
Automatic Genre Classification for Resource Scarce
Languages

D.P. Snyman1, Gerhard B van Huyssteen1 & Walter Daelemans2
1Centre for Text Technology (CTexT), North-West University, Potchefstroom, South-Africa

2CLiPS-CL, University of Antwerp, Antwerp, Belgium
1{Dirk.Snyman;Gerhard.Vanhuyssteen}@nwu.ac.za

2Walter.Daelemans@ua.ac.be

Abstract— In this article we present research on the development
of automatic genre classification systems for resource scarce
languages. The main approaches to text classification from
literature are presented and weighed against each other during
an experimental phase, to identify the most appropriate text
classification approach to be used as a genre classification system.
A fixed feature set is extracted for seven classes from the
available training data for each of the six languages under
scrutiny and paired with each classification algorithm in order to
test the algorithms’ performance. The algorithm showing the best
results is support vector machines, in conjunction with term
frequency and inverse document frequency features.

Keywords - genre classification; resource scarce languages;
text classification algorithm, term frequency, inverse documents
frequency.

I. INTRODUCTION

In the domain of text processing, it is often of great value to
have access to metadata regarding the texts being analysed [1].
Metadata can be something as simple as an inventory
containing the amount of words contained in these texts, to a
summary of textual statistics. When compiling corpora for
natural language processing experiments, it is vital to have this
kind of information at hand as to ensure representativeness of
the corpus. Experiments based on the skewed data from an
unrepresentative corpus can be unreliable. However, this
metadata is not available when using data from unstructured
sources such as the web. Information then has to be added to
the data before it can be used with some level of assurance.
This can be a time consuming and expensive process. It is,
however, possible to perform this automatically by
implementing a text classification algorithm. Such an algorithm
can append metadata as a set of predefined classes to the text,
based on the analysis of its textual content, structure, style etc.
[2]. These classes can be further exploited as a stepping stone
for gathering extra information about the data, or can be used
in its original state as metadata.

An example of an application of the abovementioned text
classification algorithms is to classify a text, based on its genre
[3]. Genre classification is not to be confused with topic-based
classification (although there are some similarities in
classification methods). Consider a feature article: While the
topic of such an article could be about any given subject, the
genre of the text remains that of a feature article. The same
holds true for any other genre as they are essentially topic
independent even though some topics are more prevalent in

some genres than others. This manner of classification is used
in a number of commonplace systems. These include automatic
document management systems [4], email classifiers/spam
filters [4] and Automatic sentiment analysis [4].

It would be expected that these and similar systems are
made available in regionally appropriate modes (i.e.
compatible languages) but this unfortunately is not the case,
especially for resource scarce or underrepresented languages.
To our knowledge there are no genre classification systems
available for the South African languages. This poses a
significant dilemma for the development of text resources for
these languages, particularly where representativeness across
genres is of great concern. In a project for the National Centre
for Human Language Technologies it was seen that it would
indeed be necessary to classify texts according to their genre
before these texts can be included in representative corpora and
because of the sheer volume of texts that have to be analysed,
an automatic solution is required In a project undertaken for
the department of Arts and Culture of the South African
government, this need is addressed in order to be able to
provide quality resources.

We therefore present research on determining the best text
classification algorithm, to be used in a genre classification
system, for six of the South African languages. This core
technology/classifier can then be used as the basis for
constructing some of the abovementioned applications, or as a
standalone system for genre classification of text data prior to
corpus construction.

II. RELATED WORK

Relatively little research has been done on the topic of
genre classification in the last two decades [5][8], because
collections of texts have, until recently, usually been
homogeneous in their compilation [5] i.e. domain specific. This
compilation has changed to a more diverse one as the need
arose for more representation across domains and text types.
As a result, research has recently gained momentum,
encouraged by the alarming increase in the amounts of
digitalised documents and data that somehow need to be
managed [6]. Data management systems have, for the most
part, been concerned with classification based on the topic of
texts. However, users rarely require information based on
topics alone [5][8]. They require different styles of text for
different practices e.g. editorials, scholarly publications,

novels, etc. Therefore by adding a genre classification to texts,
these requirements can be met.

