
Walter Daelemans
University of Antwerp
Linguistics – CNTS
Universiteitsplein 1
B-2610 Wilrijk
Belgium

90. Machine Learning of Natural Language

1. Introduction

In this article we provide an overview of recent research on the application of symbolic
Machine Learning techniques to language data (Machine Learning of Natural Language,
MLNL). Both in Quantitative Linguistics (QL) and in MLNL, the main goal is to
describe the language as it is observed with rules, language models, or other descriptions.
But whereas the motivation in QL is purely scientific (establishing the laws and
mathematical properties of language), the motivation in MLNL is partly pragmatic:
increasing the accuracy and efficiency of Natural Language Processing (NLP) systems, or
the speed with which they can be built. Nevertheless, the extracted generalizations can
provide worthwhile insight into the language task being studied in an MLNL framework.

There are different ways in which the algorithmic acquisition of language knowledge and
behavior is studied. We cannot possibly discuss all this relevant work in the context of
this article. One important area of research that will be omitted in this overview is the
computational modeling of human language acquisition using statistical, machine
learning or neural network methods (McClelland and Rumelhart 1986; Brent 1996;
Broeder and Murre 2000). Salient modeling results in this area include the learning of
word meaning (Siskind 1996; Resnik 1996), finding structure in sequences (Elman
1990), bootstrapping word segmentation (Brent and Cartwright 1996), and setting
parameters in a principles and parameters approach (Niyogi and Berwick 1994; Dresher
and Kaye 1990) as well as empiricist alternatives to the latter approach (MacWhinney
and Leinbach 1991; Gillis et al. 1993; Gillis, Durieux and Daelemans 1995).

The development of algorithms for the inference of formal grammars from (mostly
artificial) language data is another relevant area of research that will not be covered in
this article. See Honavar and Slutzki (1998) for a collection of research in this area.
We restrict our overview here to language learning in the context of Natural Language
Processing and Computational Linguistics. We first provide a brief introduction to the
‘empirical revolution’ in NLP, and the increased attention for Machine Learning (ML)
methods that followed it. Then we provide a general model of ML, and a taxonomy and
overview of the main learning algorithms. We then restrict our attention to two main

classes of symbolic ML methods applied to NLP (memory-based learning and rule
learning), explain how they work, and describe some representative applications to
language processing problems.

2. The Empirical Revolution in Natural Language Processing

Natural Language Processing (NLP) studies the knowledge representation and problem
solving issues involved in learning, producing, and understanding language. Although the
origins of NLP are both knowledge-based and statistical, as in other disciplines of
Artificial Intelligence, the knowledge-based approach has historically dominated this
field. This has resulted in an emphasis on logical semantics for meaning representation,
on the development of grammar formalisms (especially lexicalist unification grammars),
and on the design of associated parsing methods and lexical representation and
organization methods. Well-known textbooks provide an overview of this approach
(Gazdar and Mellish 1989; Allen 1995).

From the early nineties onwards, empirical methods based on corpus-based statistics,
have gradually been re-introduced in the field, and have started to dominate it by the start
of this century, as can be seen from the number of papers subscribing to this approach in
computational linguistics journals and conference proceedings. There are many reasons
for this. Firstly, computer processing and storage capabilities have advanced to such an
extent that statistical pattern recognition methods have become feasible on the large
amounts of text and speech data that are now available in electronic form. Secondly,
there has been an increase of interest within NLP (prompted by application-oriented and
competitive funding) for the development of methods that scale well and can be used in
real applications without requiring a complete syntactic and semantic analysis of text.
Finally, simple statistical methods have been enormously successful in speech technology
and information retrieval, and have therefore been applied to NLP as well. See Brill and
Mooney (1998) and Church and Mercer (1993) for overviews of this empirical
‘revolution’ in NLP. The maturity of the approach is borne out by the publication of a
few recent textbooks (Charniak 1993; Manning and Schütze 1999).

Comparing these empirical methods to the knowledge-based approach, it is clear that the
former have a number of advantages. In general, statistical approaches have a greater
coverage of syntactic constructions and vocabulary, they are more robust (graceful
degradation), they are reusable for different languages and domains, and development
times for making applications and systems are shorter. On the other hand, knowledge-
based methods allow the incorporation of linguistic knowledge and sophistication,
making them sometimes more precise. Three crucial problems for (statistical) empirical
methods are (i) the sparse data problem: often not enough data is available to estimate
the probability of (low-frequency) events accurately, (ii) the relevance problem: it is
often difficult to estimate reliably the importance or relevance of particular statistical
events for the solution of the NLP problem, and (iii) the interpretation problem: most
statistical techniques do not provide insight into how a trained statistical system solves a
task.

The last few years have witnessed an increase of the use of machine learning methods in
NLP. Some of these methods were created from within NLP (e.g. transformation-based
error driven learning (Brill 1992), other techniques were imported from Machine
Learning into NLP; e.g. induction of decision trees and rules (Quinlan 1993; Cohen
1995), inductive logic programming (Lavrac and D˘zeroski 1994), memory-based
learning (Aha, Kibler, and Albert 1991), and support vector machines (Vapnik 1995).
Machine Learning (ML) is the sub-discipline of Artificial Intelligence (AI) which studies
algorithms that can learn either from experience or by reorganizing the knowledge they
already have. See Langley (1996) and Mitchell (1997) for introductory material, Weiss
and Kulikowski (1991) for methodological issues, and Natarajan (1991) for a formal-
theoretical approach.

There are also several recent collections of papers on Machine Learning applied to
Natural Language (Wermter, Riloff, and Scheler 1996, Brill and Mooney 1998,
Daelemans, Weijters and Van den Bosch 1997, Cardie and Mooney 1999). Machine
learning methods hold promise for solving the problems with statistical methods noted
earlier. They incorporate new methods for smoothing data to solve sparse data problems
and for assigning relevance to linguistic data, they allow the incorporation of linguistic
background knowledge, and what they have learned is to a certain extent interpretable.

