In: Van Eynde, F. and D. Gibbon. Lexicon Development for speech and language processing

Kluwer Academic Publishers, 115-139, 2000

Inductive Lexica

Walter Daelemans and Gert Durieux

Abstract. Machine Learning techniques are useful tools for the automatic exten-
sion of existing lexical databases. In this paper, we review some symbolic machine
learning methods which can be used to add new lexical material to the lexicon
by automatically inducing the regularities implicit in lexical representations already
present. We introduce the general methodology for the construction of inductive lez-
tca, and discuss empirical results on extending lexica with two types of information:
pronunciation and gender.

1. Introduction

Computational lexicology and lexicography (the study of the structure,
organization, and contents of computational lexica) have become cen-
tral disciplines both in language engineering and in theoretical com-
putational linguistics. Most language engineering applications are in
need of rich lexical knowledge sources, and in computational linguistics
theory, the role of the lexicon has become increasingly important in
linguistic formalisms, such as GPSG, HPSG, and TAG.

A lot of attention in the field has been directed towards issues in lex-
ical knowledge representation: the design and evaluation of formalisms
for the representation of lexical knowledge, e.g. IEvans and Gazdar
(1996) or Briscoe et al. (1993). Although adequate representation is
important, paying too much attention to the issue of formalisms incurs
a risk of throwing language engineering into a malaise similar to the
“Al-winter” in expert systems technology during the eighties and early
nineties. At that time, Al research was producing Knowledge System
development shells using a wide range of formalisms, but neglected to
fill them with useful knowledge. The lesson learned from the limited im-
pact of these expert system shells on industry is that an expert system
should first and foremost contain the knowledge necessary to solve the
customers’ problem, rather than relying on the users to provide that
knowledge. Whether the formalism used to represent this knowledge
is rule-based, first order predicate calculus or a semantic network is of
less concern.

Similarly, in computational lexicography, lexica of language engi-
neering applications should come with acceptable lexical coverage, and
with the information necessary for the intended applications. They
should also come equipped with methods for the automatic extension

';“ © 1999 Kluwer Academic Publishers. Printed in the Netherlands.

il.tex; 8/01/1999; 16:43; p.1

2 Walter Daelemans and Gert Durieux

of the lexicon with new lexical entries. Whether these lexical entries
are represented as DATR theorems, as typed feature structures, or as
a record in a ‘flat file’ may be less crucial. The main research issue
in computational lexicology is therefore to try to solve the following
problem:

All computational lexica are inherently incomplete because of (i)
missing lexical entries, and (ii) missing information about lexical
entries.

On closer inspection, though, missing lexical entries are not really a
problem: either we don’t need them in a particular application, and
then we don’t have to know that they exist, or we do need them, but
then we will encounter some of their associated information (probably
their spelling or pronunciation), and we will know some of the con-
texts they appear in. In that case, they are not missing, because the
information present in the lexicon is sufficient to construct a surpris-
ing amount of additional lexical information, provided we have corpora
and /or lexical databases available. As we shall see, this holds true even
if the former contains only few lexical entries. The problem of missing
lexical entries therefore reduces to the problem of extending existing
lexical entries with additional information.

This paper addresses the automatic extension of lexica using sym-
bolic machine learning techniques; in-depth discussion of alternative,
quantitative methods such as neural networks or statistical approaches
is beyond the scope of this paper. It is our belief that machine learn-
ing techniques allow the accurate prediction of lexical information as-
sociated with new lexical items on the basis of extracted regularities
from the lexical information already present in a computational lexicon.
First, we will define the place of this approach in the broader area of
lexical acquisition (Section 2). Section 3 gives a short tutorial overview
of relevant Machine Learning techniques, focusing on two approaches
which we think are especially relevant for lexical acquisition: memory-
based learning and decision tree induction. Section 4, finally, provides
an overview of the general methodology of lexical extension proposed
here, and presents two case studies: (i) the prediction of the pronunci-
ation of a lexical item from its spelling, and (ii) the prediction of the
gender of a Dutch noun on the basis of its phonological structure.

