
Rule Meta-learning for Trigram-Based Sequence Processing

Sander Canisius S.V.M.Canisius@uvt.nl

ILK / Computational Linguistics and AI, Tilburg University, The Netherlands

Antal van den Bosch Antal.vdnBosch@uvt.nl

ILK / Computational Linguistics and AI, Tilburg University, The Netherlands

Walter Daelemans walter.daelemans@ua.ac.be

CNTS, Department of Linguistics, University of Antwerp, Belgium

Abstract

Predicting overlapping trigrams of class la-
bels is a recently-proposed method to im-
prove performance on sequence labelling
tasks. In this method, sequence elements
are effectively classified three times, there-
fore some procedure is needed to post-process
those overlapping classifications into one out-
put sequence. In this paper, we present a
rule-based procedure learned automatically
from training data. In combination with
a memory-based leaner predicting class tri-
grams, the performance of this meta-learned
overlapping trigram post-processor matches
that of a handcrafted post-processing rule
used in the original study on class tri-
grams. Moreover, on two domain-specific en-
tity chunking tasks, the class trigram method
with automatically learned post-processing
rules compares favourably with recent proba-
bilistic sequence labelling techniques, such as
maximum-entropy markov models and con-
ditional random fields.

1. Introduction

Many tasks in natural language processing involve the
complex mapping of sequences to other sequences.
One typical machine-learning approach to such se-
quence labelling tasks is to rephrase the sequence-to-
sequence mapping task (where a sequence can have a
variable length) as a decomposition into a sequence of
local classification steps. In each step, one fixed-length

Appearing in Proceedings of the 4 th Learning Language in
Logic Workshop (LLL05), Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

feature vector is mapped to an isolated token in the
output sequence. After all local classifications have
been made, a simple concatenation of the predicted
output tokens yields the complete output sequence.

The standard representational approach to decom-
pose sequence processes into local-classification cases,
is windowing. Within a window, fixed-length subse-
quences of adjacent input symbols, representing a cer-
tain contextual scope, are mapped to one output sym-
bol, typically associated with one of the input symbols,
for example the middle one. The fact that the classi-
fier is only trained to associate subsequences of input
symbols to single output symbols as accurately as pos-
sible is a problematic restriction: it may easily cause
the classifier to produce invalid or impossible output
sequences, since it is incapable of taking into account
any decisions it has made earlier, or even decisions it
might have to make further on in the input sequence.

Techniques attempting to circumvent this restriction
can be categorised mainly into two general classes.
One of those improves upon naive methods by opti-
mising towards the most likely sequence of class labels,
rather than the sequence of individually most likely la-
bels. In order to find this most likely sequence in tasks
where the class labels of sequence elements are strongly
interrelated, it may be necessary to match sequence el-
ements with class labels that are deemed sub-optimal
by the underlying classifier, which only bases its de-
cisions on local information. This class of techniques
includes recently proposed methods such as maximum-
entropy markov models (McCallum et al., 2000) and
conditional random fields (Lafferty et al., 2001).

The other class is formed by techniques that rely more
on the quality of the predictions made by the under-
lying classifier; they do not consider label sequences
other than those derived from the class labels sug-



Rule Meta-learning for Trigram-Based Sequence Processing

gested by the classifier to be the most-likely ones.
Representatives of this class that have been used for
sequence labelling tasks in the past are a feedback-
loop method as used for example by Daelemans et al.
(1996) with memory-based learning, and by Ratna-
parkhi (1996) with maximum-entropy modelling, in
which previous decisions are encoded as features in the
current input of the classifier, and stacking (Wolpert,
1992), a term referring to meta-learning systems that
learn to correct errors made by lower-level classifiers.

Predicting overlapping trigrams of class labels, a new
method for performing sequence labelling proposed by
Van den Bosch and Daelemans (2005), can be seen as
a member of the latter class. That is, the technique
can be applied to any classifier able to predict a most-
likely class label for a given test instance; there is no
requirement that the classifier also models the likeli-
hood of other, sub-optimal classes as is required for the
methods in the first class. However, with the trigram
class method, the final label sequence is not simply
obtained by concatenating the classifications for the
individual sequence elements. With the trigram class
method each sequence element is effectively classified
three times; for this reason, some post-processing is
required to determine the final label to be assigned to
each sequence element.

