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1  Introduction

We have a recurring joke in our research lab. It is simple, and perhaps also silly. 
Someone yells: “the Graphic Design Manual has been stolen!” This tends to 
humour the software developers (many researchers in the lab are), since their 
field (computer science) is clearly defined with procedures, rules and goals. By 
contrast, the domain of art and design is an exotic jungle. “How could you not 
have a manual”, the developers wonder. The linguists in the lab find the joke 
mildly amusing. They are used to working with ambiguity and underspecification 
in language. They can resort to statistical prediction if the manual goes missing. 
“If there is no manual, we’ll need lots of data”, they think. Now, artists on the 
other hand respond with a puzzled look. “Why would anyone steal a useless 
book?” they ask. In their opinion, everything can be transformed into anything 
to fit their art. When presented with a manual, we wager some of them would 
instantly create new artwork that contradicts every rule in the book; equilibrium 
is not necessarily a goal. So a new chapter of rules would have to be written, and 
so on, until the manual fills the entirety of The Library of Babel. 

No system is without rules however – or pigs would fly. Perhaps we haven’t 
unraveled all of them yet for creativity. Or we may need to break it down into 
smaller subsets. But as Veale, Feyaerts & Forceville have argued in their intro-
duction to this volume, we know that mental agility is a common hallmark of 
creativity. Our experiments with “Gravital”, a software system for sketching and 
brainstorming, have sought to provoke this mental agility. To put it in the words 
of Veale, Feyaerts and Forceville, Gravital is a generator of ideas, produced by 
roaming a search space of concepts. These ideas can be inspiring, interesting, 
trivial, silly, or rude. Gravital doesn’t always recognize the subtle distinction 
between them. 

A central theme in our system’s design are concept properties. Properties of 
things can be used to think about how concepts relate to each other. For example, 
a beach ball and a balloon both are round, buoyant and playful. This statement is 
a rule of sorts, but flexible. We work with the notion of “agile concepts”. Depend-
ing on the context, such a concept can have many meanings: for example, a 
balloon drifting through an empty subway station is rather sad, and creepy. This 
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kind of agility or duality allows the system to describe concepts more broadly, in 
terms of “latent” properties.

2  Computer graphics and user interfaces

Traditionally, software applications for computer graphics have been based on 
real-world analogies. Each icon in the application’s user interface represents a 
concrete object – a pen, an eraser, scissors, etc. This model raises creative limita-
tions. For one, you can only use the features as the software developers imple-
mented them; creative recombination of tools is impossible when not foreseen. 
The classical solution, adding more features, is a never-ending cat-and-mouse 
game that complicates the software with each version. Furthermore, the soft-
ware’s possibilities are also its limitations: users will tend to think along the lines 
of what is possible and not about what they want (Cleveland [2004]). But perhaps 
the most critical limitation in the pen-paper-analogy stems from its dependence 
on the computer mouse. All the different steps and considerations in the creation 
process are literally lost in translation.

Over the course of two research projects our goal has been to overcome these 
limitations by building a software prototype that allows people to express them-
selves creatively regardless of artistic or technical skill, and without being limited 
to a predefined user interface. The ability to use natural language for interaction 
with the software is a key component in this software prototype.

In 2002 we released an open-source computer graphics application called 
NodeBox¹ (Figure 1). It is mainly used to produce “generative art”, an art form 
inspired by emergence and techniques from AI and artificial life (Boden [2009]). 
NodeBox creates 2D graphics from Python programming code. Users can write 
Python scripts from a set of programming commands (e.g., rectangle, line, circle, 
rotate, scale) that yield visual output. This is a fundamental shift away from 
direct manipulation and towards a focus on language – in this case a program-
ming language. The use of programming code allows the automation of tradition-
ally production-intensive tasks, such as creating a hundred-page document in 
one consistent visual style but with subtle differences per page. Moreover, the 
creation process is retained in the script. It can be shared, adapted and reused. 
The script generates visual output, but it also functions as a vessel of domain-
specific expertise.

1 NodeBox for Mac OS X, http://nodebox.net
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Figure 1: NodeBox screenshot. Python scripts are used to produce visual output.

As the project progressed we turned to the nature of artistic creativity, and how 
it might be modelled. Providing the technical constructs to create a program-
ming interface for automated graphic design is one step. The next leap is pro-
viding functionality that captures some of the heuristics used in graphic design 
(e.g., function over form, associative thinking, colour harmony, considering the 
negative, etc.). In this paper we discuss the main components and paradigms in 
follow-up project to NodeBox: Gravital, an endeavour to simulate and facilitate 
creative sketching and brainstorming.

