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Preface

Memory-Based Learning (MBL) has proven to be successful in a large number of tasks in Natural
Language Processing (NLP). In our research group at Tilburg University, we have been working
since the end of the 1980’s on the development of Memory-Based Learning techniques and algo-
rithms1. With the establishment of the ILK (Induction of Linguistic Knowledge) research group
in 1997, and increasing use of MBL at the CNTS research group of the University of Antwerp, the
need for a well-coded and uniform tool for our main algorithms became more urgent. TiMBL is
the result of combining ideas from a number of different MBL implementations, cleaning up the
interface, and using a whole bag of tricks to make it more efficient. We think it has become a
useful tool for NLP research, and, for that matter, for many other domains where classification
tasks are learned from examples.

Memory-Based Learning is a direct descendant of the classical �-Nearest Neighbor (�-NN) ap-
proach to classification, which has become known as a powerful pattern classification algorithm
for numeric data. In typical NLP learning tasks, however, the focus is on discrete data, very
large numbers of examples, and many attributes of differing relevance. Moreover, classification
speed is a critical issue in any realistic application of Memory-Based Learning. These constraints
demand different data-structures and different speedup optimizations for the core �-NN clas-
sifier. Our approach has resulted in an architecture which makes extensive use of indexes into
the instance memory, rather than the typical flat file organization found in straightforward �-NN
implementations. In some cases the internal organization of the memory results in algorithms
which are quite different from �-NN, as is the case with IGTREE. We believe that our optimiza-
tions make TiMBL one of the fastest discrete �-NN implementations around.

The main effort in the development and maintenance of this software was invested by Ko van der
Sloot. The code started as a rewrite of nibl, a piece of software developed by Peter Berck from a
Common Lisp implementation by Walter Daelemans of IB1-IG. Some of the index-optimizations
in TiMBL are due to Jakub Zavrel. The code has benefited substantially from trial, error and
scrutiny by all past and present members of the ILK and CNTS groups in Tilburg and Antwerp.
We would furthermore like to thank Ton Weijters of Eindhoven Technical University for his in-
spirational early work on �-NN and for his involvements in IGTREE. This software was written in
the context of the “Induction of Linguistic Knowledge” research programme, partially funded by
the Netherlands Organization for Scientific Research (NWO). Last but not least, our thanks go to
those users of TiMBL who have contributed to it immensely by giving us feedback and reporting
bugs.

The current release (version 4.1) adds a number of new features to those available in the previous
version (3.0). Visible and functional changes are:

� Distance weighting of the � nearest neighbours. This classic exemplar weighting scheme
(Dudani, 1976) allows closer nearest neighbours in the � to have a more prominent vote in

1Section 5.6 provides a historical overview of work on the application of MBL in NLP.
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classification. TiMBL incorporates linear, inversed, and exponential distance weighting.

� Incremental edited memory-based learning with IB2 (Aha, Kibler, and Albert, 1991). This
incremental version of IB1 adds instances to memory only when those instances are mis-
classified by the current set of instances in memory.

� Exemplar weighting. TiMBL can read additional numeric exemplar weights (generated
externally) from a data file, and use these weights in the class voting stages of �-NN classi-
fication.

� Cross-validation testing. This option allows TiMBL to run systematic tests on different
values of parameters, without completely re-initializing the classifier in every fold of the
validation experiment.

A more elaborate description of the changes from version 1.0 up to 4.1 can be found in Chapter 3.
Although these new features have been tested for some time in our research group, the software
may still contain bugs and inconsistencies in some places. We would appreciate it if you would
send bug reports, ideas about enhancements of the software and the manual, and any other
comments you might have, to Timbl@kub.nl.

This reference guide is structured as follows. In Chapter 1 you can find the terms of the license
according to which you are allowed to use TiMBL. The subsequent chapter gives some instruc-
tions on how to install the TiMBL package on your computer. Chapter 3 lists the changes that
have taken place up to the current version. Next, Chapter 4 offers a quick-start tutorial for read-
ers who want to get to work with TiMBL right away. The tutorial describes, step-by-step, a case
study with a sample data set (included with the software) representing the linguistic domain of
predicting the diminutive inflection of Dutch nouns. Readers who are interested in the theoretical
and technical details of Memory-Based Learning and of this implementation can refer to Chap-
ter 5. Chapters 6 and 8 provide, respectively, a full reference to the file formats and command
line options of TiMBL.
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Chapter 1

License terms

Downloading and using the TiMBL software implies that you accept the following license terms:

Tilburg University and University of Antwerp (henceforth “Licensers”) grant you, the registered
user (henceforth “User”) the non-exclusive license to download a single copy of the TiMBL pro-
gram code and related documentation (henceforth jointly referred to as “Software”) and to use
the copy of the code and documentation solely in accordance with the following terms and con-
ditions:

� The license is only valid when you register as a user. If you have obtained a copy without
registration, you must immediately register by sending an e-mail to Timbl@kub.nl.

� User may only use the Software for educational or non-commercial research purposes.

� Users may make and use copies of the Software internally for their own use.

� Without executing an applicable commercial license with Licensers, no part of the code may
be sold, offered for sale, or made accessible on a computer network external to your own or
your organization’s in any format; nor may commercial services utilizing the code be sold
or offered for sale. No other licenses are granted or implied.

� Licensers have no obligation to support the Software it is providing under this license. To
the extent permitted under the applicable law, Licensers are licensing the Software ”AS
IS”, with no express or implied warranties of any kind, including, but not limited to, any
implied warranties of merchantability or fitness for any particular purpose or warranties
against infringement of any proprietary rights of a third party and will not be liable to you
for any consequential, incidental, or special damages or for any claim by any third party.

� Under this license, the copyright for the Software remains the joint property of the ILK
Research Group at Tilburg University, and the CNTS Research Group at the University of
Antwerp. Except as specifically authorized by the above licensing agreement, User may
not use, copy or transfer this code, in any form, in whole or in part.

� Licensers may at any time assign or transfer all or part of their interests in any rights to the
Software, and to this license, to an affiliated or un-affiliated company or person.

� Licensers shall have the right to terminate this license at any time by written notice. User
shall be liable for any infringement or damages resulting from User’s failure to abide by
the terms of this License.
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� In publication of research that makes use of the Software, a citation should be given of:
“Walter Daelemans, Jakub Zavrel, Ko van der Sloot, and Antal van den Bosch (2001). TiMBL:
Tilburg Memory Based Learner, version 4.1, Reference Guide. ILK Technical Report 01-04, Available
from http://ilk.kub.nl/downloads/pub/papers/ilk0104.ps.gz

� For information about commercial licenses for the Software, contact Timbl@kub.nl, or
send your request in writing to:

Prof.dr. Walter Daelemans
CNTS - Language Technology Group
GER / University of Antwerp
Universiteitsplein 1
B-2610 Wilrijk (Antwerp)
Belgium



Chapter 2

Installation
You can get the TiMBL package as a gzipped tar archive from:

http://ilk.kub.nl/software.html

Following the links from that page, you will be required to fill in registration information and to
accept the license agreement. You can proceed to download the file Timbl.4.1.tar.gz. This
file contains the complete source code (C++) for the TiMBL program, a few sample data sets, the
license and the documentation. The installation should be relatively straightforward on most
UNIX systems.

To install the package on your computer, unzip the downloaded file:

> gunzip Timbl.4.1.tar.gz

and unpack the tar archive:

> tar -xvf Timbl.4.1.tar

This will make a directory Timbl.4.1 under your current directory. Change directory to this:

> cd Timbl.4.1

and compile the executable by typing make1, assuming that make is actually gnumake on your
system. Solaris users should use gnumake explicitly, since their make defaults to SunOS make,
which does not operate correctly.

If the process was completed successfully, you should now have executable files named Timbl,
Client, tse, classify, and a static library libTimbl.a.

The e-mail address for problems with the installation, bug reports, comments and questions is
Timbl@kub.nl.

1We have tested this with gcc versions 2.95.2 and 3.0.
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Chapter 3

Changes

This chapter gives a brief overview of the changes from all previously released versions (1.0 up
to 4.1) for users already familiar with the program.

3.1 From version 3.0 to 4.1

Version 4.1 is an intermediate upgrade of version 4.0. Changes from 4.0 to 4.1 are found at the
bottom of this list and are marked as such.

� Distance weighting of the � nearest neighbours. This classical exemplar weighting scheme
(Dudani, 1976) allows closer nearest neighbours in the � to have a more prominent vote in
classification. TiMBL incorporates linear, inversed, and exponential distance weighting.

� Incremental edited memory-based learning with IB2 (Aha, Kibler, and Albert, 1991). This
incremental version of IB1 adds instances to only when those instances are misclassified by
the then-current set of instances in memory.

� Exemplar weighting. TiMBL can read additional numeric exemplar weights (generated
externally) when reading a data file, and use these weights in the class voting stages of
�-NN classification.

� Cross-validation testing. Analogous to the leave-one-out testing option, with cross-validation
testing it is possible to let TiMBL run systematic tests on different values of parameters,
without completely re-initializing the classifier in every fold of the validation experiment.

� The command line interface has had four additions reflecting the above changes, plus one
extra verbosity option:

– the -d metriccode option sets the distance weighting metric. Three metrics are
available: inverse distance (code ID), inverse linear (IL), and exponential decay (ED,
which takes an extra argument �, without whitespace, determining the factor of the ex-
ponential function). By default, no distance weighting is used (code Z). See Chapter 5
for descriptions.

– the -a 3 switch invokes the IB2 algorithm. This algorithm expects to have the -b
switch set:

4



CHAPTER 3. CHANGES 5

– the -b n option sets the number (�) of lines counting from the top of the training
set file, which form the bootstrap set of memorized instances to which IB2 will start
adding instances incrementally.

– the +v/-v option has cm as a new optional argument; it returns the confusion matrix,
obtained after testing, between predicted and actual classes in the test data.

� The “programmer’s reference” or API section has been separated from this manual. A new
API, describing the underlying structure of TiMBL (which has changed considerably from
version 3.0 to 4.1), will be available upon request (to Timbl@kub.nl) from version 4.1
onwards.

� Two bugs relating to a type of sparse data have been resolved. The first involved leave-
one-out experiments on data sets with features that have values that occur only once in the
training data. The second bug occurred with the use of the -F Binary option with the
same type of data.

� [Change from 4.0 to 4.1] A bug in discretizing numeric features during feature weighting
has been resolved, causing TiMBL’s behavior on numeric features to be different from pre-
vious versions in some cases.

� [Change from 4.0 to 4.1] Exemplar weights are now stored in the TiMBL-tree.

� [Change from 4.0 to 4.1] The core representation of TiMBL-trees has been modified, causing
no changes at the surface except that the TRIBL variant uses less memory.

3.2 From version 2.0 to 3.0

� Server functionality. Apart from the standard processing of test items from a file, alter-
natively you can now specify a portnumber with -S portnumber to open a socket and
send commands for classification of test patterns or change of parameters to it. A sample
client program is included in the distribution. This allows fast response times when small
amounts of test material are presented at various intervals. It also opens the possibility of
having large numbers of “classification agents” cooperate in real time, or of classication of
the same data with different parameters. The syntax of our simple Client/Server protocol
is described in Chapter 7.

� Leave-one-out testing. To get an estimate of the classification error, without setting aside
part of one’s data as a test set, one can now test by “leave-one-out” (-t leave one out),
in effect testing on every case once, while training on the rest of the cases, without com-
pletely re-initializing the classifier for every test case.

� Support for sparse binary features. For tasks with large numbers of sparse binary features,
TiMBL now allows for an input format which lists only the “active” features, avoiding
the listing of the many (zero-valued) features for each case. This format is described in
Section 6.1.5.

� Additional feature weighting metrics. We have added chi-squared and shared variance
measures as weighting schemes. These weighting metrics are sometimes more robust to
large numbers of feature values and other forms of data sparseness.

