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NodeBox is a free application for producing generative art. This paper gives an 
overview of the nature-inspired functionality in NodeBox and the artworks we 
created using it. We demonstrate how it can be used for evolutionary 
computation in the context of computer games and art, and discuss some of our 
recent research with the aim to simulate (artistic) brainstorming using language 
processing techniques and semantic networks. 
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1 NodeBox 

1.1 Computer graphics and user interfaces 

Traditionally, user interfaces in computer graphics applications have been based on 
real-world analogies (e.g., a pen for drawing, scissors for slicing). This model raises 
creative limitations. First, the features can only be used as the software developers 
implemented them; creative recombination of tools is impossible when not foreseen. 
Second, there is little room for abstraction: users will tend to think along the lines of 
what is possible with the built-in features (buttons, sliders, menus), and not about 
what they want [5].  

In 2002 we released NodeBox1, a free computer graphics application that creates 
2D visual output based on Python programming code, with the aim to overcome these 
limitations. By writing Python scripts, users are free to combine any kind of 
functionality to produce visual output. This approach has also been explored in 
software applications such as Processing [19] (using Java code) and ContextFree 
(using a context-free grammar). Over the course of two research projects the 
application has been enriched with functionality for a variety of tasks, bundled in 
intermixable Python modules—for example, for image compositing, color theory, 
layout systems, database management, web mining and natural language processing. 
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Example script. Images are downloaded using the Web module and arranged in a random 
composition, using the NodeBox rotate() and image() commands. 

import web 
images = web.flickr.search("flower") 
for i in range(100): 
    img = choice(images).download() 
    rotate(random(360)) 
    image(img,  
        x=random(800),  
        y=random(600), width=200, height=200) 

A number of modules are inspired by nature. For example, the Graph module 
combines graph theory (i.e., shortest paths, centrality, clustering) with a force-based 
physics algorithm for network visualization. The Supershape module implements the 
superformula [10], which can be used to render (and interpolate between) many 
complex shapes found in nature (ellipses, leaves, flowers, etc.). The L-system module 
offers a formal grammar that can be used to model (the growth of) plants and trees 
[18]. The Noise module implements Perlin’s pseudo-random generator, where 
successive numbers describe a smooth gradient curve [17]. This technique is used in 
computer graphics to generate terrain maps, clouds, smoke, etc. Finally, two modules 
provide functionality for working with agent-based AI systems. The Ants module can 
be used to model self-organizing ant colonies. The Boids module presents a 
distributed model for flocking and swarming [20]. “Boids” is an emergent Artificial 
Life program where complexity arises from the interaction between individual agents. 
Each boid will 1) steer away to avoid crowding other boids, 2) steer in the average 
direction of other boids and 3) steer towards the average position of other boids. 

1.2 Generative art 

In practice, NodeBox is used to create what is called “generative art”. Generative art 
is an artistic field inspired by ideas about emergence and self-organization, and 
making use of techniques borrowed from AI and artificial life [2, 14]. The concept of 
emergence was first coined by Lewes (1875) and later described by Goldstein (1999) 
as "the arising of novel and coherent structures, patterns and properties during the 
process of self-organization in complex systems" [11]. In terms of generative art, 
emergence implies that the artist describes the basic rules and constraints, and that the 
resulting artwork is allowed a certain amount of freedom within these constraints to 
self-organize. 

In this sense NodeBox is for example useful for: a graphic designer producing a 
200-page document in one consistent visual style but with variations across pages, 
information graphics based on real-time data, evolutionary art installations that react 
to input (e.g., sound), customized wallpaper based on e-mail spam [16], and so on. In 
section 2 we discuss one such project, which demonstrates how the software can be 
used for evolutionary computation in the context of the visual arts. In section 3 we 
show three example works of generative art. 



An approach using programming code leads to new opportunities, but it also 
introduces a problem: many people active in the arts (e.g., art students) are not trained 
in programming. In section 4 we briefly discuss our attempts to alleviate this problem 
with a natural language processing approach, and by using a node-based interface. 

2 Evolutionary computation in NodeBox 

2.1 Genetic algorithms and swarming 

In 2007 we created Evolution,2 a NodeBox art installation based on boid swarming 
and a genetic algorithm (GA). A starting set of creatures is randomly designed from a 
pool of components – heads, legs, wings, tails, etc. Different components have a 
behavioral impact. For example: the type of head allows a creature to employ better 
hunting strategies (ambush, intercept), better evasive strategies (deception, hide in the 
flock), or better cooperative skills. Larger wings allow a creature to fly faster.  