Inspiration was drawn from ideas on creativity and fluidity proposed by 
Margareth Boden and Douglas Hofstadter. Essentially, the system functions on a 
level of small-C combinatorial and exploratory creativity (Boden [2003]). Small-c 
creativity produces ideas that are new to their author but not historically novel 
(big-C creativity, the wheel for example). Consider an art student that, by experi-
ment, “discovers” two colours that look pleasing together (say, deep purple and 
bright orange). This might strike him or her as a marvellous find. But the find will 
not necessarily shake the foundations of art history. Combinations of purple and 
orange were already popular in the seventies. And Roman generals were prob-
ably quite fond of the gold embroideries on their purple togas, we wager. But on 
to Gravital.
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In the first part of this paper we give an overview Gravital’s Graphics Language 
Processor (GLP) used to transfer natural language to a meaning representation 
language. In the second part we look into more detail at the Perception module 
that uses analogy to deal with underspecification and fuzziness in the represen-
tation. In the third part we discuss Gravital’s node-based interface that trans-
forms the representation into a network of building blocks that together generate 
visual output.

3  Graphics Language Processor

3.1  Why using natural language?

A user interface with programming code introduces an obstacle to people not 
trained in programming, such as artists and designers. Having to learn to write 
code steepens the learning curve and distracts from the problem at hand, however 
beneficial the future advantage. For these people it usually is more comfortable 
to say:

Let’s draw some stars!

instead of:

for i in range(10):

 star(random(WIDTH), random(HEIGHT), random(20), 50, 20)

We can safely assume that few art projects start out with a procedural flowchart 
or a logical calculus. What we want is a system that can tie in with a real-life 
brainstorm: convert natural language into interesting ideas, visual sketches, aug-
menting incomplete linguistic input with thought-provoking design decisions. 
Supplementing computer graphics software with a language-processing unit 
leads to new opportunities.

At the start of an art or design project – establishing the look & feel of the 
printed documents, website and signage of a hospital for example – the primary 
ideas and concepts can be rather underspecified and schematic. For example: “it 
should look clean, calm and safe”. A skilled designer will know how to handle 
this incomplete information based on past experience and training. But even 
a skilled designer usually needs several attempts before obtaining a satisfying 
result, as the creative process is based on trial and error. The transformation from 
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language space to visual space is a point where designers may express feelings 
of “being stuck” or “stumped for ideas”. A system that produces variations of 
acceptable visual output based on linguistic input (what will safe look like and 
why?) can speed up the heuristic process and lead to new creative ideas.

For the sentence “It should look clean, calm and safe”, the graphical repre-
sentation is highly underspecified since the shape, colour, placement, rotation, 
etc. of the visual composition is left out of the description. The Graphics Language 
Processor (GLP) must be provided with routines to fill in the unspecified proper-
ties of the concepts evoked in the discourse, through the use of well-chosen and 
context-dependent default values. The default value for a certain property can be 
stochastically chosen from a range of appropriate values to preserve an amount of 
unexpectedness. The language-processing step offers the designer the possibility 
of obtaining a detailed sketch (and variations of the sketch) on the basis of the 
underspecified description the designer has given. This way, the system supports 
both the inexperienced designer by supplementing his input with well-chosen, 
contextually appropriate decisions, and the expert by producing unexpected var-
iations on the basis of his input.

3.2  Memory-based shallow parser

The task of the natural language processing step is to transform information 
in natural language sentences to a meaning representation language, like First 
Order Predicate Calculus (FOPC) or a frame-based representation. This task has 
a long history in AI. In the seventies and eighties, knowledge representation and 
natural language processing were intimately connected disciplines in this effort 
(see Schank [1997] for an exponent of this approach).