2. Approaches to Lexical Acquisition
To alleviate the task of hand-coding and extending large lexica, lexico-

graphic environments have been designed, e.g. ONTOS and LUKE (see
Wilks et al. (1996)) or woRD MANAGER (Domenig and ten Hacken,

il.tex; 8/01/1999; 16:43; p.2

Inductive Lexica 3

1992). These environments can speed up acquisition by the semi-
automatic computation of some information, i.e. algorithmic compu-
tation combined with manual checking, or by presenting the lexicogra-
pher with a set of contexts containing a new word, the grammaticality
of which should be checked. On the basis of feedback from the lexicog-
rapher, lexical information about the word is then deduced. Useful as
these environments may be, it will be intuitively clear that they do not
constitute a cost-efficient solution to the enormity of the lexical acqui-
sition and extension tasks. As noted in Wilks et al. (1996), there is a
problem even with the very concept of hand-crafting lexical databases,
as e.g. in WORDNET (Miller, 1990), since they can never be task nor
theory independent.

A second approach, used from the mid-eighties onwards, makes use
of Machine Readable Dictionaries (MRDs) to construct computational
lexica (Wilks et al., 1996). The results of this approach have been crit-
icized for being incomplete and inconsistent, because the base MRDs
were developed with human users in mind (Ide and Véronis, 1995). We
will show how machine learning techniques can nevertheless extend and
refine computational lexica bootstrapped from MRDs.

The methodological context of this paper is the use of inductive
techniques for the automatic extraction of lexical knowledge from cor-
pora.! Recent work on corpus-based lexical acquisition (see Boguraev
and Pustejowsky (1996) for a representative collection of recent re-
search, and Zernik (1991) for older work) suggests that useful lexical
information can be extracted from such corpora. In our opinion, the
application of machine learning techniques to language learning, un-
til recently a largely independent research activity (see e.g. Daelemans
et al. (1997), and various links at the ACL SIGNLL home page?), is
a powerful alternative or complementary approach to statistical lexical
acquisition. This paper introduces the latter approach for lexical ac-
quisition; Barg (1994) presents a different machine learning approach
to lexical learning.

3. Machine Learning Crash Course

Machine Learning (ML) is the sub-discipline of Artificial Intelligence
(Al) that studies algorithms that can learn either from experience or
by reorganizing the knowledge they already have (see Mitchell (1997),

! With this term we mean raw text corpora, annotated text corpora, and existing
lexical databases.

2 Association of Computational Linguistics Special Interest Group in Natural
Language Learning; URL: http://signll.aclweb.org/ signll/.

il.tex; 8/01/1999; 16:43; p.3

4 Walter Daelemans and Gert Durieux

Langley (1996) and Carbonell (1990) for introductory material, Weiss
and Kulikowski (1991) for methodological issues, and Natarajan (1991)
for a formal-theoretical approach).

Conceptually, a learning system consists of a performance component
which performs a specific task (given an input, it produces an output),
and a learning component which modifies the performance component
on the basis of its experience in such a way that performance of the
system in doing the same or similar tasks improves (Figure 1). Expe-
rience is represented as a set of examples used to train the system.
Examples usually take the form of a set of attribute/value pairs (the
predictor attributes) together with their associated desired output (the
class or target attribute). E.g., in mushroomology, the predictor at-
tributes might describe a mushroom in terms of the shape, texture,
and color of its parts, and its odor, and the desired output its edibility
(edible or poisonous). In lexicology, the predictor attributes might be
a description of a word in terms of its syllable structure and segmen-
tal material, and the class attribute its syntactic category. In the first
case, we obtain the examples by collecting various mushrooms, describ-
ing their appearance, and testing their edibility; in the second case, we
either provide the examples ourselves, or get them from corpora or ex-
isting lexical databases. Machine Learning algorithms can be successful
in generalizing from these examples to new, previously unseen cases,
i.e. new descriptions of mushrooms or nouns.

To perform its task, the performance component uses an internal
representation. The task of the learning component may therefore be
construed as a search in the space of possible representations for a rep-
resentation that is optimal for performing the mapping. A large number
of formalisms has been proposed for the internal representations of lex-
ical acquisition systems: e.g. decision trees, case bases, taxonomies, and
sets of probabilities. In most cases, finding the optimal representation
given a set of examples and a representation language is computation-
ally intractable. Some form of heuristic search is therefore used by all
learning systems.

