
Feature-Rich Memory-Based Classification for
Shallow NLP and Information Extraction

Jakub Zavrel1 and Walter Daelemans2

1 Textkernel BV, Nieuwendammerkade 28/a17, 1022 AB, Amsterdam, The
Netherlands
zavrel@textkernel.nl

2 CNTS, University of Antwerp, Universiteitsplein 1, Building A,
B-2610 Antwerpen, Belgium
walter.daelemans@uia.ua.ac.be

Abstract. Memory-Based Learning (MBL) is based on the storage of all available
training data, and similarity-based reasoning for handling new cases. By inter-
preting tasks such as POS tagging and shallow parsing as classification tasks, the
advantages of MBL (implicit smoothing of sparse data, automatic integration and
relevance weighting of information sources, handling exceptional data) contribute
to state-of-the-art accuracy. However, Hidden Markov Models (HMM) typically
achieve higher accuracy than MBL (and other Machine Learning approaches) for
tasks such as POS tagging and chunking. In this paper, we investigate how the
advantages of MBL, such as its potential to integrate various sources of informa-
tion, come to play when we compare our approach to HMMs on two Information
Extraction (IE) datasets: the well-known Seminar Announcement data set and a
new German Curriculum Vitae data set.

1 Memory-Based Language Processing

Memory-Based Learning (MBL) is a supervised classification-based learning
method. A vector of feature values (an instance) is associated with a class by a
classifier that lazily extrapolates from the most similar set (nearest neighbors)
selected from all stored training examples. This is in contrast to eager learning
methods like decision tree learning [26], rule induction [9], or Inductive Logic
Programming [7], which abstract a generalized structure from the training
set beforehand (forgetting the examples themselves), and use that to derive
a classification for a new instance.

In MBL, a distance metric on the feature space defines what are the
nearest neighbors of an instance. Metrics with feature weights based on
information-theory or other relevance statistics allow us to use rich repre-
sentations of instances and their context, and to balance the influences of
diverse information sources in computing distance.

Natural Language Processing (NLP) tasks typically concern the mapping
of an input representation (e.g., a series of words) into an output represen-
tation (e.g., the POS tags corresponding to each word in the input). Most
NLP tasks can therefore easily be interpreted as sequences of classification



34 Zavrel, Daelemans

tasks: e.g., given a word and some representation of its context, decide what
tag to assign to each word in its context. By creating a separate classification
instance (a “moving window” approach) for each word and its context, shal-
low syntactic or semantic structures can be produced for whole sentences or
texts. In this paper, we argue that more semantic and complex input-output
mappings, such as Information Extraction, can also effectively be modeled
by such a Memory-based classification-oriented framework, and that this ap-
proach has a number of very interesting advantages over rivalling methods,
most notably that each classification decision can be made dependent on a
very rich and diverse set of features.

The properties of MBL as a lazy, similarity-based learning method seem
make a good fit to the properties of typical disambiguation problems in NLP:

• Similar input representations lead to similar output. E.g., words
occurring in a similar context in general have the same POS tag. Simi-
larity-based reasoning is the core of MBL.

• Many sub-generalizations and exceptions. By keeping in memory
all training instances, exceptions included, an MBL approach can capture
generalization from exceptional or low-frequency cases according to [12].

• Need for integration of diverse types of information. E.g., in In-
formation Extraction, lexical features, spelling features, syntactic as well
as phrasal context features, global text structure, and layout features can
potentially be very relevant.

• Automatic smoothing in very rich event spaces. Supervised learn-
ing of NLP tasks regularly runs into problems of sparse data; not enough
training data is available to extract reliable parameters for complex mod-
els. MBL incorporates an implicit robust form of smoothing by similar-
ity [33].

In the remainder of this Section, we will show how a memory-, similarity-,
and classification-based approach can be applied to shallow syntactic parsing,
and can lead to state-of-the-art accuracy. Most of the tasks discussed here
can also easily be modeled using Hidden Markov Models (HMM), and often
with surprising accuracy. We will discuss the strengths of the HMMs and
draw a comparison between the classification-based MBL method and the
sequence-optimizing HMM approach (Section 1.2).

1.1 Memory-Based Shallow Parsing

Shallow parsing is an important component of most text analysis systems in
Text Mining applications such as information extraction, summary genera-
tion, and question answering. It includes discovering the main constituents
of sentences (NPs, VPs, PPs) and their heads, and determining syntactic re-
lationships like subject, object, adjunct relations between verbs and heads of
other constituents. This is an important first step to understanding the who,
what, when, and where of sentences in a text.



Feature-Rich Memory-Based Classification for Information Extraction 35

In our approach to memory-based shallow parsing, we carve up the syntac-
tic analysis process into a number of classification tasks with input vectors
representing a focus item and a dynamically selected surrounding context.
These classification tasks can be segmentation tasks (e.g., decide whether a
focus word or tag is the start or end of an NP) or disambiguation tasks (e.g.,
decide whether a chunk is the subject NP, the object NP or neither). Out-
put of some memory-based modules is used as input by other memory-based
modules (e.g., a tagger feeds a chunker and the latter feeds a syntactic rela-
tion assignment module). Similar ideas about cascading of processing steps
have also been explored in other approaches to text analysis: e.g., finite state
partial parsing [1,18], statistical decision tree parsing [23], and maximum
entropy parsing [30]. The approach briefly described here is explained and
evaluated in more detail in [10,11,6] 1.