Ideally, when using a suitable meaning representation language (a “lan-
guage of thought”), it would be possible to represent the meaning of the sen-
tence without redundancy, in an unambiguous manner, and with all possible 
inferences made explicit. In practice, the translation of natural language into 
a deep, completely unambiguous representation (i.e., understanding) turned 
out to be impossible, except for small domains where all relevant background 
knowledge needed for interpretation of the text was explicitly modelled. A good 
example of this situation is Winograd’s natural language interface to the blocks 
world (Winograd [1972]). As robustness and domain-independence were put 
on the research agenda by funding agencies, the field of natural language pro-
cessing has switched to robust, efficient and reasonably accurate text analysis 
methods that analyze text to a more superficial partially syntactic and partially 
semantic representation (shallow parsing), using machine learning and statisti-
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cal methods trained on large annotated corpora. This robustness and efficiency 
comes however at a cost. Issues such as negation, quantifier scope, representa-
tion of time, and inference in general are ignored in this approach.

The shallow parser used by our system is MBSP for Python (De Smedt, Van 
Asch & Daelemans), a memory-based shallow parser (Daelemans & van den 
Bosch [2005]) that consists of a number of memory-based learning modules using 
the Machine Learning package TiMBL (Daelemans, Zavrel, van der Sloot & van 
den Bosch [2004]). Memory-Based Learning is a form of exemplar-based learning 
that is based on the idea that language processing involves specific exemplars of 
language use, stored in memory. Given new input to be processed, analogy-based 
reasoning is used to find similar exemplars in memory, and these are then used 
as models to extrapolate from. The approach is similar in spirit to usage-based 
models in cognitive linguistics (Croft & Cruse [2004]), and radical construction 
grammar (Croft [2001]).

Rule-based behaviour is considered a side effect of the way the exemplar-
based reasoning works. MBSP consists of the following modules (apart from the 
tokeniser, all modules are exemplar-based systems):

 – a tokeniser to split punctuation marks from words, 
 – a lemmatiser to find the base form of the words, 
 – a tagger to assign one part-of-speech (POS) tag to each word (Penn Treebank 

II tags are used), 
 – a chunker to find non-overlapping sequences of words, where words in a 

chunk closely belong together (i.e., they are phrases or constituents), 
 – a subject/object detector to determine which NP chunk is the subject or 

object of which verbal chunk, 
 – prepositional phrases (PP) are detected and attached.

In short, the shallow parser tries to detect relations between the words of a text, 
as can be seen in Figure 2. The shallow parser found two objects (the circles 
and the square) that have a relation with the verb. Inside each object block the 
shallow parser specifies the different relations using grammatical terminol-
ogy. The parser is able to detect these based on the word and the context of a 
word it infers certain syntactical properties of that word using a large corpus of 
examples. Post-processing of the output of the shallow parser is responsible for 
some additional structural arrangements. An example is the indication of mul-
tiple elements conjoined by words like “and” and “or”. This is called conjunct 
identification (Agarwal & Boggess [1992]). In addition to the syntactical relations, 
the language processor also provides some semantic information about concepts 
in the domain. Gazetteers (wordlists) of the most common semantic categories in 
the graphical domain are incorporated in the system. These gazetteers will indi-
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cate if a word denotes a colour, size, position, etc. However, at the semantic level, 
the representation is very shallow, and has to be refined and further interpreted 
in a later stage.

3.3  Rule-based linker

The output from the parser is transformed to a directed network of linked con-
cepts, so that the user’s input (hinting at composition, proportion, shape, quan-
tity, style, colour, geometry) can be explored by the system. The phrase “a blue 
circle” becomes a circle-concept linked to a blue-concept, which is a property of 
the circle. The clause “lots of transparent blue circles” results in a cluster with a 
circle-concept that has a blue-property (colour), a transparent-property (shade) 
and a lots-property (quantity). Connections between concepts are improved with 
a rule-based linker. For example, “a page with lots of transparent blue circles” 
triggers two linking rules. First, “QUANTITY of NP: A is-property-of 
B”, ensures that lots is attached as a quantifying property to the transparent blue 
circle prepositional phrase. Secondly, “CANVAS with|of *: B is-part-of 
A”, identifies the circles as being part of a page (i.e., the drawing canvas).

Rules mainly deal with correctly discerning between different types of prepo-
sitions (PP-attachments). For example, “above” indicates a visual arrangement 
between two peer concepts whereas “with” generally indicates a partitive parent-
child relation between two concepts. Other rules can deal with transferring the 
verb-argument structure of the sentence. In “the page is cluttered”, two concepts 
are discovered: page (canvas) and cluttered (composition). The rule “CANVAS is 
COMPOSITION: B is-part-of A” will discard the verb phrase (the copula 
adds no meaningful information to the model) and connect the cluttered-concept 
to the page-concept. Modality analysis (Morante & Sporleder [2012]) is used to 

Figure 2: Output of the shallow parser.
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transfer more elaborate verb phrases (such as “could very well be”) to a connec-
tion strength (e.g., “is” = 100%, “could very well be” = 70%). One drawback to 
this rule-based approach is the prospect of eventually expanding the system to a 
horrible tangle of coinciding little rules. However, it has the advantage that rules 
can be exposed to the user-interface in a comprehensible way. This allows users 
to customize the ruleset to fit a particular purpose on a need-now basis.

