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Abstract

We present a comparative case study of discrete and probabilistic sequence classification meth-
ods applied to two real-world entity chunking tasks in the medical domain. It is shown that a
discrete version of maximum-entropy models that does not coordinate its decisions is outper-
formed by both architecturally-augmented discrete versions, and probabilistic versions com-
bined with an inference step to select the best output label sequence. In addition, we show
that among the various sequence-aware methods evaluated in this study, be they discrete
or probabilistic, no significant performance difference could be observed. This suggests that
probabilistic sequence labelling methods are not fundamentally more suited for the type of
sequence-oriented entity chunking tasks evaluated in this study than augmented discrete ap-
proaches. Future research should point out whether this result generalises to more types of
sequence tasks in natural language processing.

1 Introduction

Many tasks in natural language processing involve the complex mapping of sequences to other
sequences. One class of processing tasks is the identification of entities in text, or entity chunking.
This task involves the identification of the beginning and the end of an entity chunk, which can span
multiple words, as well as assigning a particular label to the identified chunk. In domain-specific
entity chunking, the label is one out of a limited list of domain labels, the automatic identification of
which in unseen text is relevant to further processes, for instance, information retrieval, information
extraction, or question answering.

One typical machine-learning approach to entity chunking is to rephrase the sequence-to-sequence
mapping task as a decomposition into a sequence of local classification steps. In each step, a fixed-
length feature vector is mapped to an isolated symbol in the output sequence. The standard
representational approach to decompose sequence processes into local-classification cases, is win-
dowing. Within a window, fixed-length subsequences of adjacent input symbols, representing a
certain contextual scope, are mapped to one output symbol, typically associated with one of the
input symbols, for example the middle one. After all local classifications have been made, a simple
concatenation of the predicted output symbols yields the complete output sequence. The fact that
the classifier is only trained to associate subsequences of input symbols to single output symbols is
a problematic restriction: it may easily cause the classifier to produce invalid or impossible output
sequences, since it is incapable of taking into account any decisions it has made earlier, or even
decisions it might have to make further on in the input sequence.

Developing techniques that manage to circumvent this restriction has been a popular topic in
machine learning research in recent years. Many of the techniques proposed no longer compose
output sequences simply by concatenating the isolated predictions for each input symbol, but
try to optimise the likelihood of the entire output sequence, rather than predicting the sequence
of individually most-likely output symbols. To this end, some way to estimate the quality of



an entire output sequence is required. Methods such as maximum-entropy markov models and
conditional random fields express this sequence quality in terms of probabilities, which adds the
extra requirement of an underlying classifier capable of predicting valid class probabilities for each
possible output symbol.

A large class of classifiers, henceforth referred to as discrete classifiers, do not model such
probability distributions, but only predict a single best class label for each given instance. With
a windowing approach, only predicting a single class as opposed to giving conditional probability
estimates for every possible class means there is basically just one opportunity for predicting each
symbol of the output sequence. In the probabilistic case, it is possible to prefer an output label
sequence where one of the symbols actually is the second-best option if that means the overall
quality of the entire output sequence is improved. Most discrete classifiers, however, lack the means
for making such global trade-offs. Nevertheless, discrete classifiers, which include many commonly
used learning algorithms such as memory-based learning and decision trees are frequently used for
sequence labelling tasks, and in this context, alternatives to the probabilistic methods have been
developed, based on clever feature engineering, meta-learning, or post-processing.

In this paper, an empirical study is described in which a maximum-entropy classifier is used both
as a discrete classifier and a probabilistic one to perform two domain-specific entity chunking tasks.
First, the classifier is taken to be a discrete classifier. In this setup, three existing discrete sequence
labelling methods are applied to the sample tasks. The methods try to improve performance on
sequence labelling tasks by introducing new features, using classifier stacking, or predicting small
subsequences of the output sequence instead of single symbols. Next, a number of methods to
exploit the probabilistic character of the maximum-entropy classifier are tested. The methods differ
in the way the probability of candidate output label sequences is estimated, the search algorithm
employed for finding the optimal output label sequence, or in both. The methods tested are
conditional markov models (cmm), maximum-entropy markov models (memm), and conditional
random fields (crf).

The structure of the paper is as follows. First, we introduce the two chunking sequence segmen-
tation tasks studied in this paper, in Section 2. The two subsequent sections report on empirical
results for the different methods proposed for correcting the near-sightedness problem of a naive
baseline method based on simple windowing of the input sequence and no other information. We
first report on experiments with discrete classification methods, viz. a feedback-loop approach,
stacking, and predicting class trigrams in Section 3. Second, we present results obtained with
probabilistic methods, viz. conditional markov models, maximum-entropy markov models, and
conditional random fields, in Section 4. In Section 5, we discuss the implications of the experimen-
tal findings presented in the two foregoing sections. Finally, Section 6 sums up and discusses the
main results of the comparison.