Chunking The phrase chunking task can be defined as a classification task
by generalizing the approach of [28], who proposed to convert NP-chunking
to tagging each word with I for a word inside an NP, O for outside an NP,
and B for between two NPs). The decision on these so called IOB tags for a
word can be made by looking at the Part-of-Speech tag and the identity of
the focus word and its local context. For the more general task of chunking
other non-recursive phrases, we simply extend the tag set with IOB tags for
each type of phrase. To illustrate this encoding with the extended IOB tag
set, we can tag the sentence:

But/CC [NP the/DT dollar/NN NP] [ADVP later/RB ADVP]

[VP rebounded/VBD VP] ,/, [VP finishing/VBG VP] [ADJP slightly/RB

higher/R ADJP] [Prep against/IN Prep] [NP the/DT yen/NNS NP]

[ADJP although/IN ADJP] [ADJP slightly/RB lower/JJR ADJP]

[Prep against/IN Prep] [NP the/DT mark/NN NP] ./.

as:
But/CCO the/DTI−NP dollar/NNI−NP later/RBI−ADV P

rebounded/VBDI−V P ,/,O finishing/VBGI−V P slightly/RBI−ADV P

higher/RBRI−ADV P against/INI−Prep the/DTI−NP yen/NNSI−NP

although/INI−ADJP slightly/RBB−ADJP lower/JJRI−ADJP

against/INI−Prep the/DTI−NP mark/NNI−NP ./.O

Table 1 (from [6]) shows the accuracy of this memory-based chunking
approach when training and testing on Wall Street Journal material. We
report Precision, Recall, and Fβ=1 scores, a weighted harmonic mean of Recall

and Precision (Fβ = (β2+1)∗P∗R

β2∗P+R) ).

1 An online demonstration of the Memory-Based Shallow Parser can be found at
http://ilk.kub.nl .



36 Zavrel, Daelemans

type precision recall Fβ=1

NPchunks 92.5 92.2 92.3
VPchunks 91.9 91.7 91.8
ADJPchunks 68.4 65.0 66.7
ADVPchunks 78.0 77.9 77.9
Prepchunks 95.5 96.7 96.1

PPchunks 91.9 92.2 92.0

ADVFUNCs 78.0 69.5 73.5

Table 1. Results of chunking–labeling experiments. Reproduced from [6].

Grammatical Relation Finding After POS tagging, phrase chunking and
labeling, the last step of the shallow parsing consists of resolving the (types
of) attachment between labeled phrases. This is done by using a classifier to
assign a grammatical relation (GR) between pairs of words in a sentence. In
our approach, one of these words is always a verb, since this yields the most
important GRs. The other word (focus) is the head of the phrase which is
annotated with this grammatical relation in the treebank (e.g., a noun as
head of an NP).

An instance for such a pair of words is constructed by extracting a set
of feature values from the sentence. The instance contains information about
the verb and the focus: a feature for the word form and a feature for the POS
of both. It also has similar features for the local context of the focus. Experi-
ments on the training data suggest an optimal context width of two words to
the left and one to the right. In addition to the lexical and the local context
information, superficial information about clause structure was included: the
distance from the verb to the focus, counted in words. A negative distance
means that the focus is to the left of the verb. Other features contain the
number of other verbs between the verb and the focus, and the number of
intervening commas. These features were chosen by manual “feature engi-
neering”. Table 2 shows some of the feature-value instances corresponding to
the following sentence (POS tags after the slash, chunks denoted with square
and curly brackets, and adverbial functions after the dash):

[ADVP Not /RB surprisingly /RB ADVP] ,/, [NP Peter /NNP Miller /NNP

NP] ,/, [NP who /WP NP] [VP organized /VBD VP] [NP the /DT

conference /NN NP] {PP-LOC [Prep in /IN Prep] [NP New /NNP York /NNP

NP] PP-LOC} ,/, [VP does /VBZ not /RB want /VB to /TO come /VB VP]

{PP-DIR [Prep to /IN Prep] [NP Paris /NNP NP] PP-DIR} [Prep

without /IN Prep] [VP bringing /VBG VP] [NP his /PRP$ wife /NN NP].

Table 3 shows the results of the experiments. In the first row, only POS tag
features are used. Other rows show the results when adding several types of
chunk information as extra features. The more structure is added, the better



Feature-Rich Memory-Based Classification for Information Extraction 37

Struct. Verb Context -2 Context -1 Focus Context +1 Class

word pos cat word pos cat pr word pos cat adv word pos cat

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

-5 0 2 org. vbd - - - - - - - surpris. rb advp - , , - -
-3 0 1 org. vbd surpris. rb advp , , - - Miller nnp np - , , - -
-1 0 0 org. vbd Miller nnp np , , - - who wp np - org. vbd vp np-sbj
1 0 0 org. vbd who wp np org. vbd vp - conf. nn np - York nnp pp np
2 0 0 org. vbd org. vbd vp conf. nn np in York nnp pp loc , , - -

Table 2. The first five instances for the sentence in the text. Features 1–3 are the
features for distance and intervening VPs and commas. Features 4 and 5 show the
verb and its POS. Features 6–8, 9–11 and 17–19 describe the context words/chunks,
Features 12–16 the focus chunk. Empty contexts are indicated by the “-” for all
features.

the results: precision increases from 60.7% to 74.8%, recall from 41.3% to
67.9%. This in spite of the fact that the added information is not always
correct, because it was predicted for the test material on the basis of the
training material by the chunking classifiers.

All Subj. Obj. Loc. Temp.

Structure in input Feat. # Inst. ∆ Prec Rec Fβ=1 Fβ=1 Fβ=1 Fβ=1 Fβ=1

words & POS only 13 350091 6.1 60.7 41.3 49.1 52.8 49.4 34.0 38.4

+NP chunks 17 227995 4.2 65.9 55.7 60.4 64.1 75.6 37.9 42.1

+VP chunks 17 186364 4.5 72.1 62.9 67.2 78.6 75.6 40.8 46.8

+ADVP/ADJP
chunks

17 185005 4.4 72.1 63.0 67.3 78.8 75.8 40.4 46.5

+Prep chunks 17 184455 4.4 72.5 64.3 68.2 81.2 75.7 40.4 47.1

+PP chunks 18 149341 3.6 73.6 65.6 69.3 81.6 80.3 40.6 48.3

+ADVFUNCs 19 149341 3.6 74.8 67.9 71.2 81.8 81.0 46.9 63.3

Table 3. Results of grammatical relation assignment with increasing levels of struc-
ture in the test data added by earlier modules in the cascade. Columns show the
number of features in the instances, the number of instances constructed from the
test input, the average distance between the verb and the focus element, precision,
recall and Fβ=1 over all relations, and Fβ=1 over some selected relations.

