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Abstract

Finding negation signals and their scope in
text is an important subtask in information ex-
traction. In this paper we present a machine
learning system that finds the scope of nega-
tion in biomedical texts. The system combines
several classifiers and works in two phases.
To investigate the robustness of the approach,
the system is tested on the three subcorpora
of the BioScope corpus representing different
text types. It achieves the best results to date
for this task, with an error reduction of 32.07%
compared to current state of the art results.

1 Introduction

In this paper we present a machine learning system
that finds the scope of negation in biomedical texts.
The system works in two phases: in the first phase,
negation signals are identified (i.e., words indicating
negation), and in the second phase the full scope of
these negation signals is determined. Although the
system was developed and tested on biomedical text,
the same approach can also be used for text from
other domains.

Finding the scope of a negation signal means de-
termining at sentence level the sequence of words in
the sentence that is affected by the negation. This
task is different from determining whether a word is
negated or not. For a sentence like the one in Exam-
ple (1) taken from the BioScope corpus (Szarvas et
al., 2008), the system detects that lack, neither, and
nor are negation signals; that lack has as its scope
lack of CD5 expression, and that the discontinuous

negation signal neither ... nor has as its scope nei-
ther to segregation of human autosome 11, on which
the CD5 gene has been mapped, nor to deletion of
the CD5 structural gene.
(1) <sentence id=“S334.5”>Analysis at the phenotype and

genetic level showed that <xcope id“X334.5.3”><cue
type=“negation” ref=“X334.5.3”>lack</cue> of CD5
expression</xcope> was due <xcope id=“X334.5.1”>
<cue type=“negation” ref=“X334.5.1”>neither</cue>
to segregation of human autosome 11, on which the CD5
gene has been mapped, <cue type=“negation”
ref=“X334.5.1”>nor</cue> to deletion of the CD5
structural gene</xcope>.</sentence>

Predicting the scope of negation is relevant for
text mining and information extraction purposes. As
Vincze et al. (2008) put it, extracted information that
falls in the scope of negation signals cannot be pre-
sented as factual information. It should be discarded
or presented separately. Szarvas et al. (2008) report
that 13.45% of the sentences in the abstracts section
of the BioScope corpus and 12.70% of the sentences
in the full papers section contain negations. A sys-
tem that does not deal with negation would treat the
facts in these cases incorrectly as positives. Addi-
tionally, information about the scope of negation is
useful for entailment recognition purposes.

The approach to the treatment of negation in NLP
presented in this paper was introduced in Morante et
al. (2008). This system achieved a 50.05 percent-
age of correct scopes but had a number of impor-
tant shortcomings. The system presented here uses
a different architecture and different classification
task definitions, it can deal with multiword negation
signals, and it is tested on three subcorpora of the
BioScope corpus. It achieves an error reduction of
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32.07% compared to the previous system.
The paper is organised as follows. In Section 2,

we summarise related work. In Section 3, we de-
scribe the corpus on which the system has been de-
veloped. In Section 4, we introduce the task to be
performed by the system, which is described in Sec-
tion 5. Results are presented and discussed in Sec-
tion 6. Finally, Section 7 puts forward some conclu-
sions.

2 Related work

Negation has been a neglected area in open-domain
natural language processing. Most research has
been performed in the biomedical domain and has
focused on detecting whether a medical term is
negated or not, whereas in our approach we focus
on detecting the full scope of negation signals.

Chapman et al. (2001) developed NegEx, a reg-
ular expression based algorithm for determining
whether a finding or disease mentioned within nar-
rative medical reports is present or absent. The re-
ported results are 94.51% precision and 77.84% re-
call. Mutalik et al. (2001) developed Negfinder, a
rule-based system that recognises negated patterns
in medical documents. It consists of two tools: a lex-
ical scanner that uses regular expressions to generate
a finite state machine, and a parser. The reported re-
sults are 95.70% recall and 91.80% precision.

Sanchez-Graillet and Poesio (2007) present an
analysis of negated interactions in 50 biomedical
articles and a heuristics-based system that extracts
such information. The preliminary results reported
range from 54.32% F-score to 76.68%, depending
on the method applied. Elkin et al. (2005) describe a
rule-based system that assigns to concepts a level of
certainty as part of the generation of a dyadic parse
tree in two phases: First a preprocessor breaks each
sentence into text and operators. Then, a rule based
system is used to decide if a concept has been pos-
itively, negatively, or uncertainly asserted. The sys-
tem achieves 97.20% recall and 98.80% precision.

