Comparing learning approaches to language learning. There is more
to it than ‘bias’

Véronique Hoste
Walter Daelemans

VERONIQUE.HOSTEQUA.AC.BE
WALTER.DAELEMANSQUA.AC.BE

CNTS-Language Technology Group, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium

Abstract

On the basis of results on different Natural
Language Processing (NLP) tasks we show
that when following current practice in com-
paring learning methods, we cannot reliably
conclude much about their suitability for a
given task. In an empirical study of the
behavior of representatives of two machine
learning paradigms, viz. lazy learning and
rule induction we show that the initial differ-
ences between learning techniques are easily
overruled when taking into account factors
such as feature selection, algorithm parame-
ter optimization, sample selection and their
interaction. We propose genetic algorithms
as an elegant method to overcome this costly
optimization.

1. Introduction

A central question in machine learning research, and
more specifically in machine learning of language re-
search is to determine which are the learning algo-
rithms best suited for a given task. Given the ‘no
free lunch’ (Wolpert & Macready, 1995) theorem, this
suitability has to be determined experimentally, most
often in comparative experiments. In most compar-
ative machine learning experiments, two or more al-
gorithms are compared for a fixed sample selection,
feature selection, feature representation, and (default)
algorithm parameter setting over a number of trials
(cross-validation), and if the measured differences are
statistically significant, conclusions are drawn about
which algorithm is better suited and why (mostly in
terms of algorithm bias). Sometimes different sam-
ple sizes are used to provide a learning curve, and
sometimes parameters of (some of the) algorithms are
optimized on training data, but this is exceptional
more than common practice. Many empirical findings,
though illustrative, are observations on experiments in

which one or two variables are alternated, but in which
no overall optimization is undertaken (Mooney (1996),
Lee and Ng (2002) and others).

In this paper, we hypothesize that there is a high risk
that other areas in the experimental space may lead to
radically different results and conclusions. We propose
genetic search as an elegant method to overcome the
computationally expensive optimization. We test our
hypothesis on different types of NLP datasets, includ-
ing word sense disambiguation, prediction of diminu-
tive suffixes, part of speech tagging, coreference res-
olution and on 5 UCI benchmark data sets. We ex-
periment with two machine learning methods and dis-
cuss some methodological issues involved in running
a comparative machine learning (of language) experi-
ment. We will empirically show that changing any of
the architectural variables (such as algorithm param-
eters, information sources, sample selection) can have
great effects on the performance of a learning method.

The remainder of this paper is organized as follows.
Section 2 presents the two machine learning packages
which we used in our experiments and discusses dif-
ferent factors which can influence a machine learning
(of language) experiment. In Section 3, we continue
with a discussion of the feature selection, the param-
eter optimization and sample selection experiments.
Section 4 reports on the use of a genetic algorithm
for joint optimization. We conclude with some general
observations in Section 5.

2. A lazy and an eager learner

We experimented with two machine learning
techniques: the lazy learning implementation
TIMBL (Daelemans et al., 2002) and the eager rule in-
duction method RIPPER (Cohen, 1995). The learning
biases of these two approaches provide extremes in
the eagerness dimension in ML (the degree in which
a learning algorithm abstracts from the training data
in forming a hypothesis). The motivation for the



choice of a lazy or an eager learning bias may be
understandability of learned models or abstraction
from noise (eager) or the possibility of learning
from low-frequency or untypical data points (lazy)
to name but a few. But comparing two or more
algorithms on a specific task is complex. In Figure 1,
a characterization of this complexity is given.

Sample selection
Sample size
A
Feature selection | Algorithm
Feature representation ! parameters
v
Algorithm bias

¢

Comparative experiment

Algo. Algo. Algo.
A B

Figure 1. Graphical representation of the aspects influenc-
ing a (comparative) machine learning experiment. The
filled lines and the dashed line represent the experiments
reported in this paper. The dashed line also refers to pre-
vious research on sample size of Banko and Brill (2001).