1.2 Hidden Markov Models

Except for the grammatical relation finder described in the previous section,
all components of the memory-based shallow parser could also be modeled
using Hidden Markov Models. An HMM is a finite state automaton with
probabilities attached to state transitions and to symbol emissions [27]. The
models are called ‘Hidden’ because we can not uniquely deduce which path
the automaton took through its state space from the observation of an emit-
ted symbol sequence. Tagging can be represented in an HMM by modeling
tags as states, so that the transition probability P (ti|ti−1) corresponds to the



38 Zavrel, Daelemans

conditional probability of seeing tag ti after tag ti−1. The emission probabil-
ities P (wj |ti) correspond to the chance of seeing a particular word wj when
being in state ti. These probabilities can be estimated from relative frequen-
cies in a tagged corpus, and are usually smoothed to accommodate for sparse
data and supplemented with a separate unknown word ‘guesser’ module to
provide lexical probabilities for out of vocabulary words. A sequence of sym-
bols is tagged by finding the most probable path through the state space,
given the model’s parameters and the input sequence.

A tag bigram model can in some sense only look at the previous tag in the
sequence and the lexical probabilities of the current word as an information
source for disambiguation. Richer information sources (i.e., features) can be
modeled by making the state space more complex, e.g., by having states for
every pair of tags, as is the case in typical trigram POS taggers [8,14,4]. An
HMM can also be interpreted as a sequence of classification decisions, namely
each step through the model classifies the present word given the previous
decision (or the previous two decisions in the case of trigram taggers) and
the word itself (the features). However, in contrast to e.g. the memory-based
classification models described above, HMMs do not commit to the previous
decision and move on. The search for the most probable path takes each
‘classification’ at step i − 1 into account, together with its probability, so
that all possible tag sequences are considered. In this way, a locally good
classification (based on only two features ‘word’ and ‘tag-1’ can be overridden
because it leads to a less likely path later in the sequence.

Due to this property, the HMM’s information horizon can effectively be
much larger that the explicit number of features it uses. In combination with
effective smoothing and unknown word guessing techniques, and the fact that
the small number of features allows for robust parameter estimation from even
very modest amounts of training data, this makes a good implementation of
a trigram HMM difficult to beat for POS tagging.

LOB WSJ Wotan WotanLite

Transformation-Based 96.37 96.28 – 94.63
Memory-Based 97.06 96.41 89.78 94.92
Maximum-Entropy 97.52 96.88 91.72 95.56
TnT 97.55 96.63 92.06 95.26

Table 4. The accuracy of feature-rich vs. HMM taggers on four POS datasets.

Table 4, shows how Trigrams ’n Tags (TnT) [4], rivals three other, feature-rich
and classification-based algorithms 2 on a number of corpora.

2 The Maximum Entropy-based tagger MXPOST [29], the Transformation-based
tagger of [5], and the Memory-based tagger MBT [10] (adapted from [19].



Feature-Rich Memory-Based Classification for Information Extraction 39

Many modern approaches to Information Extraction also make use of Hid-
den Markov Models or variants thereof [3,16,24]. An Information Extraction
task is typically modelled with an HMM that has a background state (or
empty tag) for all words except a phrase to be extracted and a filler state
(or extract tag) for the phrase that is a filler for a field to be extracted.
Several variations on this setup have shown to be surprisingly accurate in
comparison to various rule-learning methods. There are however, two impor-
tant issues with this straightforward use of HMMs in Information Extraction.
First, the HMMs are fundamentally short-sighted to the larger lexical con-
text. In semi-structured text, an instance of a filler string is often preceded
by a quasi-regular context. E.g., in the seminar announcement data set dis-
cussed below, a speaker instance is often preceded by phrases like: “Who :”,
“featuring”, or followed by phrases like “will give a talk”, “will discuss”, etc.
An HMM with only states for background and filler tags will never be able to
make use of such information: The typical left context of a phrase of interest
will be generated from the background state, just as other irrelevant parts
of the document. The transition from the background state to the filler state
will not become more likely by the occurrence of the informative cue phrase.
In the works cited above, this has been dealt with, either by modifying the
standard conditioning of the state transition probability from P (ti|ti−1) to
P (ti|ti−1, wi−1) [3], or by modifying the state space of the HMM so that spe-
cial prefix and suffix states are reserved to tag the left and right context of the
filler [16,17]. These modifications have shown to work very well in experimen-
tal comparisons, making HMMs the state-of-the-art method for Information
Extraction. A second problem in the HMM framework is how to use diverse
information sources. In many interesting IE domains success may depend on
knowledge of the syntactic structure, or on the paragraph, discourse, or lay-
out structure of the whole text. It is possible to incorporate these types of
information in the model’s state space as well. However, the room for maneu-
vering is limited. Each additional feature that is factored into the state space
increases its size multiplicatively. This leads to an exponential slowdown of
the HMM, whose tagging speed is quadratic in the size of the state space,
and to exponential increase of data sparsity. The effects of data sparsity can
be mitigated by effective smoothing techniques, such as deleted interpola-
tion, or shrinkage [16]. Shrinkage, for example, interpolates the probability
distributions between complex states in a model and similar states in sim-
pler versions of the model. However, the need to define an explicit back-off
ordering from specific complex states to similar but more general states leads
to a combinatorial explosion as well [33]. In contrast, Memory-Based Learn-
ing, and other classification-based frameworks, can provide better solutions
for these complex modeling problems by factoring the fusion of information
sources into the feature space rather than into the state space.



