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90. Machine Learning of Natural Language 
 
 

1. Introduction 
 
In this article we provide an overview of recent research on the application of symbolic 
Machine Learning techniques to language data (Machine Learning of Natural Language, 
MLNL).  Both in Quantitative Linguistics (QL) and in MLNL, the main goal is to 
describe the language as it is observed with rules, language models, or other descriptions. 
But whereas the motivation in QL is purely scientific (establishing the laws and 
mathematical properties of language), the motivation in MLNL is partly pragmatic: 
increasing the accuracy and efficiency of Natural Language Processing (NLP) systems, or 
the speed with which they can be built. Nevertheless, the extracted generalizations can 
provide worthwhile insight into the language task being studied in an MLNL framework.  
 
There are different ways in which the algorithmic acquisition of language knowledge and 
behavior is studied. We cannot possibly discuss all this relevant work in the context of 
this article.  One important area of research that will be omitted in this overview is the 
computational modeling of human language acquisition using statistical, machine 
learning or neural network methods (McClelland and Rumelhart 1986; Brent 1996; 
Broeder and Murre 2000).  Salient modeling results in this area include the learning of 
word meaning  (Siskind 1996; Resnik 1996), finding structure in sequences (Elman 
1990), bootstrapping word segmentation (Brent and Cartwright 1996), and setting 
parameters in a principles and parameters approach  (Niyogi and Berwick 1994; Dresher 
and Kaye 1990) as well as empiricist alternatives to the latter approach (MacWhinney 
and Leinbach 1991; Gillis et al. 1993; Gillis, Durieux and Daelemans 1995). 
 
The development of algorithms for the inference of formal grammars from (mostly 
artificial) language data is another relevant area of research that will not be covered in 
this article. See Honavar and Slutzki (1998) for a collection of research in this area.  
We restrict our overview here to language learning in the context of Natural Language 
Processing and Computational Linguistics. We first provide a brief introduction to the 
‘empirical revolution’ in NLP, and the increased attention for Machine Learning (ML) 
methods that followed it. Then we provide a general model of ML, and a taxonomy and 
overview of the main learning algorithms. We then restrict our attention to two main 



classes of symbolic ML methods applied to NLP (memory-based learning and rule 
learning), explain how they work, and describe some representative applications to 
language processing problems. 
 

2. The Empirical Revolution in Natural Language Processing  
 
Natural Language Processing (NLP) studies the knowledge representation and problem 
solving issues involved in learning, producing, and understanding language. Although the 
origins of NLP are both knowledge-based and statistical, as in other disciplines of 
Artificial Intelligence, the knowledge-based approach has historically dominated this 
field. This has resulted in an emphasis on logical semantics for meaning representation, 
on the development of grammar formalisms (especially lexicalist unification grammars), 
and on the design of associated parsing methods and lexical representation and 
organization methods. Well-known textbooks provide an overview of this approach 
(Gazdar and Mellish 1989; Allen 1995).  
 
From the early nineties onwards, empirical methods based on corpus-based statistics, 
have gradually been re-introduced in the field, and have started to dominate it by the start 
of this century, as can be seen from the number of papers subscribing to this approach in 
computational linguistics journals and conference proceedings.  There are many reasons 
for this.  Firstly, computer processing and storage capabilities have advanced to such an 
extent that statistical pattern recognition methods have become feasible on the large 
amounts of text and speech data that are now available in electronic form.  Secondly, 
there has been an increase of interest within NLP (prompted by application-oriented and 
competitive funding) for the development of methods that scale well and can be used in 
real applications without requiring a complete syntactic and semantic analysis of text. 
Finally, simple statistical methods have been enormously successful in speech technology 
and information retrieval, and have therefore been applied to NLP as well. See Brill and 
Mooney (1998) and Church and Mercer (1993) for overviews of this empirical 
‘revolution’ in NLP. The maturity of the approach is borne out by the publication of a 
few recent textbooks (Charniak 1993; Manning and Schütze 1999). 
 
Comparing these empirical methods to the knowledge-based approach, it is clear that the 
former have a number of advantages.  In general, statistical approaches have a greater 
coverage of syntactic constructions and vocabulary, they are more robust (graceful 
degradation), they are reusable for different languages and domains, and development 
times for making applications and systems are shorter. On the other hand, knowledge-
based methods allow the incorporation of linguistic knowledge and sophistication, 
making them sometimes more precise.  Three crucial problems for (statistical) empirical 
methods are (i) the sparse data problem: often not enough data is available to estimate 
the probability of (low-frequency) events accurately, (ii) the relevance problem: it is 
often difficult to estimate reliably the importance or relevance of particular statistical 
events for the solution of the NLP problem, and (iii) the interpretation problem: most 
statistical techniques do not provide insight into how a trained statistical system solves a 
task.  