3. Learning from Examples

In the machine learning algorithms we will discuss here, learning works by extracting
generalizations from a set of examples of a desired input-output mapping. For example,
for learning the generalizations involved in predicting the right plural suffix for a German
noun, several examples of nouns (described in terms of their phonology, lexical
information such as gender, etc.) with their corresponding plural suffix would be given.
The relations between input (typically a feature vector, here the properties of German
nouns) and output (typically a symbol, here the plural suffix), implicit in these examples,
are discovered by the algorithm, and are used to predict the correct output when
presented with a new, previously unseen, input pattern. In other words, the algorithm
classifies a new input pattern as belonging to a particular output category. A machine
learning algorithm trained on a particular set of data is therefore called a classifier. This
type of learning is often called supervised learning, and is contrasted with unsupervised
learning, where examples are presented without information about the desired output. It is
then up to the system to find similarities in the examples in such a way that they can be
exploited in solving the task. We will not discuss unsupervised learning any further here.

Many problems in NLP, especially disambiguation problems, can be formulated as
classification tasks (Magerman 1994; Daelemans 1995; Cardie 1994). As an example,
consider morphosyntactic disambiguation (part of speech tagging): learning the
assignment of the contextually and lexically most probable word class of a word in
context. E.g., in the old man the boats, context dictates that old is an adjective, and man a
verb, contrary to what would be predicted by looking only at the lexical probabilities of

these combinations of word and word class. This type of word class disambiguation has
become a benchmark problem for learning approaches to NLP. An overview of machine
learning work for tagging can be found in Daelemans (1999a).

In morphosyntactic word class tagging, abbreviated tagging from here, a sentence should
be mapped into a string of morpho-syntactic tags (Table 1).

Input Output
John will join the board Name Modal Verb Determiner Noun

Table 1. Tagging as a mapping from sentences to tag strings.

By approximating this mapping with a function from a focus word and its context to the
disambiguated tag belonging to the focus word in that context (Table 2), the mapping
becomes a classification task amenable to Machine Learning approaches. Of course,
instead of (only) the words in the context, more information would be added in real
experiments: e.g. varying sizes of context, morphological, syntactic, or any other
available linguistic information.

Left Context Focus Right Context Class
= = John will join Name
= John will join the Modal

John will join the board Verb
will join the board = Determiner
join the board = = Noun

Table 2. Tagging as a mapping from focus words with context to tags.

It is easy to see how similar classification tasks can be set up for other NLP problems
such as word sense disambiguation, term translation, morphology, etc. Even parsing can
be handled this way by cascading different partial systems such as a tagger, a constituent
finder, and a classifier disambiguating possible relations between constituents. In all
these cases we have some focus unit (letter, word, constituent) and a representation of its
context as features, and a unit at another linguistic level as output class.

3.1 Machine Learning

Conceptually, a learning system consists of a performance component which achieves a
specific task (given an input, it produces an output), and a learning component which
modifies the performance component on the basis of its experience in such a way that
performance of the system in doing the same or similar tasks improves. As we have seen,
examples take the form of pairs of inputs with their associated desired output.

To achieve its task, the performance component uses an internal representation. The task
of the learning component may therefore be construed as a search in the space of possible
representations (often called the hypothesis space) for a representation that is optimal for
performing the mapping. In this article, we will consider among others decision trees,
rules, and case bases as types of languages/formalisms for internal representations for
language processing. In most cases, finding the optimal representation given a set of
examples and a representation language is computationally intractable. Some form of
heuristic search is therefore used by all learning systems.

In Machine Learning, the concept of bias refers to constraints on this search process.
These constraints may be domain-dependent. In that case, knowledge about the task is
used to make the search simpler. This bias may be present in the way the experience
presented to the learning component (the training examples) is represented or in heuristic
knowledge used to prune the search tree. The addition of linguistic bias to a learning
system is the obvious way to let learning natural language processing systems profit from
linguistic knowledge about the task. On top of that, there is also a more general notion of
bias in the restrictions on what can be represented in the representation language used
(language bias), or in general principles guiding the search of the search algorithm
implicit in the learning algorithm (search bias, e.g. Ockham's razor).

3.2 Performance Evaluations

The success of a learning component in improving performance can be evaluated using a
number of different quantitative and qualitative measures:

- Generalization accuracy. This is the performance accuracy of the system on
previously unseen inputs (i.e., inputs it was not trained on). This aspect of
learning is of course crucial: it gives an indication of the quality of the inductive
leap made by the algorithm on the basis of the examples. A good generalization
accuracy indicates that the learning system has not overfit its training examples,
as would happen by generalizing on the basis of errors or exceptions present in
them. To get a good estimate of the real generalization accuracy, cross-validation
can be used, e.g. in 10-fold cross-validation an algorithm is tested on ten different
partitions (90% training material, 10% testing material) of the full data set
available. Each data item occurs once in one of the test sets. The average
generalization accuracy on the ten test sets is then a good statistical estimate of
the real accuracy. Apart from accuracy, for some NLP problems the notions of
recall and precision are more appropriate. For example, when the task is
chunking, i.e., finding noun phrases or prepositional phrases in text, precision
measures the percentage of correct chunks in all chunks predicted by the
algorithm, and recall measures the percentage of chunks present in the test data
that was correctly identified by the algorithm. Combined precision-recall
measures give a better indication of the goodness of a system in these cases than
accuracy measurements.

- Space and time complexity. The amount of storage and processing involved in
learning (training the system) and performance (producing output given the
input).

- Explanatory Quality. Usefulness of the representations found by the learning
system as an explanation of the way the task is achieved. Especially with good
explanatory quality, the machine learning results may provide useful and new
linguistic insight into the task being learned.

3.3 Overview of Methods

To sum up this section, we will give an intuitive description of how a number of learning
algorithms works. We discuss the algorithms in an order of increasing abstraction of the
internal representation used by the performance component, and created by the learning
component. We start from storage and table-lookup of the ‘raw’ examples as a non-
learning baseline.

- Table Look-Up. Store all examples (patterns of input and their corresponding
output) in a table. When a new input pattern is given to the performance system,
look it up in the table, and retrieve the output of the stored example. In this
approach the system does not actually learn anything, and it fails miserably
whenever an input pattern is not present in the table (there is no generalization).
Nevertheless, for language problems, when sufficient training data is available
and a simple heuristic is used for missing patterns (e.g. take the class most often
occurring in the training data), sometimes an astonishingly high accuracy is
already obtained with this non-learning method.

