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Abstract
Memory-based language processing (MBLP) is an approach to language processing based on 
exemplar storage during learning and analogical reasoning during processing. From a cognitive 
perspective, the approach is attractive as a model for human language processing because it does 
not make any assumptions about the way abstractions are shaped, nor any a priori distinction 
between regular and exceptional exemplars, allowing it to explain fluidity of linguistic categories, 
and both regularization and irregularization in processing. Schema-like behaviour and the 
emergence of categories can be explained in MBLP as by-products of analogical reasoning over 
exemplars in memory. We focus on the reliance of MBLP on local (versus global) estimation, 
which is a relatively poorly understood but unique characteristic that separates the memory-
based approach from globally abstracting approaches in how the model deals with redundancy 
and parsimony. We compare our model to related analogy-based methods, as well as to example-
based frameworks that assume some systemic form of abstraction.
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1 Memory-based language processing

Memory-based language processing, MBLP, is based on the idea that learning and processing are 
two sides of the same coin. Learning is the storage of examples in memory, and processing is 
similarity-based reasoning with these stored examples. Our specific operationalization of these 
ideas is relatively recent (Daelemans & Van den Bosch, 2005), but the ideas have been around for 
a long time.
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We see MBLP as the implementation of the analogical, example-based strand of linguistic theo-
ries developed throughout the 20th century, from the neo-grammarian notion of Analogiebildung 
(Paul, 1880) and Saussurean analogical reasoning (De Saussure, 1916) to example-based models 
of human language processing. Figure 1 illustrates the Saussurean analogical proportion that holds 
between sequences A and B (e.g. orthographic words), and their mappings A’ and B’ at another 
linguistic level (e.g. phonemic words). If B’ is not known in advance, it is the quatrième propor-
tionelle that can be computed on the basis of the other three parts of the four-way proportion, which 
states that A:B::A’:B’, meaning that that A’ and B’ stand in the same similarity relation as A and B, 
and that B’ is therefore as similar to A’, as B is similar to A.

In most cases in natural language processing it is impossible to find an analogical proportion 
that predicts B’ fully, due to the sparseness of long subsequences in language. Hence, except for a 
particular branch of work on full analogical proportions on which we expand in Section 5.1, a full 
Saussurean analogical reasoning process is typically decomposed into smaller subtasks where sub-
sequences of B’ are computed separately; subsequently, a global search may then be applied to the 
set of partial solutions to find the most likely complete B’. This decomposition and ‘subsequenc-
ing’ approach is the basic template for the majority of present-day mainstream statistical natural 
language processing algorithms, not only for operationalizations of Saussurean analogy. Memory-
based learning is one of the few models within the multitude of available approaches that bases its 
decisions on extrapolations from examples, rather than on amalgamate models that abstract away 
from single examples.

We can take the Saussurean analogical proportion as the framework for an analogical reasoning 
process fit for computer implementation. As Figure 1 visualizes, generating B’ is essentially the 
task of finding a B’ that best fits the Saussurean analogical proportion among many possible can-
didates: we need to find a B’ that is as similar to A’ as A is to B. Broadly speaking, this is the task 
that we nowadays see tackled by probabilistic models and supervised machine-learning algorithms, 
but a key ingredient is lost: that the analogical proportions are drawn between individual instances 
of sequences. Instead, most machine-learning approaches and all probabilistic models compare B 
to a numeric model that represents global statistics gathered over many individual examples; no 
analogy is drawn from single examples.

In contrast, MBLP is a member of a class of machine-learning algorithms that runs the Saus-
surean analogy-based reasoning process whenever a new B is presented. This class of algorithms 
finds its computational basis in the classic k-nearest neighbour classifier (Cover & Hart, 1967). 
With k = 1, the classifier searches for the single example in memory that is most similar to B, say 
A, and then copies its memorized mapping A’ to B’. With k set to higher values, the k-nearest neigh-
bours to B are retrieved, and some voting procedure (such as majority voting) determines which 
value is copied to B’.

A

A' ?

B

similarity

Figure 1.  Saussurean analogy. Given the proportional analogy A:A’::B:B’, with B’ missing, we need to find 
a B’ that fits the analogy.
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A common variant of the pure Saussurean proportional analogical reasoning that operates on 
sequences of any length is the decomposition of variable-length sequences into fixed-length sub-
sequences. Limiting and fixing the representation space often turns out to be necessary to allow for 
sufficiently reliable analogical reasoning: the limitation leads to better and less sparse matches.

Figure 2 illustrates this decomposition: the phonemization of the word ‘bid’ is decomposed in 
three letter-phoneme mappings, each focusing on one of the three letters. The first of these map-
pings matches the letter ‘b’ with its empty left context and ‘id’ as its right context to subsequences 
in memory, finding the three most similar neighbours derived from the words ‘bit’, ‘biz’ and ‘big’. 
All three subsequences point to /b/ as the contextually appropriate phonemic mapping of the ‘b’. A 
minor disagreement arises in the mapping of the middle letter ‘i’. One of its most similar neigh-
bours, derived from the word ‘aid’, maps to /eı/. This is offset against five neighbours mapping to 
(voting for) the phonemization /ı/; a simple way to solve this conflict is to let the majority win. 
Finally, the individual phonemes produced by the three analogical reasoning steps are concate-
nated to form the resulting phoneme sequence /bıd/.