 
The last few years have witnessed an increase of the use of machine learning methods in 
NLP. Some of these methods were created from within NLP (e.g. transformation-based 
error driven learning (Brill 1992), other techniques were imported from Machine 
Learning into NLP; e.g. induction of decision trees and rules (Quinlan 1993; Cohen 
1995), inductive logic programming (Lavrac and D˘zeroski 1994), memory-based 
learning (Aha, Kibler, and Albert 1991), and support vector machines (Vapnik 1995). 
Machine Learning (ML) is the sub-discipline of Artificial Intelligence (AI) which studies 
algorithms that can learn either from experience or by reorganizing the knowledge they 
already have. See Langley (1996) and Mitchell (1997) for introductory material, Weiss 
and Kulikowski (1991) for methodological issues, and Natarajan (1991) for a formal-
theoretical approach. 
 
There are also several recent collections of papers on Machine Learning applied to 
Natural Language  (Wermter, Riloff, and Scheler 1996, Brill and Mooney 1998, 
Daelemans, Weijters and Van den Bosch 1997, Cardie and Mooney 1999). Machine 
learning methods hold promise for solving the problems with statistical methods noted 
earlier.  They incorporate new methods for smoothing data to solve sparse data problems 
and for assigning relevance to linguistic data, they allow the incorporation of linguistic 
background knowledge, and what they have learned is to a certain extent interpretable. 
 

3. Learning from Examples 
 
In the machine learning algorithms we will discuss here, learning works by extracting 
generalizations from a set of examples of a desired input-output mapping. For example, 
for learning the generalizations involved in predicting the right plural suffix for a German 
noun, several examples of nouns (described in terms of their phonology, lexical 
information such as gender, etc.) with their corresponding plural suffix would be given. 
The relations between input (typically a feature vector, here the properties of German 
nouns) and output (typically a symbol, here the plural suffix), implicit in these examples, 
are discovered by the algorithm, and are used to predict the correct output when 
presented with a new, previously unseen, input pattern. In other words, the algorithm 
classifies a new input pattern as belonging to a particular output category. A machine 
learning algorithm trained on a particular set of data is therefore called a classifier. This 
type of learning is often called supervised learning, and is contrasted with unsupervised 
learning, where examples are presented without information about the desired output. It is 
then up to the system to find similarities in the examples in such a way that they can be 
exploited in solving the task. We will not discuss unsupervised learning any further here. 
 
Many problems in NLP, especially disambiguation problems, can be formulated as 
classification tasks (Magerman 1994; Daelemans 1995; Cardie 1994).  As an example, 
consider morphosyntactic disambiguation (part of speech tagging): learning the 
assignment of the contextually and lexically most probable word class of a word in 
context. E.g., in the old man the boats, context dictates that old is an adjective, and man a 
verb, contrary to what would be predicted by looking only at the lexical probabilities of 



these combinations of word and word class. This type of word class disambiguation has 
become a benchmark problem for learning approaches to NLP. An overview of machine 
learning work for tagging can be found in Daelemans (1999a). 
 
In morphosyntactic word class tagging, abbreviated tagging from here, a sentence should 
be mapped into a string of morpho-syntactic tags (Table 1). 
 
 
 

Input Output 
John will join the board Name Modal Verb Determiner Noun 
 
Table 1. Tagging as a mapping from sentences to tag strings. 
 
By approximating this mapping with a function from a focus word and its context to the 
disambiguated tag belonging to the focus word in that context (Table 2), the mapping 
becomes a classification task amenable to Machine Learning approaches. Of course, 
instead of (only) the words in the context, more information would be added in real 
experiments: e.g. varying sizes of context, morphological, syntactic, or any other 
available linguistic information.   
 

Left Context Focus Right Context Class 
= = John will join Name 
= John will join the Modal 

John will join the board Verb 
will join the board = Determiner 
join the board = = Noun 

 
Table 2. Tagging as a mapping from focus words with context to tags.  
 
 
It is easy to see how similar classification tasks can be set up for other NLP problems 
such as word sense disambiguation, term translation, morphology, etc. Even parsing can 
be handled this way by cascading different partial systems such as a tagger, a constituent 
finder, and a classifier disambiguating possible relations between constituents. In all 
these cases we have some focus unit (letter, word, constituent) and a representation of its 
context as features, and a unit at another linguistic level as output class. 
 