The systems mentioned above are essentially
based on lexical information. Huang and
Lowe (2007) propose a classification scheme of
negations based on syntactic categories and patterns
in order to locate negated concepts, regardless of
their distance from the negation signal. Their hy-

brid system that combines regular expression match-
ing with grammatical parsing achieves 92.60% re-
call and 99.80% precision. Additionally, Boytcheva
et al. (2005) incorporate the treatment of negation
in a system, MEHR, that extracts from electronic
health records all the information required to gen-
erate automatically patient chronicles. They report
57% of negations correctly recognised.

The above-mentioned research applies rule-based
algorithms to negation finding. Machine learning
techniques have been used in some cases. Averbuch
et al. (2004) developed an algorithm that uses infor-
mation gain to learn negative context patterns. Gold-
ing and Chapman (2003) experiment with Naive
Bayes and Decision Trees to distinguish whether a
medical observation is negated by the word not in a
corpus of hospital reports. They report a maximum
of 90% F-score.

Goryachev et al. (2006) compare the perfor-
mance of four different methods of negation de-
tection, two regular expression-based methods and
two classification-based methods trained on 1745
discharge reports. They show that the regular
expression-based methods show better agreement
with humans and better accuracy than the classifica-
tion methods. Like in most of the work mentioned,
the task consists in determining whether a medi-
cal term is negated. Rokach et al. (2008) present a
new pattern-based algorithm for identifying context
in free-text medical narratives.The originality of the
algorithm lies in that it automatically learns patterns
similar to the manually written patterns for negation
detection.

We are not aware of any research that has focused
on learning the full scope of negation signals outside
biomedical natural language processing.

3 Negation in the BioScope Corpus

The system has been developed using the BioScope
corpus (Szarvas et al., 2008; Vincze et al., 2008)1,
a freely available resource that consists of medical
and biological texts. In the corpus, every sentence
is annotated with information about negation and
speculation. The annotation indicates the bound-
aries of the scope and the keywords, as shown in (1)
above. In the annotation, scopes are extended to the

1Web page: www.inf.u-szeged.hu/rgai/bioscope.
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biggest syntactic unit possible, so that scopes have
the maximal length, and the negation signal is al-
ways included in the scope. The annotation guide-
lines and the inter-annotator agreement information
can be found on the web page.

Clinical Papers Abstracts
#Documents 1954 9 1273
#Sentences 6383 2670 11871
#Words 41985 60935 282243
#Lemmas 2320 5566 14506
Av. length sentences 7.73 26.24 26.43
% Sent. 1-10 tokens 75.85 11.27 3.17
% Sent. 11-20 tokens 20.99 27.67 30.49
% Sent. 21-30 tokens 2.94 29.55 35.93
% Sent. 31-40 tokens 0.15 17.00 19.76
% Sent. > 40 tokens 0.01 0.03 10.63
%Negation sentences 13.55 12.70 13.45
#Negation signals 877 389 1848
Av. length scopes 4.98 8.81 9.43
Av. length scopes 4.84 7.61 8.06
to the right
Av. length scopes 6.33 5.69 8.55
to the left
% Scopes to the right 97.64 81.77 85.70
% Scopes to the left 2.35 18.22 14.29

Table 1: Statistics about the subcorpora in the BioScope
corpus and the negation scopes (“Av”. stands for aver-
age).

The BioScope corpus consists of three parts: clin-
ical free-texts (radiology reports), biological full pa-
pers and biological paper abstracts from the GENIA
corpus (Collier et al., 1999). Table 1 shows statistics
about the corpora. Negation signals are represented
by one or more tokens.

Only one negation signal (exclude) that occurs in
the papers subcorpus does not occur in the abstracts
subcorpus, and six negation signals (absence of, ex-
clude, favor, favor over, may, rule out that appear in
the clinical subcorpus do not appear in the abstracts
subcorpus. The negation signal no (determiner) ac-
counts for 11.74 % of the negation signals in the ab-
stracts subcorpus, 12.88 % in the papers subcorpus,
and 76.65 % in the clinical subcorpus. The nega-
tion signal not (adverb) accounts for 58.89 % of the
negation signals in the abstracts subcorpus, 53.22 %
in the papers subcorpus, and 6.72 % in the clinical
subcorpus.