Van den Bosch and Daelemans (2005) use a sim-
ple voting technique with a tie-breaking rule based
on classifier-dependent confidence values for this pur-
pose, but emphasise that this is just one possible,
and rather simple technique to combine overlapping
trigram classes. Other post-proecssing methods may
prove to be more appropriate, for example by result-
ing in better performance scores, or by allowing the
full potential of the n-gram class method (with n > 3)
to be reached. This paper presents one such alter-
native, based on rule induction where features corre-
spond to various logical assertions about the identity
of the overlapping trigrams, or equalities between the
three overlapping predictions.

The learned post-processing rules are tested in a pair
of benchmark experiments, where a memory-based
learner, which was the better performing classifier out
of three different classifiers tested by Van den Bosch
and Daelemans (2005), is combined with the class tri-
gram method to perform two domain-specific entity
chunking task. On these tasks, we evaluate the effect
of using rule induction for combining overlapping tri-
grams and show that the class trigram method with a
post-processing method based on rule induction is able
to improve upon the baseline performance, with mar-
gins comparable to those obtained with a handcrafted

combination procedure.

To measure the relative performance of the memory-
based learning/class trigram combination, we also per-
form a series of experiments where three state-of-the-
art probabilistic sequence labelling techniques – con-
ditional markov models, maximum-entropy markov
models, and conditional random fields – are applied to
the same benchmark tasks. On one of the two tasks,
the memory-based learner with trigram classes, out-
performs all three probabilistic learners; on the other
task, conditional random fields prove to be superior,
with the memory-based learner ending second.

The structure of the paper is as follows. First, we in-
troduce the two chunking sequence segmentation tasks
studied in this paper, in Section 2. Section 3 intro-
duces two approaches for automatically learning class
trigram combination rules, and reports on experiments
that evaluate the performance of the resulting combi-
nation procedures. Next, the class trigram method
is empirically compared with three recent probabilis-
tic sequence labelling methods in Section 4. Finally,
Section 5 sums up and discusses the main empirical
results.

2. Data and Methodology

The two data sets that have been used for this study
are examples of sentence-level entity chunking tasks:
concept extraction from general medical encyclopedic
texts (henceforth med), and labelling of DNA, RNA,
protein, cellular, and chemical terms in MEDLINE ab-
stracts (genia). Med is a data set extracted from a
semantic annotation of parts of two Dutch-language
medical encyclopedias. On the chunk-level of this an-
notation, there are labels for various medical concepts,
such as disease names, body parts, and treatments,
forming a set of twelve concept types in total. Chunk
sizes range from one to a few tokens. Using a 90%–
10% split for producing training and test sets, there
are 428,502 training examples and 47,430 test exam-
ples.

Bij [infantiel botulisme]disease kunnen in extreme

gevallen [ademhalingsproblemen]symptom en [alge-

hele lusteloosheid]symptom optreden.

The Genia corpus (Tateisi et al., 2002) is a collection
of annotated abstracts taken from the National Li-
brary of Medicine’s MEDLINE database. Apart from
part-of-speech tagging information, the corpus anno-
tates a subset of the substances and the biological lo-
cations involved in reactions of proteins. Using a 90%–
10% split for producing training and test sets, there are



Rule Meta-learning for Trigram-Based Sequence Processing

458,593 training examples and 50,916 test examples.

Most hybrids express both [KBF1]protein and [NF-

kappa B]protein in their nuclei, but one hybrid ex-

presses only [KBF1]protein.

Apart from having a similar size, both data sets are
alike in the sense that most words are outside chunks;
many sentences may even contain no chunks at all.
Thus, the class distributions of both tasks are highly
skewed. In this respect the tasks differ from, for ex-
ample, syntactic tasks such as part-of-speech tagging
or base-phrase chunking, where almost all tokens are
assigned a relevant class. However, for all tasks men-
tioned, whenever chunks are present in a sentence,
there is likely to be interaction between them, where
the presence of one chunk of a certain type may be a
strong indication of the presence of another chunk of
the same or a different type in the same sentence.

2.1. Experimental Setup

Van den Bosch and Daelemans (2005) tested their
class trigram method with three different classifiers
as base classifier; of those three classifiers, memory-
based learning performed best; hence, the experiments
in Section 3, where the class trigram method is evalu-
ated, are performed using the memory-based learning
or k-nearest neighbour algorithm (Cover & Hart, 1967)
as implemented in the TiMBL software package (ver-
sion 5.1) (Daelemans et al., 2004). The combination
rules for merging the overlapping class trigrams pro-
duced by the base classifier are induced using ripper

(Cohen, 1995).