- Memory-Based Learning. Store all examples in a table. When a new input pattern
is given to the performance system, look up the most similar examples (in terms
of number of feature values common to the stored pattern and the new pattern, for
example) to the new pattern, and extrapolate from the tags assigned to these
nearest matches to the new case. Various statistical and information-theoretic
techniques can be used to design the similarity metric. The similarity metric is
also a place where linguistic bias can be introduced in the learning algorithm,
making the definition of what is similar domain-dependent.

- Rule and Decision Tree Induction. Use similarities and differences between
examples to construct a decision tree or a rule set (these two are largely equivalent
and can be translated to each other), and use this constructed representation to
assign a class to a new input pattern. Forget the individual examples. A special
subclass of these methods is Inductive Logic Programming, which in principle
could learn problems for which feature-value-based algorithms fail by using first-
order logic as a representation language.

- Connectionism, Neural Networks. Use the examples to train a network. In back-
propagation learning, this training is done by repeatedly iterating over all
examples, comparing for each example the output predicted by the network
(random at first) to the desired output, and changing connection weights between
network nodes in such a way that performance increases. Keep the connection
weight matrix, and forget the examples.

- Statistical Methods. Compute a statistical model (e.g. about the n-grams occurring
in the language) on the examples (the corpus), forget the examples, and use the
model to extrapolate to the most probable analysis of new input.

In terms of abstraction versus data-orientation, stochastic, neural network, and rule
induction approaches are eager learning techniques. These techniques abstract
knowledge from the examples as soon as they are presented. Memory-Based Learning is
a lazy learning technique; generalization only occurs when a new pattern is offered to the
performance component, and abstraction is therefore implicit in the way the contents of
the case base and the similarity metric interact.

A method that is unlike any other methods described in this inventory is the evolutionary
programming approach (genetic algorithms and genetic programming). It is completely
different from other learning methods, as it is not based on looking for similarity in data
as the main bias. These methods basically perform a random search in the hypothesis
space, directed by a heuristic fitness function. An initially randomly chosen population
of representations (e.g. rules, or rule sets, or parametric descriptions of a neural network,
etc.) is evolved over a number of generations. To decide survival into the next generation,
a single fitness number is assigned to each individual in the population, based on an
evaluation of the individual (e.g. testing the rule on some set of test data). The fittest
individuals are selected for recombination and allowed to reproduce using crossover and
mutation operators (Goldberg 1989; Mitchell 1996; Koza 1992). Applications to NLP are
not (yet) numerous and mostly concern artificial language learning or the parameter
optimization part of a hybrid approach in which the evolutionary method is combined
with some other learning method. Kazakov and Manandhar (1998) is a good example of
this approach. Computational complexity of these algorithms still seems to be the main
obstacle to applying them to solve real-world language processing problems.

Popular as they may be, we will also not discuss neural network research further here.
There is a considerable body of research on applying neural network technology to
language processing problems (Reilly and Sharkey 1992; Sharkey 1992; Wermter, Riloff
and Scheler 1996). In general, as with statistical methods, it is hard to interpret what has
been learned from a trained neural network.

In the remainder of this article, we will discuss two important types of symbolic ML
methods in turn, and provide an overview of how they have been applied to NLP tasks.
These symbolic methods allow, at least in theory, to obtain knowledge that is
comprehensible, making it possible to manually edit it, integrate it with hand-built
systems, etc.

4. Memory-Based Learning

The memory-based learning paradigm is founded on the hypothesis that performance in
cognitive tasks (in this case language processing) is based on reasoning on the basis of
analogy of new situations to stored representations of earlier experiences rather than on

the application of mental rules abstracted from representations of earlier experiences as in
rule induction and rule-based processing.

The concept has appeared in several AI disciplines (from computer vision to robotics),
using apart from memory-based learning also labels such as memory-based reasoning,
case-based reasoning, exemplar-based learning, locally-weighted learning, and instance
based learning (Stanfill and Waltz 1986; Cost and Salzberg 1993; Riesbeck and Schank
1989; Kolodner 1993; Atkeson, Moore and Schaal 1997; Aha 1997; Aamodt and Plaza
1994). Interestingly, when applied to NLP, it finds its inspiration not only in statistical
pattern recognition (Fix and Hodges 1951; Cover and hart 1967), but also in the
linguistics of de Saussure and Bloomfield, and in the operationalisation of analogy in
linguistics of the American linguist Royal Skousen (1989; 1992). The linguistic
motivation for this and other memory-based approaches is (i) the fact that in actual
language use there is not a clear-cut all-or-none distinction between regular and irregular
cases, (ii) the simplicity of the analogical approach as opposed to rule discovery, and (iii)
the adaptability of the approach as opposed to the static, rigid rule-based alternative.
Remarkably, seen from the outside, such an analogical approach appears to be rule-
governed, and therefore adequately explains intuitions about linguistic generalizations as
well.

4.1 Algorithm

Examples are represented as a vector of feature values with an associated category label.
Features define a pattern space. During training, a set of examples (the training set) is
presented in an incremental fashion to the learning algorithm, and added to memory.
During processing, a vector of feature values (a previously unseen test pattern) is
presented to the system. Its distance to all examples in memory is computed using a
similarity metric, and the category of the most similar instance(s) is used as a basis to
predict the category for the test pattern.

In this type of lazy learning, performance crucially depends on the similarity metric used.
The most straightforward metric for a problem with nominal (non-numeric) feature
values would be an overlap metric: similarity is defined as the number of feature values
that are equal in two patterns being compared. In such a distance metric, all features
describing an example are interpreted as being equally important in solving the
classification problem, but this is not necessarily the case: e.g. in morphosyntactic
disambiguation, the word class of the word immediately before a word to be tagged is
obviously more important than the category of the word three positions earlier in the
sentence. This is the feature relevance problem we introduced earlier as one of the
problems for statistical methods. Various feature weighting and selection methods have
been proposed to differentiate between the features on the basis of their relevance for
solving the task (see Wettschereck, Aha and Mohri 1997) for an overview.