The texts have been processed with the GENIA
tagger (Tsuruoka and Tsujii, 2005; Tsuruoka et al.,

2005), a bidirectional inference based tagger that an-
alyzes English sentences and outputs the base forms,
part-of-speech tags, chunk tags, and named entity
tags in a tab-separated format. Additionally, we con-
verted the annotation about scope of negation into a
token-per-token representation, following the stan-
dard format of the 2006 CoNLL Shared Task (Buch-
holz and Marsi, 2006), where sentences are sepa-
rated by a blank line and fields are separated by a
single tab character. A sentence consists of a se-
quence of tokens, each one starting on a new line.

4 Finding the scope of negation

We model the scope finding task as two consecutive
classification tasks: a first one that consists of classi-
fying the tokens of a sentence as being at the begin-
ning of a negation signal, inside or outside. This al-
lows the system to find multiword negation signals.

The second classification task consists of classi-
fying the tokens of a sentence as being the first ele-
ment of the scope, the last, or neither. This happens
as many times as there are negation signals in the
sentence. We have chosen this classification model
after experimenting with two additional models that
produced worse results: in one case we classifed to-
kens as being inside or outside of the scope. In an-
other case we classified chunks, instead of tokens, as
being inside or outside of the scope.

5 System description

The two classification tasks (identifying negation
signals and finding the scope) are implemented us-
ing supervised machine learning methods trained on
part of the annotated corpus.

5.1 Identifying negation signals
In this phase, a classifier predicts whether a token is
the first token of a negation signal, inside a nega-
tion signal, or outside of it. We use IGTREE as
implemented in TiMBL (version 6.1.2) (Daelemans
et al., 2007). TiMBL2 is a software package that
contains implementations of memory-based learn-
ing algorithms like IB1 and IGTREE. We also ex-
perimented with IB1, but it produced lower results.

2TiMBL can be downloaded from the web page
http://ilk.uvt.nl/timbl/.
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The classifier was parameterised by using gain ra-
tio for feature weighting. The instances represent all
tokens in the corpus and they have features of the
token (lemma) and of the token context: word form,
POS, and chunk IOB tag3 of one token to the left
and to the right; word form of the second token to
the left and to the right. According to the gain ratio
scores, the most informative feature is the lemma of
the token, followed by the chunk IOB tag of the to-
ken to the right, and the features relative to the token
to the left.

The test file is preprocessed using a list of nega-
tion signals extracted from the training corpus, that
are unambiguous in the training corpus. The list
comprises the following negation signals: absence,
absent, fail, failure, impossible, lack, loss, miss, neg-
ative, neither, never, no, none, nor, not, unable, with-
out. Instances with this negation signals are directly
assigned their class. The classifier predicts the class
of the rest of tokens.

5.2 Scope finding
In this phase three classifiers predict whether a token
is the first token in the scope sequence, the last, or
neither. A fourth classifier is a metalearner that uses
the predictions of the three classifiers to predict the
scope classes. The three object classifiers that pro-
vide input to the metalearner were trained using the
following machine learning methods:

• Memory-based learning as implemented in TiMBL
(version 6.1.2) (Daelemans et al., 2007), a super-
vised inductive algorithm for learning classification
tasks based on the k-nearest neighbor classification
rule (Cover and Hart, 1967). In this lazy learning
approach, all training data is kept in memory and
classification of a new item is achieved by extrap-
olation from the most similar remembered training
items.

• Support vector machines (SVM) as implemented in
SVMlightV6.01 (Joachims, 1999). SVMs are de-
fined on a vector space and try to find a decision
surface that best separates the data points into two
classes. This is achieved by using quadratic pro-
gramming techniques. Kernel functions can be used
to map the original vectors to a higher-dimensional
space that is linearly separable.

3Tags produced by the GENIA tagger that indicate if a token
is inside a certain chunk, outside, or at the beginning.

• Conditional random fields (CRFs) as implemented
in CRF++-0.51 (Lafferty et al., 2001). CRFs de-
fine a conditional probability distribution over label
sequences given a particular observation sequence
rather than a joint distribution over label and ob-
servation sequences, and are reported to avoid the
label bias problem of HMMs and other learning ap-
proaches.

