a variety of styles in ad-
dressing the voice-control system, ranging from a purely ‘tech-
nical’, command-style interaction to a more anthropomor-
phized, personal communication with the system [10]. The
latter interaction style focuses on the system as a conversation
partner, addressing the system in a human or natural way. The
former, ‘command style’ interaction implies a focus on effi-
ciency and reliability characteristics that are very important for
this specific target group. Based on these observations, as well
as technical considerations, it was decided that to use the sys-
tem, users will have to address it directly by calling its name
(ALADIN, or any other name), saying, for instance, “ALADIN,
open the door” instead of “door, open up”. Addressing the sys-
tem with a proper name harmonizes and steers user interactions
and, from a technical point of view, it has the advantage that the
name can be used as a cue for the system to be activated, and
actively ‘listen’ to the command that is being given.

In a second iteration of this research, an interactive 3D-
environment was used to allow users to interact with a voice-
controlled system in a more immersive manner, using the
wizard-of-oz method. This method allows users to use the sys-
tem as if it is already functional, while in reality a researcher
simulates the voice recognition system by operating the vari-
ous appliances represented in the virtual environment, based on
the speech commands uttered by participants. Even though the
outcomes of these speech commands were not visible in a real
life home automation system, participants commented on this
prototype as being highly realistic. This more realistic usage
data provided information on the structure of typical utterances,
implicit user expectations, and several points of attention for
further development of the ALADIN system (incomplete com-
mands, effects of pronunciation difficulties, etc.). Specific chal-
lenges include non-specific user commands, for which the sys-
tem needs additional information about location or context to
identify the user’s intentions. For instance, “lights on” could
be expected to turn on the lights in the room where the user
is, without the lamp being verbally specified in the command.
Since this requires technology solutions out of the scope of AL-



ADIN, this has implications for the managing of user’s expecta-
tions.

In the remainder of the ALADIN project, the user-centred
design research will continue involving end users in the tech-
nology development. As the technical development progresses,
the UCD focus will be on evaluating the user’s experiences with
semi-functional prototypes and project demonstrators.

4. Data collection
Existing databases for ALADIN targets such as home automa-
tion and dysarthric speech [11, 12, 13] typically do not offer a
sufficient number of repetitions of commands to evaluate the ef-
fectiveness of self-taught learning. We have therefore collected
three databases: Two of these pertained to home automation
systems, the application most desired by the user base, while a
third dataset consisted of users playing a card game.

4.1. Home automation

Of the two home automation datasets, the first consists of speak-
ers with non-pathological voices and the second dataset consists
partly of speakers with pathological voices. For all speakers,
speech intelligibility measurements were taken and automati-
cally processed using the method described in [14].

For the first home automation dataset, non-pathological
speech commands were recorded in a realistic setting, i.e. a
fully automated room using a wizard-of-oz device control. The
commands were prompted using visual cues (a video) on a com-
puter screen. In order to simulate situations with environmen-
tal noise, recordings were also made with a concurrent sound
source. In addition to a close-talk microphone, multichannel
audio recordings were made with multiple microphone-arrays,
placed near the user, on walls and near the optional noise source.

The dataset consists of 27 test subjects of which 20 are of
the targeted user group. Each person was asked to go repeatedly
through a list of 33 different actions, until a recording time of
30 minutes was reached, yielding a dataset of 1888 commands
for the target group. In addition to this set, longer recording
sessions with 7 non-target users were carried out, yielding 1699
spoken commands.

The second dataset focused on dysarthric speech. However,
since collecting a large number of realistic, spontaneous spo-
ken commands is difficult due to the targeted users getting tired
quickly, a two-phase data collection method was used. In the
first phase 9 users were asked to control 31 different appliances
in a 3D environment (c.f Section 3), guided by a scenario in
order to ensure an unbiased choice of words or grammar. In
the second phase these command lists were read back repeat-
edly by 21 test users. Of these 21, 8 persons were MS patients,
which are known to have an enlarged risk for degeneration of
their voice. Future data collection from these patients enable
validation of the ongoing user adaptivity of ALADIN.

4.2. Card game

The third dataset was recorded while the test subjects were play-
ing a card game called “patience” using spoken commands. The
data was collected from non-target (unimpaired) subjects with
non-pathological speech. The user’s were free to choose their
vocabulary and grammar, although in practice the vocabulary
was limited indirectly by the number of cards, card positions
and functionality. Utterances in this data set are typically gram-
matically more complex compared to those in the home automa-
tion datasets.