3.1 Machine Learning 
 
Conceptually, a learning system consists of a performance component which achieves a 
specific task (given an input, it produces an output), and a learning component which 
modifies the performance component on the basis of its experience in such a way that 
performance of the system in doing the same or similar tasks improves. As we have seen, 
examples take the form of pairs of inputs with their associated desired output. 
 



To achieve its task, the performance component uses an internal representation. The task 
of the learning component may therefore be construed as a search in the space of possible 
representations (often called the hypothesis space) for a representation that is optimal for 
performing the mapping.  In this article, we will consider among others decision trees, 
rules, and case bases as types of languages/formalisms for internal representations for 
language processing.  In most cases, finding the optimal representation given a set of 
examples and a representation language is computationally intractable.  Some form of 
heuristic search is therefore used by all learning systems. 
 
In Machine Learning, the concept of bias refers to constraints on this search process. 
These constraints may be domain-dependent.  In that case, knowledge about the task is 
used to make the search simpler. This bias may be present in the way the experience 
presented to the learning component (the training examples) is represented or in heuristic 
knowledge used to prune the search tree.  The addition of linguistic bias to a learning 
system is the obvious way to let learning natural language processing systems profit from 
linguistic knowledge about the task. On top of that, there is also a more general notion of 
bias in the restrictions on what can be represented in the representation language used 
(language bias), or in general principles guiding the search of the search algorithm 
implicit in the learning algorithm (search bias, e.g. Ockham's razor). 
 

3.2   Performance Evaluations 
 

The success of a learning component in improving performance can be evaluated using a 
number of different quantitative and qualitative measures: 
 

- Generalization accuracy. This is the performance accuracy of the system on 
previously unseen inputs (i.e., inputs it was not trained on).  This aspect of 
learning is of course crucial: it gives an indication of the quality of the inductive 
leap made by the algorithm on the basis of the examples. A good generalization 
accuracy indicates that the learning system has not overfit its training examples, 
as would happen by generalizing on the basis of errors or exceptions present in 
them. To get a good estimate of the real generalization accuracy, cross-validation 
can be used, e.g. in 10-fold cross-validation an algorithm is tested on ten different 
partitions (90% training material, 10% testing material) of the full data set 
available. Each data item occurs once in one of the test sets. The average 
generalization accuracy on the ten test sets is then a good statistical estimate of 
the real accuracy. Apart from accuracy, for some NLP problems the notions of 
recall and precision are more appropriate.  For example, when the task is 
chunking, i.e., finding noun phrases or prepositional phrases in text, precision 
measures the percentage of correct chunks in all chunks predicted by the 
algorithm, and recall measures the percentage of chunks present in the test data 
that was correctly identified by the algorithm. Combined precision-recall 
measures give a better indication of the goodness of a system in these cases than 
accuracy measurements. 



- Space and time complexity. The amount of storage and processing involved in 
learning (training the system) and performance (producing output given the 
input). 

- Explanatory Quality. Usefulness of the representations found by the learning 
system as an explanation of the way the task is achieved. Especially with good 
explanatory quality, the machine learning results may provide useful and new 
linguistic insight into the task being learned. 

 
3.3 Overview of Methods 
 

To sum up this section, we will give an intuitive description of how a number of learning 
algorithms works. We discuss the algorithms in an order of increasing abstraction of the 
internal representation used by the performance component, and created by the learning 
component. We start from storage and table-lookup of the ‘raw’ examples as a non-
learning baseline. 
 

- Table Look-Up.  Store all examples (patterns of input and their corresponding 
output) in a table. When a new input pattern is given to the performance system, 
look it up in the table, and retrieve the output of the stored example. In this 
approach the system does not actually learn anything, and it fails miserably 
whenever an input pattern is not present in the table (there is no generalization). 
Nevertheless, for language problems, when sufficient training data is available 
and a simple heuristic is used for missing patterns (e.g. take the class most often 
occurring in the training data), sometimes an astonishingly high accuracy is 
already obtained with this non-learning method. 

- Memory-Based Learning. Store all examples in a table. When a new input pattern 
is given to the performance system, look up the most similar examples (in terms 
of number of feature values common to the stored pattern and the new pattern, for 
example) to the new pattern, and extrapolate from the tags assigned to these 
nearest matches to the new case. Various statistical and information-theoretic 
techniques can be used to design the similarity metric. The similarity metric is 
also a place where linguistic bias can be introduced in the learning algorithm, 
making the definition of what is similar domain-dependent.  