In Machine Learning, the concept of bias refers to domain- or algo-
rithm-dependent constraints on the search process: knowledge about
the task may be used to make the search simpler. There may also be
bias in the way the experience presented to the learning component
(the training examples) is preprocessed. The addition of linguistic bias
to a learning system is the obvious way to let learning systems profit
from linguistic knowledge about the task. A radically empiricist stance
will of course strive for learning systems where linguistic bias is close
to zero, and only domain-independent inductive methods are used.

il.tex; 8/01/1999; 16:43; p.4

Inductive Lexica 5

EXAMPLES

Inductive
Learning
System

LEARNING
COMPONENT

INPUT representations OUTPUT

PERFORMANCE
COMPONENT

Figure 1. General architecture of an inductive learning system

3.1. CLASSIFICATION OF LEARNING METHODS

Given this very general model of inductive learning, a number of di-
mensions can be distinguished that should be considered in comparing
and experimenting with these techniques.

— Amount of Supervision. In supervised learning, experience takes
the form of examples, which consist of sets of attribute/value pairs
describing some relevant properties of objects and a corresponding
class attribute. These examples are presented to the system during
a training phase. In unsupervised learning, examples are presented
without information about their intended class. It is up to the
system to exploit similarities within the examples in such a way
that they can be used by the performance component to solve the
task.?

— Input Representation. Commonly used representations for the pre-
dictor attributes include vectors of bits, ordered sets (vectors) of
attribute/value pairs, where the values may be numeric or nom-
inal (compare ‘flat’ feature structures in linguistics), or complex

? Several Machine Learning approaches have both supervised and unsupervised
variants, e.g. the widely used back-propagation learning algorithm for neural net-
works is a supervised method, whereas the Self-Organizing Map implements an
unsupervised variant.

il.tex; 8/01/1999; 16:43; p.5

Walter Daelemans and Gert Durieux

recursive representations such as semantic nets (compare recursive
feature structures in linguistics).

Output Representation. The values for the class attribute may be
a simple binary category (i.e. a yes/no decision), a symbolic cate-
gory (a finite, discrete set of labels), a continuous category (a real
number), or a vector of any of these.

Internal Representation. The representation used by the perfor-
mance component, and optimized by the learning component can
be numeric (e.g. connection weights with neural networks) or sym-
bolic (semantic nets, rules, decision trees, taxonomies, cases, ...).

Incremental Learning. A learning system can be incremental. In
that case, relevant information in additional examples can be inte-
grated by the learning component into the performance component
without re-learning everything from scratch. In non-incremental or
batch learning systems, such as most neural networks, this is not
possible. In batch learning, the complete set of examples has to be
inspected—sometimes several times—before learning is completed,
and the addition of new examples makes complete re-learning nec-
essary.

3.2. PERFORMANCE EVALUATION

The success of a learning component in improving performance can
be evaluated using a number of different quantitative and qualitative
measures:

Generalization accuracy. What is measured here, is the perfor-
mance accuracy of the system on previously unseen inputs (i.e.
inputs it was not trained on). This aspect of learning is of course
crucial: it gives an indication of the quality of the inductive leap
made by the algorithm on the basis of the examples. Good gener-
alization accuracy indicates that the learning system has avoided
overfitting on the training examples; this problem occurs mainly in
noisy domains (cf. infra), when the learning component tries too
hard to accommodate all idiosyncrasies of the training set, leading
to overly specific representations which fail to capture the overall
domain regularities. In order to get a good estimate of the real
generalization accuracy, cross-validation techniques can be used,
e.g. in 10-fold cross-validation an algorithm is tested on ten dif-
ferent partitions of the full data set available. In each run 90%
of the data is used as training material, and 10% is set aside for

il.tex; 8/01/1999; 16:43; p.6

Inductive Lexica 7

testing. Each data item occurs once in one of the test sets. The av-
erage generalization accuracy over the ten test sets is then a good
statistical estimate of the real accuracy.

— Space and time complexity. This covers both the amount of storage
and processing involved in training the system and in performance,
i.e. producing output given the input.