40 Zavrel, Daelemans

2 Memory-Based Information Extraction

The task of Information Extraction (IE), arguably the core activity in the
field of text mining, is to extract specific pre-defined types of information
from unrestricted text; i.e. finding fillers in a text for predefined slots in some
template. In current approaches to IE using supervised machine learning,
extraction patterns are learned on the basis of linguistically enriched cor-
pora, and the patterns are, possibly after manual post-processing, used in IE
systems [31,20,32,7].

However, it is also possible to interpret IE as a classification task, similar
to NLP tasks like POS tagging and chunking. The input representation is
a word and (information about) its context, and the output is either the
background class none, or one of the slot filler classes. For example, in a
hypothetical IE system for terrorist attacks, the following mapping can be
learned as a supervised classification-based task.

John/I-victim Doe/I-victim , minister/none of/none

language/none technology/none was/none killed/none by/none

a/none car/I-weapon bomb/I-weapon yesterday/I-time
evening/I-time ./none

From this tagged sentence the following template could be extracted:

Victim: John Doe
Weapon: car bomb
Time: yesterday evening

We can also choose to assign, in one or several steps of classification,
much more structure to the input than just the phrases to be extracted. For
example, the title and author information of this paper might be tagged with
section information and shallow syntactic structure as follows:

Feature-Rich JJ:NP[:I-title

Memory-Based JJ:NP:I-title:I-topic

Classification NN:NP]:I-title:I-topic

for IN:PP[:I-title

Information NN:PP[:NP[:I-title:I-topic

Extraction NN:PP]:NP]:I-title:I-topic}

XXXBLANKXXX none

Jakub NNP:NP[:I-authors:I-name

Zavrel NNP:NP]:I-authors:I-name

and CC:I-authors

Walter NNP:NP[:I-authors:I-name

Daelemans NNP:NP]:I-authors:I-name



Feature-Rich Memory-Based Classification for Information Extraction 41

Textkernel NNP:NP[:I-authors:I-organisation

BV NNP:NP]:I-authors:I-organisation

, ,:I-authors

Nieuwendammerkade NNP:NP[:I-authors:I-address

28 a17 SYM:NP]:I-authors:I-address

, ,:I-authors:I-address

1022 CD:NP[:I-authors:I-address

AB NNP:NP]:I-authors:I-address

, ,:I-authors:I-address

Amsterdam NNP:NP[]:I-authors:I-address

, ,:I-authors:I-address

The DT:NP[:I-authors:I-address

Netherlands NNP:NP]:I-authors:I-address

CNTS SYM:NP[]:I-authors:I-organisation

, ,:I-authors:I-organisation

University NNP:NP[:I-authors:I-organisation

of NNP:NP[:I-authors:I-organisation

Antwerp NNP:NP[:I-authors:I-organisation

, ,:I-authors

Universiteitsplein NNP:NP[:I-authors:I-address

1 CD:NP]:I-authors:I-address

, ,:I-authors:I-address

Building NN:NP[:I-authors:I-address

A SYM:NP:I-authors:I-address

, ,:I-authors:I-address

B-2610 SYM:NP[]:I-authors:I-address

Antwerpen NNP:NP[]:I-authors:I-address

, ,:I-authors:I-address

Belgium NNP:NP[]:I-authors:I-address

Leading to the following XML structure (leaving POS tags aside):

<title>

<np>Feature-Rich <topic>Memory-Based Classification</topic></np>

<pp>for <np><topic>Information Extraction</topic></np></pp>

</title>

<authors>

<name><np>Jakub Zavrel</np></name> and

<name><np>Walter Daelemans</np></name>

<organisation><np>Textkernel BV</np></organisation>,

<address><np>Nieuwendammerkade 28/a17</np>, <np>1022 AB</np>,

<np>Amsterdam</np>, <np>The Netherlands</np></address>

<organisation><np>CNTS</np>, <np>University of Antwerp</np>,

<address><np>Universiteitsplein 1</np>, <np>Building A</np>,

<np>B-2610</np> Antwerpen, Belgium</np></address>

</authors>



42 Zavrel, Daelemans

In an HMM approach, such codings will lead to an explosion of the state
space, or a necessary decomposition of the task into a sequence of many
small sub-problems. However, from an informational point of view, there are
probably many interesting dependencies between decisions at various levels
of structure. A feature-rich classification based approach, such as Memory-
Based Learning, allows a representation of such tasks as either monolithic
classification tasks, or decomposed cascades or ensembles of tasks, whatever
is best for accuracy and speed. When cascading Memory-Based classifiers,
we can always train a higher level of classification to use the outputs of lower
levels as input features.

2.1 TK SemTagger

We have implemented a general environment called TK SemTagger as part
of Textkernel’s Textractor toolkit in order to allow experimentation with the
Memory-Based tagging approach to IE. In Textractor, we use this compo-
nent side by side with HMMs, induced extraction rules and Shallow NLP
preprocessing to benefit from the complementary strengths of all methods.

Architecture During training, the tagger reads in the training corpus, and
constructs a corpus based lexicon (see below). If needed it also reads in other
information sources, such as a domain lexicon, and connects to external NLP
pre-processors. Then the training corpus is converted into training instances
(feature vectors) according to a flexible feature set specification. These in-
stances are used to train a Memory-based classifier (TiMBL [13], an efficient
implementation of MBL). The manner in which cases are retrieved from mem-
ory, the metric used for computing similarity, the way features are weighted,
the number of nearest neighbors used, and the weighting of neighbors during
extrapolation are all parameterized. For a full discussion of TiMBL’s param-
eters we refer the reader to [13].

After training the classifier, test data is processed given the same feature
set specification, and each token is classified. The test data is processed sen-
tence by sentence (for the IE tasks described below, a ‘sentence’ is a whole
document). Each sentence is processed from left to right, so that previous
classification decisions are propagated to the left context (for use as features
in subsequent decisions). TK SemTagger also allows the use of an ensemble
of classifiers (e.g., with different features or different parameters), which can
have dependencies between each other. The ensembles are combined by stack-
ing (two levels: L1 and L2). The classifiers in level L2 are applied after the L1
classifiers have tagged the entire sentence, and hence can refer to decisions
made by L1 classifiers both to the left and the right of the word to be tagged.
In the present study, however, no exploration was made of ensemble systems.