� Different metrics (Overlap, MVDM or Numeric) can be applied to different features.

� The command line interface has slightly been cleaned up, and re-organized:
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– The -m metricnumber switch to choose metrics has been replaced by the use of a
specification string following -m. E.g. you can specify to use MVDM as the default
metric, but use Overlap on features 5-7,9, Numeric on feature 1, and ignore feature 10
(-m M:O5-7,9:N1:I10).

– All of the output needed for analysing the matching of nearest neighbors has been
moved to the verbosity setting.

– Verbosity levels and some other options can be switched on +v and off -v, even be-
tween different classification actions.

– Because of the large amount of verbosity levels, the +v option takes mnemonic abbre-
viations as arguments instead of numeric verbosity levels. Although the old (numeric)
format is still supported, it’s use is not encouraged as it will disappear in future ver-
sions.

� Because of significant optimizations in the nearest neighbor search, the default is no longer
to use inverted indexes. These can however still be turned on by using the +- switch on the
command line.

� You can now choose the output filename or have it generated by TiMBL on the basis of the
test filename and the parameters.

� You can use TiMBL in a pipeline of commands by specifying ’-’ as either input, output or
both.

� Several problems with the display of nearest neighbors in the output have been fixed.

� The API has been adapted a bit to allow more practical use of it.

3.3 From version 1.0 to 2.0

� We have added a new algorithm: TRIBL, a hybrid between the fast IGTREE algorithm and
real nearest neighbor search (for more details, see 5.4, or Daelemans, van den Bosch, and
Zavrel (1997)). This algorithm is invoked with the -a 2 switch and requires the specifica-
tion of a so-called TRIBL-offset, the feature where IGTREE stops and case bases are stored
under the leaves of the constructed tree.

� Support for numeric features. Although the package has retained its focus on discrete fea-
tures, it can now also process numeric features, scale them, and compute feature weights
on them. You specify which features are numeric with the -N option on the command line.

� The organization of the code is much more object-oriented than in version 1.0. The main
benefit of this is that:

� A Memory-Based Learning API is made available. You can define Memory-Based classifi-
cation objects in your own C++ programs and access all of the functionality of TiMBL by
linking to the TiMBL library.

� It has become easier to examine the way decisions are made from nearest neighbors, be-
cause several verbosity-levels allow you to dump similarity values (-D), distributions (-v
16), and nearest neighbor sets (-v 32) to the output file. The -d option for writing the
distributions no longer exists.

� Better support for the manipulation of MVDM matrices. Using the -U and -u options it is
now possible to respectively save and read back value difference matrices (see Section 6.3).
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� Both “pre-stored” and “regular” MVDM experiments now generate filenames with “mvd”
in the suffix. This used to be “pvd” and “mvd” respectively.

� a number of minor bugs have been fixed.



Chapter 4

Quick-start Tutorial

This quick-start tutorial is meant to get you started with TiMBL right away. We discuss how to
format the data of a task to serve as training examples, which choices can be made during the con-
struction of the classifier, how various choices can be evaluated in terms of their generalization
accuracy, and various other practical issues. The reader who is interested in more background
information on TiMBL implementation issues and a formal description of Memory-Based Learn-
ing, is advised to read Chapter 5.

Memory-Based Learning (MBL) is based on the idea that intelligent behavior can be obtained by
analogical reasoning, rather than by the application of abstract mental rules as in rule induction
and rule-based processing. In particular, MBL is founded in the hypothesis that the extrapolation
of behavior from stored representations of earlier experience to new situations, based on the
similarity of the old and the new situation, is of key importance.

MBL algorithms take a set of examples (fixed-length patterns of feature-values and their associ-
ated class) as input, and produce a classifier which can classify new, previously unseen, input
patterns. Although TiMBL was designed with linguistic classification tasks in mind, it can in
principle be applied to any kind of classification task with symbolic or numeric features and dis-
crete (non-continuous) classes for which training data is available. As an example task for this
tutorial we go through the application of TiMBL to the prediction of Dutch diminutive suffixes.
The necessary data sets are included in the TiMBL distribution, so you can replicate the examples
given below on your own system.

4.1 Data

The operation of TiMBL will be illustrated below by means of a real natural language processing
task: prediction of the diminutive suffix form in Dutch (Daelemans, Berck, and Gillis, 1997). In
Dutch, a noun can receive a diminutive suffix to indicate small size literally or metaphorically
attributed to the referent of the noun; e.g. mannetje means little man. Diminutives are formed by
a productive morphological rule which attaches a form of the Germanic suffix -tje to the singular
base form of a noun. The suffix shows variation in its form (Table 4.1). The task we consider here
is to predict which suffix form is chosen for previously unseen nouns on the basis of their form.

For these experiments, we collect a representation of nouns in terms of their syllable structure
as training material1. For each of the last three syllables of the noun, four different features are

1These words were collected form the CELEX lexical database (Baayen, Piepenbrock, and van Rijn, 1993)
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CHAPTER 4. QUICK-START TUTORIAL 9

Noun Form Suffix
huis (house) huisje -je
man (man) mannetje -etje
raam (window) raampje -pje
woning (house) woninkje -kje
baan (job) baantje -tje

Table 4.1: Allomorphic variation in Dutch diminutives.

collected: whether the syllable is stressed or not (values - or +), the string of consonants before
the vocalic part of the syllable (i.e. its onset), its vocalic part (nucleus), and its post-vocalic part
(coda). Whenever a feature value is not present (e.g. a syllable does not have an onset, or the
noun has less than three syllables), the value ‘=’ is used. The class to be predicted is either E
(-etje), T (-tje), J (-je), K (-kje), or P (-pje).

Some examples are given below (the word itself is only provided for convenience and is not
used). The values of the syllabic content features are given in phonetic notation.

- b i = - z @ = + m A nt J biezenmand
= = = = = = = = + b I x E big
= = = = + b K = - b a n T bijbaan
= = = = + b K = - b @ l T bijbel

Our goal is to use TiMBL in order to train a classifier that can predict the class of new, previously
unseen words as correctly as possible, given a set of training examples that are described by the
features given above. Because the basis of classification in TiMBL is the storage of all training ex-
amples in memory, a test of the classifier’s accuracy must be done on a separate test set. We will
call these datasets dimin.train and dimin.test, respectively. The training set dimin.train
contains 2999 words and the test set contains 950 words, none of which are present in the train-
ing set. Although a single train/test partition suffices here for the purposes of explanation, it
does not factor out the bias of choosing this particular split. Unless the test set is sufficiently
large, a more reliable generalization accuracy measurement is used in real experiments, e.g. 10-
fold cross-validation (Weiss and Kulikowski, 1991). This means that 10 separate experiments are
performed, and in each “fold” 90% of the data is used for training and 10% for testing, in such a
way that each instance is used as a test item exactly once. Another reliable way of testing the real
error of a classifier is leave-one-out (Weiss and Kulikowski, 1991). In this approach, every data
item in turn is selected once as a test item, and the classifier is trained on all remaining items.
Accuracy of the classifier is then the number of data items correctly predicted. With the option
-t leave one out, this testing methodology is used by TiMBL. We will use this option in the
tutorial on the file dimin.data, the union of dimin.train and dimin.test.

4.2 Using TiMBL

Different formats are allowed for training and test data files. TiMBL is able to guess the type
of format in most cases. We will use comma-separated values here, with the class as the last
value. This format is called C4.5 format in TiMBL because it is the same as that used in Quinlan’s
well-known C4.5 program for induction of decision trees (Quinlan, 1993). See Section 6 for more
information about this and other file formats.

An experiment is started by executing TiMBL with the two files (dimin.train and dimin.test)
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as arguments:

Timbl -f dimin.train -t dimin.test

Upon completion, a new file has been created with name
dimin.test.mbl.O.gr.k1.out, which is in essence identical to the input test file, except that
an extra comma-separated column is added with the class predicted by TiMBL. The name of
the file provides information about the MBL algorithms and metrics used in the experiment (the
default values in this case). We will describe these shortly.

Apart from the result file, information about the operation of the algorithm is also sent to the
standard output. It is therefore advisable to redirect the output to a file in order to make a log of
the results.

Timbl -f dimin.train -t dimin.test > dimin-exp1

The defaults used in this case work reasonably well for most problems. We will now provide a
point by point explanation of what goes on in the output.

TiMBL 4.1 (c) ILK 1998, 1999, 2000, 2001.
Tilburg Memory-Based Learner
Induction of Linguistic Knowledge Research Group
Tilburg University / University of Antwerp
Tue Feb 29 15:23:16 2000

Examine datafile gave the following results:
Number of Features: 12
InputFormat : C4.5

TiMBL has detected 12 features and the C4.5 input format (comma-separated features, class at
the end).

Phase 1: Reading Datafile: dimin.train
Start: 0 @ Tue Feb 29 15:23:16 2000
Finished: 2999 @ Tue Feb 29 15:23:16 2000
Calculating Entropy Tue Feb 29 15:23:16 2000
Lines of data : 2999
DB Entropy : 1.6178929
Number of Classes : 5

Feats Vals X-square Variance InfoGain GainRatio
1 3 128.41828 0.021410184 0.030971064 0.024891536
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2 50 364.75812 0.030406645 0.060860038 0.027552191
3 19 212.29804 0.017697402 0.039562857 0.018676787
4 37 449.83823 0.037499019 0.052541227 0.052620750
5 3 288.87218 0.048161417 0.074523225 0.047699231
6 61 415.64113 0.034648310 0.10604433 0.024471911
7 20 501.33465 0.041791818 0.12348668 0.034953203
8 69 367.66021 0.030648567 0.097198760 0.043983864
9 2 169.36962 0.056475363 0.045752381 0.046816705

10 64 914.61906 0.076243669 0.21388759 0.042844587
11 18 2807.0418 0.23399815 0.66970458 0.18507018
12 43 7160.3682 0.59689631 1.2780762 0.32537181

Feature Permutation based on GainRatio/Values :
< 9, 5, 11, 1, 12, 7, 4, 3, 10, 8, 2, 6 >

Phase 1 is the training data analysis phase. Time stamps for start and end of analysis are pro-
vided. Some preliminary analysis of the training data is done: number of training items, number
of classes, entropy of the training data. For each feature, the number of values, and four vari-
ants of an information-theoretic measure of feature relevance are given. These are used both for
memory organization during training and for feature relevance weighting during testing (see
Chapter 5). Finally, an ordering (permutation) of the features is given. This ordering is used for
building the tree-index to the case-base.

Phase 2: Learning from Datafile: dimin.train
Start: 0 @ Tue Feb 29 15:23:16 2000
Finished: 2999 @ Tue Feb 29 15:23:16 2000

Size of InstanceBase = 19231 Nodes, (384620 bytes), 49.77 % compression

Phase 2 is the learning phase; all training items are stored in an efficient way in memory for use
during testing. Again timing information (real time) is provided, as well as information about
the size of the data structure representing the stored examples and the amount of compression
achieved.