The memory-based learning algorithm has algorithmic
parameters that bias its performance; for example, the
number of nearest neighbours, the distance metric, etc.
The optimal values for these parameters may differ de-
pending on the task to be learned. To obtain maxi-
mum performance, we optimised the parameter set-
tings on each task using wrapped progressive sampling
(wps) (Van den Bosch, 2004), a heuristic automatic
procedure that, on the basis of validation experiments
internal to the training material, searches among al-
gorithmic parameter combinations for a combination
likely to yield optimal generalisation performance on
unseen data. We used wrapped progressive sampling
in all experiments.

The experiments described in Section 4 are per-
formed using three different probabilistic sequence
learning techniques. Conditional markov models and
maximum-entropy markov models have been imple-
mented on top of the maximum-entropy toolkit (ver-

sion 20041229) by Zhang Le1. For conditional random
fields, we used the implementation of MALLET (Mc-
Callum, 2002).

Instances for all experiments are generated for each
token of a sentence, with features for seven-word win-
dows of words and their (predicted) part-of-speech
tags. The class labels assigned to the instances form
an IOB encoding of the chunks in the sentence, as
proposed by Ramshaw and Marcus (1995). In this en-
coding the class label for a token specifies whether the
token is inside (I), outside (O), or at the beginning of a
chunk (B). An additional type label appended to this
symbol denotes the type of the chunk. The instances
are used in exactly this form in all experiments for all
algorithms; no feature selection or construction is per-
formed to optimise the instances for a specific task or
classifier. Keeping the feature vectors unchanged over
all experiments and classifiers is arguably the most ob-
jective setup for comparing the results.

Generalisation performance is measured by the F-score
(β = 1) on correctly identified and labelled entity
chunks in test data. Experimental results are pre-
sented in terms of a mean score, and an approximate
90%-confidence interval; both of those are estimated
with bootstrap resampling (Noreen, 1989). Confidence
intervals are assumed to be centred around the mean,
where the width of the halves at both sides of the
mean is taken to be the maximum of the true widths
obtained in the resampling process.

3. Predicting Class Trigrams

a cb d fe g

A B C D E F G

input sequence

output sequence

a cb_ _ b dc_ a

, , ...
window 1 window 2

A_ B B CA

Figure 1. Windowing process with trigrams of class sym-
bols. Sequences of input symbols and output symbols are
converted into windows of fixed-width input symbols each
associated with, in this example, trigrams of output sym-
bols.

1http://homepages.inf.ed.ac.uk/s0450736/
maxent toolkit.html



Rule Meta-learning for Trigram-Based Sequence Processing

As Van den Bosch and Daelemans (2005) argue, there
is no intrinsic bound to what is packed into a class la-
bel associated to a windowed example. For example,
complex class labels can span over trigrams of singu-
lar class labels. Figure 1 illustrates the procedure by
which windows are created with class trigrams. Each
windowed instance maps to a class label that incorpo-
rates three atomic class labels, namely the focus class
label that was the original unigram label, plus its im-
mediate left and right neighbouring class labels.

While creating instances this way is trivial, it is not
entirely trivial how the output of overlapping class
trigrams recombines into a normal string of class se-
quences. When the example illustrated in Figure 1 is
followed, each single class label in the output sequence
is effectively predicted three times; first, as the right
label of a trigram, next as the middle label, and finally
as the left label. The redundancy caused by predict-
ing each class label three times may be exploited to do
better than the classifier that only predicts each class
label once. What is needed then, is a combination
procedure that intelligently determines the final class
label for each token, given a number of overlapping
predictions.

Van den Bosch and Daelemans (2005) propose a simple
procedure based on the observation that, in the case of
overlapping class label trigrams, it is possible to vote
over them. The voting scheme proposed by Van den
Bosch and Daelemans (2005) returns the class label
which receives the majority of votes (in this case, either
two or three), or when all tree votes disagree (i.e. when
majority voting ties), returns the class label of which
the classifier is most confident. Classifier confidence,
needed for tie-breaking, is a classifier-specific metric
expressing the classifier’s confidence in the correctness
of the predicted class; for the memory-based learner it
may be heuristically estimated by, for example, taking
the distance of the nearest neighbour, which is the
approach adopted by (Van den Bosch & Daelemans,
2005).