Feature-Rich Memory-Based Classification for Information Extraction 43

Lexical information Tagging is an exercise in the satisfaction of two simul-
taneous constraints: lexical possibilities of a word and contextual possibilities.
In HMM-based taggers, the lexicon (or the unknown word guesser) typically
proposes a selection of tags for the present word, and the tags that are most
compatible with the present context are selected. In classification-based tag-
ging, in contrast, the lexical representations of a word are seen as yet another
symbolic feature. This gives us greater freedom, as we can also assign a tag
that is not in a word’s lexical representation (and it is well-known that lexi-
cons are seldom complete). We can even use a lexicon that contains tags from
a completely different tag set [34].

The most important lexical information in our Memory-Based IE ap-
proach is compiled directly from the training corpus. We record the number
of times each word has been used with each tag. To convert this frequency
information into a symbolic feature, the set of tags for a word is sorted by
frequency, and the tags that fall below a percentage threshold are pruned
away. An empirically derived good default value for this threshold is 5%. In
addition to this, words that occur very often (more than 25 times) and have
no ambiguous occurrences are labeled ‘sure thing’. This means that during
tagging, their lexical tag is assigned without looking at the context. Since
the lexical ambiguity class of a word is just another feature, we are able to
use any number of different lexicons, such as e.g. domain-specific ontologies
or gazetteers. However, in the present experiments this option was not used.

Features A case for classification can be represented using a multitude of
features. The features are specified as a template of positions and types. The
best setting depends on the task at hand, the selected features and their
representation, the amount of data, and the used TiMBL parameters. The
following types are available at each position i.

• word: gives the string of the word at position i.
• wordfexpr: where expr is a constraint on the frequency of the word to

be included as a feature (e.g., ‘wordf¿5’ or ‘wordf¡=10’).
• tag: gives the full tag of the word at position i. This feature refers to a

decision of the current classifier on an earlier word in the sentence, and
can therefore only be used on positions in the left context.

• known: has a value of ‘KNOWN’ for words that have been seen in the
training corpus, and a value of ‘UNKNOWN’ for words that did not occur
in it.

• lex: gives the lexical representation (ambiguity class) of the word, as
found in the lexicon constructed from the training corpus (s. Section 2.1).

• domlex: gives the lexical representation (ambiguity class) of the word as
found in an externally supplied lexicon with domain knowledge.

• exttag: gives the tag given to a position by an external tagger, chunker
or other syntactic pre-processor.



44 Zavrel, Daelemans

• prev:tag2: this is a binary feature. It is on if tag2 (a second level tag) is
present somewhere in the left history of previous tagging decisions. I.e.
this feature means ‘have seen tag2 before’. This type of feature can only
be used for the position of the word that is to be tagged, not in left and
right context positions.

• sufn: a family of suffix features. ‘sufn gives the n’th letter from the end
of the word (e.g., ‘suf1’ of “bread” is “d”, and ‘suf3’ is “e”). When n is
given as a range, e.g., ‘suf1-3’, the value is the suffix between first and
last number in the range (e.g., ‘suf1-3’ of “bread” is “ead”).

• prefn: a family of prefix features. Works analogously to ‘suf’.
• num: a binary feature that indicates the presence of a numeric character

in the word.
• allnum: a binary feature that indicates whether the token consist of

numeric symbols, and possibly punctuation, only.
• hyp: a binary feature that indicates the presence of a hyphen in a word.
• at: a binary feature that indicates the presence of an ‘at’ sign (“”) in a

word.
• und: a binary feature that indicates the presence of an underscore in a

word.
• cap: a binary feature that indicates the presence of a capital letter in a

word.
• allcap: a binary feature that indicates whether the token is fully capital-

ized.
• L1-name: a feature that refers to a decision of another classifier (named

L1-name), that has been applied before the present one. When L1- name
is the same as that of the current classifier, the result is the same as that
of the ‘tag’ feature. This feature is used to define dependencies between
classifiers in an ensemble. It was not used in the present experiments.

The feature template represents a window of word positions to the left
(negative numbers) and to the right (positive numbers) of the focus word (the
word to be tagged, i.e. position ‘0’). If any of the specified features refer to
the output of another classifier, i.e. when a bootstrap dependency exists, this
is solved by using features produced by cross-validating the other classifier on
the training set. Figure 1 shows an example of a feature set for one classifier.

3 Data

We performed experiments comparing the TnT implementation of HMMs
and the feature rich TK SemTagger approach on two IE tasks. The first,
the Seminar Announcement data set consists of 485 usenet postings con-
cerning academic seminar announcements. The collection was collected and
manually annotated by [15] 3 The set of documents is labeled with four fields

3 Available from the RISE repository at
http://www.isi.edu/~muslea/RISE/repository.html.



Feature-Rich Memory-Based Classification for Information Extraction 45

classifier: L1-A
features:
-4 tag wordf>4
-3 tag wordf>4
-2 tag wordf>4
-1 tag wordf>4
0 wordf>4 lex suf1 suf2 pref1 initonlycap initial allcap cap hyp num at
1 lex wordf>4
2 lex wordf>4
3 lex wordf>4
4 lex wordf>4
parameters: -mM -k3 -w4 -dIL

Fig. 1. Example of a feature configuration (the best configuration on the Semi-
nar Announcement data set). The Timbl parameters shown are: MVDM; Shared
variance weighting; 3 nearest neighbors; Dudani distance weighted voting.

to be extracted: speaker, location, stime (start time), and etime (end time).
In the original work on this dataset, a ‘One Best per Document’ (OBD) scor-
ing method was used. This means that if the extraction method can fill an
entity slot with any one of the occurrences of that entity in the text, this is
counted as correct. However, in the data, all occurrences are marked. In our
experiments we have taken a slightly more challenging scoring metric: Each
occurrence of an entity must be labeled with exactly matching boundaries
by the tagger. We used the first half of the data set for training, the first 40
documents from the second half for validation of parameters, and documents
40 through 80 from the second half for testing.