Apart from the algorithm bias, many other factors po-
tentially play a role in the outcome of a machine learn-
ing experiment. One of these factors is the data set,
viz. the sample selection and its size (Banko & Brill,
2001). Also the selection of high-quality training in-
stances has an important effect on predictive accuracy
(see for example Zhang (1992) and Skalak (1993) for
work on instance and prototype selection). Further-
more, class imbalances in the selected data set can
also affect classification results. Another influential
factor are the information sources used: the fea-
tures selected for prediction, and their represen-
tation (e.g. binary, numeric or nominal). The pres-
ence of irrelevant features can considerably slow the
learning rate and have a negative effect on classifica-
tion results. Furthermore, most learning algorithms
have a number of algorithm parameters which can
be tuned. These factors also interact: a feature selec-
tion which is optimal with default parameter settings
is not necessarily optimal when changing the algorithm
parameters. The optimal algorithm parameters for a
skewed data set will not necessarily be optimal when
changing the class distribution in the data.

In the following section, we will show that performance
differences due to algorithm parameter optimization,

feature selection, and sample selection can easily over-
whelm the performance differences reported between
algorithms in comparative experiments. Due to the
large number of experiments performed, we will mainly
discuss the observed tendencies which hold for all data
sets using one type of NLP task, namely coreference
resolution, as test case task. For the GA experiments
we report the results on different types of data sets.

3. The effect of optimization
3.1. Coreference resolution as test case task

Coreference can be considered as the act of using a
referring expression to point to some discourse entity.
Written and spoken texts contain a large number of
coreferential relations and a good text understanding
largely depends on the correct resolution of these rela-
tions. In the following sentences, for example, it is the
task of coreference resolution to link “they” to “The
kidnappers”.

In 1983 Alfred Heineken and his driver were
kidnapped. The kidnappers asked a ran-
som of 43 million guilders. A modest sum,
they thought.

Machine learning approaches, especially supervised
ones, have become increasingly popular for this prob-
lem: the C4.5 decision tree learner (Quinlan, 1993) as
used by McCarthy (1996) and Soon et al. (2001), the
RIPPER rule learner (Cohen, 1995) as in Ng and Cardie
(2002) or a memory-based learner (Daelemans et al.,
2002) as in Hoste (2005).

For the experiments, we selected all noun phrases
in the English MUC-6 (MUC-6, 1995) and MUC-7
(MUC-7, 1998) corpora and the Dutch KNACK-2002
corpus (Hoste, 2005). We selected positive and neg-
ative instances for the training data. Positive in-
stances were made by combining each anaphor with
each preceding element in the coreference chain (a set
of noun phrases referring to the same discourse entity).
The negative instances were built by combining each
anaphor with each preceding NP which was not part of
any coreference chain and by combining each anaphor
with each preceding NP which was part of another
coreference chain. This resulted in a highly skewed
data set. For example, out of the 171,081 training in-
stances in the MUC-6 data merely 6.6% were positive
ones. Besides merging all NPs into one single train and
test set, we also built 3 smaller datasets, each special-
ized in one NP type (pronouns, proper nouns, common
nouns).



For our coreference resolution system, we used a com-
bination of positional features (features indicating the
number of sentences/NPs between the anaphor and
its possible antecedent), morphological and lexical fea-
tures (such as features which indicate whether a given
anaphor, its candidate antecedent or both are pro-
nouns, proper nouns, demonstrative or definite NPs),
syntactic features which inform on the syntactic func-
tion of the anaphor and its candidate antecedent and
check for syntactic parallelism, string-matching fea-
tures which look for complete and partial matches
and finally several semantic features. For a detailed
overview of the features, we refer to Hoste (2005).

The validation experiments were performed using ten-
fold cross-validation on the available training data. In
order to have an idea of the performance on the minor-
ity class, we evaluated the results of our experiments in
terms of precision, recall and F. Coreference resolu-
tion was selected as test case task for the experiments,
since it implies a typical language learning task with
many exceptional and low-frequency cases. Further-
more, as discussed earlier coreference resolution data
sets are also highly skewed and consist of instances
with some informative features and many uninforma-
tive ones (see for example Soon et al. (2001)).