A key element in performing analogical reasoning is the similarity function used to establish a 
graded notion of distance (the reverse of similarity) between any pair of examples, ranging from 
zero with two identical examples, to a maximum value for two examples that have no feature values 
in common. The distance function is a sum of pairwise value distances per feature, possibly weighted 
by the relative importance of the feature estimated through information-theoretic metrics, so that the 
nearest neighbour to a new example will be an example with the least mismatches on the most 
important features. In the case of positional features, such as the windows in Figure 2, it is more 
important for a nearest neighbour to match on the middle letter than on any of the context letters; 
‘bed’ is not a good example of the pronunciation of the ‘i’ in ‘bid’, while ‘hip’ would be: this means 
that the similarity function should take into account that a match on the middle letter should weigh 
more heavily than a match on both the left and right context letter, which indeed is what the 
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Figure 2.  Decomposed analogical reasoning over the letter-phoneme correspondence of each of the 
three letters of ‘bid’. The ovals contain nearest neighbours found. All neighbours are ‘friendly’ except the 
word ‘aid’, for the phonemization of the letter ‘i’; this unfriendly neighbour is marked in grey.
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information-theoretic metrics will estimate. The nearest neighbourhood may also comprise a set of 
equally similar examples, such as ‘lid’, ‘kid’, ‘did’, ‘hid’, ‘mid’ and ‘aid’, which all mismatch in the 
letter left to the centre ‘i’ in ‘bid’). When lacking an ideal exact match, the search for a nearest neigh-
bour will back off to less ideal matches. For technical details on the implementation of the similarity 
function in MBLP, the reader is referred to Daelemans and Van den Bosch (2005).

In this article we provide two perspectives that highlight unique properties of the memory-based 
approach. Firstly, in Section 2, we take a spatial perspective and characterize the type of class 
spaces one finds in natural language processing. These spaces turn out to be highly disjunct: when 
looking for nearest neighbours around a single example B, the nearest example A often has an A’ 
that is not at all as similar to B’ as A is to B. This fact stands in conflict with the Saussurean analogy 
principle, but we explain why the situation is not that bad.

In Section 3 we explain how a memory-based classifier operates locally, in contrast to essen-
tially the rest of the machine-learning and probabilistic natural language processing algorithms. 
This local classification is in fact a process called selective abduction, which is how the Saussurean 
analogy principle can also be explained. We argue that the flexibility offered by local classification 
provides valuable computational advantages that no global model can offer, such as incrementality 
and decrementality, which can be used for modelling online processing, learning and forgetting.

As a computational model of human language processing, MBLP can be seen from the perspec-
tives of several strands of research in psychology on categorization, episodic memory and global 
memory matching. MBLP can also be connected to ideas in usage-based linguistics. We discuss 
these relations in Section 4.

The memory-based learning approach has some computational nearest neighbours that we dis-
cuss in Section 5: Skousen’s Analogical Modeling, the work of a group of researchers we refer to 
as the French Analogical Proportionists, and data-oriented parsing (DOP). In Section 6 we zoom in 
on two widely different language processing tasks, stress assignment in Dutch simplex words and 
translation, to highlight particular aspects of memory-based learning. We conclude in Section 7 by 
summarizing our arguments.

2 How friendly are linguistic neighbourhoods?

When given a corpus of annotated examples of a natural language processing task, the corpus can 
be transformed into a set of mappings of the A-A’ type. As already pointed out in the introduction, 
it is common to constrain the format of both A and A’, for example to fixed-length subsequences of 
symbols. The most common template, known as windowing, takes a complete mapping of two 
structures, for example a sentence and a non-nested bracketing of that sentence into syntactic 
chunks, or a word and its phonemic transcription, or a sentence in a source language and its transla-
tion in another language, and transforms this into a number of mappings of fixed-length subse-
quences of words, each focusing around one word or letter. An example of this process is visualized 
in Figure 3. On the left, the figure shows an English sentence and its Dutch translation along with 
statistically established word alignments. On the right-hand side of the figure, each of the four 
word alignments is now the focus of a mapping between a fixed-width trigram of source tokens to 
a fixed-width trigram of target tokens (Van den Bosch & Berck, 2009).

Windowing ensures that analogical reasoning is always applied to subsequences of the same 
length. Comparing same-length subsequences offers significant computational advantages over 
comparing subsequences of different lengths.

While fixed-width windows fit sequential tasks such as grapheme-phoneme conversion and 
part-of-speech tagging quite well, it offers at best only a half-way solution in structured learning 
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tasks, in which the output is not necessarily a sequence with the same length as the input 
sequence. The output can have a different length and order such as a translation, or may be an 
entirely different type of structure altogether, such as a parse tree. In both cases, a strong infer-
ence process involving search in considerably large spaces, and possibly domain knowledge, is 
needed to transform the outcome of local analogical reasoning steps, such as the one in the right-
hand side of Figure 3, to the desired outcome. In the case of Figure 3, the output representing the 
correct Dutch word order may be reconstructed by searching for the best overlap between pre-
dicted trigrams. Two starting points that discuss this issue and present classes of solutions are 
Lafferty, McCallum, and Pereira (2001) introducing Conditional Random Fields, and Punyaka-
nok, Roth, Yih, and Zimak (2005) discussing learning and inference using constraints on the 
output solution space. Although an important part of natural language processing technology, we 
ignore these structured output issues for now and concentrate on the first step again: local ana-
logical reasoning.

When storing large amounts of windowed A-A’ examples of a particular natural language pro-
cessing task in a computer memory, it is possible to use this memory to handle new processing 
requests involving B as input, and producing B’ as output. It is also possible to compare all stored 
examples with each other to learn some general facts about the space they occupy. This space has 
as many dimensions as the examples have features. The windowed examples of Figure 3 have three 
positional features, in which several values have been seen occurring in the examples presented as 
training data. In other words, the four examples in the figure occupy four points in a three-
dimensional space, where each dimension is symbolic, representing an unordered set of symbols. 
Each example in this space will have one or more nearest neighbours at some distance (e.g. at a 
distance of one differing value). Assumedly, following De Saussure, close nearest neighbours will 
tend to map to the same output (we refer to such cases as ‘friendly neighbours’), while at the same 
time there must be points in the space of which the nearest neighbour maps to a different output, as 
rival subspaces of different outcomes must border each other somewhere.