— Ezplanatory Quality. Usefulness of the representations found by
the learning system as an explanation of the way the task is per-
formed. When the system outputs e.g. a set of rules, these can be
inspected by a human expert, and thus have potentially high ex-
planatory quality. By contrast, the final set of connection weights
reached by a neural network training algorithm is far more difficult
to assess.

— Noise Tolerance. Different algorithms can be more or less sensitive
to noise in the input. Noise can result from wrongly coded exam-
ples, missing values, or even from ambiguous examples, i.e. exam-
ples which have been assigned contradictory outputs in the train-
ing set. Algorithms dealing with linguistic data should be noise-
resistant, if only for the simple reason that almost any linguistic
domain is replete with sub-regularities and exceptions.

3.3. OVERVIEW OF METHODS

To sum up this introductory section on Machine Learning, we will give
an intuitive description of how some of the algorithms work, using a
prediction task where grammatical category is to be predicted from
syllable structure and segmental content. This example application is
typical of a large number of lexical acquisition and extension tasks:
given a previously unseen word for which lexical information has to
be acquired, this information can be induced in large part from the
correspondences between form and category in known form-category
pairs.

We discuss the algorithms in order of increasing abstraction of the
internal representation. We start from storage and table-lookup of the
‘raw’ examples as a non-learning baseline.

— Table Look-Up. Store all examples (patterns of syllable structure of
target words and their corresponding syntactic category) in a ta-
ble. When a new input pattern is given to the performance system,
look it up in the table, and retrieve the output of the stored exam-
ple. In this approach, the system does not actually learn anything,

il.tex; 8/01/1999; 16:43; p.7

Walter Daelemans and Gert Durieux

and it fails miserably whenever an input pattern is not present
in the table. In other words, there is no real generalization. How-
ever, surprising as it may seem, this approach sometimes shows
performance accuracies similar to those of sophisticated inductive
or statistical techniques. The reason for this is that—given a size-
able lexicon and a suitable input representation—the possibility
of generalization comes to lie in large part with the input encod-
ing: several words (including previously unseen ones) may be rep-
resented by the same input pattern and retrieval thus becomes a
(rather crude) form of generalization. Some kinds of representation
(e.g. windowing: sliding an imaginary fixed-width window over the
input word, and assigning a new pattern to each ‘snapshot’) incor-
porate a marked generalization effect in this way.

Memory-Based Learning. Store all examples in a table. When a
new input pattern is given to the performance system, look up
the most similar examples to the new pattern (in terms of the
number of identical segments in identical positions in both the
stored pattern and the new pattern, for example), and extrapolate
from the categories assigned to these nearest neighbors of the new
case. Various statistical and information-theoretic techniques can
be used to design a suitable similarity metric. The definition of
similarity is also a place where linguistic bias can be introduced in
the learning algorithm. We could, for example, decide that the last
syllable is more important than the other syllables of a word, and
consider mismatches in the last syllable as more important than
mismatches in other parts of the word.

Rule and Decision Tree Induction, Conceptual Clustering. Use sim-
ilarities and differences between examples to construct a decision
tree or a rule set, and use this constructed representation to assign
a category to a new input pattern. Forget the individual examples.
In the unsupervised variant, examples do not come preclassified,
but consist only of a set of attribute/value pairs. The unsupervised
algorithms organize these examples into taxonomies, by creating,
expanding and refining classes according to some measure of useful-
ness. Unlike the case of supervised algorithms, performance cannot
be measured by comparing the system’s predictions with the ‘cor-
rect’ categories. Instead, infer missing feature values by examining
the node(s) in the induced taxonomy that the example is classified
at.

Connectionism, Neural Networks. Use the examples to train a net-
work. In back-propagation learning, this training is done by repeat-

il.tex; 8/01/1999; 16:43; p.8

Inductive Lexica 9

edly iterating over all examples, comparing for each example the
output predicted by the network to the desired output, and chang-
ing connection weights between network nodes in such a way that
performance increases. Keep the connection weight matrix, and
forget the examples. In the unsupervised variant, neural network
dynamics implementing some form of similarity computation on
input patterns, self-organize a network of neurons (usually a two-
dimensional grid) into a map where patterns are represented by
neurons, and nearness of patterns on the map indicates closeness.
In our example, e.g. verbs could tend to cluster together.