Another addition to the basic algorithm that has proved relevant for many natural
language processing tasks is a value difference metric (Stanfill and Waltz 1986; Cost and
Salzberg 1993). Such a metric assigns different distances to pairs of values for the same

feature. In tagging e.g., such a metric would assign a smaller distance between NOUN-
SINGULAR and NOUN-PLURAL than between NOUN-PLURAL and VERB. These biases can of
course also be added by hand to the learner (e.g., by a domain expert). Several other
improvements and modifications to the basic case-based learning scheme have been
proposed and should be investigated for linguistic problems. Two promising further
extensions are weighting the examples in memory, and minimizing storage by keeping
only a selection of examples. In example weighting, examples are differentiated
according to their quality as predictors for the category of new input patterns. This
quality can be based on their typicality or on their actual performance as predictors on a
held-out test set. In example selection, memory is pruned by deleting those examples
which are bad predictors or which are redundant.

4.2 Memory-Based Language Processing (MBLP)

Cardie (1993, 1994) addresses case-based lexical, semantic, and structural
disambiguation of full sentences in limited domains, co-reference and anaphora
resolution. Her KENMORE environment is presented as a general framework for
knowledge acquisition for NLP using different symbolic machine learning techniques. As
an instance of this general methodology, a memory-based learning approach is suggested
for both morphosyntactic and semantic tagging. The architecture presupposes a corpus, a
sentence analyzer, and a learning algorithm. During knowledge acquisition (training) for
a specific disambiguation task (e.g. tagging), a case is created for each instance of the
problem in the corpus. Each case is an example of the input-output mapping to be
learned; the input part is a context describing the ambiguity, and the output part is the
solution to the particular ambiguity. The examples may be produced from an annotated
version of the corpus, or through human interaction. During application, the case-base is
used to predict the solution to a new instance of the ambiguity given the input (the
context) without intervention.

Daelemans and colleagues in Antwerp and Tilburg have applied a specific approach to
MBLP (based on global feature weighting, IB1-IG, and tree indexing for efficiency,
IGTREE) to a large number of NLP tasks. The algorithms they use are described and
reviewed in the documentation of the freely available TIMBL package implementing a
large range of memory-based algorithms (Daelemans et al. 1999). Lehnert (1987), and
Weijters (1991) are early examples of memory-based learning applied to grapheme-to-
phoneme conversion. Ng and Lee (1996), and Fujii, Inui, Tokunaga, and Tanaka (1998)
apply memory-based techniques to the problem of Word Sense Disambiguation. Similar
nearest-neighbor-inspired approaches have been applied to context-sensitive parsing
(Simmons and Yu 1992), and machine translation (Hermjakob 1997). There are also
memory-based approaches to text categorization and filtering (Masand, Linoff and Waltz
1992; Yang and Chute 1994; Riloff and Lehnert 1994).

Other NLP work in the memory-based tradition includes Data-Oriented Parsing (DOP)
(Scha, Bod, and Sima’an 1999), who use a corpus of parsed or semantically analyzed
utterances (a Treebank) as a representation of a person's language experience, and
analyzes new sentences searching for a recombination of subtrees that can be extracted

from this Treebank. The frequencies of these subtrees in the corpus are used to compute
the probability of analyses. Such a method uses an annotated corpus as grammar, an
approach formalized as Stochastic Tree Substitution Grammar (STSG). The advantage of
STSG is that lexical information and idiomatic expressions (multi-word lexical items)
can in principle play a role in finding and ranking an analysis. An approach in between
DOP and more conventional memory-based methods is MBSL (Argamon, Dagan, and
Krymolowski, 1998).

Work on example-based machine translation, started by Nagao (1984), is also essentially
memory-based. By storing a large set of (analyzed) sentences or sentence fragments in
the source language with their associated translation in the target language as examples, a
new source language sentence can be translated by finding examples in memory that are
similar to it in terms of syntactic structure and word meaning, and extrapolating from the
translations associated with these examples. A more complete overview of memory-
based language processing research is provided in Daelemans (1999b).

4.3 Evaluation

Advantages commonly associated with a memory-based approach to NLP include ease of
learning (simply storing examples), ease of integrating multiple sources of information,
and the use of similarity-based reasoning as a smoothing method for estimating low-
frequency events. Especially the last property is an important theoretical issue. In
language processing tasks, unlike other typical AI tasks, low-frequency events are
pervasive. Due to borrowing, historical change, and the complexity of language, most
data sets representing NLP tasks contain few regularities, and many subregularities and
exceptions. It is impossible for inductive algorithms to reliably distinguish noise from
exceptions, so non-abstracting lazy memory-based learning algorithms should be at an
advantage compared to eager learning methods such as decision tree learning or rule
induction: `forgetting exceptions is harmful’ (Daelemans, van den Bosch and Zavrel,
1999).

Another important advantage of the memory-based approach is the flexibility of case
representations: there are several types of information that can be stored in the memory
base. Combined with feature weighting approaches, this flexibility offers a new approach
to information source integration (data fusion) in NLP. Additional advantages include
incremental learning (new cases can be added incrementally to the case bases without
need for relearning), explanation capabilities (the best memory matches serve as
explanations for the tagging behavior of the system), and learning and processing speed
in some implementations of memory-based learning.

5. Decision Tree and Rule Induction

The decision tree-learning paradigm is based on the assumption that similarities between
examples can be used to automatically extract decision trees and categories with
explanatory and generalization power. In other words, the extracted structure can be used

to solve new instances of a problem, and to explain why a performance system behaves
the way it does. In this paradigm, learning is eager, and abstraction occurs at learning
time. There are systematic ways in which decision trees can be transformed into rule sets.

Decision tree induction is a well-developed field within AI; see e.g. Quinlan (1993) for a
state-of-the-art system. More ancient statistical pattern recognition work (Hunt, Marin
and Stone 1966; Breiman et al. 1984) also still makes for useful reading.

5.1 Algorithm

A decision tree is a data structure in which nodes represent tests, and arcs between nodes
represent possible answers to tests. Leaf nodes represent answers to problems (classes).
A problem is solved, by following a path from the root node through the decision tree
until a leaf node is reached. The path taken depends on the answers that a particular
problem provides to the tests at the nodes. Decision tree learning works by repeatedly
dividing the set of examples into subsets according to whether the examples in a
particular subset have a feature-value pair in common, until the subsets are homogeneous,
i.e., all examples in the subset have the same category. The algorithm achieves this
according to the simplified recursive scheme in Figure 1.

Given a set of examples T

• If T contains one or more cases all belonging to the same class Cj, then the decision tree
for T is a leaf with category Cj.

