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Abstract— In this article we present research on the development 
of automatic genre classification systems for resource scarce 
languages. The main approaches to text classification from 
literature are presented and weighed against each other during 
an experimental phase, to identify the most appropriate text 
classification approach to be used as a genre classification system. 
A fixed feature set is extracted for seven classes from the 
available training data for each of the six languages under 
scrutiny and paired with each classification algorithm in order to 
test the algorithms’ performance. The algorithm showing the best 
results is support vector machines, in conjunction with term 
frequency and inverse document frequency features.  

Keywords - genre classification; resource scarce languages; 
text classification algorithm, term frequency, inverse documents 
frequency. 

I.  INTRODUCTION 

In the domain of text processing, it is often of great value to 
have access to metadata regarding the texts being analysed [1]. 
Metadata can be something as simple as an inventory 
containing the amount of words contained in these texts, to a 
summary of textual statistics. When compiling corpora for 
natural language processing experiments, it is vital to have this 
kind of information at hand as to ensure representativeness of 
the corpus. Experiments based on the skewed data from an 
unrepresentative corpus can be unreliable. However, this 
metadata is not available when using data from unstructured 
sources such as the web. Information then has to be added to 
the data before it can be used with some level of assurance. 
This can be a time consuming and expensive process. It is, 
however, possible to perform this automatically by 
implementing a text classification algorithm. Such an algorithm 
can append metadata as a set of predefined classes to the text, 
based on the analysis of its textual content, structure, style etc. 
[2]. These classes can be further exploited as a stepping stone 
for gathering extra information about the data, or can be used 
in its original state as metadata.  

An example of an application of the abovementioned text 
classification algorithms is to classify a text, based on its genre 
[3]. Genre classification is not to be confused with topic-based 
classification (although there are some similarities in 
classification methods). Consider a feature article: While the 
topic of such an article could be about any given subject, the 
genre of the text remains that of a feature article. The same 
holds true for any other genre as they are essentially topic 
independent even though some topics are more prevalent in 

some genres than others.  This manner of classification is used 
in a number of commonplace systems. These include automatic 
document management systems [4], email classifiers/spam 
filters [4] and Automatic sentiment analysis [4]. 

It would be expected that these and similar systems are 
made available in regionally appropriate modes (i.e. 
compatible languages) but this unfortunately is not the case, 
especially for resource scarce or underrepresented languages. 
To our knowledge there are no genre classification systems 
available for the South African languages. This poses a 
significant dilemma for the development of text resources for 
these languages, particularly where representativeness across 
genres is of great concern. In a project for the National Centre 
for Human Language Technologies it was seen that it would 
indeed be necessary to classify texts according to their genre 
before these texts can be included in representative corpora and 
because of the sheer volume of texts that have to be analysed, 
an automatic solution is required  In a project undertaken for 
the department of Arts and Culture of the South African 
government, this need  is addressed in order to be able to 
provide quality resources.  

We therefore present research on determining the best text 
classification algorithm, to be used in a  genre classification 
system, for six of the South African languages. This core 
technology/classifier can then be used as the basis for 
constructing some of the abovementioned applications, or as a 
standalone system for genre classification of text data prior to 
corpus construction. 

II. RELATED WORK 

Relatively little research has been done on the topic of 
genre classification in the last two decades [5][8], because 
collections of texts have, until recently, usually been 
homogeneous in their compilation [5] i.e. domain specific. This 
compilation has changed to a more diverse one as the need 
arose for more representation across domains and text types. 
As a result, research has recently gained momentum, 
encouraged by the alarming increase in the amounts of 
digitalised documents and data that somehow need to be 
managed [6]. Data management systems have, for the most 
part, been concerned with classification based on the topic of 
texts. However, users rarely require information based on 
topics alone [5][8]. They require different styles of text for 
different practices e.g. editorials, scholarly publications, 



novels, etc. Therefore by adding a genre classification to texts, 
these requirements can be met.  