In earlier work (Daelemans & Van den Bosch, 2005) we explored this issue and traced the near-
est neighbours for all examples A in memory, for four natural language processing tasks repre-
sented as windowed or otherwise fixed-length examples, ranging from morpho-phonological tasks 
to syntactic and information extraction tasks. We found that between about 10% and 20% of all 
examples of the tasks did not have a single friendly neighbour. This number in itself does not say 
yet whether this 10–20% of examples is positioned at the border of a large subspace, or whether 
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Figure 3.  Windowing: the transformation of the mapping of the English input sequence ‘good to see you’ 
to the Dutch output sequence ‘leuk je te zien’, to four mappings of trigrams of input tokens to trigrams of 
output tokens, where the middle tokens align.
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they form small single-example subspaces surrounded by unfriendly neighbours; in other words, 
we do not actually know how dispersed the example space is in terms of clusterings of friendly 
neighbours – are neighbours with single outcomes clustered in a single large subspace, or are they 
scattered and mixed with other scattered clusters of friendly neighbours with other outcomes? To 
explore this further, we devised an algorithm (Fambl, see Van den Bosch, 1999, and below) that 
groups together friendly neighbours iteratively in hyperballs, thus forming ‘families’ of friendly 
neighbours that can be likened to explicitly generalized schemata. The second and third columns 
of Table 1 list the numbers of families and average family size that we encountered this way in four 
natural language processing tasks (for details, see Daelemans & Van den Bosch, 2005). It is obvi-
ous from these numbers that the example spaces of these tasks are highly disjunct with respect to 
the clusteredness of examples mapping to the same outcome. The average family size, displayed in 
the fourth column of Table 1, ranges between only about 6 and 13. The members of these families 
are each other’s nearest neighbour, but there are many cases where members of two bordering 
families are each other’s nearest neighbour. The fifth column of Table 1 shows the percentage of 
examples that have a differently labelled (‘unfriendly’) neighbour as their immediate nearest 
neighbour; for the four example tasks, this percentage ranges from 9% to 17%.

One implication of this finding is that the Saussurean analogy principle must fail at the many 
boundaries in space where nearest neighbours map to different outcomes. A sensible processing 
system should be somehow aware of these boundaries, and should not make the error of copying 
the incorrect A’ to a B that stands on the wrong side of the border. Memory-based learning does not 
explicitly draw global decision boundaries: it only assumes an implicit division of the space. When 
the analogical reasoner operates on only the single nearest neighbour, with k = 1, the space is 
implicitly divided into a so-called Voronoi tessellation of the kind displayed in Figure 4, exempli-
fying a two-class space where the classes are black and white, and where the six displayed exam-
ples are characterized by their coordinates in the space. Each tile is occupied by one example.

Since the memory-based classifier is not aware of boundaries that separate areas with examples 
mapping to different output symbols, its analogical reasoning is likely to produce errors. When 
9–17% of all memory examples in the four linguistic spaces listed in Table 1 have an ‘unfriendly’ 
nearest neighbour, we may assume that the same percentage of new examples will have ‘unfriendly’ 
nearest neighbours as well. If this would be the case (and if k = 1), analogical reasoning can be 
expected to make about the same number of errors. In practice, however, it often makes fewer 
errors on unseen data than that, as a comparison of the fifth and sixth columns of Table 1 shows; 
the sixth column displays the average generalization error (a percentage between 0 and 100) as 
reported by Daelemans and Van den Bosch (2005). For one, this is because any unseen data, drawn 
from the same population of examples that the training set was drawn from, will contain examples 
that are very similar to, or even duplicates of examples in memory, so that they find a nearest 

Table 1.  Numbers of different possible outcomes, families of nearest neighbours and average family size of 
four natural language processing tasks.

Task Number of 
outcomes

Number of 
families

Average 
number of 
family members

% Examples 
w/ unfriendly 
neighbours

% Generalization 
error

German noun pluralization 8 17,49 7.2 15.3 6.0
Dutch diminutive inflection 5 233 12.9 9.1 2.4
English PP attachment 2 3,613 5.8 16.5 19.3
English base phrase chunking 22 17,984 11.8 14.9 8.1
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neighbour well inside friendly neighbourhoods. Examples are not necessarily identical; it is suffi-
cient that their representations are the same to act as a duplicate. We know empirically that exact 
or very close matches tend to yield accurate analogical reasoning (Daelemans & Van den Bosch, 
2005) if the representation is chosen well.

Yet, we do see analogical reasoning fail in some cases, reasoning across boundaries it should not 
cross. Performance figures, such as generalization accuracy on test data, of memory-based learning 
can in fact be seen to quantify the degree to which the Saussurean analogy principle explains 
unseen data. Regardless of the task, we have never observed a 100% fit. We did, however, observe 
the following after closer analysis of the predictions of our memory-based classifier.1

1.	 Due to the total recall of all training examples that the simplest version of our software 
exhibits, any duplicate example that recurs in new data will always be remembered, and the 
analogical reasoning generally generates accurate predictions in these cases of mere recall.2 
This ‘lookup’ property, simple as it is, offers a strong backbone for MBLP. The implied 
golden rule is to always remember all training examples, as they may recur in the future, as 
do all patterns in language in due course.

2.	 This principle even holds for examples that seem to be atypical or rare, or simply infre-
quent. In case of word features, for instance, many examples will contain values residing 
in the long Zipfian tail (Zipf, 1935). We have shown in earlier work (Daelemans & Van 
den Bosch, 2005; Daelemans, Van den Bosch, & Zavrel, 1999) that there is rarely any 
positive effect gained from ignoring training examples estimated to be infrequent, atypi-
cal or bad, and that we in fact observe negative effects when leaving out examples, 
regardless of the criterion by which they are ignored. Rare examples can be friendly 
neighbours too.

3.	 However, we have observed in several experiments that random removal (i.e. forgetting) of 
examples from memory can be done without harming generalization performance signifi-
cantly. Examples include up to 80% forgetting with English prepositional attachment, and 
90% forgetting with Dutch diminutive inflection generation (Daelemans & Van den Bosch, 
2005, p. 129). It appears that most of our training sets contain more than a sufficient 
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Figure 4.  Voronoi tessellation of a two-class two-dimensional space with k = 1.
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number of examples (such as duplicate example tokens, or very similar examples labelled 
with the same outcome) that can be removed without changing the behaviour of the classi-
fier. The Fambl approach described earlier (Van den Bosch, 1999) is a mechanism that 
implements this shallow bottom-up generalization of homogeneous instances into general-
ized examples that can be likened to explicit schemata.