The memory-based learning algorithm was pa-
rameterised by using overlap as the similarity met-
ric, gain ratio for feature weighting, using 7 k-
nearest neighbors, and weighting the class vote of
neighbors as a function of their inverse linear dis-
tance. The SVM was parameterised in the learning
phase for classification, cost factor of 1 and biased
hyperplane, and it used a linear kernel function. The
CRFs classifier used regularization algorithm L2 for
training, the hyper-parameter and the cut-off thresh-
old of features were set to 1.

An instance represents a pair of a negation signal
and a token from the sentence. This means that all
tokens in a sentence are paired with all negation sig-
nals that occur in the sentence. Negation signals are
those that have been classified as such in the previ-
ous phase. Only sentences that have negation signals
are selected for this phase.

We started with a larger, extensive pool of 131
features which encoded information about the nega-
tion signal, the paired token, their contexts, and the
tokens in between. Feature selection experiments
were carried out with the memory-based learning
classifier. Features were selected based on their
gain ratio, starting with all the features and elimi-
nating the least informative features. We also per-
formed experiments applying the feature selection
process reported in Tjong Kim Sang et al. (2005),
a bi-directional hill climbing process. However, ex-
periments with this method did not produce a better
selection of features.

The features of the first three classifers are:

• Of the negation signal: Chain of words.

• Of the paired token: Lemma, POS, chunk IOB tag,
type of chunk; lemma of the second and third tokens
to the left; lemma, POS, chunk IOB tag, and type of
chunk of the first token to the left and three tokens
to the right; first word, last word, chain of words,
and chain of POSs of the chunk of the paired token
and of two chunks to the left and two chunks to the
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right.

• Of the tokens between the negation signal and the
token in focus: Chain of POS types, distance in
number of tokens, and chain of chunk IOB tags.

• Others: A feature indicating the location of the to-
ken relative to the negation signal (pre, post, same).

The fourth classifier, a metalearner, is also a CRF
as implemented in CRF++. The features of this clas-
sifier are:

• Of the negation signal: Chain of words, chain of
POS, word of the two tokens to the right and two
tokens to the left, token number divided by the total
number of tokens in the sentence.

• Of the paired token: Lemma, POS, word of two to-
kens to the right and two tokens to the left, token
number divided by the total number of tokens in the
sentence.

• Of the tokens between the negation signal and the
token in focus: Binary features indicating if there
are commas, colons, semicolons, verbal phrases or
one of the following words between the negation
signal and the token in focus:
Whereas, but, although, nevertheless, notwith-
standing, however, consequently, hence, therefore,
thus, instead, otherwise, alternatively, furthermore,
moreover.

• About the predictions of the three classifiers: pre-
diction, previous and next predictions of each of
the classifiers, full sequence of previous and full se-
quence of next predictions of each of the classifiers.

• Others: A feature indicating the location of the to-
ken relative to the negation signal (pre, post, same).

Negation signals in the BioScope corpus always
have one consecutive block of scope tokens, includ-
ing the signal token itself. However, the classifiers
only predict the first and last element of the scope.
We need to process the output of the classifers in
order to build the complete sequence of tokens that
constitute the scope. We apply the following post-
processing:

(2) - If one token has been predicted as FIRST and one
as LAST, the sequence is formed by the tokens
between first and last.

- If one token has been predicted as FIRST and
none has been predicted as LAST, the sequence is
formed by the token predicted as FIRST.

- If one token has been predicted as LAST and
none as FIRST, the sequence will start at the
negation signal and it will finish at the token
predicted as LAST.

- If one token has been predicted as FIRST and
more than one as LAST, the sequence will end with
the first token predicted as LAST after the token
predicted as FIRST, if there is one.

- If one token has been predicted as LAST and
more than one as FIRST, the sequence will start at
the negation signal.

- If no token has been predicted as FIRST and
more than one as LAST, the sequence will start at
the negation signal and will end at the first token
predicted as LAST after the negation signal.