A. Resource scarcity 

Our research focuses on languages that have little annotated 
resources available, even for casual experimenting. Resource 
scarceness with regards to this kind of application, to our 
knowledge, isn’t discussed in literature. We therefore have no 
reference as to the level of performance to expect from such a 
classification algorithm based on these kinds of limited 
resources. We therefore propose to compare these classifiers to 
state of the art systems for languages with abundant data 
available. This will also indicate the level of success associated 
with the selection of the algorithm for genre classification if the 
resource scarce counterpart can (to some extent) match the 
performance of the established classifiers. 

B. State of the art 

Yi-Hsing and Hsiu-Yi [7] present the development of a 
genre classification system for the classification of 11 web 
genres. Along with the classification algorithm, they make use 
of a domain ontology table to establish relationships between 
text tokens which are then relayed to the classification 
algorithm (Bayesian classifier) as weights associated with each 
relationship. This genre classification system is then 
implemented as part of a larger document management system. 
They report accuracies ranging from 60% to 89% across all of 
the 11 classes.  

In an attempt to determine the best possible combination of 
feature sets, extracted from 1224 web documents, Lim et al. 
[11] reports an average accuracy across 16 classes of 75.7% on 
their best possible combination of features. They use html-
based tags, url info, lexical features and structural information 
to compile the feature sets. For the classification algorithm they 
make use of Timbl’s k-nn implementation, where k=1. 

Fin and Kunshmerick [12] weigh the impact of three sets of 
features for genre classification of texts, having to distinguish 
between opinionated and factual articles across three domains. 
Using a corpus of approximately 800 texts, and extracting 
features like part-of-speech information, a bag of words 
approach, textual statistics and a combination of all the 
aforementioned features, they record average accuracy scores 
between 82.4% and 90.5%. 

These state of the art examples from literature,  should give 
a good indication of the kind of results that are to be expected 
after evaluation, taking into account the lack of resources 
available. 

III. EXPERIMENTAL SETUP 

WEKA [9] is a suite of machine learning algorithms 
offered as an experimental environment. Due to the nature of 
the research we opted for using this kind of setup where these 
algorithms can be easily executed and compared to each other. 
It also holds the benefit of providing access to pre-processing 
scripts for text to vector conversion with a range of feature 
extraction options.  

A. Algorith selection 

Throughout literature, there are a reoccurring set of 
algorithms that are generally used for text classification 
experiments: K-nearest neighbour, decision trees, Naive Bayes, 
multinomial Naive Bayes and support vector machines 
[2][3][5][6][7].  We will consequently train each of these 
classifiers and compare their results. 

B. Data 

The training data for each language is derived from parallel 
documents for which the genre classes are already defined in 
Afrikaans. By knowing/defining the class of each document in 
a known language, the parallel versions in the other languages, 
can be automatically classified as having the same class. These 
classes are defined in Table 1. These texts have been extracted 
from public domain government websites and cleaned from all 
irregular characters. The texts are converted to plain text 
format and the language of each text is determined 
automatically by using an automatic language identification 
system as described in [14]. 

Because of the data scarceness of the languages and some 
being scarcer than others, we see a big difference in the number 
of available textual units for each language (Table 1). This has 
also resulted in some of the South African languages being left 
out altogether, as there were no available documents to be used 
as training data. The languages that are present are abbreviated 
according to the ISO 639-2 standard, as follows: af – 
Afrikaans, nso – Sepedi, st – Sesotho, tn – Setswana, xh – 
isiXhosa and zu – isiZulu. McCallum and Nigam [10] state the 
use of training sets containing any number of texts between 
4000 and 15000. Using these numbers as a guideline for the 
number of training instances required for text classification, we 
see that  it is significantly more than what we have available 
for the resource scarce languages. We therefore do not expect 
similar results upon evaluation of our systems, but should be 
able to judge their performance while keeping the data 
scarceness in mind. 

 

 
 Number of texts per language 

Class Label Description af nso st tn xh zu 

Advertisement ADV 
Advertisements in 
papers/internet. 

