Automated Discovery of
Workflow Models from Hospital Data

Laura Maruster” Wil van der Aalst® Ton Weijters®

Antal van den Bosch® Walter Daelemans®

* Eindhoven University of Technology, I&T
® Tilburg University, ILK/Computational Linguistics
¢ Antwerpen University, Computational Linguistics

Abstract

Workflow nets, a subclass of Petri nets, are known as attractive models for analysing
complex business processes. In a hospital environment, for example, the processes
show a complex and dynamic behavior, which is difficult to control; the workflow net
which models such a complex process provides a good insight into it, and due to its
formal representation offers techniques for improved control. We propose a method
whose main advantage consists in discovering the workflow Petri nets automatically
from process logs. We illustrate the functioning of our method on simulated hospital
process logs, containing information about medical actions over time. The results of
our experiments indicate that this method is able to discover processes whose
underlying models are acyclic and sound WF nets, involving parallel, conditional and
sequential constructs. We argue that solutions have to be found for cyclic and free-
choice/non-free-choice workflow nets.

1. Introduction

Today, the managing of complex business processes calls for the development of
powerful information systems, able to control and support the flow of work. These
systems are called Workflow Management Systems (WfMS), where a WIMS is generally
thought of as “a generic software tool which allows for definition, execution,
registration and control of workflows” [1]. Petri nets are attractive as the underlying
model language for WfMS: they have a precise mathematical formalism, they provide a
graphical image of the investigated processes, they can express all important features of
the WEMS, and they can be subject to many analysis techniques [1]. Petri nets used for
workflow process definition are called workflow nets (WF nets).

However, the process of workflow design takes a lot of time and the resulting
models are often incomplete and unrealistic. In the hospital domain, for example, some
projects were developed to support patient WMS built on guidelines [2,3,4]. Specifying
the clinical practice in terms of guidelines, which provides the process logic,
presupposes the presence of expert knowledge. The knowledge extraction process is



time consuming and may not fully reveal the clinical practice. In contrast, hospital
processes are highly dynamic and subject to change. Thus, the WfMS has to be flexible
enough and able to capture all changes that occurred in a short time frame. Flexible
workflows have received a lot of attention, which is also reflected in the research efforts
seen in this area [5,6]. We think that a WfMS able (i) to acquire process knowledge
automatically and (ii) to incorporate changes quickly, will be more desirable in the
hospital domain and other dynamic workflow environments.

In this paper we present a procedure for discovery a business process, given a
workflow log (a “history” which contains information about how events took place,
chronologically ordered). The procedure also builds the associated workflow net. The
obtained workflow net can be used for analysing, redesigning and managing the
investigated process. The idea of discovering models from process logs was previously
investigated in contexts such as software engineering processes and also workflow
management. Cook and Wolf propose three methods for process discovery in case of
software engineer processes: a finite state-machine method, a neural network and a
Markov approach [7]. Their methods focuse on sequential processes. Also, they have
provided some specific metrics for detection of concurrent processes, like entropy, event
type counts, periodicity and causality [8]. Herbst and Karagiannis used a hidden Markov
model in the context of workflow management, in the case of sequential processes [9]
and concurrent processes [10]. The drawback of Herbst and Karagiannis results is that
workflow net constructs like AND/OR splits and joins are not depicted. In the works
mentioned, the focus was on identifying the dependency relations between events. Our
goal is to detect explicitly (i) flow and (ii) concurrency/choice relations between events.
Moreover, and this is our main contribution, we try to discover complete WF nets, not
only the dependency relations. WF nets can be used further to analyse the considered
process.

Our goal is to develop an automatic discovery and analysis tool for providing insight
into real world situations. We take the modeling of logistical processes of medical
actions in a hospital. Medical treatment in a hospital often requires involvement of
different specialties. Because of an aging population that shows complex syndromes and
the increased specialisation of medical technology, the number of different specialties
involved in treatments is increasing. We will call a patient that requires different
specialties for her/his treatment a medical multidisciplinary patient (MMP). We focus
especially on the patient category with vascular medical problems, because the
managing of vascular patients involves the largest number of specialties [11]. An
efficient coordination of such MMP may imply restructuring the organization of
hospitals into specialty-oriented units, while care for patients is not constrained within
the boundaries of one of those units [11]. The problem that arises here is how to build
these specialty-oriented units. For this purpose, we need to investigate the underlying
patient flow process and to decide on the organizational structure of the hospital. In this
paper, we concentrate only on developing a tool for investigating the workflow. In
future work, we want to apply this tool to our real hospital MMP data.