Clearly this scheme is one out of many possible
schemes: other post-processing rules may be used, as
well as other values of n (and having multiple classifiers
with different n, so that some back-off procedure could
be followed). Another interesting possibility, and the
approach taken in the current study, is to apply meta-
learning to the overlapping outputs of the first-stage
classifier, so that a data-driven post-processing proce-
dure is learned automatically from examples extracted
from a first-stage classifier producing overlapping class
trigrams.

In the current study, we developed two meta-learning

combination procedures based on rule induction, in
which the instances for the meta-learner describe the
overlapping class trigrams in some form, and the
classes to be predicted correspond to the combined un-
igram class label. The first method is a rather straight-
forward approach in which instances consist of features
for the three overlapping class trigrams; the other is
a more sophisticated procedure, where features cor-
respond to logical assertions about matches between
components of the overlapping trigrams. The exact de-
tails of both approaches are described in the remainder
of this section, where in addition, their performance is
evaluated on the two benchmark tasks med, and ge-

nia.

Meta-learning based on class trigram features

A straightforward design for a meta-learner for com-
bining multiple overlapping classifications into a single
class label is a classifier trained on instances that sim-
ply encode the overlapping classifications as features,
and the class labels for these meta-learning instances
correspond to the combined classes to be predicted.

To generate training data for the rule inducer, an in-
ternal cross-validation experiment has been performed
on the training data, resulting in a realistic set of ex-
amples of first-stage class trigram outputs. On the
training set thus obtained, a rule inducer has been
trained, leading to a rule set that predicts a single un-
igram class label given the three overlapping class tri-
grams predicted by the first-stage mbl classifier. The
performance of this rule set on both the med, and ge-

nia entity chunking tasks is presented in Table 1 under
the “Learned 1” column, where it is compared with the
performance of a unigram-class producing mbl classi-
fier, and with the performance of the handcrafted post-
processing procedure of Van den Bosch and Daelemans
(2005).

Compared with the baseline performance, the class tri-
gram method with this learned combination procedure
attains a substantial performance increase, thereby
both confirming the advantage of predicting class tri-
grams for sequence labelling tasks, and showing the
possibility of using a rule inducer to automatically pro-
duce combination rules that successfully exploit the
redundancy present in the overlapping class trigrams.
However, the learned combination rules do not perform
better than the handcrafted procedure, which outper-
forms the learned rules by approximately one point on
both tasks.



Rule Meta-learning for Trigram-Based Sequence Processing

Table 1. Comparison of generalisation performances of the baseline mbl classifier, and three trigram class approaches
using different combination procedures. The best performance per task is printed in bold.

Trigram post-processing

Task Baseline Handcrafted Learned 1 Learned 2

med 64.7 ±0.95 67.5 ±1.09 66.7 ±0.88 67.7 ±1.07
genia 55.7 ±1.14 60.1 ±1.01 58.9 ±1.11 60.4 ±1.12

Meta-learning based on class overlap features

A huge disadvantage of the previous approach is the
fact that the class trigrams encoded as features in the
instances can only be treated as atomic symbols by the
rule inducer; there is no way for a rule to refer to the
left component of a trigram, let alone to draw paral-
lels between a component of one trigram and that of
another. To circumvent this limitation, we designed
a more fine-grained description of the overlapping tri-
grams based on logical assertions about the compo-
nents of the overlapping trigrams, and about matches
between two trigrams regarding the class label of the
token in focus. For example, the following overlapping
trigrams

t−1 = (O, O, A)
t0 = (A, B, A)
t+1 = (A, O, C)

would be encoded as follows.

¬match on focuspos(t−1, t0),
match on focuspos(t−1, t+1),
¬match on focuspos(t0, t+1),
¬all agree on focuspos,

focussym(t−1) = A,
focussym(t0) = B,
focussym(t+1 = A)

Here, the focussym function returns the component
label of the argument trigram describing the token cur-
rently in focus; that is, for t−1, it returns the right
symbol, for t0, the middle, and for t+1, the left. The
match on focuspos relation can then be defined as

match on focuspos(x, y) ⇐⇒
focussym(x) = focussym(y)

By using this representation language for the overlap-
ping class trigrams, the rule inducer is guided to focus
on the information about the focus class present in
the trigrams. Again, training material for this exper-
iment has been generated by performing an internal
cross-validation on the training set.