346 9 21 7 133 14 

Information INF Informational pamphlets. 394 385 392 388 352 15 
Instruction INS Manuals, directions. 564 546 548 543 100 390 
News NEW Reporting. 412 45 48 211 384 540 
Official texts OFF Bills, laws, policies. 108 8 19 11 48 5 
Poetry POE Poems, lyrics. 528 28 37 29 22 27 
Speech SPE Debates, public addresses. 144 55 87 50 49 57 

Table 1. Classes for classification algorithm and number of instances per class and language 



Before training the classifiers, the data is passed through 
WEKA’s pre-processing scripts which construct document 
vectors from extracted features. We chose to limit the feature 
sets to term frequency and inverse document frequency scores 
[10].  Term frequency (tf) is the number of occurrences of a 
token (word) noted across the entire collection of documents in 
the training corpus. Inverse document frequency (idf) is the 
number of documents in the training corpus containing a 
specific token, inversed. The product of these two scores, gives 
an indication of the contribution made by a specific token to 
the class of the document containing the token. Equation (1) is 
used to determine tf-idf scores.  

(tf-idf)i,j  =  tf i,j × idf i,j   (1) 

The choice to limit features to tf-idf  is due to the 
unavailability of other textual information, which cannot be 
readily extracted without some pre-existing system and/or 
knowledge about the languages in question, and due to the 
focus of the research being algorithm selection rather than 
feature optimisation. All the languages are evaluated separately 
across the collection of algorithms and we expect the features 
to mitigate any language specific issues which may affect the 
performance of the algorithms, because of . 

According to McCallum and Nigam [10], their larger sets 
are tokenized and focussed by stemming and removing low 
frequency words as well as words contained in stop lists, while 
smaller sets are used in their entirety. Stemming and word 
deletions can actually hamper performance on smaller training 
sets as the critical mass needed for accurate classification is 
lost [10].The training data is therefore only normalised by 
converting all the tokens in the training set to lowercase to 
prevent the abovementioned losses.  

C. Evaluation 

The standard information retrieval measures, precision, 
recall and F1-measure are used to evaluate the effectiveness of 
classification for the system [2][5][6][8][7][9][10]. This is 
represented in Table 2. The evaluation method used is n-fold 
cross validation, with 90% of the data used for training, and 
10% used for testing. This split is done on a per class basis, 
ensuring representativeness of each class during evaluation. 
Where a class has less than 10 textual units available in total, 
it would result in fractions of documents being required if 
10% is to be used as training data. In these cases the 
evaluation is done by using one complete unit of text as the 
test set, and rotating the document used for each fold, 
minimizing the reoccurrence of one given test set. When using 
only fractions of these textual units, it is possible that 
important information that contributes to the correct 
classification of a text’s genre is lost when the test document 

is pruned to the desired size. 

The formulas for Recall, Precision, and F1-Measure of Ci 
(see Table 2) are shown in the following three equations 
(2)(3)(4), Where TP = True Positive, TN = True Negative, FN 
= False Negative and FP = False Positive classifications. 

 
R (Recall) = TPi / TPi + FNi,   (2)  
P (Precision) = TPi / TPi + FPi,   (3) 
F1 (F1-Measure) = 2(R*P) / (R+P)  (4) 
 
The abovementioned algorithms will be trained with the 

same training data and feature sets for each language, and then 
weighed against each other to determine the most suitable 
algorithm for genre classification. By keeping the training data 
and features constant throughout the evaluation, we ensure 
that any differences in performance are purely down to the 
differences between the algorithms and not due to the 
differences in features. All the algorithms are evaluated on 
their default settings as available in WEKA. No parameter 
optimisation is done to improve the results obtained as we 
attempt to identify the algorithm which initially indicates a 
good level of suitability for genre classification. This is due to 
the early stages of this study where exhaustive searches of 
parameter spaces would be too time-consuming. We will 
attempt to optimise these parameters and extract other textual 
features which could aid in algorithm performance at a later 
stage as part of our future work. 

IV. RESULTS 

The results for the evaluation phase of our research are 
presented in Table 3. This shows the results for each class, 
language and classification algorithm combination. Weighted 
averages are provided by WEKA after evaluation and are also 
provided. Weights are assigned to each class depending on the 
amount of available training instances that were provided. The 
weights are assigned by getting the sum of predicted scores 
(precision, recall and F-measure are all evaluated seperately) 
for every element of each class and the coefficient of the 
number of instances is then used to calculate the weighted 
scores per class. These resulting scores are then used to 
determine the final averaged weighted scores for each 
algorithm, relative to the quantity of training data available. 
This metric is useful for our research as it provides intrinsic 
evaluation possibilities. This provides us with insight as to a 
classification algorithm’s ability to cope with a lack of training 
data. Consider Table 3. When comparing the average weighted 
F1-Measures for each classification algorithm, across all of the 
languages, we see that in four out of the six languages, support 
vector machines show the best results, with naive Bayes and 
multinomial naive Bayes, each outperforming support vector 
machines only by a small margin for two of the languages.  