Starting to test, Testfile: dimin.test
Writing output in: dimin.test.mbl.O.gr.k1.out
Algorithm : IB1
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Global metric : Overlap
Deviant Feature Metrics:
Weighting : GainRatio

Tested: 1 @ Tue Feb 29 15:23:16 2000
Tested: 2 @ Tue Feb 29 15:23:16 2000
Tested: 3 @ Tue Feb 29 15:23:16 2000
Tested: 4 @ Tue Feb 29 15:23:16 2000
Tested: 5 @ Tue Feb 29 15:23:16 2000
Tested: 6 @ Tue Feb 29 15:23:16 2000
Tested: 7 @ Tue Feb 29 15:23:16 2000
Tested: 8 @ Tue Feb 29 15:23:16 2000
Tested: 9 @ Tue Feb 29 15:23:16 2000
Tested: 10 @ Tue Feb 29 15:23:16 2000
Tested: 100 @ Tue Feb 29 15:23:16 2000
Ready: 950 @ Tue Feb 29 15:23:16 2000
Seconds taken: 1 (950.00 p/s)
918/950 (0.966316), of which 39 exact matches

There were 5 ties of which 3 (60.00%) were correctly resolved

In Phase 3, the trained classifier is applied to the test set. Because we have not specified which
algorithm to use, the default settings are used (IB1 with information theoretic feature weighting).
This algorithm computes the similarity between a test item and each training item in terms of
weighted overlap: the total difference between two patterns is the sum of the relevance weights of
those features which are not equal. The class for the test item is decided on the basis of the least
distant item(s) in memory. To compute relevance, Gain Ratio is used (an information-theoretic
measure, see Section 5.1.2). Time stamps indicate the progress of the testing phase. Finally,
accuracy on the test set is logged, and the number of exact matches2 and ties (two or more classes
are equally frequent in the nearest neighbor set). In this experiment, the diminutive suffix form
of 96.6% of the new words was correctly predicted. Train and test set overlap in 39 items, and the
algorithm had to break 5 ties, of which 3 correctly.

The meaning of the output file names can be explained now:
dimin.test.mbl.O.gr.k1.out means output file (.out) for dimin.test with algorithm
MBL (=IB1), similarity computed as weighted overlap (.O), relevance weights computed with gain
ratio (.gr), and number of most similar memory patterns on which the output class was based
equal to 1 (.k1).

4.3 Algorithms and Metrics

A precise discussion of the different algorithms and metrics implemented in TiMBL is given in
Chapter 5. We will discuss the effect of the most important ones on our data set.

A first choice in algorithms is between using IB1 and IGTREE. In the trade-off between general-
ization accuracy and efficiency, IB1 usually, but not always, leads to more accuracy at the cost of
more memory and slower computation, whereas IGTREE is a fast heuristic approximation of IB1,

2An exact match in this experiment can occur when two different nouns have the same feature-value representation.
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but sometimes less accurate. The IGTREE algorithm is used when -a 1 is given on the command
line, whereas the IB1 algorithm used above (the default) would have been specified explicitly by
-a 0.

Timbl -a 1 -f dimin.train -t dimin.test

We see that IGTREE performs only slightly worse than IB1 for this train-test partitioning of the
data (it uses less memory and is faster, however).

When using the IB1 algorithm, there is a choice of metrics for influencing the definition of similar-
ity. With weighted overlap, each feature is assigned a weight, determining its relevance in solving
the task. With the modified value difference metric (MVDM), each pair of values of a particular fea-
ture is assigned a value difference. The intuition here is that in our diminutive problem, for
example, the codas � and � should be regarded as being more similar than � and �. These pair-
wise differences are computed for each pair of values in each feature (see Section 5.1.4). Selection
between weighted overlap and MVDM is done by means of the -mM parameter. The following
selects MVDM, whereas -mO (weighted overlap) is the default.

Timbl -mM -f dimin.train -t dimin.test

Especially when using MVDM, but also in other cases, it may be useful to extrapolate not just
from the most similar example in memory, which is the default, but from several. This can be
achieved by using the �� parameter followed by the wanted number of nearest neighbors. E.g.,
the following applies IB1 with the MVDM metric, with extrapolation from the 5 nearest neighbors.

Timbl -mO -k 5 -f dimin.train -t dimin.test

Whenever more than one nearest neighbor is taken into account for extrapolation, it may be
useful to weigh the influence of the neighbors on the final decision as a function of their distance
from the test item. Several possible implementations of this distance function are provided. E.g.,
the following provides inverse distance:

Timbl -mO -k 5 -f dimin.train -t dimin.test -d ID

Within the IB1 weighted overlap option, the default feature weighting method is Gain Ratio. Other
feature relevance weighting methods are available as well. By setting the parameter -w to 0,
an overlap definition of similarity is created where each feature is considered equally relevant.
Similarity reduces in that case to the number of equal values in the same position in the two
patterns being compared. As an alternative weighting, users can provide their own weights by
using the -w parameter with a filename in which the feature weights are stored (see Section 6.2
for a description of the format of the weights file).

Table 4.2 shows the effect of algorithm, metric, distance weighting of nearest neighbors, and
weighting method choice on generalization accuracy using leave-one-out as experimental method.

Timbl -t leave_one_out -f dimin.data

When comparing MVDM and IB1, we see that the overall best results are achieved with MVDM,
but only with a higher value for �, the number of memory items (actually distances) on which



CHAPTER 4. QUICK-START TUTORIAL 14

overlap gain ratio information gain X2 Inverse Linear
IB1, ��� 87.2 96.0 96.0 95.9
IB1, ��� 73.6 95.9 96.5 96.5 96.6
MVDM, ��� 95.1 95.8 95.8 95.8
MVDM, ��� 97.1 97.4 97.5 97.5 96.5

Table 4.2: Some results for diminutive prediction.

the extrapolation is based. Increasing the value of � for (weighted) Overlap metrics decreased
performance. Within the feature weighting approaches, overlap (i.e. no weighting) performs
markedly worse than the default information gain, gain ratio or chi-square weighting methods.

The default settings provided in TiMBL were selected on the basis of our experience with a large
set of (mostly linguistic) datasets. However, as can be seen from this dataset, they are not guar-
anteed to be the best choice (which is 1.5% better for the best of the options explored in Table 4.2).
It is always useful to try out a large set of reasonable combinations of options by cross-validation
on the training data to achieve best results with MBL. The option -t @f where f is the name of a
file, allows you to predefine various combinations of options to be tested and test them without
having the training stages repeated each time. See Chapter 8.

4.4 More Options

Several input and output options exist to make life easier while experimenting. See Chapter 8
for a detailed description of these options. One especially useful option for testing linguistic
hypotheses is the ignore option, which allows you to skip certain features when computing sim-
ilarity. E.g. if we want to test the hypothesis that only the rime (nucleus and coda) and the
stress of the last syllable are actually relevant in determining the form of the diminutive suffix,
we can execute the following with the previously best parameter settings to disregard all but the
fourth-last and the last two features. As a result we get an accuracy of 97.0%3.

Timbl -mM:I1-8,10 -f dimin.data -t leave_one_out -k5 -w3

The +/-V (verbosity) option allows you to control the amount of information that is generated
in the output, ranging from nothing much (+V S) to a lot (+V O+P+E+CM+DI+DB+N). Specific
verbosity settings exist for dumping option settings (+V O), feature relevance weights (default),
value-class conditional probabilities (+V P), exact matches (+V E), distributions (+V DB), a con-
fusion matrix (+V CM) and the nearest neighbors on which decision are based (+V N) or the
distances to the nearest neighbor (+V DI). E.g. the following command results in an output file
with distributions.

Timbl +v db -f dimin.train -t dimin.test

The resulting output file contains lines like the following.

=,=,=,=,+,=,K,=,-,s,A,k,J,J { J 1.00000 }
-,r,i,=,+,j,o,=,-,d,@,=,T,T { T 4.00000, E 1.00000, J 1.00000 }

3It should be kept in mind that the amount of overlap in training and test set has significantly increased, so that
generalization is based on retrieval more than on similarity computation.
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+,vr,a,=,-,G,@,=,-,l,K,st,J,J { J 1.00000 }
=,=,=,=,=,=,=,=,+,b,o,m,P,P { P 3.00000 }
-,t,@,=,-,G,@,=,-,z,I,xt,J,J { J 1.00000 }
=,=,=,=,-,p,A,=,+,tr,o,n,T,T { T 1.00000 }
+,k,I,n,-,d,@,r,-,b,E,t,J,J { J 1.00000 }
+,s,L,=,-,k,@,r,-,b,e,st,J,J { J 1.00000 }
=,=,=,=,+,sx,I,=,-,m,@,l,T,T { T 12.0000 }
=,=,=,=,=,=,=,=,+,kl,M,n,T,T { T 43.0000, E 20.0000 }

This information can e.g. be used to assign a certainty to a decision of the classifier, or to make
available a second-best back-off option.

Timbl +v di -f dimin.train -t dimin.test

+,l,a,=,-,d,@,=,-,k,A,st,J,J 0.070701
-,s,i,=,-,f,E,r,-,st,O,k,J,J 0.000000
=,=,=,=,=,=,=,=,+,sp,a,n,T,T 0.042845
=,=,=,=,=,=,=,=,+,st,o,t,J,J 0.042845
=,=,=,=,+,sp,a,r,-,b,u,k,J,J 0.024472
+,h,I,N,-,k,@,l,-,bl,O,k,J,J 0.147489
-,m,e,=,-,d,A,l,+,j,O,n,E,E 0.182421
-,sn,u,=,-,p,@,=,+,r,K,=,T,T 0.046229
=,=,=,=,=,=,=,=,+,sp,A,N,E,E 0.042845
+,k,a,=,-,k,@,=,-,n,E,st,J,J 0.114685

This can be used to study how very similar instances (low distance) and less similar patterns
(higher distance) are used in the process of generalization.

The listing of nearest neighbors is useful for the analysis of the behavior of a classifier. It can be
used to interpret why particular decisions or errors occur.

Timbl +v n -f dimin.train -t dimin.test

-,t,@,=,-,l,|,=,-,G,@,n,T,T
# k=1, 1 Neighbor(s) at distance: 0.0997233
# -,x,@,=,+,h,|,=,-,G,@,n, -*-
-,=,I,n,-,str,y,=,+,m,E,nt,J,J
# k=1, 1 Neighbor(s) at distance: 0.123322
# -,m,o,=,-,n,y,=,+,m,E,nt, -*-
=,=,=,=,=,=,=,=,+,br,L,t,J,J
# k=1, 4 Neighbor(s) at distance: 0.0428446
# =,=,=,=,=,=,=,=,+,r,L,t, -*-
# =,=,=,=,=,=,=,=,+,kr,L,t, -*-
# =,=,=,=,=,=,=,=,+,sx,L,t, -*-
# =,=,=,=,=,=,=,=,+,fl,L,t, -*-
=,=,=,=,+,zw,A,=,-,m,@,r,T,T
# k=1, 5 Neighbor(s) at distance: 0.0594251
# =,=,=,=,+,fl,e,=,-,m,@,r, -*-
# =,=,=,=,+,=,E,=,-,m,@,r, -*-
# =,=,=,=,+,l,E,=,-,m,@,r, -*-
# =,=,=,=,+,k,a,=,-,m,@,r, -*-
# =,=,=,=,+,h,O,=,-,m,@,r, -*-

Timbl +v cm -f dimin.train -t dimin.test
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Confusion Matrix:
T E J P K

-----------------------------------
T | 453 0 2 0 0
E | 0 87 4 1 8
J | 1 5 346 0 0
P | 0 3 0 24 0
K | 0 8 0 0 8

The confusion matrix associates the class predicted by TiMBL (vertically) with the real class of
the test items given (horizontally). E.g., in this experiment, TiMBL predicted class T (-tje) for 454
test items, of which 453 were indeed class T, and 1 should have received class J (precision for class
T is 99.8%). Or viewed differently, of the 455 items in the test set with class T, 453 were correctly
predicted by TiMBL, and 2 were incorrectly assigned class J (recall for class T is 99.6%). Class E
(-etje) has a recall of 87.0%, and a precision of 84.5%.

A confusion matrix allows a more fine-grained analysis of experimental results and better exper-
imental designs (some parameter settings may work for some classes but not for others, or some
may improve recall, and others precision, e.g.).

We hope that this tutorial has made it clear that, once you have coded your data in fixed-length
feature-value patterns, it should be relatively straightforward to get the first results using TiMBL.
You can then experiment with different metrics and algorithms to try and further improve your
results.