As can be seen in Table 1 in the column marked

“Learned 2”, this instance description turns out to
be a better choice than our previous attempt, al-
lowing the rule inducer to produce combination rules
that outperform those produced by the method de-
scribed previously. It outperforms both the base-
line approach, and the previous meta-learned post-
processing method. Compared with the handcrafted
method, the meta-learned post-processing procedure
appears to perform slightly better, although this dif-
ference is nowhere near significance.

Analysis

The experiments described in this section show that
rule induction can be used to produce a set of post-
processing rules with which the class trigram method
can outperform the baseline classifier. However, the
fact that the best-performing learned combination pro-
cedure does not significantly outperform the hand-
crafted post-processing rule might seem surprising at
first. It should be noted though that the majority vot-
ing rule is rather high-level rule, not easily expressed
in the description language used in our experiments.
Suppose we would replace the confidence-based tie-
breaking rule in the handcrafted post-processing pro-
cedure by a rule that always selects the focus symbol
of the middle trigram. In that case, a logical formula-
tion of the majority voting procedure would probably
look like the following decision list.

∀X(
focussym(t−1) = focussym(t+1) = X ⇒ X,
focussym(t0) = X ⇒ X)

However, such use of variables is not possible in our
description language. The best rule induction can do
to match majority voting behaviour is to invent it sep-
arately for each class.

focussym(t−1) = focussum(t+1) = I–disease ⇒
I–disease,
focussum(t−1) = focussum(t+1) = B–disease ⇒
B–disease,
. . .
focussym(t0) = I–disease ⇒ I–disease,
focussym(t0) = B–disease ⇒ B–disease,
. . .



Rule Meta-learning for Trigram-Based Sequence Processing

Table 2. Percentage of agreement between handcrafted
post-processing and the meta-learned post-processing pro-
cedure in case there is a majority vote among the three
overlapping class trigrams, and in case there is no such
majority.

Task Majority No majority

med 99.16 30.80

genia 97.89 29.46

Given that the performance of the best learned com-
bination procedure roughly equals that of the hand-
crafted post-processing rule, the interesting question
is whether rule induction did in fact reinvent major-
ity voting, or whether it produced an entirely different
rule set that coincidentally results in comparable per-
formance.

An inspection of the rules produced for med offers a
mixed view. For many classes, there are high-priority
rules that dictate always believing the middle trigram,
be it in various different formulations. For other
classes, the highest-priority rule does first check for
an overruling majority, before assigning the class sug-
gested by the middle position in the middle trigram.
In addition to these rules, which may be interpreted
as voting-like behaviour, there are also more original
rules that select the class suggested by, for example,
the right trigram in favour of the one predicted by the
middle trigram; or even rules that might be interpreted
as small error correction rules.

For a more definite answer to the question whether the
learned rules emulate a majority voting procedure, we
computed two overlap metrics between the output of
the handcrafted post-processing procedure and that of
the meta-learned post-processing procedure: the first
measures the percentage of agreement between the two
in case there is a majority vote among the three over-
lapping class trigrams; the other measures the percent-
age of agreement in case there is no majority. The two
metrics computed for both benchmark tasks are listed
in Table 2. As can be seen, if there is a majority vote
among the overlapping trigrams, there is almost ex-
act agreement between the two different combination
procedures. However, in the case of no majority, both
methods agree on only 30 percent of the classifications.

These findings lead to the conclusion that the learned
combination procedure does indeed implement major-
ity voting. However, it differs from the original hand-
crafted post-processing rule in the way it deals with
ties. This is hardly surprising since the information
used for tie-breaking in the original voting rule – clas-
sifier confidence – is not available to the rule inducer

generating the learned combination procedure.

4. Predicting Class Trigrams versus
Probabilistic Output Sequence
Optimisation

The class trigram method proposed by Van den Bosch
and Daelemans (2005), and evaluated in a slightly
modified form in the previous section, is one method
for basing decisions for an individual token on the
wider sequential context of this token. Both Van den
Bosch and Daelemans (2005) and the current study
show that predicting class trigrams is an effective
method to improve upon a baseline classifier that clas-
sifies each token with respect to only a small local con-
text. In order to evaluate the class trigram method
with respect to more competitive reference scores, we
also compared the method with another popular ap-
proach for improving sequence labelling: probabilis-
tic sequence labelling techniques. In this section,
three different methods based on this general approach
are applied to the sample tasks: conditional markov
models, maximum-entropy markov models, and con-
ditional random fields.