The second task we report results on is the task of populating a database
from a set of CVs. The data is a set of 103 German Curriculum Vitae that
were spidered from the web, and manually annotated with XML structure.
Both section information (personal information, work experience, education,
other), and extractable entity information was annotated. The following fields
are to be extracted: name address, phone, email, birthday, marstat (marital
status), military (military service), compskill (computer skills), degree, de-
greedate, experience, experiencedate, langskill (language skill), and langprofi
(language proficiency). Since the data set is so small (although it leads to
more than 50000 token classification cases), we used the first 10 documents
for validation, and the rest for training during tuning, and we report ten-fold
cross validation results over the whole dataset for comparing algorithms. Ar-
guably, this puts the more tuned system, (Timbl has four parameters in this
experiment, whereas TnT only has one) in a slightly more favorable position.
For both datasets, we report Fβ=1 scores.

4 Experiments

4.1 HMM results

With the TnT HMM model we tested two variants. The first variant, TnT
Simple, has a state for each filler type, and a background state for the re-



46 Zavrel, Daelemans

mainder of the text. The second variant, TnT Context, has a set of prefix and
suffix states, one of each for each type of filler, that is applied to respectively
two tokens before, and two tokens after the filler. As can be seen in Figures 5
and 6, the TnT Context model clearly outperforms the TnT Simple model
on average. Interestingly, this does not happen on the email, langskill, and
military fields of the German CV task, showing that for these fields the lexi-
cal content of the filler, rather than some cue phrases typically preceding or
following it, is a strong enough feature to accurately make the decision. The
TnT Context model suffers in these places from the additional data sparse-
ness introduced by the prefix and suffix states. Increasing the context size for
the prefix and suffix states did not further improve performance.

speaker location stime etime

TnT Context 0.66 0.70 0.85 0.90
TnT Simple 0.51 0.62 0.36 0.87

Table 5. Results on the Seminar Announcement test data with two variants of the
TnT HMM tagger. This and subsequent figures refer to F1 scores.

Simple Context

address 0.00 0.00
birthday 0.46 0.55
compskill 0.36 0.37
degree 0.42 0.42
degreedate 0.39 0.42
email 0.40 0.33
experience 0.30 0.32
experiencedate 0.46 0.48
langprofi 0.63 0.80
langskill 0.90 0.87
marstat 1.00 1.00
military 0.44 0.57
name 0.71 0.43
phone 0.00 0.00

Table 6. Results on the German CV test data with two variants of the TnT HMM
tagger.

4.2 TK SemTagger results

For the feature set of TK SemTagger, we have experimented with variants of
the feature set shown in Figure 1. This feature template has previous ‘tag’



Feature-Rich Memory-Based Classification for Information Extraction 47

decisions and ‘words’ in the left context. The right context and the focus
word have word features and ‘lex’ features (ambiguity classes). Moreover,
the focus position has a number of wordform-oriented features which allow
us to classify unknown words. The weights of these features are shown in
Figure 2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30

"weights.SA.variance"

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30

"weights.SA.variance"

Fig. 2. The feature weights (using the Shared Variance statistic in the best set-
ting for the Seminar Announcement data set. The features are the ones shown in
Figure 1, ordered per position slot, and sorted alphabetically per slot. The highest
weighted feature is the ‘lex’ feature (15) for the focus word, then the ‘tag’ of the
previous word (7), and then the ‘word’ in focus position (20).

Context size A first set of experiments on the validation set was performed
to test the influence of the number of context positions in the feature tem-
plate. The results for the Seminar Announcement data shown in Table 7. A
context size of zero means that only features of the focus word were used, a
size of one means that one position to the left and one to the right were used
(with both ‘word’ and ‘tag’ or ‘lex’ features).

Without context features (0) the model is quite helpless. One would ex-
pect that with an ideal feature weighting method, more context would simply
improve performance. This is, unfortunately, not the case, which points to a
serious problem of the feature weighting methods used. Because each feature
receives a weight, independently of the others, on the basis of its predic-
tiveness for the category, an unwanted effect takes place: highly redundant



48 Zavrel, Daelemans

context size speaker location stime etime

0 0.05 0.69 0.01 0.00
1 0.45 0.87 0.92 0.96
2 0.64 0.84 0.91 0.84
3 0.67 0.83 0.93 0.89
4 0.65 0.84 0.93 0.89
5 0.57 0.82 0.95 0.96

Table 7. Experiments on the Seminar Announcement validation data with different
context sizes (‘word’ and ‘tag’ features; frequency threshold is 4).

features will tend to overwhelm independent but useful features. If we in-
crease the context size, then even when far away context receives much lower
weight than close context, the influence of the focus features on the similarity
metric will be diluted. In the remainder of the experiments, we use a context
size of 4.

Frequency threshold Low frequent words can sometimes cause the sim-
ilarity metric to overestimate the importance of unreliable information. In
Table 8, we show the effect of including values for the ‘word’ feature only for
words above a certain frequency threshold. The threshold 4 was chosen for
further experiments.

frequency threshold speaker location stime etime

1 0.41 0.84 0.93 0.89
2 0.55 0.82 0.93 0.89
3 0.65 0.81 0.93 0.89
4 0.65 0.84 0.93 0.89
5 0.63 0.86 0.93 0.89
10 0.48 0.83 0.93 0.89

Table 8. Experiments on the Seminar Announcement validation data with different
frequency thresholds for the inclusion of the ‘word’ feature values.

Decision propagation Unlike the HMM, which examines all possible paths
through the state space, the current TK SemTagger has a greedy search
strategy. The previous decisions of the tagger are propagated to the left
context features. These decisions, however, may be incorrect. However, the
model’s training set contains correct left context features. Table 9 shows the
results of experiments that examine the influence of this effect.