- Rule and Decision Tree Induction.  Use similarities and differences between 
examples to construct a decision tree or a rule set (these two are largely equivalent 
and can be translated to each other), and use this constructed representation to 
assign a class to a new input pattern.  Forget the individual examples.  A special 
subclass of these methods is Inductive Logic Programming, which in principle 
could learn problems for which feature-value-based algorithms fail by using first-
order logic as a representation language. 

- Connectionism, Neural Networks. Use the examples to train a network. In back-
propagation learning, this training is done by repeatedly iterating over all 
examples, comparing for each example the output predicted by the network 
(random at first) to the desired output, and changing connection weights between 
network nodes in such a way that performance increases. Keep the connection 
weight matrix, and forget the examples. 



- Statistical Methods. Compute a statistical model (e.g. about the n-grams occurring 
in the language) on the examples (the corpus), forget the examples, and use the 
model to extrapolate to the most probable analysis of new input. 

 
In terms of abstraction versus data-orientation, stochastic, neural network, and rule 
induction approaches are eager learning techniques. These techniques abstract 
knowledge from the examples as soon as they are presented.  Memory-Based Learning is 
a lazy learning technique; generalization only occurs when a new pattern is offered to the 
performance component, and abstraction is therefore implicit in the way the contents of 
the case base and the similarity metric interact. 
 
A method that is unlike any other methods described in this inventory is the evolutionary 
programming approach (genetic algorithms and genetic programming). It is completely 
different from other learning methods, as it is not based on looking for similarity in data 
as the main bias. These methods basically perform a random search in the hypothesis 
space, directed by a heuristic fitness function.  An initially randomly chosen population 
of representations (e.g. rules, or rule sets, or parametric descriptions of a neural network, 
etc.) is evolved over a number of generations. To decide survival into the next generation, 
a single fitness number is assigned to each individual in the population, based on an 
evaluation of the individual (e.g. testing the rule on some set of test data). The fittest 
individuals are selected for recombination and allowed to reproduce using crossover and 
mutation operators (Goldberg 1989; Mitchell 1996; Koza 1992). Applications to NLP are 
not (yet) numerous and mostly concern artificial language learning or the parameter 
optimization part of a hybrid approach in which the evolutionary method is combined 
with some other learning method.  Kazakov and Manandhar (1998) is a good example of 
this approach. Computational complexity of these algorithms still seems to be the main 
obstacle to applying them to solve real-world language processing problems. 
 
Popular as they may be, we will also not discuss neural network research further here. 
There is a considerable body of research on applying neural network technology to 
language processing problems (Reilly and Sharkey 1992; Sharkey 1992; Wermter, Riloff 
and Scheler 1996). In general, as with statistical methods, it is hard to interpret what has 
been learned from a trained neural network. 
 
In the remainder of this article, we will discuss two important types of symbolic ML 
methods in turn, and provide an overview of how they have been applied to NLP tasks. 
These symbolic methods allow, at least in theory, to obtain knowledge that is 
comprehensible, making it possible to manually edit it, integrate it with hand-built 
systems, etc. 
 

4. Memory-Based Learning 
 
The memory-based learning paradigm is founded on the hypothesis that performance in 
cognitive tasks (in this case language processing) is based on reasoning on the basis of 
analogy of new situations to stored representations of earlier experiences rather than on 



the application of mental rules abstracted from representations of earlier experiences as in 
rule induction and rule-based processing. 
 
The concept has appeared in several AI disciplines (from computer vision to robotics), 
using apart from memory-based learning also labels such as memory-based reasoning, 
case-based reasoning, exemplar-based learning, locally-weighted learning, and instance 
based learning (Stanfill and Waltz 1986; Cost and Salzberg 1993; Riesbeck and Schank 
1989; Kolodner 1993; Atkeson, Moore and Schaal 1997; Aha 1997; Aamodt and Plaza 
1994). Interestingly, when applied to NLP, it finds its inspiration not only in statistical 
pattern recognition (Fix and Hodges 1951; Cover and hart 1967), but also in the 
linguistics of de Saussure and Bloomfield, and in the operationalisation of analogy in 
linguistics of the American linguist Royal Skousen (1989; 1992). The linguistic 
motivation for this and other memory-based approaches is (i) the fact that in actual 
language use there is not a clear-cut all-or-none distinction between regular and irregular 
cases, (ii) the simplicity of the analogical approach as opposed to rule discovery, and (iii) 
the adaptability of the approach as opposed to the static, rigid rule-based alternative.  
Remarkably, seen from the outside, such an analogical approach appears to be rule-
governed, and therefore adequately explains intuitions about linguistic generalizations as 
well. 
 