In sum, through experimentation we have shown that although Saussurean analogical reasoning, a 
form of selective abductive reasoning, has no built-in safety measures to avoid erroneous out-
comes, MBLP can offer good performance on unseen data in many natural language processing 
tasks by using the principle directly, offering the best possible performance when all of the training 
data is retained in memory. In other work we and others have shown that memory-based learning 
offers competitive state-of-the-art performance, so that it can be used in most practical natural 
language processing situations in lieu of any other state-of-the-art machine-learning algorithm (for 
an overview, see Daelemans and Van den Bosch, 2009).

3 Local versus global modelling

The unique characteristic of memory-based classification, or k-nearest neighbour classification, is 
that it does not make use of the same single model at every classification, like virtually every other 
machine-learning algorithm does. Instead, it builds temporary and different models each time it 
receives a classification request. This characteristic has lent k-nearest neighbour classification the 
moniker lazy learning. No effort is invested in abstracting classification knowledge from the avail-
able training data (or, to put it differently, no distinct learning phase takes place); instead, the train-
ing data is kept in memory as is; only when needed a small local model is generated from the data 
that is forgotten again immediately after usage.

Such a temporary model takes the form of a hyperball that extends into the feature space intro-
duced in the previous section, up to the radius at which the designated number of k-nearest neigh-
bours or nearest distances (i.e. distances at which equally distant nearest neighbours are found) is 
within the ball. This is illustrated in Figure 5. As an alternative to k, a fixed radius d can be set that 
fixes the size of the hyperball; this is usually referred to as a Parzen window (Parzen, 1962). With 
k, the radius of the local hyperball varies; with a Parzen window, the actual number of nearest 
neighbours captured in the fixed-sized ball varies. There are no general rules for setting k or d or 
whether either of the two is to be preferred.

Subsequently, the contents of the hyperball are the basic ingredients of the temporary model. 
The output symbols (outcomes) contained in it can each be seen as a vote for those symbols; 
when k > 1, some voting system is needed on top of the basic Saussurean analogy to boil the 
votes of all the nearest neighbours down to a single outcome. Several mechanisms have been 
proposed for voting. For example, it is typical to assign lower weights to votes of more distant 
nearest neighbours in the hyperball, transforming their distance to a weight according to some 
function, such as inversing it (cf. Daelemans & Van den Bosch, 2005). The output symbol that 
receives the largest aggregate of weighted votes, summed over the votes of all nearest neigh-
bours, is produced as the outcome. Alternatively, the full distribution of vote weights can be 
generated as the outcome. When the weights are normalized to add up to 1.0, this distribution 
can be taken as a local probability distribution, making it suitable for further processing in a 
probabilistic framework.

After the analogical reasoning has been performed, the local hyperball and its contents are for-
gotten, and the system switches to a waiting state ready to handle a new reasoning request. This 
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type of processing can be likened to an experienced medical doctor, waiting for patients and diag-
nosing them as they come in, on the basis of their symptoms. This is actually the application for 
which the nearest neighbour algorithm was first proposed (Fix & Hodges, 1951). The doctor has 
seen patients with certain diseases exhibiting a certain set of symptoms. Observing a sufficiently 
similar set of symptoms in a new patient triggers the doctor to hypothesize, or abduce, that the 
patient may be suffering from the same disease as earlier patients who shared most of the symp-
toms. In this process, the doctor draws on his memory of patients, but his diagnosis is not based on 
a model of all the patients he ever saw; rather, he performs a selective abduction on the basis of the 
most similar patients. Thus, memory-based reasoning follows a process of selective abduction: not 
induction, which assumes a separate learning phase in which rules are induced from examples, or 
deduction, which assumes knowledge of all necessary causative rules (if a patient has this disease, 
he is likely to have this set of symptoms). Like induction, selective abduction can produce faulty 
outcomes, as we have already seen in the previous section. Yet, it is a flexible, lightweight method 
of reasoning because it does not rely on an expensive error-prone learning process (learning rules 
from examples by induction) or on a costly and brittle resource (flawless high-coverage causative 
rules for deduction).

The fact that MBLP does not rely on a single learned model for all of its predictions has a clear 
advantage: it naturally allows incremental learning and decremental learning, or forgetting. The 
addition and removal of examples from memory can be done at any point in time, and does not 
imply a costly and cognitively implausible recomputation of a global model.

Beyond the mere removal and addition of individual examples, a related property of MBLP is 
that individual examples can be given a unique weight that can influence the strength of the vote 
that this example casts when involved as a nearest neighbour in an analogical reasoning process. In 
this way activation, inhibition and gradual forgetting can be modelled, which offers possibilities 
for computational psycholinguistic modelling.

t
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Figure 5.  Radii of four nearest distances at which nearest neighbours are found of the new example t; 
also, a Parzen window at distance d is drawn.
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4 Memory-based language processing as a model of human memory 
and language processing

MBLP can be understood as an implementation of exemplar-based models of human memory, and 
can be connected to psychological work in this area – which tends to use language processing tasks 
such as word recognition as favourite benchmarks. In particular we see MBLP as an implementa-
tion of episodic memory (Goldinger, 1998; Hintzmann, 1988; Logan, 1988; Raaijmakers & Shif-
frin, 1980).