6 Results

The results provided for the abstracts part of the cor-
pus have been obtained by performing 10-fold cross
validation experiments, whereas the results provided
for papers and clinical reports have been obtained by
training on the full abstracts subcorpus and testing
on the papers and clinical reports subcorpus. The
latter experiment is therefore a test of the robustness
of the system when applied to different text types
within the same domain.

The evaluation is made using the precision and
recall measures (Van Rijsbergen, 1979), and their
harmonic mean, F-score. In the negation finding
task, a negation token is correctly classified if it has
been classified as being at the beginning or inside the
negation signal. We also evaluate the percentage of
negation signals that have been correctly identified.
In the scope finding task, a token is correctly classi-
fied if it has been correctly classified as being inside
or outside of the scope of all the negation signals that
there are in the sentence. This means that when there
is more than one negation signal in the sentence, the
token has to be correctly assigned a class for as many
negation signals as there are. Additionally, we eval-
uate the percentage of correct scopes (PCS). A scope
is correct if all the tokens in the sentence have been
assigned the correct scope class for a specific nega-
tion signal. The evaluation in terms of precision and
recall measures takes as unit a token, whereas the
evaluation in terms of PCS takes as unit a scope.
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6.1 Negation signal finding
An informed baseline system has been created by
tagging as negation signals the tokens with the
words: absence, absent, fail, failure, impossible, in-
stead of, lack, loss, miss, negative, neither, never, no,
none, nor, not, rather than, unable, with the excep-
tion of, without. The list has been extracted from the
training corpus. Baseline results and inter-annotator
agreement scores are shown in Table 2.

Corpus Prec. Recall F1 Correct IAA
Abstracts 100.00 95.17 97.52 95.09 91.46
Papers 100.00 92.46 96.08 92.15 79.42
Clinical 100.00 97.53 98.75 97.72 90.70

Table 2: Baseline results of the negation finding system
and inter-annotator agreement (IAA) in %.

Table 3 shows the results of the system, which are
significantly higher than the results of the baseline
system. With a more comprehensive list of negation
signals it would be possible to identify all of them in
a text.

Corpus Prec. Recall F1 Correct
Abstracts 100.00 98.75 99.37 98.68
Papers 100.00 95.72 97.81 95.80
Clinical 100.00 98.09 99.03 98.29

Table 3: Results of the negation finding system in %.

The lower result of the papers subcorpus is caused
by the high frequency of the negation signal not in
this corpus (53.22 %), that is correct in 93.68 % of
the cases. The same negation signal is also frequent
in the abstracts subcorpus (58.89 %), but in this case
it is correct in 98.25 % of the cases. In the clinical
subcorpus not has low frequency (6.72 %), which
means that the performance of the classifer for this
negation signal (91.22 % correct) does not affect so
much the global results of the classifier. Most errors
in the classification of not are caused by the system
predicting it as a negation signal in cases not marked
as such in the corpus. The following sentences are
some examples:

(3) However, programs for tRNA identification [...] do not
necessarily perform well on unknown ones.
The evaluation of this ratio is difficult because not all
true interactions are known.
However, the Disorder module does not contribute
significantly to the prediction.

6.2 Scope finding
An informed baseline system has been created by
calculating the average length of the scope to the
right of the negation signal in each corpus and tag-
ging that number of tokens as scope tokens. We take
the scope to the right for the baseline because it is
much more frequent than the scope to the left, as is
shown by the statistics contained in Table 1 of Sec-
tion 3.

Corpus Prec. Recall F1 PCS PCS-2 IAA
Abstracts 76.68 78.26 77.46 7.11 37.45 92.46
Papers 69.34 66.92 68.11 4.76 24.86 70.86
Clinical 86.85 74.96 80.47 12.95 62.27 76.29

Table 4: Baseline results of the scope finding system and
inter-annotator agreement (IAA) in %.

Baseline results and inter-annotator agreement
scores are presented in Table 4. The percentage
of correct scopes has been measured in two ways:
PCS measures the proportion of correctly classified
tokens in the scope sequence, whereas PCS-2 mea-
sures the proportion of nouns and verbs that are cor-
rectly classifed in the scope sequence. This less
strict way of computing correctness is motivated by
the fact that being able to determine the concepts
and relations that are negated (indicated by content
words) is the most important use of the negation
scope finder. The low PCS for the three subcorpora
indicates that finding the scope of negations is not a
trivial task. The higher PCS for the clinical subcor-
pus follows a trend that applies also to the results of
the system. The fact that, despite a very low PCS,
precision, recall and F1 are relatively high indicates
that these measures are in themselves not reliable to
evaluate the performance of the system.