In terms of the amount of abstraction introduced during the learning
phase, conceptual clustering and rule induction approaches are eager
learning techniques.* These techniques abstract knowledge from the
examples as soon as they are presented, and the examples themselves
are forgotten. Memory-Based Learning is a lazy learning technique;
generalization only occurs when a new pattern is offered to the perfor-
mance component, and abstraction is therefore implicit in the way the
contents of the case base and the similarity metric interact. We will
continue this section by describing a typical lazy and a typical eager
learning technique in somewhat more detail.

MEMORY-BASED LEARNING

The memory-based learning paradigm is founded on the hypothesis
that performance in cognitive tasks (in our case: language processing)
is based on identifying analogies between new situations and stored
representations of earlier experiences, and reasoning from those, rather
than on the application of mental rules abstracted from representations
of earlier experiences, as in rule induction and rule-based processing.

The concept has appeared several times in Al disciplines from com-
puter vision to robotics, bearing such diverse labels as similarity-based
learning, example- (or exemplar-) based learning, analogical reasoning,
lazy learning, nearest-neighbor classifiers, instance-based learning, and
case-based reasoning (Stanfill and Waltz, 1986; Kolodner, 1992; Aha
et al., 1991; Salzberg, 1990).

Examples are represented as vectors of attribute values with an as-
sociated class label. Those attributes define a pattern space. During
training, a set of examples (the training set) is presented in an incre-
mental fashion to the learning algorithm, and added to memory. During
processing, an input vector of attribute values, describing a previously

* The same applies to statistical models and neural network approaches.

il.tex; 8/01/1999; 16:43; p.9

10 Walter Daelemans and Gert Durieux

unseen test pattern, is presented to the system. Its similarity (or dis-
tance) to all examples in memory is computed using a similarity metric,
and the category of the most similar instance(s) is used as a basis to
predict the category for the test pattern.

In this type of lazy learning, performance crucially depends on the
similarity metric used. The most straightforward metric for linguis-
tic problems with nominal (non-numeric) values would be an overlap
metric: similarity is defined as the number of attribute values that
are equal in two patterns being compared. In such a similarity metric,
all attributes describing an example are interpreted as being equally
important in solving the classification problem. However, this is not
necessarily the case: in part of speech tagging e.g., the category of the
word immediately before the word to be tagged is obviously more im-
portant than the category of the word three positions earlier in the
sentence. We will call this problem the feature relevance problem. Var-
ious feature weighting and selection methods have been proposed to
differentiate between the features on the basis of their relevance for
solving the task (see Wettschereck et al. (1996) for an overview).

Another addition to the basic algorithm that has proved relevant for
many natural language processing tasks is the introduction of a value
difference metric (Stanfill and Waltz, 1986; Cost and Salzberg, 1993).
Such a metric assigns different distances to pairs of values for the same
attribute. In tagging e.g., such a metric would assign a smaller distance
between proper nouns and common nouns than between proper nouns
and adjectives, for example. These biases can of course also be manually
added to the learner by a domain expert. Several other improvements
and modifications to the basic memory-based learning scheme have
been proposed and should be investigated for linguistic problems. Two
promising further extensions are weighting the examples in memory,
and minimizing storage by keeping only a selection of examples. In ex-
ample weighting, examples are differentiated according to their quality
as predictors for the category of new input patterns. This quality can be
based on their typicality or on their actual performance as predictors on
a held-out test set. In example selection, memory is pruned by deleting
those examples which are bad predictors or which are redundant.

DEcisioN TREE LEARNING AND RULE INDUCTION

The decision tree learning paradigm is based on the assumption that
similarities between examples can be used to automatically extract de-
cision trees and categories with both explanatory and generalization
power. In other words, the extracted structure can be used to solve
new instances of a problem, and to explain why a performance system

il.tex; 8/01/1999; 16:43; p.10

Inductive Lexica 11

behaves the way it does. In this paradigm, learning is eager, and ab-
straction occurs at learning time. There are systematic ways in which
decision trees can be transformed into rule sets (the two representations
are equivalent).