• If T contains different classes then

• Choose a feature, and partition T into subsets that have the same value for the feature

chosen. The decision tree consists of a node containing the feature name, and a
branch for each value leading to a subset of T

• Apply the procedure recursively to subsets created this way.

Figure 1. Recursive scheme for constructing decision trees

To classify new input patterns with a decision tree, start at the root node of the tree, and
find the value in the input pattern for the corresponding feature. Take the branch
corresponding to that value, and perform this process recursively until a leaf node is
reached. The category corresponding to this leaf node is the output.

Again, we are confronted with a feature relevance problem in this approach. In order to
obtain a concise tree with good generalization performance (i.e. a tree reflecting the
structure of the domain), we have to select at each recursion of the above algorithm a test
that is optimal in achieving this goal). The algorithm is non-backtracking (deterministic),
and considering all trees consistent with the data is an NP-complete problem, so a reliable
heuristic feature selection criterion is essential. Information-theoretic or statistical
techniques maximizing homogeneity of subsets by selecting a particular feature are
usually applied to this end. Several variants and extensions have been developed to the

basic algorithm, e.g. for pruning (making the tree more compact by cutting off subtrees
on the basis of a statistical criterion), grouping similar values of a feature into classes,
making tree building incremental, etc.

5.2 Decision Tree Induction NLP

Work on parsing (including tagging) of text with decision trees was pioneered at IBM
(Black et al. 1992; Magerman 1994}. SPATTER (Magerman 1995) starts from the premise
that a parse tree can be viewed as the result of a series of classification problems
(tagging, choosing between constituents, labeling constituents, etc.). The most probable
sequence of decisions for a sentence, given a training corpus, is its most probable
analysis. In the statistical decision tree technology used (based on Breiman et al. 1984),
decision trees are constructed for each sub-problem in the parsing task. In such a decision
tree, leaf nodes contain distributions over categories instead of a single category. E.g., in
tagging, the feature associated with the root node of the decision tree might be the word
to be tagged. In case its value is ‘the’, the category ‘article’ can be returned with
certainty. In case its value is ‘house’, a test at the next level of the tree corresponds to the
feature ‘tag of the previous word’. In case its value is ‘article’, the probability distribution
returned by the decision tree would be “noun (.8); verb (.2)”. In practice, SPATTER uses
binary trees, however. Searching for the most probable series of decisions for a sentence
is done by means of stack decoder search with a breadth-first algorithm and probabilistic
pruning. Schmid (1994) describes TREETAGGER, a tagger that takes basically the same
approach as SPATTER, and Màrquez and Rodríguez (1998) is another approach to decision
tree tagging that extracts separate decision trees for each tag (class) to be predicted. More
recent work on dependency parsing (Haruno, Shirai and Ooyama 1999) for Japanese
suggests the viability of the approach for parsing.

Other work using decision trees for NLP problems includes cue phrase disambiguation
(Litman 1996), word sense disambiguation (Mooney 1996), and noun phrase coreference
resolution (McCarthy and Lehnert 1995).

5.3 Evaluation

Decision tree models are equivalent in expressive power to interpolated n-gram models
(Magerman, 1995), but whereas in n-gram models the number of parameters to be
estimated grows exponentially with n, in decision-tree learning, the size of the model
depends on the number of training examples, and remains constant with the number of
decisions taken into account. Also, the decision tree approach automatically selects
relevant context size: uninformative context positions are not used in the tree, and
because of its computational properties (constant with wider context) larger contexts
(corresponding to 4 or 5-grams) can initially be considered. That way, decision tree
approaches are potentially more sensitive to context and therefore better equipped to
solve long-distance dependencies. Another useful effect of using decision trees is greater
robustness to sparse data problems.

Perhaps the most important advantage of the approach is the potential insight it may bring
in what has been learned by the system. Rules, and to a lesser extent decision trees can be
understandable ways of formulating the knowledge implicit in how the learning
algorithm is trying to solve an NLP task. However, because of the complex interaction of
regularities and exceptions, this is not always the case in practice. In Daelemans, Berck
and Gillis, 1997, a linguistic theory about Dutch morphology was (post hoc) discovered
by a decision tree learning algorithm.

5.4 Rule Induction and Inductive Logic Programming

It is possible to translate a decision tree into a rule set by extracting a rule for each path in
a decision tree (the tests in the path constitute a conjunction of conditions, the leave node
the conclusion of the rule), and then combining, and (statistically) simplifying the
combined rules, and simplifying the resulting rule set by selecting a default rule (Quinlan
1993). Other strategies for extracting single rules or rule sets from data have been
explored as well, e.g. for learning set-valued features (Cohen 1995). However, these rules
will be propositional, i.e., they have the expressive power of a propositional logic
whereas the formulation of some rules of language may require a complete first-order
language.

A promising rule learning approach in this respect is Inductive Logic Programming (ILP,
e.g., Lavrac and Dzeroski 1994), in which background knowledge, and positive and
negative examples are used to induce a logic program compatible with the background
knowledge and all of the positive examples, but none of the negative examples. ILP can
induce first-order theories from examples, and is therefore suited for domains where
propositional algorithms fail, i.e., where the task cannot be represented using (fixed-
length) vectors of feature values. Language processing is a good candidate for such a
domain. It is also motivated by the fact that a lot of expert linguistic knowledge is
available which could be used to guide the search for learning good rules solving an NLP
problem. ILP is ideally suited to use this expert knowledge through the addition of
background knowledge predicates.

Part of speech tagging with ILP was thoroughly investigated by James Cussens (1997).
Using a grammar as background knowledge made it possible to learn contexts more
sophisticated than those allowed by propositional learners. E.g. it proved to be possible to
learn rules of the type a word followed by a noun, followed by a verb phrase, followed by
an adjectival phrase cannot be tagged as a conjunction. What constitutes a verb phrase
and an adjectival phrase is defined in the background knowledge.

ILP methods have been used in learning transfer rules translating between semantic
representations (Boström and Zemke 1997) (rules that transform a quasi logical form,
QLF, of a sentence in English to a QLF of an equivalent sentence in Swedish, from
example QLF pairs), in learning rules for morphology (Dzeroski and Erjavec 1997;
Mooney and Califf 1996), and in other NLP applications, but without convincing results
yet. The accuracy of these systems is often well below state of the art (this may be due to
the limited size of the training sets used), and even with these small datasets,

computational complexity is such that learning speed is prohibitive. The most impressive
results to date are the grammar and parser learning experiments of Zelle and Mooney
(1993, 1996).