V. CONCLUSION AND FUTURE WORK 

In this article we investigated a text classification algorithm 
to form the basis of a genre classifier for resource scarce 
languages by comparing five generally used algorithms with a 
fixed set of training data through experimental evaluations, in 
an attempt to identify the best algorithm for the classification 
assignment. 

Class Ci 
Actual Class 

Yes No 
Classifier 
class 

Yes TP FP 
No FN TN 

Table 2 Standard information retrieval methods [7]



We see an encouraging set of scores for all of the 
algorithms tested. Even in the some of the unweighted results 
per class, we see scores similar to the state of the art systems 
described in Section II. We see surprisingly high scores (some 
attaining scores of up to 100% for precision or recall or both) 
for classes which have the smallest sets of training data 
available. We attribute this to overfitting, as Liu et al. [13] state 
that small classes can lead to overfitting where they are 
confronted with a large search space like multi-class cross 
validation. They emphasise this with results from machine 
learning experiments on automobile features, where the 
overfitted classes attempt to use vehicle colour to try and 
determine the expected gas mileage in cross validation 
evaluations. This attempt is logically flawed as vehicle colour 
could in fact have no influence what so ever on a vehicle’s fuel 
consumption [13].  It would be expected that the same, illogical 
type of feature use is attempted when determining the genre of 
a text, due to the lack of other, more informative features 
available for the underrepresented classes. The main 
occurrence noted is, on the other hand, erratic differences in the 
recorded scores per class. These anomalies are attributed to the 
lack of proper data due to the resource scarceness of the 
languages under evaluation. This would make the 
implementation of a genre classification algorithm, supplied 
with our limited data, unadvisable.  

The results for our investigation would (at least for the 
moment) suggest that support vector machines would be the 
sure algorithm choice for genre classification for research 
scarce languages (having outperformed the other algorithms in 
most cases). This is also the case with the evaluations for the 
Afrikaans training sets that have a better representation across 
classes, which would suggest this trend would continue when 
increasing the size or features of the training sets. This is in line 
with the results seen in [13], where support vector machines 
show increasingly better results than naive Bayes (and possibly 
other algorithms), when supplied with more and better features 
and training data. 

We would like to verify the above findings in our future 
work, by further developing training sets for these resource 
scarce languages. By increasing the training set sizes we will 
attempt to mitigate the overfitting seen in underrepresented 
classes, as well as the erratic results seen between classes, and 
submit the theory that support vector machines will continue to 
outperform the other algorithms, to further scrutiny. Plotting 
learning curves for the algorithms could also provide a better 
insight into the training set sizes required for effective 
classification. We also intend to apply “intelligent” feature 
extraction methods in order to gauge the effect of supplying 
better features to the algorithms. By using algorithm 
optimisation to determine the best possible combination of 
parameters for each algorithm, we would be able to identify the 
best algorithm for genre classification with a greater level of 
certainty than we are currently able to do. 
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af nso st 
Precision Recall F1 Precision Recall F1 Precision Recall F1 

N
ai

ve
 B

ay
es

 
ADV 

0.825 0.962 0.888 0.625 0.556 0.588 0.195 0.714 0.306 
INF 

0.757 0.234 0.357 0.699 0.566 0.626 0.7 0.554 0.618 
INS 

0.22 0.304 0.256 0.825 0.832 0.829 0.826 0.846 0.836 
NEW 

0.41 0.671 0.509 0.388 0.889 0.541 0.279 0.813 0.415 
OFF 

0.613 0.596 0.605 0.333 0.25 0.286 0.143 0.368 0.206 
POE 

0.99 0.761 0.861 0.581 0.643 0.61 0.518 0.461 0.488 
SPE 

0.721 0.892 0.798 0.5 0.614 0.551 0.798 0.735 0.765 
Weighted Avg. 