Decision tree induction is a well-developed field within Al, see e.g.
Quinlan (1993) for a synthesis of major research findings. More ancient
statistical pattern recognition work such as Hunt et al. (1966) and
Breiman et al. (1984) also still makes for useful reading.

Decision tree learning works by repeatedly dividing the set of ex-
amples into subsets according to whether the examples in a particular
subset have an attribute/value pair in common, until the subsets are
homogeneous, i.e. all examples in the subset have the same class. The
algorithm achieves this according to the simplified recursive scheme in
Figure 2.

Given a set of examples T'

If T" contains only examples belonging to the same class C;, then the decision
tree for 7' is a leaf with category Cj.

If T" contains different classes then

— Choose an attribute, and partition 7" into subsets that have the
same value for the attribute chosen. The decision tree consists of
a node containing the attribute name, and a branch for each value
leading to a subset.

— Apply the procedure recursively to subsets created this way.

Figure 2. Recursive scheme for constructing decision trees

To classify new input patterns with a decision tree, start at the
top node of the tree, and find the value in the input pattern for the
corresponding attribute. Take the branch corresponding to that value,
and perform this process recursively until a leaf node is reached. The
category corresponding to this leaf node is the output.

Again, we are confronted with a feature relevance problem in this
approach. In order to obtain a concise tree with good generalization
performance (i.e. a tree reflecting the structure of the domain), we
have to select at each recursion step in the above algorithm a test which
is optimal for achieving this goal. The algorithm is non-backtracking,
and considering all trees consistent with the data is an NP-complete
problem, so a reliable heuristic feature selection criterion is essential.
Usually, information-theoretic or statistical techniques are applied to
maximize homogeneity of subsets. Several variants of and extensions
to the basic algorithm have been developed, dealing with issues such
as pruning (i.e. making the tree more compact by cutting off subtrees

il.tex; 8/01/1999; 16:43; p.11

12 Walter Daelemans and Gert Durieux

on the basis of a statistical criterion), grouping similar values of an
attribute into classes, making tree building incremental, etc.

We have seen in this section that techniques developed in Machine
Learning can in principle be used to predict unknown properties as-
sociated with linguistic objects such as lexical entries, on the basis of
known properties (the attributes of the input pattern), and a set of ex-
amples. In the next section, we will see how these inductive techniques
can be used to give lexica self-extending properties. We will first de-
scribe the general approach, and then go on to present two case studies
illustrating the method.

4. Making Lexica Learn

In its most general formulation, a computational lexicon is a set of
lexical entries, and a lexical entry a set of lexical predicates (proposi-
tions about some linguistic object). E.g. the lexical entry for a linguistic

object labeled RE D could be:
pronunciation(RED) /'tEd/
spelling(RED) red
syncat(RED) (ADJ or N)

Lexical entries can correspond to various linguistic types of units: mor-
phemes, base forms of words, word forms, idioms, phrases. The predi-
cates can represent various types of linguistic knowledge: orthographic
information may include spelling variants or hyphenation positions;
phonetic and/or phonological predicates can describe pronunciation,
word stress or syllable structure; morphological predicates can list com-
ponent morphemes; syntactic predicates may provide information on
argument structure, syntactic category, and agreement features, or even
specify complete lexicalized syntactic trees (as in Tree Adjoining Gram-
mar); semantic/pragmatic predicates, finally, may consist of case frames,
selection restrictions, etc. Lexical predicates may also refer to extra-
linguistic knowledge (e.g. domain concepts). Rules for the derivation of
lexical properties would normally be taken as part of the different lin-
guistic domains they refer to, but in some lexicon architectures, these
rules can belong conceptually to the lexicon as well.

The basic idea behind inductive lexica is to use an available lexicon,
however small, and, if available, a corpus, as a source to bootstrap
lexical acquisition. Lexical predicates of newly encountered words are
computed by reference to similar words previously encountered, for
which the lexical information wanted is available. Depending on the

il.tex; 8/01/1999; 16:43; p.12

Inductive Lexica 13

CORPUS

spelling pronunciation |syntactic category distributional vector
red rEd ADJor N 0.210.331.22...
apple AEp@I N 0.180.550.91 ...
file ? ? 0.030.200.10 ...

pro syncat

Figure 8. An inductive lexicon

lexical information to be predicted for the new word, different sources
of information about the word are used as predictors.