In their review of episodic memory models that rely on the matching of new input to exemplars 
stored in memory, which they refer to as global matching models, Clark and Gronlund (1996) 
define these models by two key characteristics: ‘(1) recognition is based solely on familiarity due 
to a match of test items to memory at a global level, and (2) multiple cues are combined interac-
tively’ (Clark & Gronlund, 1996, p. 37). We see these characteristics reflected in MBLP if we 
translate the terminology. When Clark and Gronlund refer to global matching, they mean the com-
parison of a test item to all exemplars in memory (rather than the retrieval of one particular exem-
plar). The interactive combination of multiple cues can be translated to the computation of a 
function over a vector of features. Their models, like MBLP, can account for both the retrieval of 
exact (‘intact’) matches from memory, and the matching with similar but non-identical 
exemplars.

The work of Lewis, Vasishth, and Van Dyke (2006) on cognitively plausible models of memory 
in sentence comprehension is relevant with respect to MBLP as it points at the implausibly slow 
memory retrieval of serial order, which takes hundreds of milliseconds (McElree, 2006), versus the 
fast comparison of cues to items in memory (80–90 ms) that is sufficiently fast to explain sentence 
comprehension (250–300 ms per word). MBLP models the latter type of processing: as a sentence 
processing model it can be seen as a processor of a sequence of cues, where each cue represents a 
local subsequence of the sentence. While Lewis et al. (2006) equate cues with words, we believe it 
is reasonable to assume that the cues and exemplars in human sentence processing are variable-
width local sequences ranging from letter n-grams to a handful of words, representing a local 
context that offers sufficient information to find similar nearest neighbours in memory, and use 
analogical reasoning over them to trigger a correct response.

Exemplar-based models also play a pivotal role in psychological studies of human categoriza-
tion, and have been argued to produce a generally good fit of human behaviour and errors (Estes, 
1994; Nosofsky, 1986; Smith & Medin, 1981). These models assume that people represent catego-
ries by storing individual exemplars in memory rather than rules, prototypes or probabilities. Cat-
egorization decisions are then based on the similarity of stimuli to these stored exemplars. Evidence 
for the psychological relevance of exemplar-based reasoning remains impressive. Even the very 
assumption of fixed, permanent categories (however represented) has come under fire by theories 
favouring a dynamic construal approach in which concept formation is claimed to be based on past 
and recent experiences represented in memory, combined with current input (Croft & Cruse, 2003; 
Smith & Samuelson, 1997). This type of context-dependent, memory-based category emergence 
fits MBLP well.

One recent approach to linguistics, usage-based models of language, proposed by cognitive 
linguists such as Ronald Langacker, Joan Bybee, Adele Goldberg, William Croft and many others 
(Croft & Cruse, 2003; Goldberg, 2006), bases itself at least in part on the psychological categori-
zation literature and on some of the pre-Chomskyan linguistic approaches discussed earlier. Some 
of the properties shared by the heterogeneous set of usage-based theories are reminiscent of the 
MBLP approach. Most importantly, the usage-based approach presupposes a bottom-up, 
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maximalist, redundant approach in which patterns (schemas, generalizations) and instantiations 
are supposed to coexist, and the former are acquired from the latter. MBLP could be considered 
as a radical incarnation of this idea, in which only instantiations stored in memory are necessary, 
and the scheme-like behaviour emerges from the exemplar-based processing. In this sense, MBLP 
is less redundant than cognitive linguistics. Other aspects of cognitive linguistics, such as the 
importance of frequency, and experience-based language acquisition (Tomasello, 2003), fit MBLP 
naturally as well. As far as frequency is concerned, many experiments with MBLP have focused 
on type frequencies, rather than token frequencies, the latter playing an important role in cogni-
tive linguistics, for instance to model entrenchment of exemplars and schemata. MBLP can 
accommodate token frequencies by representing them (or a log normalization) as exemplar 
weights. In the TiMBL implementation of MBLP, the distance between a new exemplar and a 
memory exemplar is divided by the weight of the memory exemplar (e.g. representing its token 
frequency), so that more frequent exemplars are drawn closer in distance to new exemplars 
(Daelemans & Van den Bosch, 2005). In our experiments on language processing tasks, we have 
found type frequencies to lead to better generalizations in morphological tasks, and token fre-
quencies to sometimes play a role in syntactic tasks.

There is an encouraging number of recent studies that attempt to link statistical and memory-
based models of language that focus on discovering strong n-grams (for phrase-based statistical 
machine translation or for statistical language modelling) to the concept of constructions and to 
the question of to what extent human language users exploit constructions. Wiechmann (2009) 
focuses on English relative clause constructions, and proposes a framework that combines con-
struction grammar theory with example-based processing. He shows that his model exhibits high 
degrees of compatibility both with quantitative corpus data and experimental data obtained with 
humans. Recently, Mos, Van den Bosch, and Berck (2012) reported that a memory-based lan-
guage model shows a reasonable correlation, explaining over 25% of the variance in segmenta-
tions that test subjects generate in a sentence copy task. The model implicitly captures several 
strong units, but fails to capture long-distance dependencies, a common issue with local n-gram-
based statistical models.

Bannard and Matthews (2008) show with sentence-repetition tests that children repeated fre-
quent sequences significantly more correctly than infrequent sequences. Inspired by this study, 
Arnon and Snider (2010) show that subjects are sensitive to the frequency of four-word n-grams 
such as ‘don’t have to worry’, which are processed faster when they are more frequent. Arnon and 
Cohen (this issue) report on experiments of which the results indicate that phonetic duration is 
reduced in multi-word sequences with a higher frequency, regardless of the syntactic boundaries 
these sequences cross. Furthermore, the phonetic duration effects cannot be explained by the fre-
quencies of the individual words or subsequences. The discussion in both studies homes in on the 
question whether strong sequences need to have linguistic structure that assume hierarchy, or could 
simply be taken to be flat n-grams – it is exactly this question that we aim to explore further in our 
work with MBLP models.