The structure of the paper is as follows. Section 2 addresses some basic theoretical
aspects of WIMS and WF nets. In Section 3 we present our process discovery method.
Section 4 summarizes the experiments done for testing our method. A discussion of the
status and shortcomings of the present approach, and future directions of our work are
presented in Section 5.



P

A

2\

\ /
— | thorax

/

- \
identification \
*/’ N N

2. Workflow models and WF nets

Because of their good theoretical foundation, Petri nets (PN) have been used
successfully to model and analyse processes from many domains, like for example,
software and business processes. Workflow processes can be modeled by WF nets,
which form a subclass of PN [1]. A classical Petri net is a directed graph with two kinds
of nodes, places and transitions, where arcs connect a place to a transition or a transition
to a place. Each place can contain zero, one or more tokens. The state of a classical PN
is determined by the distribution of tokens over places. A transition can fire if each of its
input contains tokens. If the transition fires, i.e. it executes, it takes one token from each
input place and puts one token on each output place.

Workflows are case oriented, which means that each activity executed in the
workflow corresponds to a case. In our hospital domain, a case corresponds with a
patient and an activity corresponds with a medical activity. The process definition of a
workflow assumes that a partial order exists between activities, establishing the
execution order of the activities. Referring to the Petri net formalism, workflow
activities are modeled as transitions and the causal dependencies between activities are
modeled as places and arcs.

A WF net is a classical PN with one source place (i.e. a place without incoming
arcs), that represents the beginning of the case in the workflow, and a sink place (i.e. a
place without outgoing arcs), which represents the end of the case in the workflow. Each
transition and place in the WF net is on a path from source place to sink place. The
existence of one token in the source place will correspond to the situation in which a
patient is first admitted to the hospital and needs to be registered. One token in the sink
place means that the patient registration to that hospital has ended.

The routing in a workflow assumes four kinds of routing constructs: sequential,
parallel, conditional and iterative routing [1]. Sequential routing concerns ordered
causal relationships between tasks. For example, if we consider tasks A and B, we have
a sequential routing construct when task B is executed only after task A is executed.
Parallel routing is used when the order of execution is less strict. A parallel routing is
modeled by AND-split and AND-join blocks. An AND-split corresponds to a transition
with two or more output places and an AND-join corresponds to a transition with two or
more input places. Conditional routing allows the modeling of a choice between two or

c4 |_diagnosis_OK

c2 ECG
Ve 7'\‘ Ve '7"\\ 6
C}"\ e - VR
Vo ( \
4 ) c3  blood test DN

N\
7 -
/ cardiologist E ’ \decide surgery

/N °
\_/ \ J \ / \ " surgery /""\E_’/"‘\
c7  radiologist g N S ~ ~

c10 cl1

echo archive

no_surgery

Figure 1. A Petri net for handling a medical complaint.



more alternatives. To express the conditional construct, OR-split and OR-join blocks are
used. An OR-split corresponds to two or more alternative output transitions and an OR-
join corresponds to two or more alternative input transitions. Figure 1 illustrates the
workflow process definition for handling a medical complaint. In this figure we can
identify the following routing constructs: transitions identification and cardiologist are
AND-splits, I diagnosis_OK, I diagnosis NOK and decide_surgery are AND-joins,
¢4, ¢5, ¢8 and c¢10 are OR-splits and c6, c9 and ¢/ are OR-joins.

Our method assumes the discovery of WF nets which are sound. A WF net is sound
if and only if: (i) a case can be always completed, (ii) after the completion of an activity,
no work is left behind in the workflow and (iii) there are no dead activities, i.e. states
that cannot be reached [1]. Of special interest are free-choice Petri nets. A PN is free-
choice if and only if for every two transitions that share the same input place, the two
corresponding input sets are the same [1].