0.777 0.713 0.712 0.735 0.718 0.719 0.719 0.684 0.695 

      

M
u

lt
in

om
ia

l N
B

  

ADV 
0.994 0.959 0.976 1 1 1 0.552 0.762 0.64 

INF 
0.675 0.841 0.749 0.797 0.418 0.549 0.751 0.492 0.595 

INS 
0.292 0.076 0.121 0.755 0.917 0.828 0.784 0.91 0.842 

NEW 
0.773 0.4 0.527 0.4 0.933 0.56 0.289 0.813 0.426 

OFF 
0.727 0.853 0.785 0.625 0.625 0.625 0.275 0.579 0.373 

POE 
0.964 0.953 0.958 0.607 0.607 0.607 0.617 0.523 0.566 

SPE 
0.682 0.926 0.785 0.6 0.682 0.638 0.821 0.81 0.816 

Weighted Avg. 
0.84 0.841 0.821 0.746 0.718 0.702 0.748 0.729 0.729 

      

D
ec

is
io

n
 T

re
es

 

ADV 
0.897 0.942 0.919 0.429 0.333 0.375 0.435 0.476 0.455 

INF 
0.634 0.638 0.636 0.654 0.649 0.652 0.662 0.684 0.673 

INS 
0.232 0.207 0.218 0.811 0.838 0.824 0.821 0.817 0.819 

NEW 
0.489 0.506 0.497 0.386 0.378 0.382 0.388 0.396 0.392 

OFF 
0.648 0.541 0.59 0.6 0.375 0.462 0.429 0.158 0.231 

POE 
0.87 0.9 0.885 0.444 0.429 0.436 0.54 0.539 0.54 

SPE 
0.701 0.649 0.674 0.639 0.523 0.575 0.776 0.776 0.776 

Weighted Avg. 
0.751 0.756 0.753 0.715 0.718 0.716 0.714 0.715 0.714 

      

K
-N

N
 

ADV 
0.227 0.994 0.37 1 0.444 0.615 0.727 0.381 0.5 

INF 
0.73 0.356 0.479 0.604 0.706 0.651 0.611 0.633 0.622 

INS 
0.333 0.152 0.209 0.804 0.77 0.786 0.814 0.785 0.799 

NEW 
0.688 0.388 0.496 0.613 0.422 0.5 0.359 0.292 0.322 

OFF 
0.821 0.422 0.558 0.4 0.25 0.308 0.176 0.316 0.226 

POE 
1 0.021 0.041 0.375 0.321 0.346 0.582 0.512 0.545 

SPE 
0.901 0.493 0.638 0.607 0.386 0.472 0.765 0.812 0.788 

Weighted Avg. 
0.751 0.4 0.377 0.703 0.698 0.696 0.706 0.706 0.705 

      

S
V

M
 

ADV 
0.92 0.977 0.948 1 0.556 0.714 0.818 0.429 0.563 

INF 
0.663 0.695 0.678 0.671 0.745 0.706 0.639 0.691 0.664 

INS 
0.264 0.207 0.232 0.824 0.82 0.822 0.828 0.811 0.819 

NEW 
0.582 0.541 0.561 0.784 0.644 0.707 0.61 0.521 0.562 

OFF 
0.8 0.771 0.785 0.667 0.25 0.364 0.417 0.263 0.323 

POE 
0.968 0.983 0.976 0.632 0.429 0.511 0.637 0.625 0.631 

SPE 
0.856 0.845 0.85 0.767 0.523 0.622 0.831 0.841 0.836 

Weighted Avg. 
0.841 0.848 0.844 0.76 0.756 0.754 0.757 0.757 0.756 

 Table 3. Results for evaluation on language and algorithm pairs 



 

tn xh zu 
Precision Recall F1 Precision Recall F1 Precision Recall F1 

N
ai

ve
 B

ay
es

 
ADV 

0.714 0.714 0.714 0.186 0.714 0.295 1 0.4 0.571 
INF 

0.726 0.559 0.632 0.613 0.375 0.465 0.688 0.554 0.614 
INS 

0.83 0.831 0.831 0.821 0.432 0.566 0.82 0.847 0.833 
NEW 

0.836 0.891 0.862 0.251 0.329 0.285 0.299 0.872 0.446 
OFF 

0.4 0.182 0.25 0.086 0.354 0.138 0.171 0.5 0.255 
POE 

0.241 0.655 0.352 0.433 0.564 0.49 0.613 0.474 0.535 
SPE 

0.362 0.641 0.463 0.715 0.727 0.721 0.787 0.799 0.793 
Weighted Avg. 