6. Discussion

With the availability of only a relatively small body of empirical data and theoretical
analysis on the applicability of inductive machine learning techniques to language
learning (at least compared to other application areas of ML), it is too early for strong
conclusions. On the empirical side, there is a hard-felt need for methodologically sound,
reliable, comparative research on the application of these machine learning methods on
diverse problems in language processing. As far as Quantitative Linguistics is concerned,
these empirically learned generalizations could add useful insight which knowledge is
used for learning specific language tasks. On the theoretical side, there is a need for more
insight into the differences and similarities in how generalization is achieved in this area
by different statistical and machine learning techniques. In the absence of this knowledge,
our discussion will necessarily turn out to be preliminary and superficial. It will take the
form of a number of theses.

Symbolic ML methods work. These methods have been applied successfully to a large
number of NLP problems, and produce state-of-the-art accuracy and efficiency in
practical systems, when compared to statistical and handcrafted knowledge-based
systems. This shows that they are capable of extracting useful linguistic knowledge from
data.

Symbolic ML implements a different type of statistics. Decision tree induction and
memory-based learning are statistical methods, but they use a different kind of statistics
than the more common maximum-likelihood and Markov modeling methods. E.g. in
memory-based learning, no assumptions are made about the distribution of the data
whereas most statistical techniques presuppose normal distributions. Different statistical
methods have different properties that make them more or less suited for a particular type
of application. If only for that reason, the applicability of all types of statistics to NLP
problems should be studied thoroughly. Already from the preliminary empirical data,
important advantages of these methods compared to current statistical methods suggest
themselves.

• They require less training data.

• They require fewer parameters to be computed, and can therefore take into
account more context.

• They provide elegant and computationally attractive solutions to the smoothing
problem and to the integration of different information sources.

• Training is often much faster.

A disappointing finding is that there are few clear demonstrations that these methods can
provide new insights or reusable rules from data that can consequently be combined with
other knowledge sources or used.
Abstraction can be harmful. In many linguistic tasks, we have found (Daelemans, van
den Bosch and Zavrel 1999) that an approach keeping complete memory of all training
data provides better performance than techniques that abstract from low-frequency and
exceptional events, such as rule(learning)-based systems. Neural networks and stochastic
approaches are similar to rule- and decision tree induction methods in that they abstract
from their experience (to a matrix of connection weights in neural networks, to a set of
probabilities in stochastic approaches, and to a set of rules in rule-induction approaches),
and forget about the original data on which these abstractions were based. The effect that
full memory of all examples yields better generalization is probably related to the fact
that natural language processing tasks such as morphosyntactic disambiguation can be
characterised by the interaction of regularities, sub-regularities, and pockets of
exceptions. Abstracting away from these exceptions causes a performance degradation
because new similar exceptions are overgeneralized: being there is better than being
probable.

Compared to the well-developed theoretical and empirical foundations of QL, the
machine learning approach to linguistic knowledge discovery from language data has
only just started. In all methods described, there is still a lot of room for improvement,
especially in three areas: exploring variations or extensions of the basic algorithms,
adding linguistic bias to the learning algorithms, and combining them with other
approaches in hybrid architectures.

7. References

Aamodt, A. and E. Plaza (1994), Case-based reasoning: Foundational issues,
methodological variations, and system approaches. In: AI Communications, 7, 39-59.

Aha, D. W. (Editor) Lazy learning. Dordrecht: Kluwer Academic Publishers, 1997.

Aha, D. W., D. Kibler, and M. Albert (1991), Instance-based learning algorithms. In:
Machine Learning, 6, 37-66.

Allen, James (1995), Natural Language Understanding. Redwood City: The
Benjamin/Cummings Publishing Company.

Argamon, S., I. Dagan, and Y. Krymolowski (1998), A memory-based approach to
learning shallow natural language patterns. In: Proceedings of the 36th annual meeting of
the ACL, 67-73, Montreal.

Atkeson, C., A. Moore, and S. Schaal (1997), Locally weighted learning. In: Artificial
Intelligence Review, 11(1-5), 11-73.

Black, Ezra, Fred Jelinek, John Lafferty, David Magerman, Robert Mercer, and Salim
Roukos (1992), Towards history-based grammars: using richer models for probabilistic
parsing. In: Mitch Marcus (Editor) Fifth DARPA Workshop on Speech and Natural
Language, San Mateo, CA: Morgan Kaufmann.

Boström, Henrik and Stefan Zemke (1997), Learning transfer rules by inductive logic
programming (preliminary report), Stockholm University.

Breiman, L., J. Friedman, R. Ohlsen, and C. Stone (1984), Classification and regression
trees, Belmont, CA: Wadsworth International Group.

Brent, M. and T. Cartwright (1996), Distributional regularity and phonotactic constraints
are useful for segmentation. In: Cognition, 61, 93-125.

Brent, Michael (1996), Advances in the computational study of language acquisition. In:
Cognition 61, 1-38.

Brill, E. (1992), A simple rule-based part-of-speech tagger. In: Proceedings of the Third
ACL Applied NLP, 152-155, Trento, Italy.

Brill, Eric and Raymond J. Mooney (1998), An overview of empirical natural language
processing. The AI Magazine, 18(4), 13-24.

Broeder, Peter and Jaap Murre (Editors), Cognitive Models of Language Acquisition.
Cambridge University Press, 2000.

Cardie, C. (1993), A case-based approach to knowledge acquisition for domain-specific
sentence analysis. In: Proceedings of AAAI-93, 798-803.

Cardie, C. (1994), Domain Specific Knowledge Acquisition for Conceptual Sentence
Analysis. Ph.D. thesis, University of Massachusetts, Amherst, MA.

Cardie, Claire and Raymond J. Mooney (1999), Guest editors' introduction: Machine
learning and natural language. In: Machine Learning, 11, 1-5.

Charniak, E. (1993), Statistical Language Learning. Cambridge, MA: The MIT Press.