Consider the following example (Figure 3). We have a small lexicon
of word forms with their spelling, their pronunciation, and their possible
syntactic categories. For each lexical entry, we also have a distributional
vector, based on indexes to positions in a corpus where realizations of
that lexical entry occur (e.g. comparable to Schiitze (1993)). Given
a word for which no lexical information is available yet, we have its
spelling and its distributional vector, representing its occurrences in a
corpus, as information. To compute lexical predicates for the new word,
we can bootstrap from the available lexical information: (i) to determine
its possible syntactic categories: find known words which have a similar
form (spelling, phonology) and a similar syntactic behavior (i.e. occur
in similar syntactic contexts as their distributional vector is similar),
and extrapolate from their category, (ii) to determine its pronunciation,
extrapolate from known words in the lexicon with a spelling similar to
the new word, to the pronunciation of that new word. In this approach,
therefore, an unknown target predicate of a lexical entry is predicted on
the basis of known lexical predicates of that lexical entry, known target
predicates and other predicates of other lexical entries, and (sometimes)
also from corpus information.

For each lexical predicate to be predicted (the target predicate), it is
decided which sources of information (other lexical predicates or oper-

il.tex; 8/01/1999; 16:43; p.13

14 Walter Daelemans and Gert Durieux

ationalizable corpus information) are relevant to its prediction. These
sources of information are represented in terms of an attribute/value
vector. The next step is the construction of a classifier using e.g. de-
cision tree induction. In our example, we have two classifiers, one for
predicting pronunciation (pro), and one for predicting syntactic cat-
egory (syncat). The training material for this classifier is built from
those lexical entries for which the target predicate is known. For each
of these entries the input features and the associated output category
(the target predicate) are collected, and this is used as training material
for training the classifier. Inductive lexica are neutral as far as lexical
representation formalisms are concerned. The only addition is the con-
struction of a classifier for each lexical predicate (as far as it makes
sense to try to predict that particular predicate). When using eager
learning methods such as decision tree building or rule induction, this
classifier is an actual data structure, when using a lazy learning method
such as memory-based learning, the ‘extracted’ classifier is conceptual;
the classification is done on the fly from the lexical entries themselves,
rather than from a data structure extracted from them. Inductive lexica
therefore fit a supervised learning paradigm, and can be either eager or
lazy. In the case of lazy learning, they are also incremental, taking into
account immediately any lexical entries added to the lexicon in predict-
ing new lexical predicates, whereas most eager learning methods call
for explicit retraining when new lexical entries are added.’

In the remainder of this section, we will illustrate the feasibility of
this inductive lexicon architecture by means of two case studies.

4.1. CASE STUDY 1: WORD PRONUNCIATION

Recently, the Flemish government funded a speech and language tech-
nology project called FONILEX which aimed at constructing a pronun-
ciation lexicon for the Flemish variety of Dutch. The resulting lexical
database contains the most frequent words of Dutch with their Flemish-
Dutch pronunciations.® The inductive lexicon approach was applied in
this project as one of several approaches used to build the desired lex-
icon.

Traditionally, grapheme-to-phoneme conversion (the computation of
pronunciation representations on the basis of the spelling of words), is
supposed to involve the formalization and application of different lev-

5 But, as mentioned above, incremental versions of e.g. decision tree building
exist, so the dichotomy is not absolute.

5 The project was coordinated by the Centre for Computational Linguistics (Uni-
versity of Leuven), with participation from the Centre for Dutch Language and
Speech (University of Antwerp) and the ELIS research group (University of Ghent).

il.tex; 8/01/1999; 16:43; p.14

Inductive Lexica 15

els of linguistic description and knowledge (phonotactics, phonology,
morphology, syntax). MITALK (Allen et al., 1987) is a classical exam-
ple of a rule-based solution to the problem. It is, however, possible
to achieve excellent grapheme-to-phoneme conversion accuracy using
machine learning techniques (Daelemans and van den Bosch, 1996).