4.1 Algorithm 
 
Examples are represented as a vector of feature values with an associated category label. 
Features define a pattern space.  During training, a set of examples (the training set) is 
presented in an incremental fashion to the learning algorithm, and added to memory. 
During processing, a vector of feature values (a previously unseen test pattern) is 
presented to the system. Its distance to all examples in memory is computed using a 
similarity metric, and the category of the most similar instance(s) is used as a basis to 
predict the category for the test pattern. 
 
In this type of lazy learning, performance crucially depends on the similarity metric used.  
The most straightforward metric for a problem with nominal (non-numeric) feature 
values would be an overlap metric: similarity is defined as the number of feature values 
that are equal in two patterns being compared.  In such a distance metric, all features 
describing an example are interpreted as being equally important in solving the 
classification problem, but this is not necessarily the case: e.g. in morphosyntactic 
disambiguation, the word class of the word immediately before a word to be tagged is 
obviously more important than the category of the word three positions earlier in the 
sentence.  This is the feature relevance problem we introduced earlier as one of the 
problems for statistical methods. Various feature weighting and selection methods have 
been proposed to differentiate between the features on the basis of their relevance for 
solving the task (see Wettschereck, Aha and Mohri 1997) for an overview. 
 
Another addition to the basic algorithm that has proved relevant for many natural 
language processing tasks is a value difference metric (Stanfill and Waltz 1986; Cost and 
Salzberg 1993). Such a metric assigns different distances to pairs of values for the same 



feature. In tagging e.g., such a metric would assign a smaller distance between NOUN-
SINGULAR and NOUN-PLURAL than between NOUN-PLURAL and VERB. These biases can of 
course also be added by hand to the learner (e.g., by a domain expert). Several other 
improvements and modifications to the basic case-based learning scheme have been 
proposed and should be investigated for linguistic problems. Two promising further 
extensions are weighting the examples in memory, and minimizing storage by keeping 
only a selection of examples. In example weighting, examples are differentiated 
according to their quality as predictors for the category of new input patterns. This 
quality can be based on their typicality or on their actual performance as predictors on a 
held-out test set. In example selection, memory is pruned by deleting those examples 
which are bad predictors or which are redundant. 
 
4.2 Memory-Based Language Processing (MBLP) 
 
Cardie (1993, 1994) addresses case-based lexical, semantic, and structural 
disambiguation of full sentences in limited domains, co-reference and anaphora 
resolution.  Her KENMORE environment is presented as a general framework for 
knowledge acquisition for NLP using different symbolic machine learning techniques. As 
an instance of this general methodology, a memory-based learning approach is suggested 
for both morphosyntactic and semantic tagging. The architecture presupposes a corpus, a 
sentence analyzer, and a learning algorithm.  During knowledge acquisition (training) for 
a specific disambiguation task (e.g. tagging), a case is created for each instance of the 
problem in the corpus. Each case is an example of the input-output mapping to be 
learned; the input part is a context describing the ambiguity, and the output part is the 
solution to the particular ambiguity. The examples may be produced from an annotated 
version of the corpus, or through human interaction. During application, the case-base is 
used to predict the solution to a new instance of the ambiguity given the input (the 
context) without intervention. 
 
Daelemans and colleagues in Antwerp and Tilburg have applied a specific approach to 
MBLP (based on global feature weighting, IB1-IG, and tree indexing for efficiency, 
IGTREE) to a large number of NLP tasks.  The algorithms they use are described and 
reviewed in the documentation of the freely available TIMBL package implementing a 
large range of memory-based algorithms (Daelemans et al. 1999). Lehnert (1987), and 
Weijters (1991) are early examples of memory-based learning applied to grapheme-to-
phoneme conversion.  Ng and Lee (1996), and Fujii, Inui, Tokunaga, and Tanaka (1998) 
apply memory-based techniques to the problem of Word Sense Disambiguation.  Similar 
nearest-neighbor-inspired approaches have been applied to context-sensitive parsing 
(Simmons and Yu 1992), and machine translation (Hermjakob 1997).  There are also 
memory-based approaches to text categorization and filtering (Masand, Linoff and Waltz 
1992; Yang and Chute 1994; Riloff and Lehnert 1994). 
 
Other NLP work in the memory-based tradition includes Data-Oriented Parsing (DOP) 
(Scha, Bod, and Sima’an 1999), who use a corpus of parsed or semantically analyzed 
utterances (a Treebank) as a representation of a person's language experience, and 
analyzes new sentences searching for a recombination of subtrees that can be extracted 



from this Treebank. The frequencies of these subtrees in the corpus are used to compute 
the probability of analyses.  Such a method uses an annotated corpus as grammar, an 
approach formalized as Stochastic Tree Substitution Grammar (STSG).  The advantage of 
STSG is that lexical information and idiomatic expressions (multi-word lexical items) 
can in principle play a role in finding and ranking an analysis. An approach in between 
DOP and more conventional memory-based methods is MBSL (Argamon, Dagan, and 
Krymolowski, 1998). 
 