Church, K. W. and R. L. Mercer (1993), Introduction to the Special Issue on
Computational Linguistics Using Large Corpora. In: Computational Linguistics, 19,1-24.

Cohen, W. W. (1995), Fast effective rule induction. In: Proceedings of the Twelfth
International Conference on Machine Learning, Lake Tahoe, California, San Mateo, CA:
Morgan Kaufmann.

Cost, S. and S. Salzberg (1993), A weighted nearest neighbor algorithm for learning with
symbolic features. In: Machine Learning, 10,57-78.

Cover, T. M. and P. E. Hart (1967), Nearest neighbor pattern classification. Institute of
Electrical and Electronics Engineers Transactions on Information Theory, 13,21-27.

Cussens, James (1997), Part-of-speech tagging using Progol. In: Nada Lavrac and Saso
Dzeroski, editors, Proceedings of the 7th International Workshop on Inductive Logic
Programming, 93-108, Berlin. Springer.

Daelemans, W. (1995), Memory-based lexical acquisition and processing. In: P. Steffens
(editor), Machine Translation and the Lexicon, Lecture Notes in Artificial Intelligence.
Springer-Verlag, Berlin, pages 85-98.

Daelemans, W., A. Van den Bosch, and J. Zavrel (1999), Forgetting exceptions is
harmful in language learning. In: Machine Learning 34, 11-41.

Daelemans, W., A. Weijters, and A. Van den Bosch (editors), Workshop Notes of the
ECML/MLnet familiarization workshop on Empirical learning of natural language
processing tasks, Prague, Czech Republic. University of Economics, 1997.

Daelemans, W., J. Zavrel, K. Van der Sloot, and A. Van den Bosch (1999), TiMBL:
Tilburg Memory Based Learner, version 2.0, reference manual. Technical Report ILK-
9901, ILK, Tilburg University.

Daelemans, Walter (1999a), Machine learning approaches. In: Hans van Halteren
(editor), Syntactic Wordclass Tagging. Dordrecht, The Netherlands: Kluwer Academic
Publishers.

Daelemans, Walter (editor), Memory-based Language Processing, In: Special Issue of
Journal of Experimental and Theoretical AI, 11(3), Taylor & Francis, 1999b.

Daelemans, Walter, Peter Berck, and Steven Gillis (1997), Data mining as a method for
linguistic analysis: Dutch diminutives. In: Folia Linguistica, XXXI(1-2).

Dresher, E. and J. Kaye (1990), A computational learning model for metrical phonology.
In: Cognition, 32(2), 137-195.

Dzeroski, Saso and Tomaz Erjavec (1997), Induction of Slovene nominal paradigms. In:
Nada Lavrac and Saso Dzeroski (editors) Proceedings of the 7th International Workshop
on Inductive Logic Programming, 141-148, Berlin: Springer.

Elman, J. (1990), Finding structure in time. In: Cognitive Science, 14, 179-211.

Fix, E. and J. L. Hodges (1951), Discriminatory analysis --- nonparametric
discrimination; consistency properties. Technical Report Project 21-49-004, Report No.
4, USAF School of Aviation Medicine, Randolph Field, Texas.

Fujii, Atsushi, Kentaro Inui, Takenobu Tokunaga, and Hozumi Tanaka (1998), Selective
sampling for example-based word sense disambiguation. In: Computational Linguistics,
24(4), 573-597.

Gazdar, G. and C. Mellish (1989), Natural Language in LISP: an introduction to
computational linguistics, Reading, MA: Addison Wesley.

Gillis, S., G. Durieux, and W. Daelemans (1995), A computational model of P&P:
Dresher and Kaye (1990) revisited. In: M. Verrips and F. Wijnen (editors), Approaches
to parameter setting, volume 4 of Amsterdam Studies in Child Language Development,
135-173.

Gillis, S., G. Durieux, W. Daelemans, and A. Van den Bosch (1993), Learnability and
markedness: Dutch stress assignment. In: Proceedings of the 15th Conference of the
Cognitive Science Society 1993, Boulder, CO, 452-457.

Goldberg, D. (1989), Genetic Algorithms in Search, Optimization and Machine Learning.
Reading, Mass.: Addison Wesley.

Haruno, Masahiko, Satoshi Shirai, and Yoshifumi Ooyama (1999), Using decision trees
to construct a practical parser. In: Machine Learning, 34, 131-149.

Hermjakob, Ulf and Raymond J. Mooney (1997), Learning parse and translation
decisions from examples with rich context. In: Proceedings of the 35th Annual Meeting
of the Association for Computational Linguistics (ACL '97), 482-489, Madrid, Spain,
Association for Computational Linguistics.

Honavar, Vasant and Giora Slutzki (editors), Grammatical inference: 4th international
colloquium, ICGI-98, Ames, Iowa, USA, July 12--14, 1998: proceedings, volume 1433 of
Lecture Notes in Computer Science and Lecture Notes in Artificial Intelligence, New
York, NY, USA. Springer-Verlag Inc., 1998.

Hunt, E. B., J. Marin, and P. J. Stone (1966), Experiments in induction. New York, NY:
Academic Press.

Kazakov, D. and S. Manandhar (1998), A hybrid approach to word segmentation. In: D.
Page (editor), ILP98, volume 1446 of Lecture Notes on Artificial Intelligence, 125-134,
Berlin: Springer Verlag.

Kolodner, J. (1993), Case-based reasoning. San Mateo, CA: Morgan Kaufmann.

Koza, J.R. (1992), Genetic Programming: on the programming of Computers by means
of natural Selection. MIT Press.

Langley, P. (1996), Elements of machine learning. San Mateo, CA: Morgan Kaufmann.

Lavrac, N. and S. Dzeroski (1994), Inductive logic programming. Chichester, UK: Ellis
Horwood.

Lehnert, W. (1987), Case-based problem solving with a large knowledge base of learned
cases. In: Proceedings of the Sixth National Conference on Artificial Intelligence (AAAI-
87), pages 301-306, Los Altos, CA. Morgan Kaufmann.

Litman, Diane J. (1996), Cue phrase classification using machine learning. Journal of
Artificial Intelligence Research, 5, 53-94.

MacWhinney, Brian and Jared Leinbach (1991), Implementations are not
conceptualizations: Revising the verb learning model. In: Cognition, 40 (1-2), 121-150.