A. Resource scarcity

Our research focuses on languages that have little annotated
resources available, even for casual experimenting. Resource
scarceness with regards to this kind of application, to our
knowledge, isn’t discussed in literature. We therefore have no
reference as to the level of performance to expect from such a
classification algorithm based on these kinds of limited
resources. We therefore propose to compare these classifiers to
state of the art systems for languages with abundant data
available. This will also indicate the level of success associated
with the selection of the algorithm for genre classification if the
resource scarce counterpart can (to some extent) match the
performance of the established classifiers.

B. State of the art

Yi-Hsing and Hsiu-Yi [7] present the development of a
genre classification system for the classification of 11 web
genres. Along with the classification algorithm, they make use
of a domain ontology table to establish relationships between
text tokens which are then relayed to the classification
algorithm (Bayesian classifier) as weights associated with each
relationship. This genre classification system is then
implemented as part of a larger document management system.
They report accuracies ranging from 60% to 89% across all of
the 11 classes.

In an attempt to determine the best possible combination of
feature sets, extracted from 1224 web documents, Lim et al.
[11] reports an average accuracy across 16 classes of 75.7% on
their best possible combination of features. They use html-
based tags, url info, lexical features and structural information
to compile the feature sets. For the classification algorithm they
make use of Timbl’s k-nn implementation, where k=1.

Fin and Kunshmerick [12] weigh the impact of three sets of
features for genre classification of texts, having to distinguish
between opinionated and factual articles across three domains.
Using a corpus of approximately 800 texts, and extracting
features like part-of-speech information, a bag of words
approach, textual statistics and a combination of all the
aforementioned features, they record average accuracy scores
between 82.4% and 90.5%.

These state of the art examples from literature, should give
a good indication of the kind of results that are to be expected
after evaluation, taking into account the lack of resources
available.

III. EXPERIMENTAL SETUP

WEKA [9] is a suite of machine learning algorithms
offered as an experimental environment. Due to the nature of
the research we opted for using this kind of setup where these
algorithms can be easily executed and compared to each other.
It also holds the benefit of providing access to pre-processing
scripts for text to vector conversion with a range of feature
extraction options.

A. Algorith selection

Throughout literature, there are a reoccurring set of
algorithms that are generally used for text classification
experiments: K-nearest neighbour, decision trees, Naive Bayes,
multinomial Naive Bayes and support vector machines
[2][3][5][6][7]. We will consequently train each of these
classifiers and compare their results.

B. Data

The training data for each language is derived from parallel
documents for which the genre classes are already defined in
Afrikaans. By knowing/defining the class of each document in
a known language, the parallel versions in the other languages,
can be automatically classified as having the same class. These
classes are defined in Table 1. These texts have been extracted
from public domain government websites and cleaned from all
irregular characters. The texts are converted to plain text
format and the language of each text is determined
automatically by using an automatic language identification
system as described in [14].

Because of the data scarceness of the languages and some
being scarcer than others, we see a big difference in the number
of available textual units for each language (Table 1). This has
also resulted in some of the South African languages being left
out altogether, as there were no available documents to be used
as training data. The languages that are present are abbreviated
according to the ISO 639-2 standard, as follows: af –
Afrikaans, nso – Sepedi, st – Sesotho, tn – Setswana, xh –
isiXhosa and zu – isiZulu. McCallum and Nigam [10] state the
use of training sets containing any number of texts between
4000 and 15000. Using these numbers as a guideline for the
number of training instances required for text classification, we
see that it is significantly more than what we have available
for the resource scarce languages. We therefore do not expect
similar results upon evaluation of our systems, but should be
able to judge their performance while keeping the data
scarceness in mind.

 Number of texts per language

Class Label Description af nso st tn xh zu

Advertisement ADV
Advertisements in
papers/internet.