The upper-bound results of the metalearner sys-
tem assuming gold standard identification of nega-
tion signals are shown in Table 5.

Corpus Prec. Recall F1 PCS PCS-2
Abstracts 90.68 90.68 90.67 73,36 74.10
Papers 84.47 84.95 84.71 50.26 54.23
Clinical 91.65 92.50 92.07 87.27 87.95

Table 5: Results of the scope finding system with gold-
standard negation signals.

The results of the metalearner system are pre-
sented in Table 6. Results with gold-standard nega-
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tion signals are especially better for the clinical sub-
corpus because except for lack, negative and not,
all negation signals score a PCS higher than 90 %.
Thus, in the clinical subcorpus, if the negation sig-
nals are identified, their scope will be correctly
found. This does not apply to the abstracts and pa-
pers subcorpus.

Corpus Prec. Recall F1 PCS PCS-2
Abstracts 81.76 83.45 82.60 66.07 66.93
Papers 72.21 69.72 70.94 41.00 44.44
Clinical 86.38 82.14 84.20 70.75 71.21

Table 6: Results of the scope finding system with pre-
dicted negation signals.

In terms of PCS, results are considerably higher
than baseline results, whereas in terms of precision,
recall and F1, results are slightly higher. Com-
pared to state of the art results (50.05 % PCS in
(anonymous reference) for the abstracts subcorpus),
the system achieves an error reduction of 32.07 %,
which shows that the system architecture presented
in this paper leads to more accurate results.

Evaluating the system in terms of a more relaxed
measure (PCS-2) does not reflect a significant in-
crease in its performance. This suggests that when
a scope is incorrectly predicted, main content to-
kens are also incorrectly left out of the scope or
added. An alternative to the PCS-2 measure would
be to mark in the corpus the relevant negated content
words and evaluate if they are under the scope.

Results also show that the system is portable to
different types of documents, although performance
varies depending on the characteristics of the corpus.
Clinical reports are easier to process than papers and
abstracts, which can be explained by several factors.
One factor is the length of sentences: 75.85 % of
the sentences in the clinical reports have 10 or less
words, whereas this rate is 3.17 % for abstracts and
11.27 % for papers. The average length of a sen-
tence for clinical reports is 7.73 tokens, whereas for
abstracts it is 26.43 and for papers 26.24. Shorter
sentences imply shorter scopes. In the scope finding
phase, when we process the output of the classifiers
to build the complete sequence of tokens that con-
stitute the scope, we give preference to short scopes
by choosing as LAST the token classified as LAST
that is the closest to the negation signal. A way to

make the system better portable to texts with longer
sentences would be to optimise the choice of the last
token in the scope.

Abstracts Papers Clinical
# PCS # PCS # PCS

absence 57 56.14 - - - -
absent 13 15.38 - - - -
can not 28 42.85 16 50.00 - -
could not 14 57.14 - - - -
fail 57 63.15 13 38.46 - -
lack 85 57.64 20 45.00 - -
negative - - - - 17 0.00
neither 33 51.51 - - - -
no 207 73.42 44 50.00 673 73.10
nor 43 44.18 - - - -
none 7 57.14 10 0.00 - -
not 1036 69.40 200 39.50 57 50.87
rather than 20 65.00 12 41.66 - -
unable 30 40.00 - - - -
without 82 89.02 24 58.33 - -

Table 7: PCS per negation signal for negation signals that
occur more than 10 times in one of the subcorpus.

Another factor that causes a higher performance
on the clinical subcorpus is the frequency of the
negation signal no (76.65 %), which has also a high
PCS in abstracts, as shown in Table 7. Typical ex-
ample sentences with this negation signal are shown
in (4). Its main characteristics are that the scope is
very short (5 tokens average in clinical reports) and
that it scopes to the right over a noun phrase.

(4) No findings to account for symptoms.
No signs of tuberculosis.