Magerman, D. (1995), Statistical decision tree models for parsing. In: Proceedings of the
33rd Annual Meeting of the Association for Computational Linguistics, 276-283.

Magerman, D. M. (1994), Natural language parsing as statistical pattern recognition.
Dissertation, Stanford University.

Manning, Christopher D. and Hinrich Schütze (1999), Foundations of Statistical Natural
Language Processing. Cambridge, Massachusetts: The MIT Press.

Màrquez, L. and H. Rodríguez (1998), Part-of-speech tagging using decision trees. In:
Claire Nédellec and Céline Rouveirol (editors), Proceedings of the 10th European
Conference on Machine Learning (ECML-98), volume 1398 of LNAI, 25-36.

Masand, Briji, Gordon Linoff, and David Waltz (1992), Classifying news stories using
memory-based reasoning. In: Nicholas J. Belkin, Peter Ingwersen, and Annelise Mark
Pejtersen, (editors), Proceedings of SIGIR-92, 15th ACM International Conference on
Research and Development in Information Retrieval, pages 59-65, Kobenhavn, DK.
ACM Press, New York, US.

McCarthy, J. F. and W. G. Lehnert (1995), Using decision trees for coreference
resolution. In: Proceedings of the 14th IJCAI, pages 1050-1055, Montreal, Canada, San
Mateo, CA: Morgan-Kaufmann.

McClelland, J. L. and D. E. Rumelhart (editors), Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, volume 2: Psychological and Biological
Models. Cambridge, MA: The MIT Press, 1986.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press.

Mitchell, T. (1997), Machine learning. New York, NY: McGraw Hill.

Mooney, R. J. (1996), Comparative experiments on disambiguating word senses: An
illustration of the role of bias in machine learning. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing, EMNLP, 82-91.

Mooney, R. J. and M. E. Califf (1996), Learning the past tense of English verbs using
inductive logic programming. In: S. Wermter, E. Riloff, and G. Scheler, (editors),
Connectionist, Statistical, and Symbolic Approaches to Learning for Natural Language
Processing. Springer, Berlin, 370-384.

Nagao, M. (1984), A framework of a mechanical translation between Japanese and
English by analogy principle. In: A. Elithorn and R. Banerji (editors), Artificial and
human intelligence. Amsterdam: North-Holland, 173-180.

Natarajan, B.K. (1991), Machine Learning: A Theoretical Approach. San Mateo, CA:
Morgan Kaufmann.

Ng, Hwee Tou and Hian Beng Lee (1996), Integrating multiple knowledge sources to
disambiguate word sense: An exemplar-based approach. In: Proceedings of the 34th
meeting of the Association for Computational Linguistics.

Niyogi, P. and R. C. Berwick (1994), A Markov language learning model for finite
parameter spaces. In: Proceedings of 32nd meeting of Association for Computational
Linguistics,

Quinlan, J.R. (1993), C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann.

Reilly, R. G. and N. E. Sharkey (editors), Connectionist Approaches to Natural Language
Processing. Hillsdale, NJ: Lawrence Erlbaum Associates, 1992.

Resnik, Philip (1996), Selectional constraints: an information-theoretic model and its
computational realization. In: Cognition, 61: 127-159.

Riesbeck, C. and R. Schank (1989), Inside Case-Based Reasoning. Northvale, NJ:
Erlbaum.

Riloff, Ellen and Wendy Lehnert (1994), Information extraction as a basis for high-

precision text classification. In: ACM Transactions on Information Systems, 12(3), 296-
333.

Scha, Remko, Rens Bod, and Khalil Sima'an (1999), A memory-based model of syntactic
analysis: data-oriented parsing. In: Journal of Experimental and Theoretical Artificial
Intelligence, 11, 409-440.

Schmid, H. (1994), Probabilistic part-of-speech tagging using decision trees. In:
Proceedings of the International Conference on New Methods in Language Processing.

Sharkey, N. (1992), Connectionist Natural Language Processing. New York: Weather
Hill.

Simmons, Robert F. and Yeong-Ho Yu (1992), The acquisition and use of context-
dependent grammars for English. In: Computational Linguistics, 18(4), 391-418,
December.

Siskind, Jeffrey (1996), A computational study of cross-situational techniques for
learning word-to-meaning mappings. In: Cognition, 61, 39-91.

Skousen, R. (1989), Analogical modeling of language. Dordrecht: Kluwer Academic
Publishers.

Skousen, R. (1992), Analogy and Structure. Dordrecht: Kluwer Academic Publishers.

Stanfill, C. and D. Waltz (1986), Toward memory-based reasoning. In: Communications
of the ACM, 29(12), 1213-1228, December.

Vapnik, V. N. (1995), The Nature of Statistical Learning Theory. New York: Springer.

Weijters, A. (1991), A simple look-up procedure superior to Nettalk? In: Proceedings of
the International Conference on Artificial Neural Networks - ICANN-91, Espoo, Finland.

Weiss, S. and C. Kulikowski (1991), Computer systems that learn. San Mateo, CA:
Morgan Kaufmann.

Wermter, Stefan, Ellen Riloff, and Gabriele Scheler (editors), Connectionist, Statistical,
and Symbolic Approaches to Learning for Natural Language Processing. Lecture Notes
in Artificial Intelligence, volume 1040. Berlin: Springer, 1996.

Wettschereck, D., D. W. Aha, and T. Mohri (1997), A review and comparative evaluation
of feature-weighting methods for a class of lazy learning algorithms. In: Artificial
Intelligence Review 11, 273-314.

Yang, Yiming and Christopher G. Chute (1994), An example-based mapping method for
text categorization and retrieval. In: ACM Transactions on Information Systems, 12(3),

252-277, July. Special Issue on Text Categorization.

Zelle, J. M. and R. J. Mooney (1993), Learning semantic grammars with constructive
inductive logic programming. In: Proceedings of the 11th National Conference on
Artificial Intelligence, 817-822, Washington, D.C., July. AAAI Press/MIT Press.

Zelle, J. M. and R. J. Mooney (1996), Comparative results on using inductive logic
programming for corpus-based parser construction. In: S. Wermter, E. Riloff, and G.
Scheler, (editors), Connectionist, Statistical, and Symbolic Approaches to Learning for
Natural Language Processing. Springer, Berlin, 355-369.