2 Data and Methodology

The two data sets that have been used for this study are examples of sentence-level entity chunking
tasks: concept extraction from general medical encyclopedic texts (henceforth med), and labelling
of DNA, RNA, protein, cellular, and chemical terms in MEDLINE abstracts (genia). Med is a data
set extracted from a semantic annotation of (parts of) two Dutch-language medical encyclopedias.
On the chunk-level of this annotation, there are labels for various medical concepts, such as disease
names, body parts, and treatments, forming a set of twelve concept types in total. Chunk sizes
range from one to a few tokens. The target application for which this data set was developed is
a question analyser for a question-answering system for factual medical question. As the input
sentences for such a system will typically contain at least one domain-specific concept, all sentences
without any concept have been removed from the data set. Using a 90%–10% split for producing
training and test sets, there are 428,502 training examples and 47,430 test examples.

Bij [infantiel botulisme]disease kunnen in extreme gevallen [ademhalingsproblemen]symptom en [al-

gehele lusteloosheid]symptom optreden.

The Genia corpus [5] is a collection of annotated abstracts taken from the National Library
of Medicine’s MEDLINE database. Apart from part-of-speech tagging information, the corpus
annotates a subset of the substances and the biological locations involved in reactions of proteins.



In contrast with the Med data set, Genia does include sentences that do not contain any concept;
in fact, this is the case for many of them. Using a 90%–10% split for producing training and test
sets, there are 458,593 training examples and 50,916 test examples.

Most hybrids express both [KBF1]protein and [NF-kappa B]protein in their nuclei , but one hybrid

expresses only [KBF1]protein.

Apart from having a similar size, both data sets are alike in the sense that most words are outside
chunks; for Genia, many sentences may even contain no chunks at all. Thus, the class distributions
of both tasks are highly skewed, and only a few words are actually relevant and should be assigned
a non-negative class. In this respect, the tasks differ from, for example, syntactic sequence labelling
tasks such as part-of-speech tagging or base-phrase chunking, where almost all tokens are assigned
a relevant class. However, for all tasks mentioned, whenever chunks are present in a sentence, there
is likely to be interaction between them, where the presence of one chunk of a certain type may be
a strong indication of the presence of another chunk of the same or a different type in the same
sentence.

2.1 Experimental Setup

The experiments in this study have all been performed using the maximum-entropy classification
framework. This method is especially suited for the experiments, since maximum-entropy classifiers
can both be used in discrete and in probabilistic mode. Any probabilistic classifier can easily be
made to emulate a discrete one by taking the target label with the highest conditional probability
as the predicted class. By doing this, the discrete sequence labelling methods and their probabilistic
counterparts can be compared objectively without having to take into account differences originat-
ing, for example, from classifier biases. The current study uses the maximum-entropy classifier as
implemented in the maxent toolkit (version 20040930) by Zhang Le1.

In Section 4, several different probabilistic sequence classification methods are evaluated. Two
of them –a maximum-entropy based conditional markov model, and a maximum-entropy markov
model– have been implemented on top of the beforementioned maxent toolkit. For a third, a
conditional random field model, the implementation as provided by MALLET [2] has been used.

Instances for all experiments are generated for each token of a sentence, with features for seven-
token windows of words and their (predicted) part-of-speech tags. The class labels assigned to
the instances form an IOB encoding of the chunks in the sentence, as proposed by Ramshaw and
Marcus [6]. In this encoding the class label for a token specifies whether the token is inside (I),
outside (O), or at the beginning of a chunk (B). An additional type label appended to this symbol
denotes the type of the chunk. The instances are used in exactly this form in all experiments
for all methods; no feature selection or construction is performed to optimise the instances for a
specific task or method. Keeping the feature vectors unchanged over all experiments and methods
is arguably the most objective setup for comparing the results.

Generalisation performance is measured by the precision, recall, and F-score (β = 1) on correctly
identified and labelled entity chunks in test data. Experimental results are presented in terms of a
mean score, and an approximate 90%-confidence interval; both of those are estimated with bootstrap
resampling [4]. To enhance readability, confidence intervals are assumed to be centred around the
mean, where the width of the halves at both sides of the mean is taken to be the maximum of the
true widths obtained in the resampling process.