We obtained data for eight participants, each playing two
sessions of about 30 minutes (a few weeks apart). To enable
evaluation with larger amounts of training material, additionally
210 minutes of speech spanning 7 playing sessions was col-
lected for one participant. All data was manually transcribed,
both in canonical form as well as using semantic frame descrip-
tions. Additionally, for each spoken command the entire game-
state was recorded to enable evaluation in the context of the
possible card moves according to the rules of the game.

5. Vocabulary acquisition
Conventional VUIs use speech recognizers trained on carefully
annotated speech, together with pronunciation dictionaries, to
train the acoustic models. In the ALADIN framework, however,
such supervisory information is not available: we do not know
in advance which words the user will utter for a command, nor
what their pronunciation might be. The supervision is therefore
considered weak: we only know the associated action. Still, by
mining the acoustic commonalities and differences with other
spoken commands, which may partly share semantics (for ex-
ample “TV on” and “TV off”), we can find recurring, meaning-
ful acoustic patterns, such as words.

In ALADIN, research has focused on a vocabulary acqui-
sition framework based on non-negative matrix factorization
(NMF) [15]. In short, NMF relies on modelling utterances as
a composition of the words (or rather, recurring acoustic units)
that make up an utterance, and works by decomposing the ut-
terances of the training data into low-rank representations mod-
elling the acoustics of the recurring patterns, and the activations
of these patterns in each utterance [16]. This process is guided
by the utterance-level labelling derived from the semantic frame
description [17].

One of the goals has been to improve the overall accuracy
of vocabulary acquisition. At the lowest level, the conversion
of spoken commands to low-level spectrographic representa-
tions, improvements were obtained through the use of modern,
discriminative feature representations [18]. At the intermedi-
ate level, various forms of utterance-based representations were
proposed to better capture the temporal and spectral details of a
sentence in a single representation [19, 20]. At the highest level,
methods for acquiring not only recurring acoustic patterns, but
also the exact order in which they occur, were developed [21].

Whereas the earlier investigations mostly focused on the ac-
curacy of vocabulary acquisition given large amounts of training
samples [16], in the ALADIN project it is imperative that vocab-
ulary acquisition is also fast, i.e., enabling learning from only
a few examples. This aspect was investigated in [22], where
methods were proposed to train acoustic models that scale with
the available amount of training data to speed up learning.
Currently research focusses on algorithmic approaches to pre-
vent over-fitting, as well as exploiting the use of out-of-domain
knowledge (such as a pre-trained phone recognizer from a dif-
ferent language) to speed up learning. Recently, investigations
using the pathological home automation database (c.f. Sec-
tion 4.1) have been initiated and preliminary results seem en-
couraging.

Another aspect that influences the speed of vocabulary ac-
quisition is the robustness of NMF with respect to uncertain or
incorrect semantic frame descriptions. Such incorrect input can
occur for example if the user erroneously presses a wrong but-
ton or omits a device description from his vocal command. It
was shown in [22] that the NMF framework is in fact inherently
robust against such errors, which greatly improves the practical



usability of the envisioned technique. This was corroborated by
the research in [17], where vocabulary acquisition on the pa-
tience dataset (c.f. Section 4.2) was shown to be robust against
ambiguous semantic frame descriptions.

The subject of environmental noise robustness has not
yet been evaluated within the context of the ALADIN project,
but will rely on multi-microphone techniques [23]. Addi-
tionally, front-end single-microphone denoising scenarios will
be considered through the use of novel exemplar-based tech-
niques [24], which are expected to match well with the speaker-
dependent setting of ALADIN.

6. Grammar induction
While the recognition of simple commands can be treated as
a multi-class classification problem, this quickly leads to data
scarcity for more complex commands, for example when the
compositionality of the utterance and the order of the words
in the sentence differentiate its meaning (e.g., in a card game,
“put the four of hearts on the five of clubs” vs “put the five of
clubs on the four of hearts”). Just as recurring acoustic patterns
can be extracted from the weakly supervised spoken commands,
grammar induction can automatically find structure by mining
the commonalities and differences with other commands.