3.2. Searching the feature space

Although the search for disambiguating features is
central in the machine learning research for NLP
tasks, there is no general practice to also consider
the complex interaction between all these informa-
tion sources. For our experiments, we used two au-
tomated techniques for the selection of the relevant
features, viz. backward elimination (John et al., 1994)
and bidirectional hill-climbing (Caruana & Freitag,
1994). Table 1 gives the results of these experi-
ments for TIMBL and RIPPER on the task of corefer-
ence resolution (MUC-7 data set). It shows that (i)
the algorithm-comparing differences can be overruled
by the algorithm-internal performance differences and
that (ii) especially TIMBL can benefit from feature se-
lection which is mainly due to the embedded feature
selection in the construction of the rules in RIPPER
and the fact that TIMBL does not take into account
dependencies between features.

With respect to the selected features, no general con-
clusions could be drawn. Per data set and per selec-
tion procedure, a different feature set is selected by
each learner, which implies that the optimal feature
selection has to be determined experimentally for each
single data set.

3.3. The effect of parameter optimization

Another factor which can have great effects on clas-
sifier performance is the choice of algorithm parame-
ter settings. Although both algorithms provide sen-
sible default settings, it is by no means certain that
they are the optimal settings for our task. Therefore,
we exhaustively varied the algorithm parameter set-
tings for each classifier. For TIMBL, the following pa-
rameters were varied: the similarity metric (overlap
or modified value difference metric (MVDM)), feature
weighting (no weighting, information gain weighting,
gain ratio weighting, ...), neighbor weighing (majority
voting and different distance weighting schemes), and
the k parameter which controls the number of near-
est neighbors. For RIPPER, there was an optimization
of the class ordering parameter (+freq, -freq or mdl),
the two-valued negative tests parameter (-!n or noth-
ing), the hypothesis simplification parameter (0.5, 1
or 1.5), the example coverage parameter (1, 2, 3 or 4),
the parameter expressing the number of optimization
passes (0, 1 or 2) and the loss ratio parameter (0.5, 1,
1.5). Figure 2 displays the Fz—; results of all algorithm
parameter optimization experiments for the MUC-6
coreference resolution data sets. Per algorithm and
per data set, the best and worst scores are displayed,
as well as the averages and deviations. The long ver-
tical lines in Figure 2 reveal a lot of variation in the
Fg—1 results when varying the algorithm parameters,
although the boxes which are mostly located in the up-
per area indicate that the badly performing parameter
combinations are in the minority. A good parameter
combination is crucial. In the MUC-6 common nouns
data set, for example, RIPPER yields an Fg—; score
of 17.65% for the combination of the ‘-freq’ ordering
method and the ‘0.5 loss ratio value. Combining this
below zero loss ratio value with the ‘+freq’ or ‘mdl’
ordering methods, however, leads to top Fg—; scores
on the validation material. Similar observations can
be made for TIMBL.

Overall, we observed that parameter optimization
leads to large performance increases for both learners.
Furthermore, we observed that parameters cannot be
generalized. The optimal settings merely reveal some
tendencies.

3.4. The effect of sample selection

NLP data sets often reveal large class imbalances.
In the KNACK-2002 coreference resolution cross-
validation data, for example, merely 6.3% of the in-
stances is classified as positive. Learning performance
can be hindered when learning from these data sets
where the minority class is underrepresented. A cen-



Table 1. Results of TIMBL and RIPPER on the task of coreference resolution (MUC-7 data sets) after backward selection

and bidirectional hill-climbing.