4  Perception

The Perception module is a database of what things look and feel like, which 
Gravital uses as a creative foundation when refining the output of the parser. It 
uses a deterministic and connectionist approach. Concepts are related to each 
other in a semantic network (Sowa [1987]). For example, a set of rules for a “rose” 
concept: rose is-a flower, red is-property-of rose, rose is-related-to romance, etc. 
Techniques from graph theory (Dijkstra’s algorithm [1959], Brandes’ betweenness 
centrality [2001]) are used to retrieve specific clusters of concepts and the paths 
between them.

The module has two distinct parts: an online visualiser (Figure 3) where new 
rules can be added to the semantic network and a toolset to retrieve clusters of 
concepts and analyze them. The online visualiser displays an interactive, force-
directed graph inspired by the Visual Thesaurus application (Thinkmap [1998]).² 
It can be freely expanded by the participants in the NodeBox/Gravital commu-
nity, with the aim of ensuring a diverse ruleset that does not slowly converge 
into a hand-tailored set bent on solving one specific problem. The purpose of 
the toolset then is to map unknown concepts in the GLP’s output (e.g., rocket) 
to usable visual elements (shape, colour, composition). This is accomplished 
through concept analogy based on the perceptual properties of a concept. If a 
rocket is fast and hot, then what colours manifest speed and heat, and would 
therefore fit well in a visual artwork dealing with the aspects of rocketry? This 
kind of (elementary) associative framework can help designers and artists find 
a viable solution to so-called wicked problems (Buchanan [1992]): assignments 
in a social context with no clear solution. For example, an artist’s sketches for 
the logo of a new space rocket can be rejected in many ways (e.g., the logo looks 
nonsensical because he or she is not a rocket scientist), but probably not on the 
ground that he employed a colour palette of red and yellow shades, because these 

2 Visual Thesaurus, http://www.visualthesaurus.com
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colours can be linked to concepts such as heat, sun, power, courage, etc. This 
design choice is a credible step towards a solution – finding a good rocket logo.

The Perception module’s analogy algorithm uses four components: concept 
clusters, ranges, paths between properties, and the solver.

Figure 3: Perception screenshot, showing inferred relations between concepts.

4.1  Concepts as clusters of other concepts

Concepts are surrounded by related concepts that reinforce meaning. A concept 
cluster is the concept itself, its directly related concepts, concepts related to those 
concepts, and so on, as deep as the representation requires (depth 2 is fine in 
most cases). This is called spreading activation (Collins and Loftus [1975]; Norvig 
[1987]). When asked about music, people can readily come up with closely related 
concepts such as jazz, blues, saxophone, singer, but it takes longer to come up 
with less obvious concepts (for example, audio compression) because there are 



90       Tom De Smedt, Frederik De Bleser, Vincent Van Asch, Lucas Nijs, Walter Daelemans

more intermediary steps in the semantic chain. Activation spreads out from the 
starting concept in a gradient of decreasing relatedness.

Schema:
For a given concept:

1. Find all related concepts.

2. For each related concept, repeat 1. until depth = n.

4.2  Ranges of concepts by (implicit) type

Some concepts belong to the same family. Red, green, blue and yellow are all 
colours. The colour-range is comprised of dozens of concepts such as turquoise, 
teal, burnt umber, and so on – all the concepts with an implicit or explicit is-a 
relation to the colour-concept. What we call a range is also known as a semantic 
field, in the sense of Laurel J. Brinton: a set of words that share a common seman-
tic property, “related to the concept of hyponymy, but more loosely defined” 
(Brinton [2000]). It is essential in the Perception module that we can easily work 
with fuzzy ranges instead of defining over and over which concepts exactly make 
up the range.