Work on example-based machine translation, started by Nagao (1984), is also essentially 
memory-based. By storing a large set of (analyzed) sentences or sentence fragments in 
the source language with their associated translation in the target language as examples, a 
new source language sentence can be translated by finding examples in memory that are 
similar to it in terms of syntactic structure and word meaning, and extrapolating from the 
translations associated with these examples. A more complete overview of memory-
based language processing research is provided in Daelemans (1999b). 
 
4.3 Evaluation 
 
Advantages commonly associated with a memory-based approach to NLP include ease of 
learning (simply storing examples), ease of integrating multiple sources of information, 
and the use of similarity-based reasoning as a smoothing method for estimating low-
frequency events.  Especially the last property is an important theoretical issue.  In 
language processing tasks, unlike other typical AI tasks, low-frequency events are 
pervasive.  Due to borrowing, historical change, and the complexity of language, most 
data sets representing NLP tasks contain few regularities, and many subregularities and 
exceptions.  It is impossible for inductive algorithms to reliably distinguish noise from 
exceptions, so non-abstracting lazy memory-based learning algorithms should be at an 
advantage compared to eager learning methods such as decision tree learning or rule 
induction: `forgetting exceptions is harmful’ (Daelemans, van den Bosch and Zavrel, 
1999). 
 
Another important advantage of the memory-based approach is the flexibility of case 
representations: there are several types of information that can be stored in the memory 
base. Combined with feature weighting approaches, this flexibility offers a new approach 
to information source integration (data fusion) in NLP.  Additional advantages include 
incremental learning (new cases can be added incrementally to the case bases without 
need for relearning), explanation capabilities (the best memory matches serve as 
explanations for the tagging behavior of the system), and learning and processing speed 
in some implementations of memory-based learning. 
 

5. Decision Tree and Rule Induction 
 
The decision tree-learning paradigm is based on the assumption that similarities between 
examples can be used to automatically extract decision trees and categories with 
explanatory and generalization power. In other words, the extracted structure can be used 



to solve new instances of a problem, and to explain why a performance system behaves 
the way it does.  In this paradigm, learning is eager, and abstraction occurs at learning 
time. There are systematic ways in which decision trees can be transformed into rule sets. 
 
Decision tree induction is a well-developed field within AI; see e.g. Quinlan (1993) for a 
state-of-the-art system.  More ancient statistical pattern recognition work (Hunt, Marin 
and Stone 1966; Breiman et al. 1984) also still makes for useful reading. 
 
5.1 Algorithm 
 
A decision tree is a data structure in which nodes represent tests, and arcs between nodes 
represent possible answers to tests.  Leaf nodes represent answers to problems (classes). 
A problem is solved, by following a path from the root node through the decision tree 
until a leaf node is reached. The path taken depends on the answers that a particular 
problem provides to the tests at the nodes.  Decision tree learning works by repeatedly 
dividing the set of examples into subsets according to whether the examples in a 
particular subset have a feature-value pair in common, until the subsets are homogeneous, 
i.e., all examples in the subset have the same category.  The algorithm achieves this 
according to the simplified recursive scheme in Figure 1. 
 
Given a set of examples T 
 

• If T contains one or more cases all belonging to the same class Cj, then the decision tree 
for T is a leaf with category Cj. 

 
• If T contains different classes then  

 
• Choose a feature, and partition T into subsets that have the same value for the feature 

chosen. The decision tree consists of a node containing the feature name, and a 
branch for each value leading to a subset of T 

 
• Apply the procedure recursively to subsets created this way. 

 
Figure 1. Recursive scheme for constructing decision trees 
 
To classify new input patterns with a decision tree, start at the root node of the tree, and 
find the value in the input pattern for the corresponding feature. Take the branch 
corresponding to that value, and perform this process recursively until a leaf node is 
reached. The category corresponding to this leaf node is the output. 
 
Again, we are confronted with a feature relevance problem in this approach.  In order to 
obtain a concise tree with good generalization performance (i.e. a tree reflecting the 
structure of the domain), we have to select at each recursion of the above algorithm a test 
that is optimal in achieving this goal). The algorithm is non-backtracking (deterministic), 
and considering all trees consistent with the data is an NP-complete problem, so a reliable 
heuristic feature selection criterion is essential. Information-theoretic or statistical 
techniques maximizing homogeneity of subsets by selecting a particular feature are 
usually applied to this end.  Several variants and extensions have been developed to the 



basic algorithm, e.g. for pruning (making the tree more compact by cutting off subtrees 
on the basis of a statistical criterion), grouping similar values of a feature into classes, 
making tree building incremental, etc. 
 