Central in a GA’s design is the fitness function, which selects optimal candidates 
from the population for the next generation. Here, the fitness function is an interactive 
hunting ground where creatures are pitted against each other. Survivors are then 
recombined and evolved into new creatures. Evolution’s GA uses a Hierarchical Fair 
Competition model (HFC) [12]. HFC ensures that a population does not converge into 
a local optimal solution too quickly, by ensuring a constant supply of new genetic 
material (i.e., new random creatures to fight). Interestingly, when correctly tweaked 
this produces an endless crash-and-bloom cycle of 1) creatures that are exceptional 
but flawed and 2) mediocre all-rounders. Random newcomers will eventually beat the 
current (mediocre) winner with an “exceptional trick” (e.g., very aggressive + very 
fast), but are in turn too unstable to survive over a longer period (e.g., inability to 
cope with cooperating adversaries). Their trick enters the gene pool but is dominated 
by generations of older DNA, leading to a very slow overall evolution. 

2.2  City in a Bottle – a computer game on evolution by natural selection 

Later, we expanded this prototype into a computer game project (City in a Bottle) 
based on the principles of emergence and evolution by natural selection. The project 
is currently in development. In short, the game environment is procedural, i.e., 
lacking a predefined landscape or storyline. Organisms (plants and insects) are 
described in terms of their basic behavioral rules: “if attacked, flee”, “when cornered, 
fight”. Complex game mechanisms then arise as organisms interact. If the most 
nutritious food is found in tall-stemmed flowers, creatures with wings will thrive—
and in turn the spores from this kind of flower will spread. The game mechanisms are 
inspired by complex systems [13]: neither the designers nor the players of the game 
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control the environment in full; only local actions such as planting a seed or catching 
and domesticating an insect are allowed.  

 

 
Fig. 1. Prototype of the City In A Bottle game world, with two kinds of flowers thriving. 

The game music adheres to the same principle. Typically, computer games use a 
predefined library of sound effects that accompany an event (a weapon that is fired, a 
spell that is cast) and music tracks that are looped in specific situations (the haunted 
mansion music, the magic forest music). However, audio in City In A Bottle is 
composed in real-time, resulting in an emergent, swarm-based music score [1] where 
individual audio samples are composed based on the creature’s wing flap velocity, the 
clicking of mandibles and the rushing of leaves. The overall music composition then 
arises as an interaction of creatures flocking together near food or wind rustling the 
leaves of various plants. 

On a final note, the project uses a spin-off of NodeBox called NodeBox for 
OpenGL,3 which uses hardware-acceleration on the computer graphics card for better 
performance. 
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3 Examples of generative art created with NodeBox 

 
Fig. 2. “Creature”: 350x150cm panel created for the department of Morphology, University of 
Ghent. It was realized using a recursive approach to simulate veins and skeleton structures. 

 
Fig. 3. “Superfolia”: 6 panels 70x150cm realized using an agent-based approach (a single blade 
of grass responds to its neighbors). 



 
Fig. 4. “Nanophysical”: 66.5x2.5m wall design at IMEC (European institute for 
nanotechnology). The work regards the hall window as a source of energy and then evolves 
along the walls, using (among other) a force-based physics algorithm. 

4 Computational creativity 

A user interface with programming code introduces a steep learning curve for users 
not trained in programming. In a recent research project (“Gravital”), we have 
attempted to alleviate this shortcoming by providing a node-based interface.4 Visual 
building blocks (nodes) can be connected in the interface to create interesting visual 
effects. Building blocks can be opened to examine and edit their source code.  

Furthermore, a programming tool for the visual arts is useful in terms of 
production-intensive tasks, but it does not provide leverage on what to make—what 
ideas are “interesting” from a creative standpoint. The second aim in the Gravital 
project was to develop a set of algorithms to find creative associations and analogies 
between concepts (i.e., words), to help users discover interesting new ideas. The 
system uses a memory-based shallow parser [8], a semantic network of commonsense 
[22] and heuristic search techniques. We hypothesize that this system can be used to 
simulate conceptual brainstorms based on natural language input. 