346 9 21 7 133 14

Information INF Informational pamphlets. 394 385 392 388 352 15
Instruction INS Manuals, directions. 564 546 548 543 100 390
News NEW Reporting. 412 45 48 211 384 540
Official texts OFF Bills, laws, policies. 108 8 19 11 48 5
Poetry POE Poems, lyrics. 528 28 37 29 22 27
Speech SPE Debates, public addresses. 144 55 87 50 49 57

Table 1. Classes for classification algorithm and number of instances per class and language

Before training the classifiers, the data is passed through
WEKA’s pre-processing scripts which construct document
vectors from extracted features. We chose to limit the feature
sets to term frequency and inverse document frequency scores
[10]. Term frequency (tf) is the number of occurrences of a
token (word) noted across the entire collection of documents in
the training corpus. Inverse document frequency (idf) is the
number of documents in the training corpus containing a
specific token, inversed. The product of these two scores, gives
an indication of the contribution made by a specific token to
the class of the document containing the token. Equation (1) is
used to determine tf-idf scores.

(tf-idf)i,j = tf i,j × idf i,j (1)

The choice to limit features to tf-idf is due to the
unavailability of other textual information, which cannot be
readily extracted without some pre-existing system and/or
knowledge about the languages in question, and due to the
focus of the research being algorithm selection rather than
feature optimisation. All the languages are evaluated separately
across the collection of algorithms and we expect the features
to mitigate any language specific issues which may affect the
performance of the algorithms, because of .

According to McCallum and Nigam [10], their larger sets
are tokenized and focussed by stemming and removing low
frequency words as well as words contained in stop lists, while
smaller sets are used in their entirety. Stemming and word
deletions can actually hamper performance on smaller training
sets as the critical mass needed for accurate classification is
lost [10].The training data is therefore only normalised by
converting all the tokens in the training set to lowercase to
prevent the abovementioned losses.

C. Evaluation

The standard information retrieval measures, precision,
recall and F1-measure are used to evaluate the effectiveness of
classification for the system [2][5][6][8][7][9][10]. This is
represented in Table 2. The evaluation method used is n-fold
cross validation, with 90% of the data used for training, and
10% used for testing. This split is done on a per class basis,
ensuring representativeness of each class during evaluation.
Where a class has less than 10 textual units available in total,
it would result in fractions of documents being required if
10% is to be used as training data. In these cases the
evaluation is done by using one complete unit of text as the
test set, and rotating the document used for each fold,
minimizing the reoccurrence of one given test set. When using
only fractions of these textual units, it is possible that
important information that contributes to the correct
classification of a text’s genre is lost when the test document

is pruned to the desired size.

The formulas for Recall, Precision, and F1-Measure of Ci
(see Table 2) are shown in the following three equations
(2)(3)(4), Where TP = True Positive, TN = True Negative, FN
= False Negative and FP = False Positive classifications.

R (Recall) = TPi / TPi + FNi, (2)
P (Precision) = TPi / TPi + FPi, (3)
F1 (F1-Measure) = 2(R*P) / (R+P) (4)

The abovementioned algorithms will be trained with the

same training data and feature sets for each language, and then
weighed against each other to determine the most suitable
algorithm for genre classification. By keeping the training data
and features constant throughout the evaluation, we ensure
that any differences in performance are purely down to the
differences between the algorithms and not due to the
differences in features. All the algorithms are evaluated on
their default settings as available in WEKA. No parameter
optimisation is done to improve the results obtained as we
attempt to identify the algorithm which initially indicates a
good level of suitability for genre classification. This is due to
the early stages of this study where exhaustive searches of
parameter spaces would be too time-consuming. We will
attempt to optimise these parameters and extract other textual
features which could aid in algorithm performance at a later
stage as part of our future work.