TIMBL RIPPER
Prec. | Rec. | Fg—; || Prec. | Rec. | Fg—
All default 51.57 | 46.09 | 48.68 || 77.51 | 36.21 | 49.36
backward || 73.98 | 41.26 | 52.98 || 77.49 | 40.34 | 53.06
bi.hill. 75.39 | 42.08 | 54.01]|| 77.99 | 40.52 | 53.33
Pronouns default 42.31 | 36.60 | 39.25 || 59.50 | 22.70 | 32.86
backward || 46.86 | 40.89 | 43.67|| 59.34 | 26.43 | 36.57
bi.hill. 61.55 | 25.51 | 36.07 || 60.74 | 30.94 | 41.00
Proper nouns default 62.36 | 56.87 | 59.49 || 84.58 | 52.56 | 64.83
backward || 73.92 | 55.54 | 63.43 || 87.08 | 55.22 | 67.59
bi.hill. 85.18 | 54.88 | 66.75|| 88.20 | 51.72 | 65.21
Common Nouns | default 43.06 | 39.17 | 41.03 || 74.56 | 36.76 | 49.24
backward || 52.02 | 39.28 | 44.76 || 76.05 | 40.41 | 52.78
bi.hill. 78.83 | 38.72 | 51.93]| 76.77 | 39.70 | 52.33
70 T T T 80 T T T T
60 - m N H . 70 - -
60 |- -
50 | i
50 |- _
g 40 - «
z 8 wf .
oL i i

20 |- -

10 - -

Pronouns  Proper  Common All

Data set

30 |-

20 -

10 - -1

0 1 1 1 1
Pronouns  Proper  Common All

Data set

Figure 2. Results of TIMBL (left) and RIPPER (right) over all parameter settings for the MUC-6 coreference resolution data
sets. The graphs show the difference between the performance obtained with the best and worst parameter settings per
data set. The boxes in the graphs represent averages and deviations.

tral question in the discussion on data sets with an im-
balanced class distribution is in what proportion the
classes should be represented in the training data. One
can argue that the natural class distribution should be
used for training, even if it is highly imbalanced, since
a model can then be built which fits a similar imbal-
anced class distribution in the test set. Others be-
lieve that the training set should contain an increased
number of minority class examples. In the machine
learning literature, there have been several proposals
(see Japkowicz and Stephen (2002)) for adjusting the
number of majority class and minority class examples.
Methods include resizing training data sets or sam-
pling, adjusting misclassification costs, learning from
the minority class, adjusting the weights of the exam-
ples, etc.

In order to investigate the effect of class distribution on
classifier performance, we compared the performance
of the classifiers on a variety of class distributions. We

investigated the effect of random down-sampling and
down-sampling of the true negatives for both TIMBL
and RIPPER. This was done by gradually downsiz-
ing the number of negatives instances in slices of 10%
until there was an equal number of positive and nega-
tive training instances. These experiments reveal the
same tendencies for the different data sets. As exem-
plified in Figure 3 for the MUC-6 coreference resolu-
tion data sets, we can observe that TIMBL and RIP-
PER behave differently. RIPPER is more sensitive to
the skewedness of the classes and down-sampling is
beneficial for the RIPPER results. Furthermore, down-
sampling only starts being harmful at a high down-
sampling level. TIMBL has shown this tendency only
on the “Pronouns” data set. But no down-sampling
level leads to the best performance over all data sets.



} Precision —X%— Recall # F-beta
Timbl Ripper Timbl Ripper
Pronouns Pronouns Proper nouns Proper nouns
3< - + /X 53 X o _+ ++ + X
o 1 RN ’ X ® N ’
© ' 3 + 4 I x xX X * X
.+ o x x XXX SIS R R P X
1 . = x = <
3 1 + \ ’ § X ‘§v >
X S , o [T000006, o x x X x* 0
° x 050582 S B N @ + 4
S g§><~>< g 4,000 ¢ o iy % g .
g Jo8BETL000, 0 x X o 7 + °
® x” + 4+ o | xxx ° + 2 -
g & X ¥ \
Q - + + + +H
1 08 06 04 02 0 1 08 06 04 02 0 1 08 06 04 02 0 1 08 06 04 02 0
Timbl Ripper Timbl RipPer
Common nouns Common nouns All All
X g dr++ X X -
o | ’ ® +'+.+ ' o N 8 +‘+++ x|
= Be R S 0.+ $ X, = ’ o M+ /
o | x X 0 600V O O x R \ ’
3 x P 2 x X X
X X X X 84 xxx <X e B gx X .:,_<><><><><><><>§§\§5'><
o %O X x- g O 0O @ . 3
000 x . R x o
T 170 8 1 + 84 F++ AR I x x XX N
2 MRS : th, T B qx x % +.
~ “+ . < . Q '+\+ o o B
o | RIS of ¥ < ¥ O
@ + o | +
\ @ o \ Q 4
< - + H + +
1 08 06 04 02 0 1 08 06 04 02 0 1 08 06 04 02 0 1 08 06 04 02 0