Chapter 5

Memory-based learning algorithms

TiMBL is a program implementing several memory-based learning algorithms. All implemented
algorithms have in common that they store some representation of the training set explicitly in
memory. During testing, new cases are classified by extrapolation from the most similar stored
cases. The main differences among the algorithms incorporated in TiMBL lie in:

� The definition of similarity,

� The way the instances are stored in memory, and

� The way the search through memory is conducted.

In this chapter, various choices for these issues are described. We start in Section 5.1 with a for-
mal description of the basic memory-based learning algorithm, i.e. a nearest neighbor search. We
then introduce different similarity metrics, such as Information Gain weighting, which allows us
to deal with features of differing importance, and the Modified Value Difference metric, which
allows us to make a graded guess of the match between two different symbolic values, and de-
scribe the standard versus three distance-weighted versions of the class voting mechanism of the
nearest neighbor classifier. In Section 5.2, we give a description of various algorithmic optimiza-
tions for nearest neighbor search.

Sections 5.3 to 5.5 describe three variants of the standard nearest neighbour classifier imple-
mented within TiMBL, that optimize some intrinsic property of the standard algorithm. First,
in Section 5.3, we describe IGTREE, which replaces the exact nearest neighbor search with a very
fast heuristic that exploits the difference in importance between features. Second, in Section 5.4,
we describe the TRIBL algorithm, which is a hybrid between IGTREE and nearest neighbor search.
Third, Section 5.5 describes the IB2 algorithm, which incrementally and selectively adds instances
to memory during learning.

The chapter is concluded by Section 5.6, which provides an overview of further reading into
theory and applications of memory-based learning to natural language processing tasks.

5.1 Memory-Based Learning

Memory-based learning is founded on the hypothesis that performance in cognitive tasks is
based on reasoning on the basis of similarity of new situations to stored representations of ear-
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lier experiences, rather than on the application of mental rules abstracted from earlier experiences
(as in rule induction and rule-based processing). The approach has surfaced in different contexts
using a variety of alternative names such as similarity-based, example-based, exemplar-based,
analogical, case-based, instance-based, and lazy learning (Stanfill and Waltz, 1986; Cost and
Salzberg, 1993; Kolodner, 1993; Aha, Kibler, and Albert, 1991; Aha, 1997). Historically, memory-
based learning algorithms are descendants of the �-nearest neighbor (henceforth �-NN) algorithm
(Cover and Hart, 1967; Devijver and Kittler, 1982; Aha, Kibler, and Albert, 1991).

An MBL system, visualized schematically in Figure 5.1, contains two components: a learning com-
ponent which is memory-based (from which MBL borrows its name), and a performance component
which is similarity-based.

The learning component of MBL is memory-based as it involves adding training instances to
memory (the instance base or case base); it is sometimes referred to as ‘lazy’ as memory storage
is done without abstraction or restructuring. An instance consists of a fixed-length vector of
� feature-value pairs, and an information field containing the classification of that particular
feature-value vector.

In the performance component of an MBL system, the product of the learning component is used
as a basis for mapping input to output; this usually takes the form of performing classification.
During classification, a previously unseen test example is presented to the system. The similarity
between the new instance � and all examples � in memory is computed using a distance metric
����� �. The extrapolation is done by assigning the most frequent category within the � most
similar example(s) as the category of the new test example.

EXAMPLES

CASESINPUT OUTPUT

Similarity−Based Reasoning

Storage
Computation of Metrics

Memory−Based
Learning
Architecture

Learning

Performance

Figure 5.1: General architecture of an MBL system.

5.1.1 Overlap metric

The most basic metric that works for patterns with symbolic features is the Overlap metric1 given
in equations 5.1 and 5.2; where ����� � is the distance between patterns � and � , represented

1This metric is also referred to as Hamming distance, Manhattan metric, city-block distance, or L1 metric.
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by � features, and Æ is the distance per feature. The distance between two patterns is simply the
sum of the differences between the features. The �-NN algorithm with this metric is called IB1
(Aha, Kibler, and Albert, 1991). Usually � is set to 1.

����� � �

��
���

Æ���� 	�� (5.1)

where:

Æ���� 	�� �

��
�

�
�� �����
���������

� if numeric, else
� if �� � 	�
� if �� �� 	�

(5.2)

We have made three additions to the original algorithm (Aha, Kibler, and Albert, 1991) in our
version of IB1. First, in the case of nearest neighbor sets larger than one instance (� � � or ties),
our version of IB1 selects the classification that has the highest frequency in the class distribution
of the nearest neighbor set. Second, if a tie cannot be resolved in this way because of equal
frequency of classes among the nearest neighbors, the classification is selected with the highest
overall occurrence in the training set. Third, in our implementation, the value of � refers to �-
nearest distances rather than �-nearest cases.

5.1.2 Information Gain feature weighting

The distance metric in equation 5.2 simply counts the number of (mis)matching feature-values
in both patterns. In the absence of information about feature relevance, this is a reasonable
choice. Otherwise, we can add domain knowledge bias to weight or select different features (see
e.g. Cardie (1996) for an application of linguistic bias in a language processing task), or look at
the behavior of features in the set of examples used for training. We can compute statistics about
the relevance of features by looking at which features are good predictors of the class labels. In-
formation Theory gives us a useful tool for measuring feature relevance in this way (Quinlan,
1986; Quinlan, 1993).

Information Gain (IG) weighting looks at each feature in isolation, and measures how much
information it contributes to our knowledge of the correct class label. The Information Gain
of feature  is measured by computing the difference in uncertainty (i.e. entropy) between the
situations without and with knowledge of the value of that feature (equation 5.3).

�� � �����
�
����

� ���������� (5.3)

Where� is the set of class labels, �� is the set of values for feature , and���� � �
�

��	 � ��� �	

�
� ���

is the entropy of the class labels. The probabilities are estimated from relative frequencies in the
training set.

For numeric features, an intermediate step needs to be taken to apply the sym bol-based com-
putation of IG. Values are first discretized into a number (the default is 20) of equally-spaced
intervals between the minimum and maximum values of the feature. These groups are then used
in the IG computation as if they were discrete values. Note that this discretization is not used in
the computation of the distance metric.

It is important to realize that the IG weight is really a probability-weighted average of the infor-
mativity of the different values of the feature. On the one hand, this pre-empts the consideration
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of values with low frequency but high informativity. Such values “disappear” in the average. On
the other hand, this also makes the IG weight very robust to estimation problems. Each parame-
ter (weight) is estimated on the whole data set.

Information Gain, however, tends to overestimate the relevance of features with large numbers
of values. Imagine a data set of hospital patients, where one of the available features is a unique
“patient ID number”. This feature will have very high Information Gain, but it does not give
any generalization to new instances. To normalize Information Gain for features with different
numbers of values, Quinlan (Quinlan, 1993) has introduced a normalized version, called Gain
Ratio, which is Information Gain divided by ��� (split info), the entropy of the feature-values
(equation 5.5).

�� �
�����

�
����

� ����������

���
(5.4)

��� � �
�
����

� ��� �	

�
� ��� (5.5)

The resulting Gain Ratio values can then be used as weights �
 in the weighted distance metric
(equation 5.6)2. The �-NN algorithm with this metric is called IB1-IG (Daelemans and van den
Bosch, 1992).

����� � �

��
���

�� Æ���� 	�� (5.6)

The possibility of automatically determining the relevance of features implies that many differ-
ent and possibly irrelevant features can be added to the feature set. This is a very convenient
methodology if domain knowledge does not constrain the choice enough beforehand, or if we
wish to measure the importance of various information sources experimentally. However, be-
cause IG values are computed for each feature independently, this is not necessarily the best
strategy. Sometimes better results can be obtained by leaving features out than by letting them
in with a low weight. Very redundant features can also be challenging for IB1-IG, because IG
will overestimate their joint relevance. Imagine an informative feature which is duplicated. This
results in an overestimation of IG weight by a factor two, and can lead to accuracy loss, because
the doubled feature will dominate the similarity metric.

5.1.3 Chi-squared feature weighting

Unfortunately, as White and Liu (1994) have shown, the Gain Ratio measure still has an unwanted
bias towards features with more values. The reason for this is that the Gain Ratio statistic is not
corrected for the number of degrees of freedom of the contingency table of classes and values.
White and Liu (1994) proposed a feature selection measure based on the chi-squared statistic, as
values of this statistic can be compared across conditions with different numbers of degrees of
freedom.

The ��statistic is computed from the same contingency table as the Information Gain measure by
the following formula (Equation 5.7).

2In a generic use IG refers both to Information Gain and to Gain Ratio throughout this manual. In specifying parame-
ters for the software, the distinction between both needs to be made, because they often result in different behavior.
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�� �
�
�

�
�

���� �����
�

���

(5.7)

where ��� is the observed number of cases with value �� in class �� , i.e. ��� � ��� , and ��� is
the expected number of cases which should be in cell (��, ��) in the contingency table, if the null
hypothesis (of no predictive association between feature and class) is true (Equation 5.8). Let ���
denote the marginal for class � (i.e. the sum over column � of the table), ��� the marginal for value
, and ��� the total number of cases (i.e. the sum of all the cells of the contingency table).

��� �
������
���

(5.8)

The ��statistic is well approximated by the chi-square distribution with � � ���������� degrees
of freedom, where � is the number of values and � is the number of classes. We can then either
use the ��values as feature weights in Equation 5.6, or we can explicitly correct for the of degrees
of freedom by using the Shared Variance measure (Equation 5.9).

��� �
���

� �������� �� ��� �
(5.9)

Where ��� and �� � are the number of classes and the number of values respectively. We will refer
to these variations of MBL as IB1-�� and IB1-SV.

One should keep in mind, that the correspondence to the chi-square distribution generally be-
comes poor if the expected frequencies in the contingency table cells become small. A common
recommendation is that the ��test cannot be trusted when more than ��� of the expected fre-
quencies are less than �, or any are less than �.

Chi-squared and shared variance weights of numeric features are computed via a discretization
preprocessing step (also used with computing IG and GR weights). Values are first discretized
into a number (20 by default) of equally-spaced intervals between the minimum and maximum
values of the feature. These groups are then used as discrete values in computing chi-squared
and shared variance weights.

5.1.4 Modified Value Difference metric

It should be stressed that the choice of representation for instances in MBL remains the key factor
determining the strength of the approach. The features and categories in NLP tasks are usually
represented by symbolic labels. The metrics that have been described so far, i.e. Overlap and IG
Overlap, are limited to exact match between feature-values. This means that all values of a feature
are seen as equally dissimilar. However, if we think of an imaginary task in e.g. the phonetic
domain, we might want to use the information that ’b’ and ’p’ are more similar than ’b’ and ’a’.
For this purpose a metric was defined by Stanfill and Waltz (1986) and further refined by Cost and
Salzberg (1993). It is called the (Modified) Value Difference Metric (MVDM; equation 5.10), and it
is a method to determine the similarity of the values of a feature by looking at co-occurrence of
values with target classes. For the distance between two values ��� �� of a feature, we compute
the difference of the conditional distribution of the classes �� for these values.

Æ���� ��� � �

��
���

�� �������� � �������� (5.10)



CHAPTER 5. MEMORY-BASED LEARNING ALGORITHMS 22

For computational efficiency, all pairwise Æ���� ��� values can be pre-computed before the actual
nearest neighbor search starts. Note that for numeric features, no MVDM is computed in TiMBL,
but a scaled difference (see Equation 5.2) of the actual numeric feature values.

Although the MVDM metric does not explicitly compute feature relevance, an implicit feature
weighting effect is present. If features are very informative, their conditional class probabili-
ties will on average be very skewed towards a particular class. This implies that on average
the Æ���� ��� will be large. For uninformative features, on the other hand, the conditional class
probabilities will be pretty uniform, so that on average the Æ���� ��� will be very small.