Schema:
For a given concept:

1. Recursively find all “is-a” relations.

2. The bottom concepts in this taxonomy make up the range.

4.3  Paths between properties

Some concepts are properties of other concepts. The Perception module focuses 
on such properties (i.e., adjectives). They describe what something looks or feels 
like. For example: romantic is-property-of France, fast is-property-of rocket, dark 
is-property-of evil, evil is-property-of Darth Vader, etc. A map of connections 
between each two properties is used to compare different concepts, based on the 
properties attached to a concept. 

Schema:
1. Find all concepts A in “A is-property-of B” relations.

2.  Find the shortest path between each two A, store it. 

(Dijkstra’s algorithm)
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Admittedly, a focus solely on properties makes it harder for the module to discover 
similarities of a cultural nature. According to the Perception module, an animal 
analogous to a sword would be a hedgehog, using the hedgehog’s prickly spines 
as an associative bridge. But it cannot propose a dragon based on the observation 
that dragons and swords are closely related in fairy-tales. Some of our algorithms 
follow a predetermined approach, reminiscent of what Schank calls a script 
(Schank & Abelson [1977]), which describes the general sequence of events in a 
given situation, for example what happens when you enter a restaurant (enter–
sit–order–eat–pay–leave). Or in the case of the Perception module: how to find 
links between concepts (by using properties: sword–sharp–prickly–hedgehog). 
The module will not deviate from this script, even though the semantic network 
contains everything that is needed to work with various other heuristics, such as 
using cultural associations to summon a dragon. 

Historically, there have been two fundamentally different paradigms in AI: 
the symbolic and the connectionist (although today statistical approaches seem 
more popular). In the symbolic approach, logical sets of rules are employed for 
decision-making. In the connectionist approach, nonlinear dynamic systems 
are used (e.g., neural networks). For an overview of strengths and weaknesses 
in both approaches, see Chen and Ng (1999) and Toiviainen (2000). The Per-
ception module uses a connectionist approach in some parts (concept clusters 
with spreading activation) and a symbolic approach in others (paths between 
properties). Our aim was to enable end-users to create their own decision-mak-
ing kernels by modifying the symbolic rules, without a deep understanding of 
dynamic systems.

4.4  Perception solver: fluffy bunny, creepy crow

The solver uses clusters, ranges and paths to sort concepts by similarity based on 
the semantic chain of properties. For a given property (e.g., creepy) and a range 
of concepts (e.g., animals) it yields the concepts from the range that best reflects 
this property (the creepiest animals). In this particular example the solver will 
suggest such animals as octopus, bat, crow, locust, mayfly, termite, tick, amphib-
ian, arachnid… No fluffy bunnies or frolicking ponies there!

In the case of the octopus the logic is obvious (and perhaps as disappoint-
ing as when you discover that the white rabbit had been hidden in the hat all 
that time): someone has added a creepy is-property-of octopus rule to the ruleset. 
The solver then simply takes the rule for granted and adds the octopus to the top 
of the list of suggested creepy animals. As more users relate creepiness to the 
octopus (i.e., more concurrence), it will move higher up the list. However, things 
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get a little bit more interesting when we examine the suggested bat or crow. No 
one has declared an is-creepy property for these animals. Instead, users tagged 
the bat concept with a black property and relations to cave, evil, night and radar. 
The crow concept was tagged with the properties black and loud and a relation 
to evil. So here the solver has implicitly inferred that there is a similarity between 
creepiness and the two birds instead of simply parroting what users said. In fact, 
the solver didn’t even look at any of the tagged words mentioned above. Instead 
it judged that both the bat and the crow are dark things; and that dark is pretty 
creepy. Now where does dark come from? As mentioned previously, the Percep-
tion module works with clusters of concepts. For the bat, its direct relations to 
black, cave, evil, night and radar will lead further to other concepts such as Darth 
Vader, dark, dangerous, pessimistic, cat, airplane, sky, nothing, … even though 
no one has explicitly defined any kind of relation between bats and Darth Vader 
(someone did however add relations from black and evil to Darth Vader). All of 
these concepts together make up the bat-cluster. It is the “conceptual halo” that 
the solver takes into account when analyzing bats.