Figure 3. Cross-validation results in terms of precision, recall and Fz—; after application of TIMBL and RIPPER on the
MUC-6 coreference resolution data with a randomly down-sampled majority class. The test partitions keep their initial

class distribution.

4. Genetic algorithms for joint
optimization

In a final optimization step we explored the interac-
tion between the previously mentioned factors. Joint
feature selection, sample selection and parameter opti-
mization is essentially an optimization problem which
involves searching the space of all possible feature sub-
sets, sample subsets and parameter settings to iden-
tify the combination that is optimal or near-optimal.
Given the combinatorially explosive character of this
type of joint optimization, we have chosen for genetic
algorithms (GA, e.g. Goldberg (1989) and Mitchell
(1996)) as a computationally feasible way to achieve
this. One of the advantages of genetic algorithms in
contrast to local search methods such as hill-climbing,
gradient based and simulated annealing methods is
that they explore different areas of the search space
in parallel, which might be a reasonable strategy for
problems with a large number of parameters and fea-
tures. GAs contain at any time a population of can-
didate solutions to the optimization problem to be
solved. For the experiments, we used a generational
genetic algorithm with the evaluations distributed over
a cluster of computers using the Sun Grid Engine
queuing system. The following GA parameters were
used and kept constant: maximal number of gen-
erations=30, population size=10, uniform crossover
(crossover rate=0.9), tournament selection (selection

size=2), discrete (mutation rate=0.2) and Gaussian
mutation (k and loss ratio). Fp—1 was used as fitness
function. We are aware that the optimization problem
we are trying to solve with a genetic algorithm also
applies to the GA itself.

Negative
test

Number of
optimization Lossratio Class Hypothesis

Values: 0,1
passes ¢ ordering ¢ simplification

011110101110001000110101101 O 0.33276559 0 1 2 3
| |1 |
Features

Example
coverage

Parameters

In the experiments, the individuals were represented
as bit strings. Each individual contains particular val-
ues for all algorithm settings and for the selection of
the features. For example, for RIPPER, the features
are encoded as binary alleles. At the end of the chro-
mosome, the different algorithm parameters are rep-
resented. Through the variation of the loss ratio pa-
rameter, which controls the relative weight of precision
versus recall, a down-sampling effect can be obtained.

The GA optimization experiments confirm the ten-
dencies observed in the optimization experiments in
the previous section. As exemplified for the KNACK-
2002 coreference resolution data in Figure 4, we could
observe for all data sets that the performance differ-
ences inside one single learning method can be much
larger than the method-comparing performance differ-
ences. In their default representation, for example,



60
|

40

F-beta

20
|

10
|

+ Al
Pronouns
Proper nouns
o - Common nouns

0 5 10 15 20 25 30

Generations

60
|

40

F-beta

20
|

10
|

+ Al
Pronouns
Proper nouns
o - Common nouns

0 5 10 15 20 25 30

Generations

Figure 4. Results of TIMBL (left) and RIPPER (right) for the KNACK-2002 data sets during GA optimization.

TIMBL and RIPPER yield a 46.8% and a 46.5% Fp=1
score, respectively. Optimization leads to a large per-
formance improvement for both learners and to a re-
versed supremacy: 55.7% for TIMBL and 61.7% for RIP-
PER. In conclusion, we can state that we cannot draw
conclusions of one classifier being better on a particu-
lar task than another classifier, when only taking into
account default settings or limited optimization.