0.765 0.739 0.744 0.611 0.476 0.507 0.733 0.71 0.714 

        

M
u

lt
in

om
ia

l N
B

  

ADV 
0.7 1 0.824 0.208 0.722 0.323 0.625 1 0.769 

INF 
0.724 0.534 0.614 0.646 0.42 0.509 0.751 0.426 0.543 

INS 
0.768 0.896 0.827 0.776 0.545 0.64 0.775 0.894 0.83 

NEW 
0.91 0.867 0.888 0.311 0.488 0.38 0.279 0.872 0.423 

OFF 
0.429 0.273 0.333 0.182 0.167 0.174 0.156 0.5 0.237 

POE 
0.5 0.655 0.567 0.546 0.556 0.551 0.659 0.445 0.532 

SPE 
0.472 0.641 0.543 0.77 0.727 0.748 0.784 0.838 0.81 

Weighted Avg. 
0.759 0.758 0.751 0.631 0.543 0.566 0.737 0.707 0.703 

        

D
ec

is
io

n
 T

re
es

 

ADV 
0.75 0.857 0.8 0.349 0.338 0.344 0.571 0.4 0.471 

INF 
0.657 0.67 0.663 0.517 0.518 0.517 0.638 0.682 0.659 

INS 
0.817 0.82 0.819 0.671 0.68 0.675 0.81 0.778 0.794 

NEW 
0.808 0.839 0.823 0.344 0.358 0.351 0.412 0.447 0.429 

OFF 
0.4 0.182 0.25 0.297 0.229 0.259 0.273 0.214 0.24 

POE 
0.444 0.276 0.34 0.522 0.529 0.525 0.518 0.515 0.516 

SPE 
0.432 0.41 0.421 0.768 0.741 0.754 0.743 0.741 0.742 

Weighted Avg. 
0.74 0.744 0.741 0.578 0.577 0.577 0.694 0.692 0.693 

        

K
-N

N
 

ADV 
1 0.571 0.727 0.372 0.338 0.354 1 0.2 0.333 

INF 
0.622 0.644 0.633 0.472 0.569 0.516 0.554 0.615 0.583 

INS 
0.793 0.787 0.79 0.674 0.649 0.661 0.797 0.717 0.755 

NEW 
0.775 0.834 0.804 0.424 0.371 0.396 0.643 0.191 0.295 

OFF 
0.4 0.182 0.25 0.36 0.188 0.247 0.286 0.143 0.19 

POE 
0.273 0.207 0.235 0.484 0.556 0.518 0.612 0.449 0.518 

SPE 
0.517 0.385 0.441 0.73 0.66 0.693 0.673 0.831 0.744 

Weighted Avg. 
0.712 0.717 0.713 0.572 0.568 0.567 0.673 0.67 0.661 

        

S
V

M
 

ADV 
1 0.714 0.833 0.4 0.391 0.395 1 0.3 0.462 

INF 
0.637 0.711 0.672 0.505 0.593 0.545 0.654 0.726 0.688 

INS 
0.823 0.8 0.811 0.693 0.662 0.677 0.835 0.801 0.817 

NEW 
0.855 0.891 0.872 0.431 0.399 0.415 0.611 0.468 0.53 

OFF 
0.667 0.182 0.286 0.4 0.208 0.274 0.6 0.214 0.316 

POE 
0.417 0.172 0.244 0.595 0.587 0.591 0.6 0.214 0.316 

SPE 
0.704 0.487 0.576 0.8 0.785 0.792 0.79 0.822 0.806 

Weighted Avg. 
0.756 0.757 0.752 0.609 0.607 0.606 0.751 0.749 0.747 

 Table 3 (Continued). Results for evaluation on language and algorithm pairs 