MVDM differs considerably from Overlap based metrics in its composition of the nearest neighbor
sets. Overlap causes an abundance of ties in nearest neighbor position. For example, if the nearest
neighbor is at a distance of one mismatch from the test instance, then the nearest neighbor set
will contain the entire partition of the training set that matches all the other features but contains
any value for the mismatching feature (see Zavrel and Daelemans (1997) for a more detailed
discussion). With the MVDM metric, however, the nearest neighbor set will either contain patterns
which have the value with the lowest Æ���� ��� in the mismatching position, or MVDM will select a
totally different nearest neighbor which has less exactly matching features, but a smaller distance
in the mismatching features. In sum, this means that the nearest neighbor set is usually much
smaller for MVDM at the same value of �. In NLP tasks we have found it very useful to experiment
with values of � larger than one for MVDM, because this re-introduces some of the beneficial
smoothing effects associated with large nearest neighbor sets.

One cautionary note about this metric is connected with data sparsity. In many practical applica-
tions, we are confronted with a very limited set of examples. This poses a serious problem for the
MVDM metric. Many values occur only once in the whole data set. This means that if two such
values occur with the same class the MVDM will regard them as identical, and if they occur with
two different classes their distance will be maximal. The latter condition reduces the MVDM to
the Overlap metric for many cases, with the addition that some cases will be counted as an exact
match or mismatch on the basis of very shaky evidence.

5.1.5 Distance Weighted Class Voting

The most straightforward method for letting the � nearest neighbors vote on the class of a new
case is the majority voting method, in which the vote of each neighbor receives equal weight, and
the class with the highest number of votes is chosen.

We can see the voting process of the �-NN classifier as an attempt to make an optimal class
decision, given an estimate of the conditional class probabilities in a local region of the data
space. The radius of this region is determined by the distance of the �-furthest neighbor.

Sometimes, if � is small, and the data is very sparse, or the class labels are noisy, the “local” esti-
mate is very unreliable. As it turns out in experimental work, using a larger value of � can often
lead to higher accuracy. The reason for this is that in densely populated regions, with larger � the
local estimates become more reliable, because they are ”smoother”. However, when the majority
voting method is used, smoothing can easily become oversmoothing in sparser regions of the
same data set. The reason for this is that the radius of the �-NN region can become extended far
beyond the local neighborhood of the query point, but the far neighbors will receive equal in-
fluence as the close neighbors. This can result in classification errors that could easily have been
avoided if the measure of influence would somehow be correlated with the measure of similar-
ity. To remedy this, we have implemented three types of distance weighted voting functions in
version 4.1 of TiMBL (depicted in Figure 5.2).

A voting rule in which the votes of different members of the nearest neighbor set are weighted
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Figure 5.2: Three functions for determining the weight of the vote of a nearest neighbor given
its distance from the query. a) Inverse Linear weighting b) Inverse Distance weighting and c)
Exponential Decay weighting.

by a function of their distance to the query, was first proposed by Dudani (1976). In this scheme,
a neighbor with smaller distance is weighted more heavily than one with a greater distance: the
nearest neighbor gets a weight of 1, the furthest neighbor a weight of 0 and the other weights are
scaled linearly to the interval in between (Dudani (1976), equation 1.).

�� �

� ���
���

if �� �� ��
� if �� � ��

(5.11)

Where �� is the distance to the query of the �’th nearest neighbor, �� the distance of the nearest
neighbor, and �� of the furthest (�’th) neighbor.

Dudani (Dudani (1976), eq.2,3) further proposed the inverse distance weight. In equation 5.12 a
small constant is usually added to the denominator to avoid division by zero (Wettschereck,
1994).

�� �
�

�

�
if �� �� � (5.12)

Another weighting function considered here is based on the work of Shepard (1987), who ar-
gues for a universal perceptual law which states that the relevance of a previous stimulus for
the generalization to a new stimulus is an exponentially decreasing function of its distance in
a psychological space. This gives the weighed voting function of equation 5.13, where � and
� are constants determining the slope and the power of the exponential decay function. In the
experiments reported below we have set � and � equal to 1.0 unless indicated otherwise.

�� � ���
�

� (5.13)

Note that in equations 5.12 and 5.13 the weight of the nearest and furthest neighbors and the
slope between them depend on their absolute distance to the query. This assumes that the rela-
tionship between absolute distance and the relevance gradient is fixed over different datasets.
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Following Dudani’s proposal, the benefits of weighted voting for �-NN have been discussed
widely (e.g. Bailey and Jain (1978; Morin and Raeside (1981; MacLeod, Luk, and Titterington
(1987)), but mostly from an analytical perspective. With the popularity of Instance-Based Learn-
ing applications, these issues have gained a more practical importance. In his thesis on �-NN
classifiers, Wettschereck (1994) cites Dudani, but proceeds to work with equation 5.12. He tested
this function on a large amount of datasets and found weak evidence for performance increase
over majority voting. An empirical comparison of the discussed weighted voting methods in (Za-
vrel, 1997) has shown that weighted voting indeed often outperforms unweighted voting, and
that Dudani’s original method (Equation 5.11) mostly outperforms the other two methods. From
that set of experiments, it also seems that Dudani’s method shows its optimal performance at
much larger values of � than the other voting methods.

5.2 Indexing optimizations

The discussion of the algorithm and the metrics in the section above is based on a naive imple-
mentation of nearest neighbor search: a flat array of instances which is searched from beginning
to end while computing the similarity of the test instance with each training instance (see the
left part of Figure 5.3). Such an implementation, unfortunately, reveals the flip side of the lazy
learning coin. Although learning is very cheap: just storing the instances in memory, the compu-
tational price of classification can become very high for large data sets. The computational cost
is proportional to � , the number of instances in the training set.
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Figure 5.3: The instance base for a small object classification toy problem. The left figure shows
a flat array of instances through which sequential nearest neighbor search is performed to find
the best match for a test instance (shown below the instance base). In the right part, an inverted
index (see text) is used to restrict the search to those instances which share at least one feature
value with the test instance.

In our implementation of IB1 we use two indexing optimizations that alleviate this problem, (1)
tree-based memory and (2) inverted indices.
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5.2.1 Tree-based memory

The tree-based memory indexing operation replaces the flat array by a tree structure. Instances
are stored in the tree as paths from a root node to a leaf, the arcs of the path are the consecutive
feature-values, and the leaf node contains a distribution of classes, i.e. a count of how many times
which class occurs with this pattern of feature-values (see Figure 5.4).

Due to this storage structure, instances with identical feature-values are collapsed into one path,
and only their separate class information needs to be stored in the distribution at the leaf node.
Many different tokens of a particular instance type share one path from the root to a leaf node.
Moreover, instances which share a prefix of feature-values, also share a partial path. This reduces
storage space (although at the cost of some book-keeping overhead) and has two implications for
nearest neighbor search efficiency.
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Figure 5.4: A tree-structured storage of the instance base from figure 5.3. An exact match for the
test is in this case directly found by a top down traversal of the tree (grey path). If there is no
exact match, all paths are interpreted as instances and the distances are computed. The order of
the features in this tree is based on Gain Ratio.

In the first place, the tree can be searched top-down very quickly for exact matches. When � � �,
an exact match (����� � � �) can never be beaten, so then it is possible to omit any further
distance computations. TiMBL implements this shortcut. It does not use it with � � �; it does,
however, offer the possibility to use the shortcut anyway (with the command line switch (+x).
Using it can speed up classification radically for some types of data, but with � � �, the shortcut
is not guaranteed to give the same performance (for better or for worse) as classification without
it.

Second, the distance computation for the nearest neighbor search can re-use partial results for
paths which share prefixes. This re-use of partial results is in the direction from the root to the
leaves of the tree. When we have proceeded to a certain level of the tree, we know how much
similarity (equation 5.2) can still contribute to the overall distance (equation 5.1), and discard
whole branches of the tree which will never be able to rise above the partial similarity of the
current least similar best neighbor. By doing the search depth first3, the similarity threshold
quickly gets initialized to a good value, so that large parts of the search space can be pruned.

Disregarding this last constraint on search, the number of feature-value comparisons is equal to
3Suggested by Gert Durieux.
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the number of arcs in the tree. Thus if we can find an ordering of the features which produces
more overlap between partial paths, and hence a smaller tree, we can gain both space and time
improvements. An ordering which was found to produce small trees for many of our NLP data
sets is Gain Ratio divided by the number of feature-values (this is the default setting). Through
the -T command line switch, however, the user is allowed to experiment with different orderings.

5.2.2 Inverted indices

The second method implemented in TiMBL for nearest neighbor search efficiency is a speedup
optimization based on the following fact. Even in the tree-based structure, the distance is com-
puted between the test instance and all instance types. This means that even instance types which
do not share a single feature-value with the test instance are considered, although they will surely
yield a zero similarity. The use of an inverted index excludes these zero similarity patterns. The
construction of the inverted index records for all values of each feature a list of instance types (i.e.
leaf nodes in the tree described in the previous section) in which they occur. Thus it is an inverse
of the instance-base, which records for each instance type which feature-values occur in it4.

When a test instance is to be classified, we select the lists of instance types for the feature-values
that it contains (illustrated in the rightmost part of Figure 5.3). We can now find the nearest
neighbor in these lists in a time that is proportional to the number of occurrences of the most
frequent feature-value of the test pattern, instead of proportional to the number of instance types.

Although worst case complexity is still proportional to� , the size of the training set, and practical
mileage may vary widely depending on the peculiarities of your data, the combination of exact
match shortcut, tree-based path re-use, and inverted index has proven in practice (for our NLP
datasets) to make the difference between hours and seconds of computation5.

5.3 IGTree

Using Information Gain rather than unweighted Overlap distance to define similarity in IB1 im-
proves its performance on several NLP tasks (Daelemans and van den Bosch, 1992; van den Bosch
and Daelemans, 1993; van den Bosch, 1997). The positive effect of Information Gain on perfor-
mance prompted us to develop an alternative approach in which the instance memory is restruc-
tured in such a way that it contains the same information as before, but in a compressed decision
tree structure. We call this algorithm IGTREE (Daelemans, van den Bosch, and Weijters, 1997)
(see Figure 5.5 for an illustration). In this structure, similar to the tree-structured instance base
described above, instances are stored as paths of connected nodes which contain classification
information. Nodes are connected via arcs denoting feature values. Information Gain is used to
determine the order in which instance feature-values are added as arcs to the tree. The reasoning
behind this compression is that when the computation of information gain points to one feature
clearly being the most important in classification, search can be restricted to matching a test in-
stance to those memory instances that have the same feature-value as the test instance at that
feature. Instead of indexing all memory instances only once on this feature, the instance mem-
ory can then be optimized further by examining the second most important feature, followed by
the third most important feature, etc. Again, compression is obtained as similar instances share
partial paths.

4Unfortunately this also implies that the storage of both an instance-base and an inverted index takes about twice the
amount of memory. Therefore we have chosen to turn it off by default. However, especially for data with very large
numbers of low frequent values it can be substantially faster to turn it on.

5MVDM and numeric features cannot make use of the inverted index optimization, because it can happen that two
cases with not one value in common are still nearest neighbors.
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Figure 5.5: A pruned IGTREE for the instance base of Figure 5.3. The classification for the test
instance is found by top down search of the tree, and returning the class label (default) of the
node after the last matching feature-value (arc). Note that this tree is essentially a compressed
version of the tree in Figure 5.4.

Because IGTREE makes a heuristic approximation of nearest neighbor search by a top down
traversal of the tree in the order of feature relevance, we no longer need to store all the paths.
The idea is that it is not necessary to fully store those feature-values of the instance that have
lower Information Gain than those features which already fully disambiguate the instance clas-
sification.