These observations, however, are not limited to the
task of coreference resolution. Table 2 clearly exem-
plifies the usefulness of parameter optimization for the
task of word sense disambiguation (WSD). WSD is
a natural language processing task in which a word
with more than one sense has to be disambiguated
by using information from the context in which the
word occurs. E.g. knight can refer to a chess piece or
a medieval character. Word sense disambiguation is
a crucial component in applications such as machine
translation (depending on the sense, the English knight
will be translated into a French chevalier or cavalier),
question answering, information retrieval, etc. Over
the last years, three senseval ! have been organised to
evaluate the strenghts and weaknesses of WSD meth-
ods. Machine learning methods such as decision list
learning and memory-based learning have been shown
to outperform hand-crafting approaches in these com-

"http:/ /www.senseval.org

parisons. Table 2 shows the results on the English
lexical sample data in the Senseval-3 competition. It
clearly shows the usefulness of GA optimization. In
(Hoste et al., 2002; Daelemans & Hoste, 2002; Daele-
mans et al., 2003) we came to similar conclusions on
the tasks of diminutive prediction and part of speech
tagging.

Furthermore, this effect of optimization is not lim-
ited to natural language processing datasets. We per-
formed experiments on 5 UCI benchmark datasets?:
“database for fitting contact lenses” (24 instances),
“contraceptive method choice” (1473 instances),
“breast-cancer-wisconsin” (699 instances), “car evalu-
ation data base” (1728 instances) and “postoperative
patient data” (90 instances). And we came to simi-
lar conclusions as on the NLP data sets, as shown in
Table 3.

These effects explain why in the machine learning of
natural language literature, so many results and inter-
pretations about the superiority of one algorithm over
the other are contradictory. We show that there is a
high risk that other areas in the experimental space
may lead to radically different results and conclusions.