IV. RESULTS

The results for the evaluation phase of our research are
presented in Table 3. This shows the results for each class,
language and classification algorithm combination. Weighted
averages are provided by WEKA after evaluation and are also
provided. Weights are assigned to each class depending on the
amount of available training instances that were provided. The
weights are assigned by getting the sum of predicted scores
(precision, recall and F-measure are all evaluated seperately)
for every element of each class and the coefficient of the
number of instances is then used to calculate the weighted
scores per class. These resulting scores are then used to
determine the final averaged weighted scores for each
algorithm, relative to the quantity of training data available.
This metric is useful for our research as it provides intrinsic
evaluation possibilities. This provides us with insight as to a
classification algorithm’s ability to cope with a lack of training
data. Consider Table 3. When comparing the average weighted
F1-Measures for each classification algorithm, across all of the
languages, we see that in four out of the six languages, support
vector machines show the best results, with naive Bayes and
multinomial naive Bayes, each outperforming support vector
machines only by a small margin for two of the languages.

V. CONCLUSION AND FUTURE WORK

In this article we investigated a text classification algorithm
to form the basis of a genre classifier for resource scarce
languages by comparing five generally used algorithms with a
fixed set of training data through experimental evaluations, in
an attempt to identify the best algorithm for the classification
assignment.

Class Ci
Actual Class

Yes No
Classifier
class

Yes TP FP
No FN TN

Table 2 Standard information retrieval methods [7]

We see an encouraging set of scores for all of the
algorithms tested. Even in the some of the unweighted results
per class, we see scores similar to the state of the art systems
described in Section II. We see surprisingly high scores (some
attaining scores of up to 100% for precision or recall or both)
for classes which have the smallest sets of training data
available. We attribute this to overfitting, as Liu et al. [13] state
that small classes can lead to overfitting where they are
confronted with a large search space like multi-class cross
validation. They emphasise this with results from machine
learning experiments on automobile features, where the
overfitted classes attempt to use vehicle colour to try and
determine the expected gas mileage in cross validation
evaluations. This attempt is logically flawed as vehicle colour
could in fact have no influence what so ever on a vehicle’s fuel
consumption [13]. It would be expected that the same, illogical
type of feature use is attempted when determining the genre of
a text, due to the lack of other, more informative features
available for the underrepresented classes. The main
occurrence noted is, on the other hand, erratic differences in the
recorded scores per class. These anomalies are attributed to the
lack of proper data due to the resource scarceness of the
languages under evaluation. This would make the
implementation of a genre classification algorithm, supplied
with our limited data, unadvisable.

The results for our investigation would (at least for the
moment) suggest that support vector machines would be the
sure algorithm choice for genre classification for research
scarce languages (having outperformed the other algorithms in
most cases). This is also the case with the evaluations for the
Afrikaans training sets that have a better representation across
classes, which would suggest this trend would continue when
increasing the size or features of the training sets. This is in line
with the results seen in [13], where support vector machines
show increasingly better results than naive Bayes (and possibly
other algorithms), when supplied with more and better features
and training data.

We would like to verify the above findings in our future
work, by further developing training sets for these resource
scarce languages. By increasing the training set sizes we will
attempt to mitigate the overfitting seen in underrepresented
classes, as well as the erratic results seen between classes, and
submit the theory that support vector machines will continue to
outperform the other algorithms, to further scrutiny. Plotting
learning curves for the algorithms could also provide a better
insight into the training set sizes required for effective
classification. We also intend to apply “intelligent” feature
extraction methods in order to gauge the effect of supplying
better features to the algorithms. By using algorithm
optimisation to determine the best possible combination of
parameters for each algorithm, we would be able to identify the
best algorithm for genre classification with a greater level of
certainty than we are currently able to do.

REFERENCES

[1] Cardinaels, K., Meire, M., Duval, E. 2005. “Automating metadata
generation: the simple indexing interface”. (In Proceedings of WWW
2005: 14th international conference on World Wide Web).

[2] Goller, C., Löning, J., Will, T., Wolff, W. 2000. “Automatic document
classification: A thorough evaluation of various methods”. (In
proceedings of the Internationales Symposium für
lnformationswissenschaft (IS12000)). p. 1.