The idea of a concept cluster (or halo) is taken from Fluid Concepts and Crea-
tive Analogies: Computer Models of the Fundamental Mechanisms of Thought. 
Here, Douglas R. Hofstadter quotes the late nineteenth century William James:

“There is no property ABSOLUTELY essential to one thing. The same property which figures 
as the essence of a thing on one occasion becomes a very inessential feature upon another. 
Now that I am writing, it is essential that I conceive my paper as a surface for inscription. […] 
But if I wished to light a fire, and no other materials were by, the essential way of conceiving 
the paper would be as a combustible material. […] The essence of a thing is that one of its 
properties which is so important for my interests that in comparison with it I may neglect 
the rest. […] The properties which are important vary from man to man and from hour to 
hour. […] Many objects of daily use – as paper, ink, butter, overcoat – have properties of 
such constant unwavering importance, and have such stereotyped names, that we end by 
believing that to conceive them in those ways is to conceive them in the only true way. Those 
are no truer ways of conceiving them than any others; there are only more frequently ser-
viceable ways to us.” (James [1890: 222–224])

Hofstadter goes on to argue that AI-representations of human high-level percep-
tion require a degree of flexibility, where objects and situations can be compre-
hended in many different ways, depending on the context. In this sense, a bat-
cluster in the Perception module is no longer objectively seen as just a bat, but 
more agile as something dangerous that is flying in the sky, something that is 
reminiscent of a character named Darth Vader, that is pessimistic, feline, … This 
agility allows for a wider range of possible solutions when analyzing bats in dif-
ferent situations. The solver will inspect all the properties of the entire bat-cluster 
(dark, black, evil, negative, brown, sad, deep, bad, etc.) and measure each of their 



 Gravital: natural language processing for computer graphics       93

distances to creepy using Dijkstra’s shortest path algorithm. The shorter paths 
are preferred, imitating the same cognitive bias in human reasoning (Anderson 
[1985]). The total “shortness” score is an indicator of the bat’s creepiness. It is 
important to note that different properties in a cluster have a higher or lower 
influence on the score. For the bat concept, the distance between dark and creepy 
is more salient than the distance between deep and creepy. This is because dark is 
more central in the cluster when we calculate the network’s betweenness central-
ity (Brandes [2001]). More relations between concepts in the cluster pass through 
dark. We take dark as a sort of conceptual glue when reasoning about bats.

Schema:
Given a property p and a range of concepts R:

1.  For a concept in R, find the cluster of related con-

cepts.

2. Find properties with high betweenness in the cluster.

3. Add up the shortest path length from each property to p.

4. Low sum indicates a concept with high resemblance to p.

4.5  Perception analogies: Brussels, the toad

Suppose we want to create an advertisement image to promote Brussels, the 
capital of the European Union. How can the system effectively pick good colours, 
fitting shapes, striking images? Or to put it in terms of Veale, Feyaerts and 
Forceville’s duality-seeking perspective: what image can be used that creatively 
“compresses multiple meanings into a single form”, instead of simply lobbing 
Brussels_centre.jpg onto a poster?

The solver in the Perception module finds candidate concepts for a given 
property. The analogy algorithm is concerned with mapping a concept to another 
concept by shifting context. So, for example, what animal resembles Brussels? To 
accomplish a contextual shift the algorithm builds on the solver. It takes all the 
properties in the Brussels-cluster, mined from Google with a “I think Brus-
sels is *” query: famous, easy, sumptuous, boring, bourgeois, beautiful, 
proud, green, … For each of these the solver can then rank candidates from an 
analogy range (e.g., a range of animals). The candidate with the lowest total 
sum makes the best analogy. By default it will solve 20 properties in the cluster 
with a dampening effect of 90% for each consecutive property. To make it more 
“humane”, we can adjust the dampener, say, by only looking at 8 relevant proper-
ties with a 70% cut-off. In this example, the winner is a toad (green, slow, safe, 
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slimy, calm, rigid, old). You’d better wear your lucky hat when presenting this 
idea to the EU marketing department! 

Figure 4: A toad in a pond. (picture by Per H. Hagdahl)

As to whether it is a good analogy or a bad analogy: when Brussels Toad was pre-
sented at two conferences (TEDxBrussels [2009], CLIF [2009]), reactions varied 
from amusement to mild irritation. It may be vexing to people who are fond of 
Brussels’ beautiful Art Nouveau architecture and the multicultural hustle and 
bustle. It may be amusing to people who perceive the city as a big traffic jam sur-
rounded by office buildings. Likely, it is amusing because it is unexpected, and 
even a bit rude. Perhaps there are as many opinions as there are human individu-
als. But the point is this: the find evokes reaction, which, after all, is a principal 
goal of art and design. 