Apart from compressing all training instances in the tree structure, the IGTREE algorithm also
stores with each non-terminal node information concerning the most probable or default classi-
fication given the path thus far, according to the bookkeeping information maintained by the
tree construction algorithm. This extra information is essential when processing unknown test
instances. Processing an unknown input involves traversing the tree (i.e., matching all feature-
values of the test instance with arcs in the order of the overall feature Information Gain), and
either retrieving a classification when a leaf is reached (i.e., an exact match was found), or using
the default classification on the last matching non-terminal node if an exact match fails.

In sum, it can be said that in the trade-off between computation during learning and computation
during classification, the IGTREE approach chooses to invest more time in organizing the instance
base using Information Gain and compression, to obtain simplified and faster processing during
classification, as compared to IB1 and IB1-IG.

The generalization accuracy of IGTREE is usually comparable to that of IB1-IG; most of the time
not significantly differing, and occasionally slightly (but statistically significantly) worse, or even
better. The two reasons for this surprisingly good accuracy are that (i) most ‘unseen’ instances
contain large parts that fully match stored parts of training instances, and (ii) the probabilistic
information stored at non-terminal nodes (i.e., the default classifications) still produces strong
‘best guesses’ when exact matching fails. The difference between the top-down traversal of the
tree and precise nearest neighbor search becomes more pronounced when the differences in in-
formativity between features are small. In such a case a slightly different weighting would have
produced a switch in the ordering and a completely different tree. The result can be a consider-
able change in classification outcomes, and hence also in accuracy. However, we have found in
our work on NLP datasets that when the goal is to obtain a very fast classifier for processing large
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amounts of text, the slight tradeoff between accuracy and speed can be very attractive. Note, also,
that by design, IGTREE is not suited for numeric features, as long as it does not use some type of
discretization. In TiMBL numbers will simply be treated as literal strings in this case. Moreover,
one should realize that the success of IGTREE is determined by a good judgement of feature rele-
vance ordering. Hence IGTREE is not to be used with e.g. “no weights” (-w 0). Also, setting the
-k parameter has no effect on IGTREE performance.

5.4 The TRIBL hybrid

The application of IGTREE on a number of common machine-learning datasets suggested that it
is not applicable to problems where the relevance of the predictive features cannot be ordered in
a straightforward way, e.g. if the differences in Information Gain are only very small. In those
cases, IB1-IG or even IB1 tend to perform significantly better than IGTREE.

For this reason we have designed TRIBL, a hybrid generalization of IGTREE and IB1. TRIBL al-
lows you to exploit the trade-off between (i) optimization of search speed (as in IGTREE), and
(ii) maximal generalization accuracy. To achieve this, a parameter is set determining the switch
from IGTREE to IB1. A heuristic that we have used with some success is based on average feature
information gain; when the Information Gain of a feature exceeds the sum of the average Infor-
mation Gain of all features  one standard deviation of the average, then the feature is used for
constructing an IGTREE, including the computation of defaults on nodes. When the Informa-
tion Gain of a feature is below this threshold, and the node is still ambiguous, tree construction
halts and the leaf nodes at that point represent case bases containing subsets of the original train-
ing set. During search, the normal IGTREE search algorithm is used, until the case-base nodes
are reached, in which case regular IB1 nearest neighbor search is used on this sub-case-base. In
TiMBL, however, you must specify the switch point from IGTREE to IB1, also referred to as “TRIBL
offset”, manually.

5.5 IB2: Incremental editing

In memory-based learning it seems sensible to keep any instance in memory that plays a (poten-
tially) positive role in the correct classification of other instances. Alternatively, when it plays no
role at all, or when it is disruptive for classification, it may be a good idea to discard, or edit it
from memory. On top of not harming or even improving generalization performance, the edit-
ing of instances from memory could also alleviate the practical processing burden of the �-NN
classifier kernel, since it would have less instances to compare new instances to. This potential
double pay-off spawned a distinct line of work on editing in the �-NN classifier quite early Hart
(1968) and Wilson (1972) (for overviews, cf. Dasarathy (1991; van den Bosch (1999)).

TiMBL offers an implementation of one particular editing algorithm called IB2 (Aha, Kibler, and
Albert, 1991), an extension to the basic IB1 algorithm introduced in the same article. IB2 imple-
ments an incremental editing strategy. Starting from a seed memory filled with a certain (usually
small) number of labeled training instances, IB2 adds instances incrementally to memory only
when they are misclassified by the �-NN classifier on the basis of the instances in memory at
that point. These instances are added, since they are assumed to be representatives of a part
of the complete instance space in which they themselves and potentially more nearest-neighbor
instances have a particular class different from the class of neigboring instances already in mem-
ory. The economical idea behind IB2 is that this way tupically only instances on the boundaries
of such areas are stored, and not the insides of the areas; the classification of instances that would
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be positioned well inside such areas is assumed to be safeguarded by the memorized boundary
instances surrounding it.

Although the IB2 may optimize storage considerably, its strategy to store all misclassified in-
stances incrementally makes IB2 sensitive to noise (Aha, Kibler, and Albert, 1991). It is also yet
unclear what the effect is of the size of the seed.

5.6 NLP applications of TiMBL

This section provides a brief historical overview of work, performed in the Tilburg and Antwerp
groups and by others, with the application of MBL-type algorithms to NLP tasks.

The Tilburg and Antwerp groups have published a number of articles containing descriptions of
the algorithms and specialised metrics collected in TiMBL, usually demonstrating their func-
tioning using NLP tasks. The IB1-IG algorithm was first introduced in (Daelemans and van
den Bosch, 1992) in the context of a comparison of memory-based approaches with error-back-
propagation learning for a hyphenation task. Predecessor versions of IGTREE can be found in
(Daelemans and van den Bosch, 1993; van den Bosch and Daelemans, 1993) where they are
applied to grapheme-to-phoneme conversion. See (Daelemans, van den Bosch, and Weijters,
1997) for a description and review of IGTREE and IB1-IG. TRIBL is described in (Daelemans, van
den Bosch, and Zavrel, 1997). Experiments with distance-weighted class voting are described
in (Zavrel, 1997). Aspects of using binary-valued (unpacked multi-valued) features are dis-
cussed in (van den Bosch and Zavrel, 2000). Comparisons between memory-based learning and
editing variants are reported in (van den Bosch, 1999; Daelemans, van den Bosch, and Zavrel,
1999). A hybrid of TiMBL and the RIPPER rule-induction algorithm (Cohen, 1995) is described in
(van den Bosch, 2000). Using TiMBL as a classifier combination method is discussed in (van Hal-
teren, Zavrel, and Daelemans, 2001). Raaijmakers (2000) describes an extension of TiMBL with
error-correcting output codes.

The memory-based algorithms implemented in the TiMBL package have been targeted to a large
range of Natural Language Processing tasks. Examples of applications in the morpho-phonological
and speech areas are hyphenation and syllabification (Daelemans and van den Bosch, 1992); clas-
sifiying phonemes in speech (Kocsor et al., 2000); assignment of word stress (Daelemans, Gillis,
and Durieux, 1994); grapheme-to-phoneme conversion, (van den Bosch and Daelemans, 1993;
Daelemans and van den Bosch, 1996); predicting linking morphemes in Dutch compounds (Krott,
Baayen, and Schreuder, 2001); diminutive formation (Daelemans et al., 1998); and morphological
analysis (van den Bosch, Daelemans, and Weijters, 1996; van den Bosch and Daelemans, 1999).

Work on syntacto-semantic tasks at the sentence level has focused on part of speech tagging
(Daelemans et al., 1996; Zavrel and Daelemans, 1999; van Halteren, Zavrel, and Daelemans,
2001); PP-attachment (Zavrel, Daelemans, and Veenstra, 1997); word sense disambiguation (Veen-
stra et al., 2000; Stevenson and Wilks, 1999; Kokkinakis, 2000); subcategorization (Buchholz,
1998); phrase chunking (Veenstra, 1998; Tjong Kim Sang and Veenstra, 1999); article genera-
tion (Minnen, Bond, and Copestake, 2000); shallow parsing (Daelemans, Buchholz, and Veen-
stra, 1999; Buchholz, Veenstra, and Daelemans, 1999); named-entity recognition (Buchholz and
van den Bosch, 2000); clause identification (Orasan, 2000; Tjong Kim Sang, 2001); sentence-
boundary detection (Stevenson and Gaizauskas, 2000); and predicting the order of prenominal
adjectives for generation (Malouf, 2000).

On the textual level, TiMBL has been used for information extraction (Zavrel, Berck, and Lavri-
jssen, 2000) and spam filtering (Androutsopoulos et al., 2000). In the field of discourse and di-
alogue modeling, TiMBL has been used for shallow semantic analysis of speech-recognised ut-
terances (Gustafson, Lindberg, and Lundeberg, 1999) and in error detection in spoken dialogue
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systems (Krahmer et al., 2001; van den Bosch, Krahmer, and Swerts, 2001).

Relations to statistical language processing are discussed in (Zavrel and Daelemans, 1997). The
first dissertation-length study devoted to the approach is (van den Bosch, 1997), in which the
approach is compared to alternative learning methods for NLP tasks related to English word
pronunciation (stress assignment, syllabification, morphological analysis, alignment, grapheme-
to-phoneme conversion). In 1999 a special issue of the Journal for Experimental and Theoretical Ar-
tificial Intelligence (Vol. 11(3), edited by Walter Daelemans) was devoted to Memory-Based Lan-
guage Processing. The introduction to this special issue discusses the inspiration sources and
alternative developments related to the memory-based approach taken in TiMBL (Daelemans,
1999).

Whereas most work using TiMBL has been oriented towards language engineering applications,
the linguistic and psycholinguistic relevance of memory-based learning is another focus of the
research in Antwerp and Tilburg. Work in this area has been done on stress assignment in Dutch
(Daelemans, Gillis, and Durieux, 1994; Gillis, Durieux, and Daelemans, 2000), reading aloud
(van den Bosch and Daelemans, 2000), phonological bootstrapping (Durieux and Gillis, 2000),
the above-mentioned prediction of linking morphemes in Dutch (Krott, Baayen, and Schreuder,
2001), and comparison to other analogical methods for linguistics (Daelemans, Gillis, and Durieux,
1997).

All Tilburg/Antwerp papers referred to in this section and more recent material are available in electronic
form from the ILK homepage: http://ilk.kub.nl or the CNTS homepage:
http://cnts.uia.ac.be. We are grateful for any feedback on the algorithms and the way we applied
them.



Chapter 6

File formats

This chapter describes the format of the input and output files used by TiMBL. Where possible,
the format is illustrated using the same small toy data set that is shown in Figure 5.3. It consists of
12 instances of 5 different everyday objects (nut, screw, key, pen, scissors), described by 3 discrete
features (size, shape, and number of holes).

6.1 Data format

The training and test sets for the learner consist of descriptions of instances in terms of a fixed
number of feature-values. TiMBL supports a number of different formats for the instances, but
they all have in common that the files should contain one instance per line. The number of
instances is determined automatically, and the format of each instance is inferred from the format
of the first line in the training set. The last feature of the instance is assumed to be the target
category. Should the guess of the format by TiMBL turn out to be wrong, you can force it to
interpret the data as a particular format by using the -F option. Note that TiMBL, by default,
will interpret features as having symbolic, discrete values. Unless you specify explicitly that certain
features are numeric, using the -M option, TiMBL will interpret numbers as just another string
of characters. If a feature is numeric, its values will be scaled to the interval [0,1] for purposes of
distance computation (see Equation 5.2). The computation of feature weights will be based on a
discretization of the feature.

Once TiMBL has determined the input format, it will skip and complain about all lines in the
input which do not respect this format (e.g. have a different number of feature-values with respect
to that format).