In this work we will need to address the challenge of Baayen, Hendrix, and Ramscar (this vol-
ume), who propose a very compact association model between letter n-grams and meaning nodes 
based on naïve discriminative learning that is able to explain the same frequency effects in com-
prehension tests that n-gram frequencies from a corpus can explain (Arnon & Snider, 2010). Yet, 
representing hundreds of millions of n-gram counts represents substantially larger storage costs, 
which Baayen et al. (this volume) consider cognitively less plausible than their more parsimonious 
alternative. It remains to be seen how the naïve discriminative learning framework would scale up 
to representing not under 8000 ‘meanings’ (morphemes) selected to strictly fit Arnon and Snider’s 



320	 Language and Speech 56(3)

(2010) data, but the hundreds of thousands of unique morphemes present in the 20 million word 
corpus from which Arnon and Snider derived their n-gram frequencies.

5 Related computational approaches

5.1 Analogical modelling and analogical proportions

There is a close relation between MBLP as described so far in this article, and two schools of ana-
logical modelling of language: those of Royal Skousen and colleagues (Skousen, 1989; Skousen, 
Lonsdale, & Parkinson, 2002), and a group that could be identified as the ‘French analogical pro-
portionists’; Yves Lepage, François Yvon and colleagues (e.g. Langlais, Yvon, & Zweigenbaum, 
2009; Lepage & Shin-ichi, 1995; Yvon & Stroppa, 2007). The relation of MBLP with Skousen’s 
analogical modelling work has been discussed earlier by Daelemans (2002). The analogical model-
ling approach is memory-based in that all available individual examples are used in extrapolating 
to the solution for a new input. The set of nearest neighbours considered for extrapolation is not 
constrained to a k or a hyperball radius, but by a match on any subset of features with the new 
example to be processed. As the algorithm searches for all examples that share all combinatorial 
subsets of input features, it is exponential in the number of features, which makes the approach 
impractical for problems with many features. The approach has been applied to different problems 
in language processing, mainly in the phonology and morphology domains. Empirical compari-
sons have never shown important accuracy or output differences between the two approaches 
(Eddington 2002; Krott, Schreuder, & Baayen, 2002).

In the work of the French analogical proportionists, Lepage, Yvon, Langlais, Stroppa and other 
colleagues stress the importance of adhering to the full proportional analogical reasoning that De 
Saussure proposed, where the sequences in the proportional relation A:B::A’:B’ are truly the full 
sequences in all their complexities – not our simplified version of windowed input and output sub-
sequences (as in Figure 3). A prototypical example is the work on analogical machine translation 
by Lepage and Denoual (2005) – the article’s title claims that the approach is the ‘purest ever 
example-based machine translation’ – which makes use of the parallels between two full analogies 
between four sentences in two languages, as visualized in Figure 6. No assumptions are made 
except that sentences are sequences of characters, and can be sliced at any character position to 
construct a new translation from analogy. Although it is obvious that this system needs considera-
ble numbers of training examples to work, it is shown to perform quite well in the ‘basic travelling 
expressions’ domain, in which many formulaic patterns recur.

Figure 6.  A parallel proportional analogy between four sentences in English, and four sentences in 
Spanish of which one is missing; the system of Lepage and Denoual infers the missing translation by analogy 
from the known sentences. Taken from Lepage and Denoual (2005).



van den Bosch and Daelemans	 321

One difference between the analogical proportionist approach and the memory-based approach 
concerns the degree to which analogical proportions are computed: on full sequences or on sub-
sequences. Operating on full sequences leans on the intuition that correct outputs can sometimes 
be generated by combining not more than two partial solutions (at the cost of needing considera-
ble amounts of training data, and at the risk of being confronted with data sparseness), while 
operating on subsequences leans more on the intuition that with a considerably lower data sparse-
ness problem, very accurate local analogies can be drawn, that later can simply be concatenated 
to produce a full outcome (e.g. a full translation of a sentence, or a full word pronunciation). If the 
latter is not ‘simply’ the case, it is possible to complement good local solutions with a powerful 
constraint-based search or inference method (Canisius, Van den Bosch, & Daelemans, 2006; Pun-
yakanok et al., 2005).

5.2 Example-driven stochastic models
A looser family relationship exists between analogical methods and example-driven stochastic 
models such as DOP (Beekhuizen, Bod, & Zuidema, this volume; Scha, Bod, & Sima’an, 2003), 
and the Bayesian approach described by O’Donnell, Snedeker, Tenenbaum, and Goodman (2011). 
Data-oriented models of the DOP type are essentially monolithic probabilistic models, as they 
divide a global probability mass over a large population of labelled tree fragments, which in the 
original DOP approach is the set of all possible fragments in the treebank (Scha et al., 2003), but 
which may also be a more parsimonious set of fragments found by a search that starts with long 
fragments and searches for a minimal description length of the fragment grammar (Beekhuizen 
et al., this volume). Yet, Scha, Bod, Sima’an and colleagues do stress in their work on DOP the 
reliance of the method on individual examples. A DOP operation can be traced back to the set of 
individual parsing tree fragments involved in the process. It has furthermore been observed in DOP 
models that removing individual examples on the basis of their rarity (their low frequency) ham-
pers performance considerably (Bod, 1995), in line with our observations.

If other differences such as probabilities versus natural frequencies and distances are ignored, a 
key difference between the DOP approach and the memory-based approach is the assumption in DOP 
that examples are fragments of hierarchical structures, while the standard version of the MBLP model 
assumes no predefined structure. The DOP approach, the fragment grammar approach of O’Donnell 
et al. (2011) and also the recent approach proposed by Post and Gildea (2009) imply a resolution 
mechanism in which found or activated fragments join and form a tree. It follows naturally that this 
approach is typically cast in the framework of syntactic tasks. Despite its wide applicability from 
morpho-phonology to syntacto-semantic processing, it is not the most straightforward solution to 
tasks in which the output is not a tree, but for example another sequence of words. Examples of such 
tasks are language modelling (predicting the next word), spelling correction (converting a distorted 
sequence to a ‘clean’ sequence) or translation. In Section 6.2  we discuss our memory-based approach 
to these types of text-to-text processing tasks, and argue that examples in these tasks do not require 
explicit hierarchical structure; when some hierarchical structure is needed (e.g. in generating transla-
tions), this follows implicitly from the overlap between found examples.