[3] Raaf, S. 2008. Automatic Genre Classification of English Students’
Argumentative Essays using Support Vector Machines. North West
University – Potchefstroom Campus. Potchefstroom. pp. ii-iii.

[4] Manning, C.D., Prabhakar, R., Schütze, H. 2009. An Introduction to
Information Retrieval. Cambridge University Press. Cambridge,
England. pp. 117-119, 253-285.

[5] Kessler, B., Nunberg, G., and Schuetze, H. 1997. “Automatic detection
of text genre”. (In Proceedings of ACL-97, 35th Annual Meeting of the
Association for Computational Linguistics. Madrid, ES.), pp. 32–38.

[6] Sebastiani, F. 2001. “Machine learning in automated text
categorisation”. Technical Report IEI-B4-31-1999, Istituto di
Elaborazione dell’Informazione.

[7] Yi-Hsing, C., Hsiu-Yi, H. 2008. “An Automatic Document Classifier
System based on Naïve Bayes Classifier and Ontology”. (In
proceedings of the Seventh International Conference on Machine
Learning and Cybernetics. Kunming).

[8] Liu, R., Jiang, M., Tie, Z. 2009. “Automatic Genre Classification by
Using Co-training". (In proceedings of the Sixth International
Conference on Fuzzy Systems and Knowledge Discovery.) Vol. 1,
pp.129-132

[9] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten,
I.H. 2009. The WEKA Data Mining Software: An Update. SIGKDD
Explorations. Volume 11, Issue 1.

[10] McCallum, A., Nigam, K. 1998. “A comparison of event models for
Naive Bayes text classification”. (In Proceedings of the AAAI-98
Workshop on Learning for Text Categorization.) pp. 41-48.
http://www.cs.cmu.edu/~knigam/papers/multinomial-aaaiws98.pdf.
[Date of access: 2010-09-01].

[11] Lim, C. S., Lee, K. J. Lee, Kim, G. C. Kim. 2005. Multiple sets of
features for automatic genre classification of web documents.
Information processing and management 41(5). pp. 1263-1276.

[12] Finn, A., Kushmerick, N. 2006. “Learning to classify documents
according to genre”. Journal of the American Society for Information
Science and Technology (JASIST), vol. 7. (Special issue on
computational analysis of style).

[13] Liu, H.; Dougherty, E.R.; Dy, J.G.; Torkkola, K.; Tuv, E.; Peng, H.;
Ding, C.; Long, F.; Berens, M.; Parsons, L.; Zhao, Z.; Yu, L.; Forman,
G.; , “Evolving feature selection”. Intelligent Systems, IEEE , vol.20,
no.6, pp. 64- 76, Nov.-Dec. 2005. doi:10.1109/MIS.2005.105
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=155651
7&isnumber=33103

[14] Pienaar, W., Snyman, D.P. 2010. “Spelling Checker-based Language
Identification for the Eleven Official South African Languages”. (In
Proceedings of the Twenty-First Annual Symposium of the Pattern
Recognition Association of South Africa). 22-23 November 2010.
Stellenbosch, South Africa. pp. 213 -217.

af nso st
Precision Recall F1 Precision Recall F1 Precision Recall F1

N
ai

ve
 B

ay
es

ADV

0.825 0.962 0.888 0.625 0.556 0.588 0.195 0.714 0.306
INF

0.757 0.234 0.357 0.699 0.566 0.626 0.7 0.554 0.618
INS

0.22 0.304 0.256 0.825 0.832 0.829 0.826 0.846 0.836
NEW

0.41 0.671 0.509 0.388 0.889 0.541 0.279 0.813 0.415
OFF

0.613 0.596 0.605 0.333 0.25 0.286 0.143 0.368 0.206
POE

0.99 0.761 0.861 0.581 0.643 0.61 0.518 0.461 0.488
SPE

0.721 0.892 0.798 0.5 0.614 0.551 0.798 0.735 0.765
Weighted Avg.