During testing, TiMBL writes the classifications of the test set to an output file. The format of this
output file is by default the same as the input format, with the addition of the predicted category
being appended after the correct category. If we turn on higher levels of verbosity, the output
files will also contain distributions, distances and nearest neighbor sets.

6.1.1 Column format

The column format uses white space as the separator between features. White space is defined as
a sequence of one or more spaces or tab characters. Every instance of white space is interpreted

31
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as a feature separator, so it is not possible to have feature-values containing white space. The
column format is auto-detected when an instance of white space is detected on the first line before
a comma has been encountered. The example data set looks like this in the column format:

small compact 1 nut
small long none screw
small long 1 key
small compact 1 nut
large long 1 key
small compact none screw
small compact 1 nut
large long none pen
large long 2 scissors
large long 1 pen
large other 2 scissors
small other 2 key

6.1.2 C4.5 format

This format is a derivative of the format that is used by the well-known C4.5 decision tree learn-
ing program (Quinlan, 1993). The separator between the features is a comma, and the category
(viz. the last feature on the line) is followed by a period (although this is not mandatory: TiMBL
is robust to missing periods)1. White space within the line is taken literally, so the pattern a, b
c,d will be interpreted as ‘a’,‘ b c’,‘d’. When using this format, especially with linguistic
data sets or with data sets containing floating point numbers, one should take special care that
commas do not occur in the feature-values and that periods do not occur within the category.
Note that TiMBL’s C4.5 format does not require a so called namesfile. However, TiMBL can pro-
duce such a file for C4.5 with the -n option. The C4.5 format is auto-detected when a comma is
detected on the first line before any white space has been encountered. The example data set looks
like this in the C4.5 format:

small,compact,1,nut.
small,long,none,screw.
small,long,1,key.
small,compact,1,nut.
large,long,1,key.
small,compact,none,screw.
small,compact,1,nut.
large,long,none,pen.
large,long,2,scissors.
large,long,1,pen.
large,other,2,scissors.
small,other,2,key.

6.1.3 ARFF format

ARFF is a format that is used by the WEKA machine learning workbench (Garner, 1995)2. Al-
though TiMBL at present does not entirely follow the ARFF specification, it still tries to do as
well as it can in reading this format. In ARFF the actual data are preceded by a header with var-
ious types of information and interspersed with lines of comments (starting with %). The ARFF
format is auto-detected when the first line starts with % or @. TiMBL ignores lines with ARFF
comments and instructions, and starts reading data from after the @data statement until the end

1The periods after the category are not reproduced in the output
2WEKA is available from the Waikato University Department of Computer Science,

http://www.cs.waikato.ac.nz/˜ml/.
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of the file. The feature-values are separated by commas, and white space is deleted entirely, so
the pattern a, b c,d will be interpreted as ‘a’,‘bc’,‘d’. We hope include better support
for the ARFF format in future releases.

% There are 4 attributes.
% There are 12 instances.
% Attribute information: Ints Reals Enum Miss
% ’size’ 0 0 12 0
% ’shape’ 0 0 12 0
% ’n_holes’ 9 0 3 0
% ’class.’ 0 0 12 0
@relation ’example.data’
@attribute ’size’ { small, large}
@attribute ’shape’ { compact, long, other}
@attribute ’n_holes’ { 1, none, 2}
@attribute ’class.’ { nut., screw., key., pen., scissors.}
@data
small,compact,1,nut.
small,long,none,screw.
small,long,1,key.
small,compact,1,nut.
large,long,1,key.
small,compact,none,screw.
small,compact,1,nut.
large,long,none,pen.
large,long,2,scissors.
large,long,1,pen.
large,other,2,scissors.
small,other,2,key.

6.1.4 Compact format

The compact format is especially useful when dealing with very large data files. Because this
format does not use any feature separators, file-size is reduced considerably in some cases. The
price of this is that all features and class labels must be of equal length (in characters) and TiMBL
needs to know beforehand what this length is. You must tell TiMBL by using the -l option. The
compact format is auto-detected when neither of the other formats applies. The same example
data set might look like this in the column format (with two characters per feature):

smco1_nu
smlonosc
smlo1_ke
smco1_nu
lalo1_ke
smconosc
smco1_nu
lalonope
lalo2_sc
lalo1_pe
laot2_sc
smot2_ke

6.1.5 Sparse Binary format

The sparse binary format is especially useful when dealing with large numbers of two-valued
(binary) features, of which each case only has a very few active ones, such as e.g. in text catego-
rization. Thus instead of representing a case as:
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1,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,1,small.

We can represent it as:

1,8,11,12,18,small.

This format allows one to specify only the index numbers of the active features (indexes start at
one), while implicitly assuming that the value for all the remaining features is zero. Because each
case has a different number of active features, we must specify in some other way what the actual
number of features is. This must be done using the -N option. As the format is very similar to
numeric features, there is no auto-detection for it. It must always be “forced”, using -F Binary.
The last feature of a line is always interpreted as being the category string. A case with only
zeroes can be represented as either ‘‘‘class’’ or ‘‘,class’’.

6.2 Weight files

The feature weights that are used for computing similarities and for the internal organization
of the memory-base can be saved to a file. A file with weights can be constructed or altered
manually and then read back into TiMBL. The format for the weights file is as follows. The
weights file may contain comments on lines that start with a # character. The other lines contain
the number of the feature followed by its numeric weight. An example of such a file is provided
below. The numbering of the weights starts with 1 and follows the same order as in the data
file. If features are to be ignored it is advisable not to set them to zero, but give them the value
“Ignored” or to use the -s option.

# DB Entropy: 2.29248
# Classes: 5
# Lines of data: 12
# Fea. Weight
1 0.765709
2 0.614222
3 0.73584

6.3 Value difference files

Using the MVDM metric, it can sometimes be interesting to inspect the matrix of conditional class
probabilities from Equation 5.10. By using the -U option, we can write the computed matrix to a
file. This way we can see which values are considered to be similar by the metric. For each feature
a row vector is given for each value, of the conditional probabilities of all the classes (columns)
given that value.

targets A, B, C, D, E.

feature # 1 Matrix:
small 0.429 0.286 0.286 0.000 0.000
large 0.000 0.000 0.200 0.400 0.400

feature # 2 Matrix:
compact 0.750 0.250 0.000 0.000 0.000
long 0.000 0.167 0.333 0.333 0.167
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other 0.000 0.000 0.500 0.000 0.500

feature # 3 Matrix:
1 0.500 0.000 0.333 0.167 0.000
none 0.000 0.667 0.000 0.333 0.000
2 0.000 0.000 0.333 0.000 0.667

As long as this format is observed, the file can be modified (manually or by substituting some
other vector-based representations for the values), and the new matrix can be read in and used
with the MVDM metric.

6.4 Tree files

Although the learning phase in TiMBL is relatively fast, it can be useful to store the internal rep-
resentation of the data set both for later usage and for faster subsequent retrieval. In TiMBL, the
data set is stored internally in a tree structure (see Section 5.2). When using IB1, this tree represen-
tation contains all the training cases as full paths in the tree. When using IGTREE, unambiguous
paths in the tree are pruned before it is used for classification or written to file. In either tree, the
arcs represent feature-values and nodes contain class (frequency distribution) information. The
features are in the same order throughout the tree. This order is either determined by memory-
size considerations in IB1, or by feature relevance in IGTREE. It can explicitly be manipulated
using the -T option.

We strongly advise to refrain from manually editing the tree file. However, the syntax of the
tree file is as follows. After a header consisting of information about the status of the tree, the
feature-ordering (the permutation from the order in the data file to the order in the tree), and the
presence of numeric features3 a legenda is given of numeric hash codes for the class names (one
unique integer per class) and feature value names (one unique integer per value). Subsequently,
the tree’s nodes and arcs are given in a proprietary non-indented bracket notation.

Starting from the root node, each node is denoted by an opening parenthesis “(”, followed by an
integer coding the default class. After this, there is the class distribution list, within curly braces
“� �”, containing a non-empty list of category codes followed by integer counts. After this comes
an optional comma-separated list of arcs to child nodes, within “[ ]” brackets. An arc is labeled
with a coded feature value. The node that the arc leads to again has a class distribution, and any
number of child nodes pointed to by arcs.

The IB1 tree that was constructed from our example data set looks as follows:

# Status: complete
# Permutation: < 1, 3, 2 >
# Numeric: .
# Version 4 (Hashed)
#
Classes
1 nut
2 screw
3 key
4 pen
5 scissors
Features
1 small
2 compact
3 1

3Although in this header each line starts with ’#’, these lines cannot be seen as comment lines.
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4 long
5 none
6 large
7 2
8 other

(1{ 1 3, 2 2, 3 3, 4 2, 5 2 }[1(1[3(1[2(1{ 1 3 })
,4(3{ 3 1 })
]
)
,5(2[2(2{ 2 1 })
,4(2{ 2 1 })
]
)
,7(3[8(3{ 3 1 })
]
)
]
)
,6(4[3(3[4(3{ 3 1, 4 1 })
]
)
,5(4[4(4{ 4 1 })
]
)
,7(5[4(5{ 5 1 })
,8(5{ 5 1 })
]
)
]
)
]
)

The corresponding compressed IGTREE version is considerably smaller.

# Status: pruned
# Permutation: < 1, 3, 2 >
# Numeric: .
# Version 4 (Hashed)
#
Classes
1 nut
2 screw
3 key
4 pen
5 scissors
Features
1 small
2 compact
3 1
4 long
5 none
6 large
7 2
8 other

(1{ 1 3, 2 2, 3 3, 4 2, 5 2 }[1(1{ 1 3, 2 2, 3 2 }[3(1{ 1 3, 3 1 }[4(3{ 3 1 })
]
)
,5(2{ 2 2 })
,7(3{ 3 1 })
]
)
,6(4{ 3 1, 4 2, 5 2 }[3(3{ 3 1, 4 1 })
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,7(5{ 5 2 })
]
)
]
)

TiMBL tree files generated by versions 1.0 to 3.0 of TiMBL, which do not contain hashed class
and value names, will be recognized as such, and will be read by TiMBL. Although backward
compatibility has been strived for, it is advisable to regenerate tree files with the current version
of TiMBL, especially in the case of version-1.0 trees. It is foreseen that in future releases of TiMBL
the tree format syntax will change again, while TiMBL will be continuously able to read trees
generated by older versions.



Chapter 7

Server interface

It is not always practical or possible to have all test items in one static test file. Example cases
include:

� The output of one classifier is being reused as a feature of some other classifier instantly,
hence it is not available until it is processed.

� The test items come in at arbitrary time intervals.

In such cases it is more practical to load the training patterns once and have TiMBL stand by as a
server waiting for new test items to be processed. This can be achieved by starting TiMBL with
the -S portnumber option. TiMBL will load the training set and do the necessary preparation
of statistics and metrics, and then enter an infinite loop, waiting for input on the specified port-
number. When a client connects on this portnumber, the server starts a separate thread for it to
process (classification) commands. A sample client program is included in the distribution. The
client must communicate with the server using the protocol described below. After accepting the
connection, the server first sends a welcome message to the client:

Welcome to the Timbl server.