3. Process discovery method

The present work concentrates on discovering WF models from workflow logs that
can be represented as WF nets. The workflow log (WL) contains for each case the
related events, in the order in which they took place. A hospital workflow log contains
medical activities performed on each patient, as they happen over time. In case of our
multidisciplinary patients (MMP) problem, WLs contain sequences of identifiers; each
identifier corresponds to a department (e.g. cardiology, radiology, vascular laboratory,
etc.) visited by the patient at a specific point in time. Formally, we define a WL as
following:

Definition 1 (Workflow Log WL):
Let A be a set of observable actions. A workflow log is a set of sequences over A, i.e.,
WLcA", where A is the set of all sequences that are composed of zero or more actions
of A.

Given the WF net process definition from Figure 1, an example of a patient trace is

given below:
identification, cardiologist, blood test, ECG, radiologist, echo,
I _diag OK, decide_surgery, no_surgery, archive.

Consider now the WF net from Figure 1, which is a simplified model of handling a
medical complaint. A patient who enters the hospital is first identified with his/her
hospital card. Afterwards, he/she has to visit a cardiologist and radiologist, in any order.
After visiting the cardiologist, it is necessary to perform both ECG and blood test, in any
order. Depending on ECG and blood test results, a first diagnosis is made. The first
diagnosis can relate to a vascular disease problem (I _diagnosis_NOK) or not
(I_diagnosis_OK). When the first diagnosis results and either the thorax or echo results
become available, a decision on surgery is made. Depending on this decision, the
surgery is performed or not. Finally, this particular patient case is archived.

In this work we address the following research question: given a WL, discover the
underlying WF net that generates all events in WL and distinguish its routing constructs.
Our discovery technique is based on the following definitions:



Definition 2 (¢, B, first, last):

For any sequence sl A", with s = (a,,a,,...,a,) , we have:

* a(s)=1a,.a,....a, Jis the alphabet of s,

e B(s)= {al,az),(az,%),..., a, ., a,) }is the set of pairs of s,

*  first(s)=a,,

® last(s)=a,
These definitions formallze the concept of trace of events from A~ (the set of all
potential traces). Identifiers a; represent events in traces. Traces have a first and a last
event. Our algorithm focuses on pairs of events from WLcA™. Definition 3 states the
possible relations that can exist between the elements of a pair. Namely, if there is a
sequence in WL, where event y appears after x and there is no sequence where y appears
before x, then the pair (x,y)eR™. If there is a sequence in WL, where event x appears
after y and also y appears after x, then (x,y)eR".

Definition 3 (R, R®):

Let WL be a workflow log over A. We consider the following relations:

R* ={.l A |3sL WL L Bes) | sl WL [ BCs) »
=l Ae|3sL WLl Bes) [ 3sL WL (0L B(s).

The first step for discovery the WF net is to build the net NOWL, as it is formally
stated in the following definition.

Definition 4 (N,""):

Let WL be a workflow log, and R~ and R as defined. Then

N,* =(P,T,F)> where

T=Jas)
sLwr
P=R'T {0}

F={inl (PeT)|EIs|_ WL,t= first(s) | {z,0)l (T «<P)|3sl WL t_zast(s)}r

Mool & et iy=df {oeml 7er* 1x=1}

The net N,”* can be thought as a “preliminary” net of the real WF net. N,”*
constructed as following: the place i (the “future” source place in the WF net) links all
events from the set first(s) and the place o (the “future” sink place in the WF net) links
all events from the set /ast(s). For all pairs of events (x,y)eR~, which have in common
the same x, an arc will link the node x with all nodes y. The node x will be the starting
point and the nodes y will be the ending points. For all pairs of events (x,y)e R~ which
have in common the same y, an arc will link all nodes x with node y. The nodes x will be
the starting points and the node y will be the ending point. For the rest of pairs of events
(x,y)eR™, an arc will link node x with node y. The set of all nodes will form 7 (the set of
transitions in the net N,”"). Additionally, on each arc that connects two nodes, a place
from set P (the set of places in the net N;”") will be placed. All arcs that connect nodes
will form the set F in the net N,""