The lower performance of the system on the pa-
pers subcorpus compared to the abstracts subcorpus
is due to the high proportion of the negation signal
not (53.22 %), which scores a low PCS (39.50), as
shown in Table 7. Table 7 also shows that, except
for can not, all negation signals score a lower PCS
on the papers subcorpus. This difference can not
be caused by the sentence length, since the average
sentence length in the abstracts subcorpus (26.43 to-
kens) is similar to the average sentence length in the
papers subcorpus (26.24). The difference may be
related to the difference in the length of the scopes
and their direction. For example, the average length
of the scope of not is 8.85 in the abstracts subcorpus
and 6.45 in the papers subcorpus. The scopes to the
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left for not amount to 23.28 % in the papers subcor-
pus and to 16.41 % in the abstracts subcorpus, and
the average scope to the left is 5.6 tokens in the pa-
pers subcorpus and 8.82 in the abstracts subcorpus.

As for the results per negation signal on the ab-
stracts corpus, the negation signals that score higher
PCS have a low (none) or null (absence, fail, lack,
neither, no, rather than, without) percentage of
scopes to the left. An exception is not with a high
score and 16.41% of scopes to the left. The negation
signals with lower PCS have a higher percentage of
scopes to the left (absent, can not, nor, unable). A
typical error for the negation signal unable is exem-
plified by the sentence VDR DNA-binding mutants
were unable to either bind to this element in vitro
or repress in vivo, in which the gold scope starts at
the beginning of the sentence, where the predicted
scopes starts at the negation signal.

6.2.1 Results of the metalearner versus results
of the first three classifiers

The choice of a metalearner approach has been
motivated by the significantly higher results that the
metalearner produces compared to the results of the
first three classifiers. The results of each of the clas-
sifiers independently are presented in Table 8.

Algor. Ev. Abstracts Papers Clinical
TiMBL Prec. 78.85 68.66 82.25

Rec. 80.54 66.29 78.56
F1 79.69 67.46 80.36
PCS 56.80 33.59 70.87
PCS-2 57.99 37.30 71.21

CRF Prec. 78.49 68.94 93.42
Rec. 80.16 66.57 80.24
F1 79.31 67.73 86.33
PCS 59.90 36.50 59.51
PCS-2 60.04 38.88 59.74

SVM Prec. 77.74 68.01 93.80
Rec. 79.35 65.66 85.16
F1 78.54 66.82 89.27
PCS 56.80 33.33 82.45
PCS-2 57.59 35.18 82.68

Table 8: Results for the first three classifiers of the scope
finding system.

PCS results show that the metalearner system per-
forms significantly better than the three classifiers
for the abstracts and papers subcorpora, but not for
the clinical subcorpus, in which case TiMBL and
SVM produce higher scores, although only the SVM

results are significantly better with a difference of
11.7 PCS. An analysis in detail of the SVM scores
per negation signal shows that the main difference
between the scores of the metalearner and SVM is
that the SVM is good at predicting the scopes of the
negation signal no when it occurs as the first token
in the sentence, like in (4) above. When no occurs
in other positions, SVM scores 1.17 PCS better.

We plan to perform experiments with the three
classifiers using the features of the metalearner that
are not related to the predictions, in order to check if
the three classifiers would perform better.

7 Conclusions

In this paper we have presented a metalearning ap-
proach to processing the scope of negation signals.
Its performance is evaluated in terms of percent-
age of correct scopes on three test sets. With 66.07
% PCS on the abstracts corpus the system achieves
32.07 % of error reduction over current state of the
art results. The architecture of the system is new for
this problem, with three classifiers and a metalearner
that takes as input the output of the first classifiers.
The classification task definition is also original.

We have shown that the system is portable to dif-
ferent corpora, although performance fluctuates de-
pending on the characteristics of the corpora. The
results per corpus are determined to a certain extent
by the scores of the negation signals no and not, that
are very frequent and difficult to process in some text
types. Shorter scopes are easier to learn as reflected
in the results of the clinical corpus, where no is the
most frequent negation signal. We have also shown
that the metalearner performs better than the three
first classifiers, except for the negation signal no in
clinical reports, for which the SVM classifier pro-
duces the highest scores.

Future research will deal with a more detailed
analysis of the errors by each of the three initial clas-
sifiers compared to the errors of the metalearner in
order to better understand why the results of the met-
alearner are higher. We also would like to perform
feature analysis, and test the system on general do-
main corpora.
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