0.777 0.713 0.712 0.735 0.718 0.719 0.719 0.684 0.695

M
u

lt
in

om
ia

l N
B

ADV
0.994 0.959 0.976 1 1 1 0.552 0.762 0.64

INF
0.675 0.841 0.749 0.797 0.418 0.549 0.751 0.492 0.595

INS
0.292 0.076 0.121 0.755 0.917 0.828 0.784 0.91 0.842

NEW
0.773 0.4 0.527 0.4 0.933 0.56 0.289 0.813 0.426

OFF
0.727 0.853 0.785 0.625 0.625 0.625 0.275 0.579 0.373

POE
0.964 0.953 0.958 0.607 0.607 0.607 0.617 0.523 0.566

SPE
0.682 0.926 0.785 0.6 0.682 0.638 0.821 0.81 0.816

Weighted Avg.
0.84 0.841 0.821 0.746 0.718 0.702 0.748 0.729 0.729

D
ec

is
io

n
 T

re
es

ADV
0.897 0.942 0.919 0.429 0.333 0.375 0.435 0.476 0.455

INF
0.634 0.638 0.636 0.654 0.649 0.652 0.662 0.684 0.673

INS
0.232 0.207 0.218 0.811 0.838 0.824 0.821 0.817 0.819

NEW
0.489 0.506 0.497 0.386 0.378 0.382 0.388 0.396 0.392

OFF
0.648 0.541 0.59 0.6 0.375 0.462 0.429 0.158 0.231

POE
0.87 0.9 0.885 0.444 0.429 0.436 0.54 0.539 0.54

SPE
0.701 0.649 0.674 0.639 0.523 0.575 0.776 0.776 0.776

Weighted Avg.
0.751 0.756 0.753 0.715 0.718 0.716 0.714 0.715 0.714

K
-N

N

ADV
0.227 0.994 0.37 1 0.444 0.615 0.727 0.381 0.5

INF
0.73 0.356 0.479 0.604 0.706 0.651 0.611 0.633 0.622

INS
0.333 0.152 0.209 0.804 0.77 0.786 0.814 0.785 0.799

NEW
0.688 0.388 0.496 0.613 0.422 0.5 0.359 0.292 0.322

OFF
0.821 0.422 0.558 0.4 0.25 0.308 0.176 0.316 0.226

POE
1 0.021 0.041 0.375 0.321 0.346 0.582 0.512 0.545

SPE
0.901 0.493 0.638 0.607 0.386 0.472 0.765 0.812 0.788

Weighted Avg.
0.751 0.4 0.377 0.703 0.698 0.696 0.706 0.706 0.705

S
V

M

ADV
0.92 0.977 0.948 1 0.556 0.714 0.818 0.429 0.563

INF
0.663 0.695 0.678 0.671 0.745 0.706 0.639 0.691 0.664

INS
0.264 0.207 0.232 0.824 0.82 0.822 0.828 0.811 0.819

NEW
0.582 0.541 0.561 0.784 0.644 0.707 0.61 0.521 0.562

OFF
0.8 0.771 0.785 0.667 0.25 0.364 0.417 0.263 0.323

POE
0.968 0.983 0.976 0.632 0.429 0.511 0.637 0.625 0.631

SPE
0.856 0.845 0.85 0.767 0.523 0.622 0.831 0.841 0.836

Weighted Avg.
0.841 0.848 0.844 0.76 0.756 0.754 0.757 0.757 0.756

 Table 3. Results for evaluation on language and algorithm pairs

tn xh zu
Precision Recall F1 Precision Recall F1 Precision Recall F1

N
ai

ve
 B

ay
es

ADV

0.714 0.714 0.714 0.186 0.714 0.295 1 0.4 0.571
INF

0.726 0.559 0.632 0.613 0.375 0.465 0.688 0.554 0.614
INS

0.83 0.831 0.831 0.821 0.432 0.566 0.82 0.847 0.833
NEW

0.836 0.891 0.862 0.251 0.329 0.285 0.299 0.872 0.446
OFF

0.4 0.182 0.25 0.086 0.354 0.138 0.171 0.5 0.255
POE

0.241 0.655 0.352 0.433 0.564 0.49 0.613 0.474 0.535
SPE

0.362 0.641 0.463 0.715 0.727 0.721 0.787 0.799 0.793
Weighted Avg.