The crucial difference is that the DOP, O’Donnell and Post and Gildea approaches do not use 
analogical reasoning, and can therefore not escape from the specific inventory of fragments present 
in the training data. Creativity at the level of novel combinations is possible in this type of approach, 
but not productivity through analogy over memory items. The latter type of productivity seems 
desirable in a psychologically plausible computational model to explain creativity in both regulari-
zation and irregularization.
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5.3 Back-off smoothing and decision trees
We have stressed differences of the memory-based approach with other data-driven methods for 
natural language processing, where the defining characteristic of the former is the reliance on indi-
vidual examples, not a single model. When we stated there is virtually no other machine-learning 
algorithm that does this, we skipped over two grey areas where the memory-based approach is 
similar or even equivalent to abstracting approaches. The first equivalence has been noted by 
Zavrel and Daelemans (1997 ), who observe that and explain why a memory-based approach can 
generate the same predictions as a maximum-entropy classifier with Katz back-off smoothing 
(Katz, 1987) when trained on the same examples. Under certain conditions, relating to which back-
off order is chosen, Katz back-off smoothing is equivalent to a hyperball method that extends into 
feature space until it encompasses sufficiently matching nearest neighbours.

A second more gradient equivalence can be found between the memory-based approach, and 
rule-based (e.g. Cohen, 1995) and decision-tree-based (e.g. Quinlan, 1993) methods. The latter 
methods spend a learning phase on segmenting the example space in sufficiently homogeneous 
regions in terms of output symbols. With the right parameter settings, rule learners and decision-
tree learners can be instructed to segment areas that only contain single examples when needed, 
and this approaches the situation of a memory-based classifier operating on Voronoi tiles. Daele-
mans et al. (1999) explored this equivalence, finding indeed that decision-tree learners could be 
made to classify more like memory-based classifiers if their algorithmic parameters are tuned to fit 
individual examples more.

6 Case studies in linguistic hypothesis testing through memory-
based language processing

6.1 Theory testing in memory-based stress assignment

Daelemans, Gillis, and Durieux (1994) present a memory-based account of stress assignment to 
Dutch simplex words. If one would follow the arguments of the then-current principles and param-
eters-based account of stress assignment applicable to Dutch (Dresher & Kaye, 1990), there would 
on the one hand be a rule set that determines ‘regular’ stress assignment, while on the other hand 
there would exist exceptions to the rules, invoked by lexical markings. The rules are based on a 
notion of syllable weights of the last three syllables, where the weight of each syllable is in turn 
determined by its rhyme (nucleus and coda); the five-valued weight scale can range from super-
light rhymes containing only a schwa, to superheavy rhymes with vowel–consonant–consonant 
(VCC) or vowel–vowel–consonant (VVC) structure; an integer value between 1 and 5 represents 
the weight, as illustrated for a three-syllable Dutch word in Table 2.

Through comparative experiments, Daelemans et al. (1994 ) show that when words are repre-
sented by the weight of the rhymes of their last three syllables, a memory-based learner is able to 

Table 2. Three representations of the three-syllabic Dutch word agenda, pronounced /a-’gεn-da/, with 
primary stress on the penultimate syllable, and the percentage of accurately predicted stress assignments 
to unseen words.

Encoding Syllable 1 Syllable 2 Syllable 3 Accuracy (%)

Dresher & Kaye (1990) weights 2 3 2 81.2
Rhymes (nucleus and coda) a- εn a- 88.1
Syllables (onset, nucleus and coda) -a- gεn da- 88.8
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predict the stress of the ‘regular’ cases well (e.g. the regular penultimate stress pattern is predicted 
with 93.6% accuracy), while performing relatively weakly on other cases (final stress 74.9%, and 
antepenultimate stress 53.2%).

When instead the encoding is changed into the actual phonemic content of the nucleus and the 
coda, performance on cases outside the ‘regular’ set improves (to 87.9% on final stress, and to 
61.8% on antepenultimate stress), indicating that the theory’s reliance on an abstracted syllable 
weight was in fact hiding useful information. In a third experiment, the identity of the onset pho-
nemes was also included, leading to a further increase in performance, and an overall best accuracy 
of 88.8% correctly assigned stress to unseen test words.

6.2 Memory-based translation
Natural language processing models and systems typically employ abstract linguistic representa-
tions (syntactic, semantic or pragmatic) as intermediate working units. Memory-based models 
enable asking the question whether we can do without them, since any invented intermediate struc-
ture is always implicitly encoded somehow in the words at the surface, and the way they are 
ordered. Memory-based models may be capable of capturing the knowledge that is usually consid-
ered to be necessary, in an implicit way, so that they do not need to be explicitly computed.

Classes of natural processing tasks in which this question can be investigated in extremo are 
processes in which form is mapped to form, in which neither the input nor the output contains 
abstract elements to begin with, such as translation. Many current machine translation tools, such 
as the open source Moses toolkit (Koehn et al., 2007), indeed implement a direct mapping of 
source to target text, leaving all of syntax and semantics implicit. They hide in statistical translation 
models between collocationally strong phrases, and of statistical language models of the target 
language. This reliance of phrasal fragments (here, pairs of aligned fragments) is reminiscent of the 
fragment-based DOP approach; similar recombination and search procedures are used in the two 
approaches to produce an output estimated to be maximally likely. Our take on this problem, in 
contrast, involves analogical reasoning over fragments in their local context (Van Gompel, Van den 
Bosch, & Berck, 2009), rather than manipulating context-less phrasal fragments.

The model presented by Van Gompel et al. (2009) uses the phrase alignments computed in 
Moses (Koehn et al., 2007), producing pairs of word n-grams on the source and target side of trans-
lation that display a strong mutual conditional probability. As visualized in Figure 7, the fully 
automatic procedure discovers alignments between pairs such as the English sequence ‘wrongly 
convicted’ and the French sequence ‘condamné a tort’, which, besides contextually appropriate 

Figure 7.  (a) A word-aligned sentence pair, with a hypothetical phrase marked. (b) A training instance 
with source-side context for the marked phrase, English to French. The input feature vector (left) is 
associated to the trigram output class (right).
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translations of each other, are both strong collocations, and can both be seen as strong lexicalized 
constructions in their respective languages.