Definition 5 (merge):
Let N=(P,T,F) be a Petri net and X | P a set of places. Then



merge(N,X) = (P',T,F") , with

P=P\ [ .},

F=F PH)N {P.oliL T 13pL x,(p.0l FY {.Po 1L T 139l X, p)L F}
This formalizes the operation of merging two places into one new place P,. The arcs
from F will connect a transition from T with the new merged place P, (or the new
merged place P, with a transition from T). Intuitively, the ingredients of the merging
operation are one “source” transition, two arcs that link the source transition with the
two places, and two more arcs that link each place with one of the two “destination”
transitions. The result of merging is one “source” transition, one arc that links the
“source” transition with the new merged place, and two arcs that link the new merged
place with “destination” transitions. The merge operation works analogously in case of
two “source” transitions and one “destination” transition.

Definition 6 (N""):
Let WL be a workflow log, N,”* and R~ as defined. Take N,”" and merge all places
that have non-concurrent input or output transitions. The resulting net is N”“. Formally:

My ={P, )L PP (B¢ P2 513l (P31 (Pu,t,) [ R7)]
[Pl Per|CR (P2 >34l P(ILL PG [ R}
for any Petri net N =(P,T,F) .
In the above definition, ®P; means the set of input transitions for place P;, and P;® means
the set of transitions sharing P; as an input place. The decision to merge places that have

non-concurrent input or output transitions is taken if the input transitions are in relation
(t:,t;)& R7, or if the output transitions are in relation (7;,¢,)# R, too.

For building the WF net N"*, we have to apply the following algorithm:
N:=(P,T,F)= N,"*;
while M(N)? —
do  (PLP):eM(N)

N:=merge(N,{P,,P,})
od

N"":=N.
This algorithm states that first, the net Ny”" is built (see Definition 4). Second, for each
pair (P,,P;)e M(N), the decision to merge the related places is made.
To illustrate our algorithm, we use the WF net presented in Figure 1. Suppose that
we have a WL corresponding to the WF from Figure 1, and we want to discover the
underlying WF net. The basic idea of our approach supposes three main steps:

e Identify the pairs (x,y)e R”and (x,y)e R (Definition 3);

In WL, the pairs (x,y)eR~ are those pairs of events that always occur in the same
order, for example: (identification, cardiologist), (identification, radiologist),
(cardiologist, ECG), (cardiologist, blood_test), (I_diagnosis_OK, decide_surgery),
({_diagnosis_NOK, decide_surgery), (radiologist, thorax), (radiologist, echo), (thorax,
decide_surgery), (echo, decide_surgery), and so on. The pairs (x,y)e R are pairs of
events that can happen in any order, like, for example, (cardiologist, radiologist), (ECG,
blood_test), (cardiologist, thorax), and so on.



e  Using pairs (x,y)€R, build the net N,”" (Definition 4);

In this step the pairs (x,y)e R are connected and a place is inserted between the
connected transitions. The result of this step is shown in Figure 2.
e Apply the algorithm for building the WF net N”*, which merges all places that have

non-concurrent input or output transitions (Definition 5 and 6).

In Figure 2, because (I _diagnosis OK, I diagnosis NOK)& R, we have to merge
places 4 with 4’. The same states for 5 with 5°, 6 with 6°, 8 with 8’, 9 with 9°, 10 with
10’ and 11 with 11°. After merging, we get the WF net from Figure 1.

EKG |_diagnosis OK

cardiologist
/‘\/2j ( ~
<A surgery

“\32 blood test 5 decide_surgery archive

A{ % 5 (10) '|:|\]’ ).

— <N/ ~

- (10 - A

identification (7) T N A1:|
) o | 9 P

A )E P no_surgery

e
, (v
Y
U,

Figure 2. The N()WL net for handling medical complaints.