4.1. Conditional Markov Model

Conditional markov models (cmm), as used for ex-
ample by Ratnaparkhi (1996), supplement a stan-
dard maximum-entropy model with a feedback loop,
in which a prespecified number of previous decisions
of the classifier are fed back to the input as features
for the current test instance. However, as maximum-
entropy models do not simply predict a single most-
likely class label, but rather model the entire condi-
tional class probability distribution, classification of
a token does not yield one partial labelling, namely,
the partial labelling up to the current token followed
by the current classification, but as many partial la-
bellings as there are target labels, namely the partial
labelling until the current token followed by any of the
possible target labels.

As the use of a feedback loop makes the current clas-
sification depend on the results of previous classifica-
tions, each token in the sequence has to be classified
in the context of each possible partial labelling up to
that point. Clearly, this approach, if applied naively,
gives rise to an exponential increase in possible partial
labellings at each token. Therefore, cmms employ a
beam search to find the eventual best labelling. With
beam search, at each point in time, only a prespeci-
fied number of partial labellings – those having high-
est probability – are considered for expansion, all the



Rule Meta-learning for Trigram-Based Sequence Processing

Table 3. Comparison of generalisation performances of the mbl classifier predicting class trigrams, and each of the prob-
abilistic methods. The best performances per task are printed in bold.

Task mbl cmm memm crf

med 67.7 ±1.07 59.7 ±1.07 60.3 ±1.13 63.4 ±0.95
genia 60.4 ±1.12 59.9 ±1.04 56.1 ±1.11 62.8 ±1.08

other candidates are discarded.

When tested on the two sample tasks, cmm obtains
the scores listed in the third column of Table 3. In
comparison with the trigram-predicting mbl classifier,
it performs considerably worse on med, but similarly
on genia.

4.2. Maximum-entropy Markov Model

A more recent probabilistic sequence labelling method
is the maximum-entropy markov model (memm), pro-
posed by McCallum et al. (2000). Derived from hid-
den markov models, memms are modelled after a prob-
abilistic state machine, in which, in the simplest case,
a state corresponds to the output label of the previous
token, and for each state, a separate conditional prob-
ability distribution determines the next state, that is,
the output label for the current token, given the fea-
ture vector of this token. A slight modification of
the Viterbi algorithm is used to determine the opti-
mal path through the state machine given the input
sequence.

The fourth column of Table 3 shows the performance of
memm applied to the med and genia tasks. On both
tasks, memm is outperformed by the mbl classifier.
For med, memm’s score is quite similar to that of cmm,
but on genia, memm is outperformed by cmm as well.

4.3. Conditional Random Fields

Conditional random fields (crf) (Lafferty et al., 2001)
have been designed to resolve some of the shortcom-
ings of memms. The main difference lies in the number
of probabilistic models used for estimating the condi-
tional probability of a sequence labelling: memms use
a separate probabilistic model for each state, whereas
crfs have a single model for estimating the likelihood
of an entire label sequence. The use of a single proba-
bilistic model leads to a more realistic distribution of
the probability mass among the alternative paths. As
a result, crfs tend to be less biased towards states
with few successor states than cmms and memms.

On both sample tasks, crf attains the highest scores of
all three probabilistic methods tested; the last column
in Table 3 shows the scores. Compared with mbl, crf

performs considerably worse on med, but this order is
reversed on genia, where crf attains the best score.

5. Conclusion

Classifiers trained on entity chunking tasks that make
isolated, near-sighted decisions on output symbols and
that do not optimise the resulting output sequences af-
terwards or internally through a feedback loop, tend to
produce weaker models for sequence processing tasks
than classifiers that do. The two entity chunking tasks
investigated in this paper are challenging tasks; not
only because they demand the classifier to be able to
segment and label variable-width chunks while obeying
the syntax of the chunk analysis, but also because pos-
itive examples of labelled chunks are scattered sparsely
in the data.

Following Van den Bosch and Daelemans (2005), this
paper used a method based on predicting overlapping
class trigrams to boost the performance of an mbl clas-
sifier on the two entity chunking tasks. Unlike the
original work on class trigrams, however, the current
study replaced the handcrafted post-processing rules
by post-processing procedures learned automatically
from labelled example data.

In a series of experiments, the two automatically
learned post-processing procedures have been com-
pared with a baseline unigram class predicting classi-
fier, and with a class trigram predicting classifier using
the original handcrafted post-processing rule. A meta-
learner that simply tries to map the three overlapping
class trigrams to a single class unigram was able to
improve upon the baseline performance, but in com-
parison with the handcrafted post-processing rule, its
performance was considerably worse.