In Haque, Naskar, Van den Bosch, and Way (2011) a direct comparison is made between the 
phrasal fragment-based Moses system, and a variant of Moses where the simple phrase lookup 
procedure is replaced by the translation model of Van Gompel et al. (2009). Instead of looking 
up all possible candidate phrasal fragment translations in a phrase table given an input phase, 
analogical reasoning refines this selection by suggesting phrasal fragment translations of local 
nearest neighbours of the current source-side fragment and its context. They observe that per-
forming analogical reasoning to determine the locally likely phrasal translations of source-
language phrases produces significant improvements over the Moses approach in several 
machine translation benchmark experiments, and never produces a loss in performance (Haque 
et al., 2011).

7 Discussion

In this contribution we presented MBLP as an approximate implementation of the Saussurean anal-
ogy. The full Saussurean analogy, over full sequences, suffers from sparsity. A working model of 
the Saussurean analogy needs to find analogies in spaces of which the population is still dense 
enough to find good, ‘friendly’ neighbours similar to (but not necessarily the same as) the new 
input. We solve this problem in MBLP by seeking task representations that zoom in on local clas-
sifications of (e.g. windowed) subsequences.

The case for MBLP, apart from the fact that it is computationally feasible, extends to a case for 
a cognitive theory of language processing that is optimally parsimonious in that it assumes that 
exemplars and analogical reasoning (or episodic memory and global memory matching) are all that 
is needed for modelling both learning and processing. We translated this to computational models 
in which the data, and nothing but the data, is the model. In this model, processing happens in the 
temporary analogical reasoning over examples; in other words, processing lies in the relations 
temporarily established between exemplars. Linguistic mappings or categories are dynamically 
construed, and are not permanent, and neither are the rules or schemata that could be used to 
explain why the memory-based model makes a certain prediction. For that reason, the models are 
not only optimally parsimonious, but also minimally redundant in the types of representations 
presupposed. There is no need for the parallel existence of schemes or rules and exemplars as in 
cognitive linguistics and similar approaches.

The class of data-oriented, fragment-based approaches (such as DOP and the fragment grammar 
approach of O’Donnell et al., 2011) is often compared to MBLP, but differs in two important 
aspects. Firstly, the DOP approach does not perform analogical reasoning, and can only manipulate 
and build on the fragments it has memorized. Secondly, its reliance on hierarchical structure even 
in the smallest fragments makes the approach fundamentally more complicated, also as a cognitive 
theory, than the memory-based approach that is open to structured representations, but does not 
presume them. In addition, an empirical comparison in the area of machine translation reported by 
Haque et al. (2011) shows that a fragment-based approach can be improved by analogical reason-
ing, by exploiting (rather than ignoring) the local context of source-side phrasal fragments, and 
finding proper nearest neighbours with likely translations, rather than finding all possible transla-
tions, including the unlikely ones.

As a counterbalance to claimed assumptions of the reliance of the human language process-
ing system on structured representations or other abstract levels of representation and process-
ing, the memory-based account has the advantage as a more parsimonious cognitive theory of 
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language processing. Yet, a large body of work in psycholinguistics has focused on testing 
notions of abstraction, and a considerable portion of this work has provided convincing empiri-
cal evidence for correlations of human behaviour with these abstract notions. Our view of this 
work is nuanced.

On the one hand, most work in MBLP and related approaches does embrace certain basic levels 
of abstraction. In our work we have mostly assumed letters and phonemes to be abstract working 
elements in human language processing, rather than segmented audio samples and letter images, in 
line with the work in psychology that has argued for these levels of abstraction in perception (e.g. 
for speech sounds Oden & Massaro, 1978; Toscano & McMurray, 2010; for visual letter reading 
Dehaene et al., 2001; McClelland, 1976) and its emergence in language learning and in learning to 
read. We also tend to use letter n-grams, words or word n-grams as abstract working units in our 
feature representations of examples.

On the other hand, we feel that much of the work that investigates word- and sentence-level 
processing and that advocates abstract representations and processing models (such as dual route 
models) ignores the fact that the functional behaviour of an example-based model may be very 
much like that of a more abstract model. Categorical decisions made by both models may often be 
identical, by virtue of the fact that the abstract model is intended to generalize over sets of 
examples – and thus may respond with the same prediction or decision as the analogical reasoning 
process would on the basis of the same set of nearest-neighbour examples the abstraction general-
izes over. In other words, empirical evidence for an abstraction correlating with human behaviour 
may well be explained by an example-based model that happens to make the same predictions as 
the abstraction does, except that it makes them implicitly and temporarily rather than explicitly and 
permanently.

This explanation may cast a new light on the dual versus single route debate. One misunder-
standing that permeates this debate is the confusion of memory-based routes based on table lookup 
or rote learning (given an input, one specific output is triggered), and analogical reasoning over 
exemplars, our MBLP approach. While the table lookup route is obviously incapable of overgen-
eralization or irregularization, the MBLP approach generates both; at the same time, it does pro-
duce table-lookup-like behaviour when encountering an exact match between a new example and 
a memorized example. The versatility of the MBLP approach makes it a viable candidate engine 
for single route models.
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Notes
1.	 In all experiments referred to in the text, we used TiMBL (Tilburg Memory-Based Learner), a software 

package implementing several variants of memory-based classification, released under an open source 
license. TiMBL can be downloaded from http://ilk.uvt.nl/timbl.

2.	 There may be cases in which an exact match does not lead to proper analogical reasoning; this would 
be due to errors in either the training or the test data, or an inappropriate choice of features excluding 
some discriminatory feature that would yield the match non-exact.
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