*http://www/ics/uci/edu/ mlearn/MLRepository.html



TRAINING SET TEST SET TRAINING SET TEST SET
LEMMA /POS | DEF OPT DEF OPT LEMMA/POS | DEF OPT DEF OPT
provide/v | 84.56 | 94.85 | 88.40 | 92.75 rule/n | 75.44 | 91.23 | 50.00 | 60.00
eat/v | 79.04 | 89.22 | 78.16 | 91.95 image/n | 49.00 | 62.69 | 48.64 | 56.75
remain/v | 85.40 | 95.62 | 82.85 | 88.57 paper/n | 37.95 | 54.46 | 38.46 | 55.55
arm/n | 83.67 | 93.20 | 84.21 | 84.96 produce/v | 50.54 | 65.22 | 53.19 | 55.31
plan/v | 67.93 | 78.48 | 75.00 | 83.33 suspend/v | 46.34 | 59.35 | 34.37 | 51.56
add/v | 73.95 | 82.38 | 79.54 | 82.57 argument/n | 42.04 | 57.58 | 43.24 | 51.35
degree/n | 64.56 | 78.38 | 71.09 | 82.03 difficulty/n | 35.48 | 58.06 | 34.78 | 39.13
hot/a | 68.67 | 78.00 | 76.74 | 81.39 || performance/n | 38.21 | 52.85 | 28.73 | 39.08
watch/v | 85.71 | 89.80 | 78.43 | 80.39 use/v | 80.77 | 88.46 | 78.57 | 78.57
smell/v | 70.41 | 85.27 | 74.54 | 78.18 hear/v | 64.52 | 74.19 | 53.12 | 53.12
bank/n | 61.36 | 79.22 | 59.84 | 78.03 win/v | 50.65 | 68.83 | 48.71 | 48.71
expect/v | 64.93 | 77.92 | 73.07 | 76.92 different/a | 54.81 | 65.27 | 46.00 | 46.00
talk/v | 77.37 | 83.21 | 73.97 | 75.34 miss/v | 40.00 | 68.89 | 43.33 | 43.33
appear/v | 79.24 | 87.17 | 71.42 | 75.18 solid/a | 9.80 | 31.78 | 27.58 | 27.58
decide/v | 72.95 | 86.89 | 70.96 | 74.19 receive/v | 75.00 | 80.77 | 92.59 | 88.88
wash/v | 32.26 | 62.90 | 52.94 | 73.52 || organization/n | 67.66 | 77.51 | 69.64 | 73.21
mean/v | 84.81 | 91.14 | 77.50 | 75.00 audience/n | 73.90 | 85.29 | 76.00 | 74.00
party/n | 61.82 | 71.96 | 65.51 | 72.41 operate/v | 72.73 | 84.85 | 66.66 | 55.55
interest/n | 63.28 | 70.36 | 59.13 | 72.04 write/v | 64.29 | 71.43 | 56.52 | 43.47
express/v | 48.62 | 72.48 | 45.45 | 70.90 play/v | 48.42 | 64.21 | 51.92 | 42.30
sort/v | 61.09 | 78.60 | 66.66 | 70.83 difference/n | 57.14 | 68.51 | 47.36 | 46.49
treat/v | 37.84 | 55.86 | 40.35 | 38.59 judgment/n | 35.64 | 60.40 | 40.62 | 34.37
note/v | 56.15 | 69.23 | 61.19 | 68.65 atmosphere/n | 47.42 | 60.20 | 51.85 | 70.37
disc/n | 54.03 | 69.19 | 52.00 | 66.00 encounter/v | 51.94 | 65.89 | 58.46 | 60.00
climb/v | 63.48 | 78.26 | 59.70 | 64.17 important/a | 72.08 | 82.23 | 42.10 | 47.36
shelter/n | 66.14 | 74.02 | 54.08 | 63.26 activate/v | 70.40 | 80.27 | 64.91 80.70
simple/a | 43.55 | 58.52 | 44.44 | 61.11 source/n | 34.06 | 52.90 | 46.87 | 59.37
ask/v | 49.80 | 62.06 | 60.30 | 61.06 OVERALL SCORE
begin/v | 53.41 | 63.07 | 53.16 | 60.75 FINE-GR. | 59.82 | 71.28 | 60.80 | 67.40
lose/v | 44.78 | 62.69 | 36.11 | 52.77 COARSE-GR. / / / 74.00

Table 2. Classification accuracies for all lemmas in the English lexical sample task. The first column presents the words
to be disambiguated, together with their part-of-speech. The second and third column present the default results and the
optimized results of TIMBL on the validation data, whereas the last two columns contain the default and optimized scores

on the official Senseval-3 test data.

5. Concluding remarks

In this paper, we showed that many factors can affect
the success of a classifier, such as the specific ‘bias’
from the classifier, the choice of algorithm parameters,
the selection of information sources, the sample selec-
tion and the interaction between these factors. We
also showed that optimization can lead to radically
different results, causing much larger classifier-internal
variations than classifier-comparing variations. These
results call into question the usefulness of the numer-
ous classifier comparison studies in the literature. On
the other hand, significant performance increases can
be obtained this way. We conclude that in general, the
more effort is put in optimization, through feature se-
lection, parameter optimization, sample selection and
their joint optimization, the more reliable the results
and the comparison will be.

References

Banko, M., & Brill, E. (2001). Scaling to very very
large corpora for natural language disambiguation.
Proceedings of the 39th Annual Meeting of the Asso-
ciation for Computational Linguistics (pp. 26-33).

Caruana, R., & Freitag, D. (1994). Greedy attribute
selection. Proceedings of the International Confer-
ence on Machine Learning (pp. 28-36).

Cohen, W. W. (1995). Fast effective rule induction.
Proceedings of the 12th International Conference on
Machine Learning (pp. 115-123).

Daelemans, W., & Hoste, V. (2002). Evaluation of
machine learning methods for natural language pro-
cessing tasks. Proceedings of the Third International

Conference on Language Resources and Evaluation
(pp- 755-760).