3 Discrete Classification

In this section, a maximum-entropy classifier is treated as though it were a discrete classifier. This
is achieved by always taking the target label with highest conditional probability. To start with,
a baseline score has been established, for which a classifier is trained on examples representing
fixed-width windows of input symbols only, mapping to IOB-style class labels, as described earlier.
This baseline system is then supplemented with three methods for adding sequence-awareness to
discrete classifiers: a feedback loop, stacking, and trigram classes. Each of these will be introduced
briefly in the following subsections.

1URL: http://homepages.inf.ed.ac.uk/s0450736/maxent toolkit.html



Figure 1: Three types of windowing processes aimed at optimising sequence predictions, generated
from an input sequence mapping to an output sequence. Left: a feedback loop copying the previous
prediction into the input window. Middle: windows created by the second-stage classifier in a
stacking architecture, copying predictions of the first-stage classifier into the input window. Right:
windows mapping to trigrams of classes.

Table 1: Mean performance scores and confidence intervals for the various classification methods
on the Genia task.

Method Precision Recall Fβ=1

Baseline 54.9 ±1.16 54.1 ±1.23 54.5 ±1.02

Feedback 67.3 ±1.04 57.6 ±1.25 62.1 ±1.11
Stacking 57.8 ±1.21 55.3 ±1.07 56.5 ±1.11
Trigram 61.8 ±1.15 56.0 ±1.27 58.8 ±1.12

cmm 67.7 ±0.96 57.9 ±1.07 62.4 ±1.01
memm 67.1 ±1.14 57.7 ±1.13 62.1 ±1.15
crf 66.8 ±1.10 59.2 ±1.14 62.8 ±1.08

3.1 The Feedback-loop Method

One method for providing a classifier access to its previous decisions is a feedback-loop approach,
which extends the windowing approach by feeding previous decisions of the classifier as features
into the current input of the classifier. An early application of this method in the context of
maximum-entropy classification is the work of Ratnaparkhi on part-of-speech tagging [7]. The
left part of Figure 1 illustrates how the windowing approach is extended with information about
previous classifier decisions as input features. The number of decisions fed back into the input can
be varied. In the experiments described here, the feedback loop iteratively updates a memory of
only the single most recent prediction, which was experimentally found to be an adequate setting.

3.2 Stacking

Stacking, a term popularised by Wolpert [9] in an artificial neural network context, refers to a class
of meta-learning systems that learn to correct errors made by lower-level classifiers. We implement
stacking by adding a windowed sequence of previous and subsequent output class labels to the
original input features (here, we copy a window of three predictions to the input, centred around
the middle position), and providing these enriched examples as training material to a second-stage
classifier. The middle part of Figure 1 illustrates the procedure. Given the (possibly erroneous)
output of a first classifier on an input sequence, a certain window of class symbols from that
predicted sequence is copied to the input, to act as predictive features for the real class label.

3.3 Predicting Class Trigrams

Van den Bosch and Daelemans [8] recently proposed a new discrete method for sequence labelling
based on predicting trigrams of class labels. In this method, each token in a sequence is labelled
with a complex class label composed of the labels of the token itself, and those of the tokens directly



Table 2: Mean performance scores and confidence intervals for the various classification methods
on the Med task.

Method Precision Recall Fβ=1

Baseline 62.3 ±1.12 60.8 ±1.06 61.5 ±0.98

Feedback 68.5 ±1.16 60.0 ±1.13 63.9 ±0.89
Stacking 63.2 ±1.23 60.8 ±1.13 62.0 ±1.10
Trigram 66.9 ±1.07 59.6 ±1.01 63.1 ±1.08

cmm 68.8 ±1.26 59.6 ±1.09 63.9 ±0.99
memm 68.8 ±1.09 59.3 ±1.26 63.7 ±1.09
crf 66.8 ±1.14 60.2 ±1.14 63.4 ±0.99

to its left and to its right in the sequence. Doing this for each token of a sequence, every token’s
label is effectively predicted three times: once by the preceding token’s trigram, once by its own
trigram, and once by the following token’s trigram. Aiming to exploit this redundancy, a simple
majority voting rule is applied to the overlapping and possibly conflicting predictions for a certain
token. If all three overlapping trigrams predict a different class for a token, the confidence of the
classifier for the predicted trigrams is used to break the tie.

The right part of Figure 1 illustrates the procedure by which windows are created with class
trigrams. Each windowed instance maps to a class label that incorporates three atomic class labels,
namely the focus class label that was the original unigram label, plus its immediate left and right
neighbouring class labels.