To accomplish the grammatical mapping between a com-
mand and the semantic frame that triggers the correct control,
we opted for a shallow grammar approach which does not at-
tempt to induce a full grammatical structure for a sentence, but
rather defines the problem as a sequence tagging task, in which
each word of a command is associated with a concept tag, i.e.
a label that represents to which semantic frame slot (if any) the
word needs to be mapped. Accurate concept tagging then effec-
tively establishes a mapping between the words of the command
and the frame description needed to trigger the intended control.
To study the learnability of this task, we opted to first study the
problem as a supervised classification task, trained on manually
transcribed and annotated data.

We use the patience dataset (c.f. Section 4.2), which con-
tains non-trivial sentences and covers the highest complexity
that the ALADIN system is expected to run into. We performed
experiments using an off-the-shelf data-driven tagger, typically
used to perform morphosyntactic part-of-speech tagging [25].
Training on one portion of the data set and evaluating on held-
out data allowed us to study the accuracy with which an au-
tomatically induced concept tagger can be expected to process
previously unseen sentences. The experiments yielded encour-
aging results, with accuracy scores of more than 95% on the
phrase level [17, 26, 27]. While these experiments were per-
formed on reference transcriptions and the results are not nec-
essarily indicative of the accuracy of the final system, the im-
pact of these preliminary experiments is nevertheless signifi-
cant: current results indicate that we are able to restrict the task
of unsupervised grammar induction to the task of discovering
the concept tags that map the words in an utterance to the frame
slots of the intended control.

Both the vocabulary acquisition experiments, as well as
those with concept tagging, showed a need for a tighter inter-
action between these two aspects of spoken command learn-
ing: the induction of (pseudo-)word units, as well as the map-
ping of these units onto semantic frame slots, should be done
in one processing step, as neither of them can be considered a
proper precursor to the other. We therefore decided to inves-
tigate whether the automatic finding of recurring acoustic pat-
terns and the induction of the mapping of these patterns onto

semantic frame slots can be performed simultaneously. This
has the significant additional advantage that grammar induction
can then be performed directly on the basis of acoustic patterns,
rather than having to assume an intermediate layer of represen-
tation.

Current, as of yet unpublished, research establishes this
combined approach by using a discrete Hidden Markov Model
(HMM) approach, in which slot-values of frames are consid-
ered to be the hidden states which generate the observations
(occurrence of recurring acoustic patterns). The learning of
the ergodic HMM consists of learning the slot-value to obser-
vation mapping (vocabulary acquisition), as well as the transi-
tional relation between states (slot-values) over time (the gram-
mar induction). A first set of proof-of-the-principle experiments
yielded more than encouraging results. For example, a closer
inspection of the learned models revealed that the HMM-model
correctly learns the typical word order of patience commands,
such as for example the order <from> <to> and <suit>
<value>, even though such order information was never made
explicit in the supervision.

7. Valorisation
The ALADIN project does not just aim at fundamental research,
but also has the clear goal of valorisation: transferring the tech-
nology developed in ALADIN to industry during and after the
project. The project partners are building relevant demonstra-
tors that should allow parties involved with bringing technology
to the end-user, such as the application builders and the govern-
mental bodies that legislate reimbursement of assistive devices,
to judge the quality of the technology as well as the effort in-
volved in deploying it. They are also meant to start the creative
process of product design by giving concrete examples of what
is possible and what the limitations are.

The demonstrator currently under development is a virtual
assistant that allows access to multiple tasks such as the patience
card game also used for the research described in Sections 5
and 6, as well as home automation control. The home automa-
tion demonstrator will not only control the 3D environment used
for user evaluation and data collection (c.f. Sections 3 and 4.1),
for portability, but also enable interaction with existing inter-
faces such as infrared.

8. Conclusions and future work
In this paper we presented an overview of the ALADIN project,
which aims to develop an assistive vocal interface for people
with a physical impairment. In contrast to existing approaches,
the vocal interface is trained by the end-user himself, which
means it can be used with any vocabulary and grammar, and
that it is maximally adapted to the — possibly dysarthric —
speech of the user.

While the project is ambitious, early results are encourag-
ing and success would mean the possibility of bringing a vocal
interface to a group of users that was previously unable to use
speech technology in a satisfactory manner. In the remainder
of the project, we plan on collecting more pathological speech
data, evaluate and improve recognition of dysarthric speech, in-
vestigate the impact of environmental noise and build a set of
demonstrators to showcase the technology.
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