After this, the server waits for client-side requests. The client can now issue four types of com-
mands: classify, set (options), query (status), and exit. The type of command is specified by
the the first string of the request line, which can be abbreviated to any prefix of the command,
up to one letter (i.e. c,s,q,e). The command is followed by whitespace and the remainder of the
command as described below.

classify testcase
testcase is a pattern of features (must have the same number of features as the training set)
followed by a category string. E.g.: small,long,1,??.
Depending on the current settings of the server, it will either return the answer

ERROR { explanation }

if something’s gone wrong, or the answer

CATEGORY {category} DISTRIBUTION { category 1 } DISTANCE { 1.000000} NEIGHBORS
ENDNEIGHBORS
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where the presence of the DISTRIBUTION, DISTANCE and NEIGHBORS parts depends
upon the current verbosity setting. Note that if the last string on the answer line is NEIGH-
BORS, the server will proceed to return lines of nearest neighbor information until the key-
word ENDNEIGHBORS.

set option
where option is specified as a string of commandline options (described in detail in Sec-
tion 8 below). Only the following commandline options are valid in this context: k, m,
Q, R, w, v, x, -. The setting of an option in this client does not affect the behav-
ior of the server towards other clients. The server replies either with OK or with ERROR
�explanation�.

query
queries the server for a list of current settings. Returns a number of lines with status infor-
mation, starting with a line that says STATUS, and ending with a line that says ENDSTATUS.
For example:

STATUS
FLENGTH : 0
MAXBESTS : 500
NULL_VALUE :
TREE_ORDER : G/V
DECAY : Z
INPUTFORMAT : Column
SEED : -1
DECAYPARAM : 1.000000
SAMPLE_WEIGHTS : -
IGNORE_SAMPLES : +
PROBALISTIC : -
VERBOSITY : F
EXACT_MATCH : -
USE_INVERTED : -
GLOBAL_METRIC : Overlap
METRICS :
NEIGHBORS : 1
PROGRESS : 100000
TRIBL_OFFSET : 0
IB2_OFFSET : 0
WEIGHTING : GRW
ENDSTATUS

exit
closes the connection between this client and the server.
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Command line options

The user interacts with TiMBL through the use of command line arguments. When you have
installed TiMBL successfully, and you type Timbl at the command line without any further ar-
guments, it will print an overview of the most basic command line options.

TiMBL 4.1 (c) ILK 1998, 1999, 2000, 2001.
Tilburg Memory Based Learner
Induction of Linguistic Knowledge Research Group
Tilburg University / University of Antwerp
Tue Jul 31 11:37:08 2001

usage: Timbl -f data-file {-t test-file}
or see: Timbl -h

for all possible options

If you are satisfied with all of the default settings, you can proceed with just these basics:

-f <datafile> : supplies the name of the file with the training items.

-t <testfile> : supplies the name of the file with the test items.

-h : prints a glossary of all available command line options.

The presence of a training file will make TiMBL pass through the first two phases of its cycle. In
the first phase it examines the contents of the training file, and computes a number of statistics
on it (feature weights etc.). In the second phase the instances from the training file are stored
in memory. If no test file is specified, the program exits, possibly writing some of the results of
learning to files (see below). If there is a test file, the selected classifier, trained on the present
training data, is applied to it, and the results are written to a file of which name is a combination
of the name of the test file and a code representing the chosen algorithm settings. TiMBL then
reports the percentage of correctly classified test items. The default settings for the classification
phase are: a Memory-Based Learner, with Gain Ratio feature weighting, with � � �, and with
optimizations for speedy search. If you need to change the settings, because you want to use a
different type of classifier, or because you need to make a trade-off between speed and memory-
use, then you can use the options that are shown using -h. The sections below provide a reference
to the use of these command line arguments, and they are roughly ordered by the type of action
that the option has effect on. Note that some options (listed with “+/-”) can be turned on (+) or
off (-).
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8.1 Algorithm and Metric selection

-a <string> : determines the classification algorithm. Possible values are:

n=IB1 – the IB1 (�-NN) algorithm (default). See Sections 5.1 and 5.2.
n=IGTREE – IGTREE, decision-tree-based optimization. See Section 5.3.
n=TRIBL – TRIBL, the hybrid of IB1 and IGTREE. See Section 5.4.
n=IB2 – IB2, incremental edited memory-based learning. See Section 5.5.

The old syntax of -a <n> still applies, where n=0 means IB1, n=1 means IGTREE, n=2
means TRIBL, and n=3 means IB2.

-m <string> : determines which similarity metrics are used for each feature. The format of
this string is as follows:
GlobalMetric:MetricRange:MetricRange
Where GlobalMetric is used for alle features except for the ones that are assigned other
metrics by following the restrictions given by :MetricRange. The metric code can be one
of O, M, N, and I, which stand for Overlap (default), Modified value difference (MVDM),
Numeric, or Ignore, respectively. Ignore cannot be the global metric. A range can be written
using comma’s for lists, and hyphens for intervals.

For example, -mO:N3:I2,5-7 sets the global metric to overlap, declares the third feature
to be numeric, and ignores features 2 and 5, 6, and 7.

-w <n> : chooses between feature-weighting possibilities. The weights are used in the metric
of IB1 and in the ordering of the IGTREE. Possible values are:

n=0 – No weighting, i.e. all features have the same importance (weight = 1).
n=1 – Gain Ratio weighting (default). See section 5.1.2.
n=2 – Information Gain weighting. See section 5.1.2.
n=3 – Chi-squared (��) weighting. See section 5.1.3.
n=4 – Shared variance weighting. See section 5.1.3.
n=filename – Instead of a number we can supply a filename to the -w option. This causes

TiMBL to read this file and use its contents as weights. (See section 6.2 for a description
of the weights file)

-b <n> : determines n (� �), the number of instances, to be taken from the top of the train-
ing file, to act as the bootstrap set of memorized instances before IB2 starts adding new
instances. Only applicable in conjunction with IB2 (-a 3).

-d <val> : The type of class voting weights that are used for extrapolation from the nearest
neighbor set. val can be one of:

� Z : normal majority voting; all neighbors have equal weight (default).
� ID: Inverse Distance weighting. See Section 5.1.5, Equation 5.11.
� IL: Inverse Linear weighting. See Section 5.1.5, Equation 5.12.
� ED<a>: Exponential Decay weighting with decay parameter a. No space is allowed

between ED and a. See Section 5.1.5, Equation 5.13.

-k <n> : Number of nearest neighbors used for extrapolation. Only applicable in conjunction
with IB1 (-a 0), TRIBL (-a 2), and IB2 (-a 3). The default is 1. Especially with the MVDM
metric it is often useful to determine a good value larger than 1 for this parameter (usu-
ally an odd number, to avoid ties). Note that due to ties (instances with exactly the same
similarity to the test instance) the number of instances used to extrapolate might in fact be
much larger than this parameter.
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-q <n> : n is the TRIBL offset, the index number of the feature where TRIBL should switch from
IGTREE to IB1. Only applicable in conjunction with IB2 (-a 3).

-R <n> : Resolve ties in the classifier randomly, using a random generator with seed n. As a
default this is OFF, and ties are resolved in favor of the category which is more frequent in
the training set as a whole—remaining ties are resolved on a first come first served basis.
For comparison purposes, we have also included the option -R <n>, which causes the
classification to be based on a random pick (with seed n) of a category according to the
probability distribution in the nearest neighbor set.

-t <@file> : If the filename given after -t starts with ’@’, TiMBL will read commands for
testing from file. This file should contain one set of instructions per line. On each line
new values can be set for the following command line options: -e -F -k -m -o -p -Q
-R -t -u +/-v -w +/-x +/-% +/--. It is compulsory that each line in file contains
a -t <testfile> argument to specify the name of the test file.

-t <testfile> : the string <testfile> is the literal name of the file with the test items.

-t leave one out : No test file is read, but testing is done on each pattern of the training file,
by treating each pattern of the training file in turn as a test case (and the whole remainder
of the file as training cases).

-t cross validate : An �-fold cross-validation experiment is performed on the basis of �
files (e.g. � � partitionings of an original data file). The names of these � files need to be
in a text file (one name per line) which is given as argument of -f. In each fold ! � � " " " �,
file number ! is taken as test set, and the remaining �� � files are concatenated to form the
training set.

8.2 Input options

-f <datafile> : the string <datafile> is the literal name of the file with the training items.

-F <format> : Force TiMBL to interpret the training and test file as a specific data format. Pos-
sible values for this parameter are: Compact, C4.5, ARFF, Columns, Binary (case-
insensitive). The default is that TiMBL guesses the format from the contents of the first line
of the data file. See section 6.1 for description of the data formats and the guessing rules.
The Compact format cannot be used with numeric features.

-l <n> : Feature length. Only applicable with the Compact data format; <n> is the number of
characters used for each feature-value and category symbol.

-i <treefile> : Skip the first two training phases, and instead of processing a training file,
read a previously saved (see -I option) instance-base or IGTREE from the file treefile.
See section 6.4 for the format of this file.

-u <valueclassprobfile> : Replace the automatically computed value-class probability
matrix with the matrices provided in this file.

-P <path> : Specify a path to read the data files from. This path is ignored if the name of the
data file already contains path information.

-s: Use the whitespace-delimited examplar weights, given after each training instance in the
training file <datafile>, during classification.

-S <portnumber> : Starts a TiMBL server listening on the specified port number of the local-
host. See Chapter 7 for a description of the communication protocol.
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8.3 Output options

-I <treefile> : After phase one and two of learning, save the resulting tree-based represen-
tation of the instance-base or IGTREE in a file. This file can later be read back in using the
-i option (see above). See section 6.4 for a description of the resulting file’s format. This
also automatically saves the current weights into treefile.wgt unless this is overridden
by W.

-W <file> : Save the currently used feature-weights in a file.

-U <valueclassprobfile> : Write the automatically computed value-class probability ma-
trix to this file.

-n <file> : Save the feature-value and target category symbols in a C4.5 style “names file”
with the name <file>. Take caution of the fact that TiMBL does not mind creating a file
with ’,’ ’.’ ’—’ and ’:’ values in features. C4.5 will choke on this.

-p <n> : Indicate progress during training and testing after every n processed patterns. The
default setting is 10000.

-e <n> : During testing, compute and print an estimate on how long it will take to classify n
test patterns. This is off by default.

-V : Show the version number.

+/-v <n> : Verbosity Level; determines how much information is written to the output during
a run. Unless indicated otherwise, this information is written to standard error. The use of
+ turns a given verbosity level on, whereas - turns it off (only useable in non-commandline
contexts, such as client/server communication or -t @testcommandfile). This param-
eter can take on the following values:

s: work silently (turns off all set verbosity levels).

o: show all options set.

f: show Calculated Feature Weights. (default)

p: show MVDM matrices.

e: show exact matches.

cm: show confusion matrix between actual and predicted classes.

di: add distance to output file.

db: add distribution of best matched to output file

n: add nearest neigbors to output file (sets -x and --)

You may combine levels using ’+’ e.g. +v p+db or -v o+di.

+/- % : Write the percentage of correctly classified test instances to a file with the same name
as the output file, but with the suffix “.%”.

-o <filename> : Write the test output to filename. Useful for different runs with the same
settings on the same testfile.

-O <path> : Write all output to the path given here. The default is to write all output to the
directory where the test file is located.
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8.4 Internal representation options

-N <n> : (maximum) number of features. Obligatory for Binary format. When larger than a
pre-defined constant (default 2500), N needs to be set explicitly for all algorithms.

-M <string> : use string as missing value. Missing values have an effect with MVDM (-
mM): when string matches with string, their distance is 0.0; when string matches with
another value, their distance is 2.0 (the maximum for MVDM). With -mO, missing values
behave like ordinary symbols. Missing values also have an effect on Overlap (-mO) because
they are not taken into account when computing feature weights.

+/- x : turns the shortcut search for exact matches on or off in IB1 (and IB2 and TRIBL). The
default is to be off (-x). Turning it on makes IB1 generally faster, but with � � � the
shortcut produces different results from a “real” � nearest neighbors search, since absolute
preference is given to the exact match.

+/- - : Turn on/off the use of inverted files. Turning this on will sometimes make testing
(considerably) faster, but approximately doubles the memory load. The default is off, but it
is set on automatically with -F Binary files.

-B <n>: Set the maximum number of nearest neighbors printed using the +vn verbosity option.
By default this is set to 500, but when you are interested in the contents of really large
nearest neighbor sets (which is possible with large � or large data sets with few features), n
can be increased up to 10,000.
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