The top row of Table 9, labeled tags, shows the normal propagation of
tag decisions to the left context. In the second row, labeled lex, the left



Feature-Rich Memory-Based Classification for Information Extraction 49

speaker location stime etime

tags 0.65 0.84 0.93 0.89
lex 0.43 0.85 0.71 0.29
tags+lex 0.51 0.86 0.93 0.93
bootstrap 0.44 0.83 0.67 0.44
bootstrap+focus 0.42 0.83 0.67 0.44

Table 9. Experiments on the validation set with various propagation types for the
left ‘tag’ context (context size is 4; frequency threshold is 4).

context was constructed using ‘lex’ features, so no erroneous information is
propagated from the classifiers decisions, and the left context patterns are
from the same distribution during training and testing. The performance,
however, seriously drops. The disambiguated left context is clearly the supe-
rior set of predictors, despite the noise. The bad effect of feature-redundancy
on the effectivity of weighting is again seen in row three, labeled tags+lex.
The bottom two rows test the use of a second classifier, identical to the initial
one, whose cross-validated output on the training set was used to replace the
‘tag’ features (bootstrap) or to replace the ‘tag’ features in the context and
add a new ‘tag’ feature for the focus word. Accuracy does not benefit from
either of these manipulations.

The categories, or states of the classification-based model were only ‘back-
ground’ and one for each of the types of filler. We experimented briefly with
adding prefix and suffix categories like in the TnT Context model, but this
only deteriorated performance.

Comparison TK SemTagger vs TnT Tables 10 and 11 show the best
settings of TnT and TK SemTagger respectively on the test set of the Semi-
nar Announcements data, and in a ten fold cross validation on the German
CV data. The results on the SA task are clearly in favor of the Memory-Based
model. The variety of strong cue-phrases in this domain is more easily mod-
eled using ‘word’ features and a large context size. Similar results have been
shown by [17] in their optimization of HMM structures toward this task.

speaker location stime etime

TK SemTagger 0.71 0.87 0.95 0.96
TnT Context 0.66 0.70 0.85 0.90

Table 10. Best parameter setting for TK SemTagger, tested on the test set, and
compared with the TnT Context model.

The results on the German CV data set are more favorable for the HMM
approach. The small size of this data set, its larger set of fillers and the large



50 Zavrel, Daelemans

lexical variety in these fillers seem, so far, to favor the more simple and robust
approach.

TnT TK ST Textractor
Context Best full

address 0.08 0.10 0.25
birthday 0.55 0.55 0.67
compskill 0.43 0.43 0.83
degree 0.34 0.29 0.31
degreedate 0.50 0.35 0.55
email 0.53 0.59 0.88
experience 0.31 0.17 0.38
experiencedate 0.42 0.34 0.48
langprofi 0.60 0.52 0.72
langskill 0.79 0.65 0.87
marstat 0.95 0.87 0.88
military 0.58 0.70 0.59
name 0.28 0.21 0.80
phone 0.34 0.20 0.84

Table 11. Comparison between TnT and the best settings of TK SemTagger in
a ten fold cross-validation experiment on the German CV data set. For reference,
we have included the results of a somewhat more elaborate system trained by
Textkernel on this dataset. This uses a special CV tuned feature set, a combination
of HMMs, MBL, and NLP preprocessing (results here are without rule-based post-
processing).

5 Discussion and Future Work

We have shown the application of a Memory-Based classification-oriented
framework for Information Extraction as an extension of our earlier work in
Memory-Based tagging, chunking and shallow parsing. We have compared
our approach to Hidden Markov Models and showed competitive or better
results. Without denying the robustness and good accuracy of HMMs, we
have argued that the feature-rich classification-oriented approach which fac-
tors diverse information sources into the feature space, rather than into the
state space, offers the potential for future advances in the state of the art,
and leads to a more natural way of modeling complex Information Extrac-
tion tasks. Similar results can also be achieved with suitable modifications of
HMMs. In fact, a number of recently proposed modifications [17,24] which
have shown good results have a similar feature-oriented flavor to them. We
think it will be possible to borrow the best of the HMM approach, and apply
it to the classification-based approach, and vice versa. For example, so far,



Feature-Rich Memory-Based Classification for Information Extraction 51

we have lacked the advantage of optimizing the whole sequence of tags prob-
abilistically. Work on this issue is under way. On the other hand, the work on
similarity metrics and variations in feature representation that has received
a lot of attention in the classification-oriented line of work could very well
benefit the further refinement of HMM style models.

In the present paper, we have shown how our approach can easily be
implemented in terms of Memory-Based classifiers. This learning framework
has a number of important advantages at the moment, most notably its easy
implementation, its flexibility with respect to various modeling scenarios, and
its low computational complexity during training and classification. However,
the Memory-Based approach also suffers from a number of problems, such
as the effective weighting of sparse and interacting features, and the current
lack of a clear probabilistic interpretation that allows the principled com-
bination of sequences of decisions into larger representations for sequences
and hierarchical structures. Several other classification frameworks, such as
Maximum Entropy models [2,24], and Conditional Random Fields [22] are ex-
plicitly probabilistic, but this advantage is not always translated into higher
generalization accuracy. Moreover, other non-probabilistic classifiers such as
Support Vector Machines [21], and Winnow perceptrons [25] have also suc-
cessfully been adopted as semi-probabilistic components in sequence models,
so it seems worthwhile at the moment to further investigate this class of
learning models both experimentally and theoretically.

References

1. Abney, S. 1996. Part-of-Speech Tagging and Partial Parsing. In K.W. Church,
S. Young and G. Bloothooft (eds.), Corpus-Based Methods in Language and
Speech. Kluwer Academic Publishers, Dordrecht, 1996.

2. Berger, A., S. Della Pietra, and V. Della Pietra. 1996. Maximum Entropy
Approach to Natural Language Processing. Computational Linguistics, 22(1).

3. Bikel, D.M., S. Miller, R. Schwartz, and R. Weischedel. 1997. Nymble: a high-
performance learning name-finder. In Proceedings of ANLP-97, pp. 194–201.