On a final note, a problem arises when no rules pertaining to Brussels can be 
retrieved from the semantic network (as is the case). Even though one or two rules 
is enough to extrapolate a concept cluster, NO rules means no starting point. In 
this case we can train the ruleset on the fly using a web query. This is inspired 
by the simile technique (“as * as Brussels”) described by Tony Veale and 
Yanfen Hao (2007). 

To summarize then, the Perception module uses properties as a bridge to 
translate concepts into other concepts that can be the basis for creative visual 
output. This kind of associative fluency has been linked with human creativity 
(Guilford [1967]), as is the capacity to turn remote associations into a useful solu-
tion (Mednick [1962]). In this sense the module offers a creative leverage to people 
with little expertise in the artistic domain.
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Schema:
Given a concept and a range:

1. Find the cluster of concepts related to the given concept.

2. Find properties with a high betweenness in the cluster.

3. Solve the range for each property, tally the scores.

5. Low total sum indicate good candidate concept.

5  Node-based interface

The front-end of the system is a node-based interface grounded in a procedural 
paradigm (Dataflow process networks, Lee & Parks [1995]) where each opera-
tion is represented by a block (or node) that “does something”. A node func-
tions as a generator that creates elements (e.g., an ellipse node) or as a filter that 
changes incoming elements (e.g., a rotate node). However, a node has no fixed 
purpose, or rather it has many purposes that depend on the other nodes attached 
to it (Figure 5). In the user interface, nodes can be connected together to form 
a directed acyclic graph. Creativity is playfully encouraged by allowing users to 
combine nodes in various ways.

The strength of a node-based approach is that every step in the design 
process is remembered. The system is explicitly designed to allow the construc-
tion history to be modified. For example, if we create a piece of text, convert it 
to vector outlines and then start changing the Bézier-curves, all of these opera-
tions will be represented as separate steps. Changing the original text is as easy as 
selecting the text node and typing something different while all the other actions 
are retained.

Users can pick and connect nodes from scratch or use natural language. The 
language analysis results in a selection of nodes that one can then adapt and 
expand. Internally, each node is a set of Python programming instructions. Nodes 
can be “opened” to dig in and adapt the source code. When new users (e.g., art 
students) start programming, we found that they have a hard time grasping what 
can be done with programming code. One of the reasons this is so difficult is 
that programming software usually does not provide mechanisms for discover-
ing features; it provides a clean blank screen. The node-based layer alleviates 
this problem in three ways. First, since the nodes are the actions one can ask the 
system perform, listing them with descriptive icons provides a good overview of 
what kind of functionality is available. Second, when a user opens a node he or 
she can learn how it works. Altered nodes are stored as a copy of the original so 
there is no fear of messing up the source code.
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Figure 5: Prototype screenshot, showing generative artwork by Rokas Cicenas.

The third approach is the use of expressions. An expression is a concise program-
ming instruction that creates an implicit connection between two nodes. Expres-
sions can be compared to formulas in a spreadsheet program (such as Microsoft 
Excel). They provide a gradual learning curve between playing around with exist-
ing nodes and programming new nodes. The node-based interface allows users 
to experience the benefits of a structured approach towards design, but the real 
power still comes from programming code. Once users are comfortable with the 
use of expressions the step towards programming is a lot less steep.

5.1  An emergent node repository

Gravital is not limited to its built-in functionality but instead allows anyone to 
create his or her own nodes and publish them. Custom nodes are either created 
by combining existing nodes into a group or by writing the Python code from 
scratch. Nodes are written in a prototype-base style (Ungar & Smith [1987]), 
meaning that each existing node “recipe” can be the starting point (or prototype) 
of a new node. For example: a rectangle node can be easily cloned to a rectan-
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gle-with-rounded-corners node or a square node. A node that draws a fountain 
could be an adaptation of a node that draws an explosion (which is a combina-
tion of vector and force nodes), and serve as the base for a more abstract node 
that expresses elegance, or sadness. We can crawl our way up from the bottom. 
To quote Hofstadter again:

“Thus in each specific event, there is the germ of a whole class of similar events. This idea 
that there is generality in the specific is of far-reaching importance.” (Gödel, Escher, Bach: 
an Eternal Golden Braid, pp. 358)

More nodes broaden the space of combinatory possibilities for both users and the 
language parser. It will be interesting to observe the social and creative dynamics 
once users start building and exchanging nodes.
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