5.2 Decision Tree Induction NLP 
 
Work on parsing (including tagging) of text with decision trees was pioneered at IBM 
(Black et al. 1992; Magerman 1994}. SPATTER (Magerman 1995) starts from the premise 
that a parse tree can be viewed as the result of a series of classification problems 
(tagging, choosing between constituents, labeling constituents, etc.). The most probable 
sequence of decisions for a sentence, given a training corpus, is its most probable 
analysis. In the statistical decision tree technology used (based on Breiman et al. 1984), 
decision trees are constructed for each sub-problem in the parsing task. In such a decision 
tree, leaf nodes contain distributions over categories instead of a single category. E.g., in 
tagging, the feature associated with the root node of the decision tree might be the word 
to be tagged. In case its value is ‘the’, the category ‘article’ can be returned with 
certainty. In case its value is ‘house’, a test at the next level of the tree corresponds to the 
feature ‘tag of the previous word’. In case its value is ‘article’, the probability distribution 
returned by the decision tree would be “noun (.8); verb (.2)”. In practice, SPATTER uses 
binary trees, however.  Searching for the most probable series of decisions for a sentence 
is done by means of stack decoder search with a breadth-first algorithm and probabilistic 
pruning. Schmid (1994) describes TREETAGGER, a tagger that takes basically the same 
approach as SPATTER, and Màrquez and Rodríguez (1998) is another approach to decision 
tree tagging that extracts separate decision trees for each tag (class) to be predicted. More 
recent work on dependency parsing (Haruno, Shirai and Ooyama 1999) for Japanese 
suggests the viability of the approach for parsing. 
 
Other work using decision trees for NLP problems includes cue phrase disambiguation 
(Litman 1996), word sense disambiguation (Mooney 1996), and noun phrase coreference 
resolution (McCarthy and Lehnert 1995). 
 
5.3 Evaluation 
 
Decision tree models are equivalent in expressive power to interpolated n-gram models 
(Magerman, 1995), but whereas in n-gram models the number of parameters to be 
estimated grows exponentially with n, in decision-tree learning, the size of the model 
depends on the number of training examples, and remains constant with the number of 
decisions taken into account. Also, the decision tree approach automatically selects 
relevant context size: uninformative context positions are not used in the tree, and 
because of its computational properties (constant with wider context) larger contexts 
(corresponding to 4 or 5-grams) can initially be considered.  That way, decision tree 
approaches are potentially more sensitive to context and therefore better equipped to 
solve long-distance dependencies. Another useful effect of using decision trees is greater 
robustness to sparse data problems. 
 



Perhaps the most important advantage of the approach is the potential insight it may bring 
in what has been learned by the system. Rules, and to a lesser extent decision trees can be 
understandable ways of formulating the knowledge implicit in how the learning 
algorithm is trying to solve an NLP task. However, because of the complex interaction of 
regularities and exceptions, this is not always the case in practice. In Daelemans, Berck 
and Gillis, 1997, a linguistic theory about Dutch morphology was (post hoc) discovered 
by a decision tree learning algorithm. 
 
5.4 Rule Induction and Inductive Logic Programming 
 
It is possible to translate a decision tree into a rule set by extracting a rule for each path in 
a decision tree (the tests in the path constitute a conjunction of conditions, the leave node 
the conclusion of the rule), and then combining, and (statistically) simplifying the 
combined rules, and simplifying the resulting rule set by selecting a default rule (Quinlan 
1993). Other strategies for extracting single rules or rule sets from data have been 
explored as well, e.g. for learning set-valued features (Cohen 1995). However, these rules 
will be propositional, i.e., they have the expressive power of a propositional logic 
whereas the formulation of some rules of language may require a complete first-order 
language.  
 
A promising rule learning approach in this respect is Inductive Logic Programming (ILP, 
e.g., Lavrac and Dzeroski 1994), in which background knowledge, and positive and 
negative examples are used to induce a logic program compatible with the background 
knowledge and all of the positive examples, but none of the negative examples. ILP can 
induce first-order theories from examples, and is therefore suited for domains where 
propositional algorithms fail, i.e., where the task cannot be represented using (fixed-
length) vectors of feature values. Language processing is a good candidate for such a 
domain.  It is also motivated by the fact that a lot of expert linguistic knowledge is 
available which could be used to guide the search for learning good rules solving an NLP 
problem. ILP is ideally suited to use this expert knowledge through the addition of 
background knowledge predicates. 
 