4.1 Memory-based shallow parser 

 
The first task in the system is to transform information in natural language sentences 
to a meaning representation language. This task has a long history in AI, and in 
practice the translation of natural language into a deep, unambiguous representation 
(i.e., understanding) turned out to be impossible (except for small domains where all 
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relevant background knowledge was explicitly modeled, see for example [23]). 
Natural language processing (NLP) has since switched to robust, efficient and 
reasonably accurate methods that analyze text to a more superficial partially syntactic 
and partially semantic representation (shallow parsing), using machine learning and 
statistical methods trained on large annotated corpora.  

The shallow parser used by our system is MBSP; a memory-based shallow parser 
implemented as memory-based learning modules using the Machine Learning 
package TiMBL [7]. Memory-based learning is a form of exemplar-based learning 
that is based on the idea that language processing involves specific exemplars of 
language use, stored in memory. With MBSP we can process user input in the form of 
natural language (i.e., English) and mine relevant concepts from it. These are then 
processed further with the Perception5 solver: a semantic network traversed with 
heuristic search techniques. 

4.2 Semantic network of commonsense 

For example, assume we have a drawing machine that can draw either circles or 
rectangles, in any color. The task “draw a circle” is trivial and can be solved by the 
user himself without having to rely on NLP algorithms. The task “don’t draw 
anything except an ellipse preferably of equal width and height” is quite complex to 
solve in terms of NLP, and perhaps not worth the effort. However: “draw the sun” 
poses an interesting challenge. What does the sun look like? Given the possibilities of 
our drawing machine, a human might translate the “sun” concept to an orange circle. 
This kind of conceptual association is a form of human creativity [15], which we 
attempt to simulate using a semantic network of related concepts. When given the 
word “sun”, Perception will propose colors such as orange and yellow, and shapes 
such as a circle or a star. 

To illustrate this further, say we are looking for images of creepy animals. The 
system could search the web for images named creepy-animal.jpg, but that is 
not very creative. What we want is a system that imitates an artistic brainstorming 
process: thinking about what animals look like, what the properties of each animal 
are, which of these properties can be regarded as creepy, and look for pictures of 
those animals. In this particular example the Perception solver suggests such animals 
as octopus, bat, crow, locust, mayfly, termite, tick, toad, spider, ... No frolicking 
ponies or fluffy bunnies here! For the octopus the logic is obvious: the semantic 
network has a direct creepy is-property-of octopus relation. The bat (second result) 
has no is-creepy relation however, only a set of relations to black, cave, night and 
radar. What happens here is that many aspects of a bat are inferred as a strong causal 
chain [21] leading to creepiness. Let us clarify the meaning of “many aspects”. 

In [4], Hofstadter argues that AI-representations of human high-level perception 
require a degree of flexibility (or fluidity), where objects and situations can be 
comprehended in many different ways, depending on the context. To reflect this, 
Perception’s solver uses clusters of concepts as its basic unit for reasoning, instead of 
a single concept. Concepts are surrounded by other concepts that reinforce meaning. 
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A concept cluster is the concept itself, its directly related concepts, concepts related to 
those concepts, and so on, as deep as the representation requires (we used depth 2). 
This is called spreading activation [6]. Activation spreads out from the starting 
concept in a gradient of decreasing relatedness. What defines the bat concept are its 
directly surrounding concepts: black, cave, night, radar, and concepts directly related 
to these concepts: Darth Vader, dark, dangerous, deep, evil, cat, airplane, sky, 
nothing, ... Several of these have a short path [9] in the network to dark, and dark is 
directly related to creepy. The sum of the shortest path length to creepy is 
significantly less than (for example) the path score of the cluster defining bunny. A 
bat has many dark aspects, and dark is pretty creepy. 

Note that different concepts in a cluster have a higher or lower influence on the 
final score. For the bat concept, the distance between dark and creepy is more 
essential than the distance between deep and creepy. This is because dark is more 
central in the bat cluster when we calculate its betweenness centrality [3]. More 
connections between concepts in the cluster pass through dark. We take dark as a sort 
of conceptual glue when reasoning about bats. 

Using conceptual association, we think the system can be useful for human 
designers to come up with more creative ideas, or to find visual solutions for abstract 
concepts (e.g., jazz = blue). 

Future work 

Section 4 presents a preliminary computational approach to simulate brainstorming. 
In future research, we will investigate if this is indeed how human brainstorming 
works, and if the analogies the system comes up with are “good” or “bad” creative 
finds. This will introduce new challenges, since what is “good” or what is “bad” 
appears to involve numerous cultural and personal factors. 
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