3.4 Results

The top half of Tables 1 and 2 shows the performance scores for the discrete sequence labelling
methods introduced in this section, and compares them with the performance of a naive baseline
classifier that treats each token as an isolated classification case. The error reductions with respect
to F-score attained by the best method, the feedback-loop method, is 6.2% for Med, and 16.7%
for Genia.

4 Probabilistic Classification

Rather than suggesting one target label that is expected to be the most likely class for a test
instance, as do discrete classifiers, probabilistic classifiers compute the conditional probability for
each possible target label. This property opens up interesting possibilities for considering alternative
label sequences, different from the one obtained by concatenating all individually most likely token
labels. As a consequence of the probabilistic interpretation that can be given to target labels, the
probability of an entire sequence of labels can be determined using simple multiplication, provided
certain independence requirements are met.

Sequence labelling methods based on probabilistic classifiers can generally be decomposed into
two components: the first is concerned with estimating the conditional probability of a candidate
output label sequence; the second dictates a procedure for efficiently finding the best label se-
quence out of all possible candidates. In this section, three different methods based on this general
framework are applied to the sample tasks: conditional markov models, maximum-entropy markov
models, and conditional random fields.

4.1 Conditional Markov Model

Conditional markov models (cmm), as used for example by Ratnaparkhi [7], can be seen as a
probabilistic extension of the feedback-loop method described in Section 3.1. As with the method
described earlier, a prespecified number of previous decisions of the classifier are fed back to the
input as features for the current test instance. Unlike in the discrete case however, classification of



a token does not yield one partial labelling, namely, the partial labelling up to the current token
followed by the current classification, but as many partial labellings as there are target labels,
namely the partial labelling until the current token followed by any of the possible target labels.

As the use of a feedback loop makes the current classification depend on the results of previous
classifications, each token in the sequence has to be classified in the context of each possible partial
labelling up to that point. Clearly, this approach, if applied naively, gives rise to an exponential
increase in possible partial labellings at each token. Therefore, cmms employ a beam search to find
the eventual best labelling. With beam search, at each point in time, only a prespecified number
of partial labellings – those having highest probability – are considered for expansion, all the other
candidates are discarded.

4.2 Maximum-entropy Markov Model

Another implementation of the idea of supplementing a probabilistic classifier with a search proce-
dure is the maximum-entropy markov model (memm), proposed by McCallum et al. [3]. Derived
from hidden markov models, memms are modelled after a probabilistic state machine, in which,
in the simplest case, a state corresponds to the output label of the previous token, and for each
state, a separate conditional probability distribution determines the next state, that is, the output
label for the current token, given the feature vector of this token. A slight modification of the
Viterbi algorithm is used to determine the optimal path through the state machine given the input
sequence.

4.3 Conditional Random Fields

Conditional random fields (crf) [1] have been designed to resolve some of the shortcomings of
memms. The main difference lies in the number of probabilistic models used for estimating the
conditional probability of a label sequence: memms use a separate probabilistic model for each
state, whereas crfs have a single model for estimating the likelihood of an entire label sequence.
The use of a single probabilistic model leads to a more realistic distribution of the probability mass
among the alternative paths. As a result, crfs tend to be less biased towards states with few
successor states than cmms and memms.

4.4 Results

The performance scores for the probabilistic sequence labelling methods applied to the two bench-
mark tasks are listed in the bottom half of Tables 1 and 2. On Med, cmm attains the highest score,
equal to the one obtained by the discrete feedback-loop method; the error reduction in F-score is
6.2%. The overall highest score on Genia is obtained by crf, with an error reduction of 18.2%.
However, in none of the cases is the difference with the other high-ranked methods significant.

5 Discussion

The previous two sections reported on a series of experiments in which several machine learning
approaches to domain-specific entity chunking have been evaluated. The approaches can be divided
into an approach that ignores any sequential context apart from its window features, and those
that have been extended specifically to deal with sequentially-structured data. Members of the
latter group, in turn, can be categorised as either discrete or probabilistic methods. All of these
approaches have been tested against two data sets; both of which are quite similar domain-specific
entity chunking tasks. However, one striking difference is the presence of sentences without any
concept in Genia, and the absence of those in Med.

In order to put the results obtained in the previous two sections in perspective, this section will
review the effect of the factors mentioned above.

5.1 Sequence-aware vs. sequence-unaware methods

As was already mentioned in the introduction of this paper, machine learning approaches not
specifically equipped for classifying sequentially-structured data often have difficulty performing



tasks in which token labels are sequentially correlated; a situation which can be improved upon
by more special-purpose sequence classification methods. The findings of the current study can
only confirm this assumption. Comparing the performance of the baseline system with that of the
best-performing sequence-oriented approach, the error in F-score is reduced by 18.2% on Genia,
while on Med a somewhat more modest but still significant reduction of 6.2% is observed.