The other meta-learned post-processing procedure
used a description language that was more fine-
grained, allowing the rules to refer to component sym-
bols of the trigrams, as well as matches between them.
With this representation language, a performance is
attained that matches that of the handcrafted post-
processing rule. Further analysis of the learned combi-
nation rules points out that they implement a voting
procedure in quite the same way as the handcrafted



Rule Meta-learning for Trigram-Based Sequence Processing

post-processing rule does. However, both methods do
differ in the way ties are dealt with. The handcrafted
rule bases its decision on classifier confidence, whereas
the learned procedure contains separate tie-breaking
rules for each different class. Overall, the results show
that predicting class trigrams is a useful method to
improve upon a baseline classifier predicting unigram
classes, and that majority voting is sound method for
combining the overlapping class trigrams produced by
the base classifier.

In order to evaluate the class trigram method with
more competitive reference scores, a number of prob-
abilistic sequence labelling methods have been evalu-
ated on the same entity chunking tasks. On the two
benchmark sets, the class trigram method compares
rather favourably with the probabilistic methods: on
med, it outperforms all three probabilistic methods by
large margin; on genia, conditional random fields are
the best performing method, mbl with class trigrams
ending second, with a performance that is roughly sim-
ilar to that of the conditional markov model.

These findings suggest that not only is the class tri-
gram method able to improve upon a baseline clas-
sifier predicting only unigram classes, an optimised
mbl classifier predicting class trigrams followed by a
learned combination procedure also performs rather
similarly to state-of-the-art probabilistic sequence la-
belling techniques.

Acknowledgements

The work of the first author is funded by the Nether-
lands Organisation for Scientific Research (NWO) as
part of the NWO IMIX Programme.

References

Cohen, W. (1995). Fast effective rule induction. Pro-
ceedings 12th International Conference on Machine
Learning (pp. 115–123). Morgan Kaufmann.

Cover, T. M., & Hart, P. E. (1967). Nearest neigh-
bor pattern classification. Institute of Electrical and
Electronics Engineers Transactions on Information
Theory, 13, 21–27.

Daelemans, W., Zavrel, J., Berck, P., & Gillis, S.
(1996). mbt: A memory-based part of speech tag-
ger generator. Proceedings of Fourth Workshop on
Very Large Corpora (pp. 14–27).

Daelemans, W., Zavrel, J., Van der Sloot, K., & Van
den Bosch, A. (2004). TiMBL: Tilburg memory
based learner, version 5.1.0, reference guide (Tech-

nical Report ILK 04-02). ILK Research Group,
Tilburg University.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. Proceedings
of the 18th International Conference on Machine
Learning. Williamstown, MA.

McCallum, A., Freitag, D., & Pereira, F. (2000).
Maximum entropy Markov models for information
extraction and segmentation. Proceedings of the
17th International Conference on Machine Learn-
ing. Stanford, CA.

McCallum, A. K. (2002). Mallet: A machine learning
for language toolkit. http://mallet.cs.umass.edu.

Noreen, E. (1989). Computer-intensive methods for
testing hypotheses: an introduction. John Wiley and
sons.

Ramshaw, L., & Marcus, M. (1995). Text chunking
using transformation-based learning. Proceedings
of the 3rd ACL/SIGDAT Workshop on Very Large
Corpora, Cambridge, Massachusetts, USA (pp. 82–
94).

Ratnaparkhi, A. (1996). A maximum entropy part-
of-speech tagger. Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
May 17-18, 1996, University of Pennsylvania.

Tateisi, Y., Mima, H., Tomoko, O., & Tsujii, J. (2002).
Genia corpus: an annotated research abstract cor-
pus in molecular biology domain. Human Language
Technology Conference (HLT 2002) (pp. 73–77).

Van den Bosch, A. (2004). Wrapped progressive sam-
pling search for optimizing learning algorithm pa-
rameters. Proceedings of the 16th Belgian-Dutch
Conference on Artificial Intelligence (pp. 219–226).
Groningen, The Netherlands.

Van den Bosch, A., & Daelemans, W. (2005). Im-
proving sequence segmentation learning by predict-
ing trigrams. Proceedings of the Ninth Conference
on Computational Natural Language Learning. To
appear.

Wolpert, D. H. (1992). Stacked Generalization. Neural
Networks, 5, 241–259.