4. Experiments

We tested our method, considering five different sound and acyclic WF nets. The
WF nets are similar with the example given in Figure 1, i.e. they contain between 10-12
transitions, involving parallel, conditional and sequence routing constructs. For each WF
net, we generated random workflow logs with 500 event traces.

In four experiments, the WF net built with our method is equivalent to the initial WF
net. In Figure 3 a) the initial WF net of one of our experiments is presented. Figure 3 b)
shows the N,"" net. In the N,”" net, after merging places 2 and 2°, 7 with 7’ and 10 with
10°, we obtained the initial WF net. In the other three experiments, the WF nets
considered have comparable
structure and complexity.

However, in the fifth
experiment involving a WF net
which is actually not free-choice,
the method was not able to find the
complete WF net.

(@

Figure 3. One example of sound
and acyclic WF net. After merging
places in b), the resulting WF net is




identical with the initial WF net from a).

5. Discussion and future work

In this work we have presented a method for discovering the underlying WF net from a
process workflow log. The experiments done with five different WF nets show that in
the case of sound and acyclic WF nets, involving parallel, conditional and sequential
constructs, our method is able to rebuild them correctly from their workflow logs.
However, the current technique does not work for all kinds of WF nets, as one
experiment involving a non-free-choice net showed. We need to carry out further
experiments to determine the types of WF nets where our method is applicable and to
provide theoretical foundations.

Our research is preliminary; we plan to do future research in several directions. First,
we want to extend our method to cyclic WF nets (we investigated the performance of
our method in the acyclic case). Especially in the medical domain, follow-up visits to
the same specialist happen very often; thus the detection of the iteration in a process is
necessary. Second, we want to improve our method so that it can also be applied to free-
choice and also non-free-choice WF nets.

Our final goal is to have a robust tool which is able to discover and further analyse a
complex and completely unknown process, namely the logistical flow of medical
multidisciplinary patients (MMP). Such a tool coupled with WfMS that offer generic
modeling and enactment capabilities can provide an efficient way of analysing and
managing today’s business organisations.

References

[1] W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. J. of
Circuits, Systems, and Computers, 8(1): 21-66, 1998.

[2] L. Dazzi, C. Fassino, R. Sarraco, S. Quaglini, M. Stefanelli — A patient workflow
management system built on guidelines. Proc. of AMIA 97, 146-150, Nashville, TN, 1997.

[3] S. Quaglini, M. Stefanelli, G. Lanzola, V. Caporusso, S. Panzarasa Flexible guideline-based
patient careflow systems, Artificial Intelligence in Medicine, Volume 22, Issue 1, April
2001, Pages 65-80

[4] S. Andersen — PATMAN: Patient Workflow Management System, EU Project, January 1998.

[5] W.M.P. van der Aalst and S. Jablonski, editors. Flexible Workflow Technology Driving the
Networked Economy, Special Issue of the International Journal of Computer Systems,
Science, and Engineering, volume 15, number 5, 2000.

[6] M. Klein, C. Dellarocas, and A. Bernstein, eds. Adaptive Workflow Systems, special issue
of the journal of Computer Supported Cooperative Work, volume 9, numbers 3-4, 2000.

[71 J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-Based
Data, ACM Transactions on Software Engineering and Methodology, 7(3):215-249, 1998.

[8] J.E. Cook and A.L. Wolf. Event-Based Detection of Concurrency. In Proceedings of the
Sixth International Symposium on the Foundations of Software Engineering (FSE-6),
Orlando, FL, November 1998, pp. 35-45.

[91 J. Herbst. A Machine Learning Approach to Workflow Management. In 11th European
Conference on Machine Learning, volume 1810 of Lecture Notes in Computer Science,
pages 183-194, Springer, Berlin, Germany, 2000.

[10] J. Herbst. Dealing with Concurrency in Workflow Induction In U. Baake, R. Zobel and M.
Al-Akaidi, European Concurrent Engineering Conf., SCS Europe, Gent, Belgium, 2000.



[11] Geerhard de Vries. Multidisciplinaire Samenwerking rondom Vaatpatiénten.
Tussenrapportage, Prismant, May 2001.