Daelemans, W., Hoste, V., De Meulder, F., & Naudts,



Table 3. Classification accuracies of TIMBL and RIPPER on
5 UCI benchmark datasets.

Dataset TIMBL | RIPPER
Database for fitting Def. 75.0 79.2
contact lenses

GA opt. 87.5 87.5
Contraceptive Def. 48.5 46.8
method choice

GA opt. 54.8 49.8

Breast-cancer- Def. 95.7 93.7
wisconsin

GA opt. 97.6 95.7
Car evaluation Def. 94.0 87.0
database

GA opt. 96.9 98.4
Postoperative pa- Def. 55.6 71.1
tient data

GAopt. | 711 711

B. (2003). Combined optimization of feature selec-
tion and algorithm parameter interaction in machine
learning of language. Proceedings of the 14th Euro-
pean Conference on Machine Learning (pp. 84-95).

Daelemans, W., Zavrel, J., van der Sloot, K., &
van den Bosch, A. (2002). Timbl: Tilburg memory-
based learner, version 4.3, reference guide (Tech-
nical Report ILK Technical Report - ILK 02-10).
Tilburg University.

Goldberg, D. (1989). Genetic algorithms in search,
optimization and machine learning. Addison Wesley.

Hoste, V. (2005). Optimization issues in machine
learning of coreference resolution. Doctoral disser-
tation, Antwerp University.

Hoste, V., Hendrickx, I., Daelemans, W., & van den
Bosch, A. (2002). Parameter optimization for
machine-learning of word sense disambiguation.
Natural Language Engineering, Special Issue on
Word Sense Disambiguation Systems, 8, 311-325.

Japkowicz, N., & Stephen, S. (2002). The class imbal-
ance problem: A systematic study. Intelligent Data
Analysis Journal, 6, 429-450.

John, G., Kohavi, R., & Pfleger, K. (1994). Irrelevant
features and the subset selection problem. Interna-

tional Conference on Machine Learning (pp. 121-
129).

Lee, Y., & Ng, H. (2002). An empirical evaluation of
knowledge sources and learning algorithms for word
sense disambiguation. Proceedings of the 2002 Con-
ference on Empirical Methods in Natural Language
Processing (pp. 41-48).

McCarthy, J. (1996). A trainable approach to corefer-
ence resolution for information extraction. Doctoral
dissertation, Department of Computer Science, Uni-
versity of Massachusetts, Amherst MA.

Mitchell, M. (1996). An introduction to genetic algo-
rithms. MIT Press.

Mooney, R. (1996). Comparative experiments on dis-
ambiguating word senses: An illustration of the
role of bias in machine learning. In E. Brill and
K. Church (Eds.), Proceedings of the conference on
empirical methods in natural language processing,
82-91.

MUC-6 (1995). Coreference task definition. version
2.3. Proceedings of the Sixth Message Understanding
Conference (pp. 335-344).

MUC-7 (1998). Muc-7 coreference task definition. ver-
sion 3.0. Proceedings of the Seventh Message Under-
standing Conference.

Ng, V., & Cardie, C. (2002). Combining sample selec-
tion and error-driven pruning for machine learning
of coreference rules. Proceedings of the 2002 Con-
ference on Empirical Methods in Natural Language
Processing (pp- 55-62).

Quinlan, J. (1993). C4.5: Programs for machine learn-
ing. Morgan Kaufmann, San Mateo, CA.

Skalak, D. B. (1993). Using a genetic algorithm to
learn prototypes for case retrieval and classification.
Proceedings of the AAAI-98 Case-Based Reasoning
Workshop (pp- 64-69).

Soon, W., Ng, H., & Lim, D. (2001). A machine
learning approach to coreference resolution of noun
phrases. Computational Linguistics, 27, 521-544.

Wolpert, D., & Macready, W. (1995). No free lunch
theorems for search (Technical Report SFI-TR-95-
02-010). Santa Fe Institute, Santa Fe, NM.

Zhang, J. (1992). Selecting typical instances in
instance-based learning. Proceedings of the Interna-
tional Machine Learning Conference (pp. 470-479).