4. Brants, T. 2000. TnT – a statistical part-of-speech tagger. In Proc. of the 6th
Applied NLP Conference, ANLP-2000, April 29 – May 3, 2000, Seattle, WA.

5. Brill, E. 1994. Some advances in transformation-based part-of-speech tagging.
In Proceedings AAAI’94.

6. Buchholz, S., J.B. Veenstra, and W. Daelemans. 1999. Cascaded Grammat-
ical Relation Assignment. In Proceedings of EMNLP/VLC-99, University of
Maryland, USA, June 21-22, 1999, pp. 239-246.

7. Califf, M.E. and R.J. Mooney 1999. Relational Learning of Pattern-Match
Rules for Information Extraction. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence (AAAI-99), Orlando, FL, pp. 328-334, July
1999.

8. Church, K. W. 1988. A stochastic parts program and noun phrase parser for
unrestricted text. In Proc. of Second Applied NLP (ACL).

9. Cohen, W.W. 1995. Fast effective rule induction. In Proceedings of the Twelfth
International Conference on Machine Learning, Lake Tahoe, CA, 1995.



52 Zavrel, Daelemans

10. Daelemans, W., J. Zavrel, P. Berck, and S. Gillis. 1996. mbt: A memory-based
part of speech tagger generator. In E. Ejerhed and I. Dagan, editors, Proc. of
Fourth Workshop on Very Large Corpora, pages 14–27. ACL SIGDAT.

11. Daelemans, W., S. Buchholz, and J. Veenstra. 1999. Memory-Based Shallow
Parsing In: Proc, of CoNLL-99, Bergen, Norway, June 12, 1999.

12. Daelemans, W., A. Van den Bosch, and J. Zavrel. 1999. Forgetting exceptions
is harmful in language learning. Machine Learning, Special issue on Natural
Language Learning.

13. Daelemans, W., J. Zavrel, K. Van der Sloot, and A. Van den Bosch. 2001.
TiMBL: Tilburg Memory Based Learner, version 4.0, reference manual. Tech-
nical Report ILK-0001, ILK, Tilburg University.

14. DeRose, S. 1988. Grammatical category disambiguation by statistical opti-
mization. Computational Linguistics, 14:31–39.

15. Freitag, D. Machine Learning for Information Extraction in Informal Domains.
PhD. thesis, November, 1998.

16. Freitag D. and A. McCallum. 1999. Information extraction using HMMs and
shrinkage. Proceedings of the AAAI-99 Workshop on Machine Learning for
Information Extraction.

17. Freitag D. and A. McCallum, “Information extraction with HMM structures
learned by stochastic optimization,” Proceedings of AAAI-2000.

18. Grefenstette, G. 1996. Light parsing as finite state filtering. In Workshop on
Extended finite state models of language, Budapest, Hungary, Aug 11–12 1996.
ECAI’96.

19. van Halteren, H., J. Zavrel, and W. Daelemans. 2001. Improving Accuracy in
Word Class tagging through the Combination of Machine Learning Systems.
Computational Linguistics, Vol.27(2).

20. Huffman, S.B. 1996. Learning Information Extraction Patterns from Examples.
In Connectionist, Statistical, and Symbolic Approaches to Learning for Natural
Language Processing, pp. 246–260. Springer Verlag.

21. Kudoh, T. and Y. Matsumoto. 2001. Chunking with Support Vector Machines.
In Proceedings of NAACL 2001, Pittsburgh, PA, USA, 2001.

22. Lafferty, J., A. McCallum, and F. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings
of ICML-01, pages 282-289, 2001.

23. Magerman, D.M. 1994. Natural Language Parsing as Statistical Pattern Recog-
nition. PhD Thesis, February 1994.

24. McCallum, A., D. Freitag, and F. Pereira. 2000. Maximum entropy Markov
models for information extraction and segmentation. Proceedings of ICML-
2000.

25. Punyakanok, V. and D. Roth. 2000. The Use of Classifiers in Sequential
Inference. NIPS-13, Dec, 2000.

26. Quinlan, J.R. 1993. c4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann.

27. Rabiner, L.R. 1989. A tutorial on hidden Markov models and selected appli-
cations in speech recognition. Proceedings of the IEEE, 77(2), pp. 257–286.

28. Ramshaw, L.A. and Marcus, M.P. 1995. Text Chunking using Transformation-
Based Learning. In Third Workshop on Very Large Corpora, ACL, pp. 82-94,
1995.



Feature-Rich Memory-Based Classification for Information Extraction 53

29. Ratnaparkhi, A. 1996. A maximum entropy part-of-speech tagger. In Proc.
of the Conference on Empirical Methods in Natural Language Processing, May
17-18, 1996, University of Pennsylvania.

30. Ratnaparkhi, A. 1997. A Linear Observed Time Statistical Parser Based on
Maximum Entropy Models. In Proceedings of the Second Conference on Em-
pirical Methods in Natural Language Processing. Aug. 1-2, 1997. Brown Uni-
versity, Providence, RI.

31. Riloff, E. 1993 Automatically Constructing a Dictionary for Information Ex-
traction Tasks. In Proceedings of the Eleventh National Conference on Artificial
Intelligence (AAAI-93) , AAAI Press/The MIT Press, pp. 811–816.

32. Soderland, S., D. Fisher, J. Aseltine, and W. Lehnert. 1995. Crystal: Inducing
a conceptual dictionary. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, pp. 1314–1319.

33. Zavrel, J. and W. Daelemans. 1997. Memory-based learning: Using similarity
for smoothing. In Proc. of 35th annual meeting of the ACL, Madrid.

34. Zavrel, J. and W. Daelemans. Bootstrapping a tagged corpus through combi-
nation of existing heterogeneous taggers. In Proceedings of the second interna-
tional conference on language resources and evaluation (LREC-2000), Athens,
Greece, 17-20, 2000.