A remarkable observation is that the sequence-oriented methods, be they discrete or probabilis-
tic, all improve precision more strongly than recall. Whereas the two are reasonably in balance for
the baseline system, there is a striking imbalance for the sequence methods. This situation is most
apparent on the Med task, where the recall is not improved at all. From this, it can be concluded
that the sequence methods do not necessarily predict more true positives –since recall would benefit
from this as well– but rather manage to decrease the total number of positive predictions without
negatively affecting the number of true positives. To a lesser extent, the same goes for the Genia
task.

5.2 Probabilistic vs. discrete approaches

The sequence-oriented methods surveyed in this paper are either based on a probabilistic base
classifier, in case of which various different output label sequences are traded off on the sequence
level; or on a discrete classifier, which only has a single opportunity for classifying each input
token. In recent years, probabilistic approaches tend to be preferred for sequence-oriented tasks. It
is claimed that discrete methods, being unable to support viterbi-like inference procedures, must
resort to sub-optimal methods to classify sequential data [3].

However, the results presented in this paper do not support this claim. In fact, no significant
differences in performance have been observed between the best performing probabilistic and dis-
crete methods; neither in precision, nor in recall, and consequently not in F-score either. These
findings suggest that, although discrete methods are unable to trade off entire sequence labellings
on a global level, at least for the two tasks evaluated in the current study, the approaches used by
the discrete methods provide suitable alternatives. Whether this observation holds more generally
for other types of sequence processing tasks as well, will need to be pointed out by more extensive
experimental studies.

5.3 Concept sparseness

One of the main differences between the two data sets used in this study lies in the distribution of
concepts in sentences. In the Med data, every sentence contains at least one concept, whereas in
Genia, sentences without any concept occur quite frequently as well. This difference might provide
a partial explanation for the different behaviour of the sequence methods with respect to recall on
the two data sets. From the large difference between precision and recall, we already concluded
that the sequence methods primarily improve precision by predicting fewer positives, rather than
predicting more true positives. However, when predicting fewer positives, there is always the risk
of missing some positive labels, that is, predicting false negatives, and thereby committing recall
errors. A possible explanation for the better recall performance on Genia then may be the fact
that the chance of committing recall errors is simply lower on data sets that comprise a lower
percentage of chunks to begin with.

6 Conclusion

Classifiers trained on entity chunking tasks that make isolated, near-sighted decisions on output
symbols and that do not optimise the resulting output sequences afterwards or internally through
a feedback loop, tend to produce weaker models for sequence processing tasks than classifiers that
do. The two entity chunking tasks investigated in this paper are challenging tasks; not only because
they demand the classifier to be able to segment and label variable-width chunks while obeying the
syntax of the chunk analysis, but also because positive examples of labelled chunks are scattered
sparsely in the data.

In this paper, special-purpose sequence labelling methods have been classified into two main
categories. One of these categories expects the underlying classifier to be probabilistic, that is,



rather than predicting a single discrete class for each test instance, it should estimate the conditional
probability of each possible target class. Given such a probabilistic output, a search algorithm is
employed to find the most likely label sequence, as opposed to the sequence of individually most
likely class predictions.

The other category uses classifiers that do not model conditional probability distributions, but
instead predict a single most likely output class for each test instance. For this type of classifier
there is a wide range of methods that aim to improve performance on sequence labelling tasks,
including adding a feedback-loop to the classification procedure, classifier stacking, and predicting
class trigrams.

In a series of experiments, several discrete, and probabilistic sequence labelling methods imple-
mented on top of a maximum-entropy base classifier were applied to two benchmark tasks; both
of them, high-level entity chunking tasks in the medical domain. Results from these experiments
clearly show that the enhanced methods easily improve upon a baseline classifier that considers each
token as a separate, isolated classification case. More surprising is the fact that there are hardly
any differences in performance among the various sequence-oriented methods. In particular, when
it comes to the type of sequence-oriented entity chunking tasks targeted in this study, we did not
find any evidence supporting the claim that probabilistic methods have an advantage over discrete
ones. This leads us to the assertion that, for this specific type of sequential tasks, no method is
fundamentally more suited than another. In practise, this means that other factors than whether
or not a classifier is capable of probabilistic predictions, may guide the choice for the specific type
of learning method to use. In future work, we intend to investigate whether this result generalises
to more types of sequence processing tasks in natural language processing.
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