0.765 0.739 0.744 0.611 0.476 0.507 0.733 0.71 0.714

M
u

lt
in

om
ia

l N
B

ADV
0.7 1 0.824 0.208 0.722 0.323 0.625 1 0.769

INF
0.724 0.534 0.614 0.646 0.42 0.509 0.751 0.426 0.543

INS
0.768 0.896 0.827 0.776 0.545 0.64 0.775 0.894 0.83

NEW
0.91 0.867 0.888 0.311 0.488 0.38 0.279 0.872 0.423

OFF
0.429 0.273 0.333 0.182 0.167 0.174 0.156 0.5 0.237

POE
0.5 0.655 0.567 0.546 0.556 0.551 0.659 0.445 0.532

SPE
0.472 0.641 0.543 0.77 0.727 0.748 0.784 0.838 0.81

Weighted Avg.
0.759 0.758 0.751 0.631 0.543 0.566 0.737 0.707 0.703

D
ec

is
io

n
 T

re
es

ADV
0.75 0.857 0.8 0.349 0.338 0.344 0.571 0.4 0.471

INF
0.657 0.67 0.663 0.517 0.518 0.517 0.638 0.682 0.659

INS
0.817 0.82 0.819 0.671 0.68 0.675 0.81 0.778 0.794

NEW
0.808 0.839 0.823 0.344 0.358 0.351 0.412 0.447 0.429

OFF
0.4 0.182 0.25 0.297 0.229 0.259 0.273 0.214 0.24

POE
0.444 0.276 0.34 0.522 0.529 0.525 0.518 0.515 0.516

SPE
0.432 0.41 0.421 0.768 0.741 0.754 0.743 0.741 0.742

Weighted Avg.
0.74 0.744 0.741 0.578 0.577 0.577 0.694 0.692 0.693

K
-N

N

ADV
1 0.571 0.727 0.372 0.338 0.354 1 0.2 0.333

INF
0.622 0.644 0.633 0.472 0.569 0.516 0.554 0.615 0.583

INS
0.793 0.787 0.79 0.674 0.649 0.661 0.797 0.717 0.755

NEW
0.775 0.834 0.804 0.424 0.371 0.396 0.643 0.191 0.295

OFF
0.4 0.182 0.25 0.36 0.188 0.247 0.286 0.143 0.19

POE
0.273 0.207 0.235 0.484 0.556 0.518 0.612 0.449 0.518

SPE
0.517 0.385 0.441 0.73 0.66 0.693 0.673 0.831 0.744

Weighted Avg.
0.712 0.717 0.713 0.572 0.568 0.567 0.673 0.67 0.661

S
V

M

ADV
1 0.714 0.833 0.4 0.391 0.395 1 0.3 0.462

INF
0.637 0.711 0.672 0.505 0.593 0.545 0.654 0.726 0.688

INS
0.823 0.8 0.811 0.693 0.662 0.677 0.835 0.801 0.817

NEW
0.855 0.891 0.872 0.431 0.399 0.415 0.611 0.468 0.53

OFF
0.667 0.182 0.286 0.4 0.208 0.274 0.6 0.214 0.316

POE
0.417 0.172 0.244 0.595 0.587 0.591 0.6 0.214 0.316

SPE
0.704 0.487 0.576 0.8 0.785 0.792 0.79 0.822 0.806

Weighted Avg.
0.756 0.757 0.752 0.609 0.607 0.606 0.751 0.749 0.747

 Table 3 (Continued). Results for evaluation on language and algorithm pairs