Part of speech tagging with ILP was thoroughly investigated by James Cussens (1997). 
Using a grammar as background knowledge made it possible to learn contexts more 
sophisticated than those allowed by propositional learners. E.g. it proved to be possible to 
learn rules of the type a word followed by a noun, followed by a verb phrase, followed by 
an adjectival phrase cannot be tagged as a conjunction. What constitutes a verb phrase 
and an adjectival phrase is defined in the background knowledge. 
 
ILP methods have been used in learning transfer rules translating between semantic 
representations (Boström and Zemke 1997) (rules that transform a quasi logical form, 
QLF, of a sentence in English to a QLF of an equivalent sentence in Swedish, from 
example QLF pairs), in learning rules for morphology (Dzeroski and Erjavec 1997; 
Mooney and Califf 1996), and in other NLP applications, but without convincing results 
yet. The accuracy of these systems is often well below state of the art (this may be due to 
the limited size of the training sets used), and even with these small datasets, 



computational complexity is such that learning speed is prohibitive. The most impressive 
results to date are the grammar and parser learning experiments of Zelle and Mooney 
(1993, 1996). 
 
 

6.  Discussion 
 
With the availability of only a relatively small body of empirical data and theoretical 
analysis on the applicability of inductive machine learning techniques to language 
learning (at least compared to other application areas of ML), it is too early for strong 
conclusions. On the empirical side, there is a hard-felt need for methodologically sound, 
reliable, comparative research on the application of these machine learning methods on 
diverse problems in language processing. As far as Quantitative Linguistics is concerned, 
these empirically learned generalizations could add useful insight which knowledge is 
used for learning specific language tasks. On the theoretical side, there is a need for more 
insight into the differences and similarities in how generalization is achieved in this area 
by different statistical and machine learning techniques. In the absence of this knowledge, 
our discussion will necessarily turn out to be preliminary and superficial. It will take the 
form of a number of theses. 
 
Symbolic ML methods work. These methods have been applied successfully to a large 
number of NLP problems, and produce state-of-the-art accuracy and efficiency in 
practical systems, when compared to statistical and handcrafted knowledge-based 
systems. This shows that they are capable of extracting useful linguistic knowledge from 
data. 
 
Symbolic ML implements a different type of statistics.  Decision tree induction and 
memory-based learning are statistical methods, but they use a different kind of statistics 
than the more common maximum-likelihood and Markov modeling methods.  E.g. in 
memory-based learning, no assumptions are made about the distribution of the data 
whereas most statistical techniques presuppose normal distributions. Different statistical 
methods have different properties that make them more or less suited for a particular type 
of application. If only for that reason, the applicability of all types of statistics to NLP 
problems should be studied thoroughly. Already from the preliminary empirical data, 
important advantages of these methods compared to current statistical methods suggest 
themselves. 
 



• They require less training data. 

• They require fewer parameters to be computed, and can therefore take into 
account more context. 

• They provide elegant and computationally attractive solutions to the smoothing 
problem and to the integration of different information sources. 

• Training is often much faster. 
 
A disappointing finding is that there are few clear demonstrations that these methods can 
provide new insights or reusable rules from data that can consequently be combined with 
other knowledge sources or used. 
Abstraction can be harmful.  In many linguistic tasks, we have found (Daelemans, van 
den Bosch and Zavrel 1999) that an approach keeping complete memory of all training 
data provides better performance than techniques that abstract from low-frequency and 
exceptional events, such as rule(learning)-based systems. Neural networks and stochastic 
approaches are similar to rule- and decision tree induction methods in that they abstract 
from their experience (to a matrix of connection weights in neural networks, to a set of 
probabilities in stochastic approaches, and to a set of rules in rule-induction approaches), 
and forget about the original data on which these abstractions were based. The effect that 
full memory of all examples yields better generalization is probably related to the fact 
that natural language processing tasks such as morphosyntactic disambiguation can be 
characterised by the interaction of regularities, sub-regularities, and pockets of 
exceptions. Abstracting away from these exceptions causes a performance degradation 
because new similar exceptions are overgeneralized: being there is better than being 
probable. 
 
Compared to the well-developed theoretical and empirical foundations of QL, the 
machine learning approach to linguistic knowledge discovery from language data has 
only just started. In all methods described, there is still a lot of room for improvement, 
especially in three areas: exploring variations or extensions of the basic algorithms, 
adding linguistic bias to the learning algorithms, and combining them with other 
approaches in hybrid architectures. 
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