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Abstract

In this paper we highlight an aspect of pre-
vious research into lemmatization for Middle
Dutch, a medieval language characterized by
a lot of spelling variation. We briefly present
a novel, memory-based learning method that
assigns a similarity score to pairs of tokens.
This method is based on assessing the ‘sound-
ness’ of a given class label, an untypical ques-
tion in a kNN setting.

1. Lemmatizing Middle Dutch

Written records of medieval Dutch are characterized
by an enormous spelling variation: since spelling rules
were only standardized in much later times, people
spelled words in a very personal and often inconsistent
way. The Middle Dutch word for ‘king’ for instance
could be spelled as coninc, conincg, kuninc, connigh,
... This variation makes it difficult to analyze this data
in information retrieval or text classification. There-
fore, a machine learning method is needed to normalize
this variation. In previous research, we have tackled
this normalization issue through the ‘lemmatization’
of texts: a classification task in which each word in
a running text (e.g. kuninc) is assigned a class la-
bel, indicating the normalized dictionary head form or
lemma (e.g. KONING) of the token1.

The data we have worked with is the so-called Corpus-

1A full paper describing our results has been submitted
for review in Literary and Linguistic Computing.
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Table 1. An example of a transliteration within the lemma
TONG (tonghen to tungen).

tonghen > tungen
(a) = = = = = = t o n gh e n : t
(b) = = = = = t o n gh e n = : u
(a) = = = = t o n gh e n = = : n
(b) = = = t o n gh e n = = = : g
(b) = = t o n gh e n = = = = : -
(a) = t o n gh e n = = = = = : e
(a) t o n gh e n = = = = = = : n

Gysseling (CG), containing a digitized collection of all
Dutch literature that survives from before 1300AD.
CG contains 573,063 running tokens with 14,892 dis-
tinct lemma-tags. In 10-fold cross validation experi-
ments, ca. 5% of the test material consisted of ‘un-
known’ words or words in the test set that were not
met verbatim during training. The unknown tokens
posed the largest problem in classification, already be-
cause of a low upperbound score: only 70% of the
unknown tokens had a lemma that could theoretically
be predicted by a classifier, because the lemma was
encountered during training.

2. Levenshtein baseline

In our initial experiments, a classic Levenshtein dis-
tance (Needleman & Wunsch, 1970) yielded the high-
est baseline (ca. 34% overall accuracy). For each
unknown token in the test set, this metric would se-
lect the set of training tokens that were at a minimal
edit distance from the unknown token and choose the
lemma of the most frequent item in that set. We found
that the Levenshtein distance was quite successful in
constructing this hypersphere of ‘neighboring’ tokens:
in roughly 60% of the cases at least one token with the
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Table 2. Illustration of the approximation of the soundness
of a transliteration (erkos to erkorn).

= = = = = = e r k o s = = e 0.0156
= = = = = e r k o s = = = r 0.0203
= = = = e r k o s = = = = k 0.0491
= = = e r k o s = = = = = o 0.0518
= = e r k o s = = = = = = rn 0.1292

+ 0.2662

right lemma was part of the set of nearest neighbors.
Nevertheless, a plain majority vote led to a significant
drop in accuracy (34%). Further analysis showed that
the majority vote often failed when the test token had
no immediate neighbors at a small edit distance, but
only had a larger hypersphere with many ‘false friends’
at a larger distance. To improve on this baseline, we
devised a novel voting procedure.

3. Representation and Classification

From the corpus we extracted a dictionary in which
each lemma in the corpus was linked to all words as-
sociated with it (e.g. TONG=tonghen, tonge, tun-
gen,. . . ). Subsequently, within each lemma, all tokens
were combined into pairs (tonghen : tungen, tonge :
tunge, . . . ) and aligned on a character-level (Needle-
man & Wunsch, 1970). These alignments could then
be represented as a transliteration: a set of feature vec-
tors representing the transformation of one word into
another. A memory-based learner was applied to the
data (Daelemans & Van den Bosch, 2005), learning the
plausibility of mismatches between words. In classifi-
cation, a standard Levenshtein algorithm would select
for each unknown test token a set of training words
at a minimal edit distance from it. The unknown
word erkos with the lemma ERKIEZEN had the fol-
lowing neighbors for instance: 1*erkorn[ERKIEZEN],
10*elkes[ELK], 2*erlost [ERLOSSEN], ... A majority
vote would incorrectly opt for the lemma ELK. Subse-
quently, all these ‘nearest words’ would be aligned with
the unknown token and turned into feature vectors
representing how the unknown token could be translit-
erated into the Levenshtein neighbor. At this point, we
wanted to assess the ‘soundness’ or ‘confidence’ (Proe-
drou et al., 2002) of a transliteration, since the token
to which the unknown token was most easily transliter-
ated, was probably the token which we would want to
extrapolate the lemma from. However, memory-based
learning algorithms do not provide a straightforward
way to answer the question: ‘Given feature vector X,
how probable is class C?’ It is indeed typical of kNN
that it makes use of the class distribution within a
typically small set of nearest neighbors (Daelemans &

Van den Bosch, 2005, 42). All classes not occurring
in this local set therefore would have zero soundness.
But why tweak a memory based learner if class prob-
ability is standard with many eager learners? In table
1, there are two kinds of transliteration vectors: either
the class was equal to the focus character (a) either
not (b). Experimentation showed that eager learn-
ers did well in the b-scenarios but over-generalized in
the a-scenarios – they underestimated the soundness
of labels. A memory-based learner, however, did not
underestimate soundness in a-scenarios.

4. Instance space traveling

To approximate soundness, we scanned the instance
space around the test instance at steadily increas-
ing values of k, until an instance was encountered
(@k=R) that was assigned label C. A confidence mea-
sure (‘soundness’) for the prediction of class C for fea-
ture vector Y, could then be approximated by the sim-
ilarity between the original instance @k=0 and the
neighbors @k=R. The point of this ‘space traveling’
was not to find an absolute probability score for a given
prediction but rather to be able to compare two class
labels. If a class C1 would be found at a larger dis-
tance from X than a class C2, C2 would be considered
more ‘sound’. This allowed us to assign a soundness
score to each of the translation vectors in each ‘test
token vs neighbor token’ pair. A confidence measure
for the whole set of translation vectors representing
a transliteration, could be approximated through the
simple summation of the individual measures, result-
ing in an indication of how likely it was that a partic-
ular test token is translated into a neighboring token.
The token with the lowest summed confidence value
could serve as the new single nearest neighbor of the
instance item. This novel voting procedure gained over
11% on the baseline, resulting in some 45% overall ac-
curacy after cross validation.
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