To make this problem suitable for machine learning algorithms, the
following steps have to be taken:

— Automatic alignment. In order to make full use of the generaliza-
tion possibilities implicit in splitting up the task into subtasks, the
task is recast as the transcription of each letter in the word + its
context to a phoneme. As similar words will contain similar letter
+ context combinations, their pronunciation will also be similar.
However, this means that the letter string representing the spelling
of the word and the phoneme string representing the pronuncia-
tion will have to be aligned. An algorithm was developed to do
this automatically for the word-pronunciation pairs in the lexicon.

— Induction of a classifier. A decision tree structure (which is never-
theless memory-based or lazy because it remembers all information
relevant for classification) is built on the basis of similarities among
the letter + context to phoneme mappings. This tree represents
both the regularities and the exceptions implicit in the spelling-
pronunciation mappings of the existing lexical items.

— For automatic transcription, a new word is split up into letter
+ context representations, and the phoneme representation cor-
responding to this input is retrieved in case of an exact match;
otherwise, a prediction is made based on similar cases in memory.
The decisions for each letter are then combined to produce the
final pronunciation representation.

The learning method which was used is a combination of decision
tree induction and memory-based learning, for details see Daelemans
and van den Bosch (1993); Daelemans and van den Bosch (1996) and
van den Bosch and Daelemans (1993).

The method is applicable in the context of our inductive lexica ap-
proach because (i) it is corpus-based (it takes as training material
the pairs of spellings and associated pronunciations already present
in the lexicon), (ii) it is language-independent and reusable (the learn-
ing method works regardless of the type of phonetic alphabet, and of
the language it is intended for), and (iii) its accuracy is as good as,
or often even better, than alternative hand-crafted, knowledge-based
approaches.

In the FONILEX project, the following procedure was used:

il.tex; 8/01/1999; 16:43; p.15

16 Walter Daelemans and Gert Durieux

1. Initial Data. For the initial set of words, the 10,000 most fre-
quent words from CELEX' were taken. The pronunciations con-
tained therein represent the Dutch spoken in the Netherlands, sim-
ilar to, but different from the Dutch spoken in Flanders. These
pronunciations were adapted manually to the Flemish variant by a
trained phonetician.

2. Bootstrapping. This 10,000 word pronunciation lexicon was then
used to train the initial grapheme-to-phoneme converter according
to the method described earlier in this section. In the context of
our inductive lexicon approach, the lexical predicate pronunciation
would be associated with this automatically trained converter for
the transcription of spellings of new lexical entries. In the FONILEX
project, we used the converter to transcribe the next batch of words
and send them back for manual correction.

3. The corrected transcriptions were added to the training material of
the classifier and used to generate a new version of the converter,
which in its turn was used to convert the next batch of words. In the
inductive lexicon context, this would correspond to the occasional
retraining of the classifier whenever a suitable number of new lexical
entries has been added, or, in the case of an incremental learning
technique, to immediate accommodation of new training examples.

4. Step (3) was repeated a number of times with increasingly larger
sets of words.

In the FONILEX project, this approach added considerably to the
flexibility of lexical acquisition. As the system did not make use of
hand-made rules, it did not matter that the specifications of the target
transcription were continually revised and extended during the project:
if the changes were present in the training material, they were picked
up automatically by the learning method. The manual adaptation of
rule sets would probably cost considerably more time.

We estimated the accuracy of the approach by 10-fold cross-validation
on each input dataset. These experiments show a gradual improvement
of accuracy with the size of the training data, from 94% to 98% accuracy
at phoneme level, corresponding with 80% to 90% at word level. A sim-
ilar grapheme-to-phoneme converter for Dutch spoken in the Nether-
lands achieves an accuracy of 99% at phoneme level. The difference is
due to the fact that FONILEX uses a richer phonetic transcription which
includes archiphonemes.

7 CELEX is a lexical database for Dutch, English and German, developped at the

Max Planck Institute, Nijmegen, and distributed on CD-ROM by LDC.

il.tex; 8/01/1999; 16:43; p.16

Inductive Lexica 17

Table I. Agreement targets within singular

NPs
article demonstrative adjective
M de deze die -e
F de deze die -e
N het dit dat -e/0

Although in this project, the extension of the lexicon was done off-
line, in different stages of retraining and applying the trained system
to new words, it is easy to imagine how the induced system could be
associated with the pronunciation lexical predicate in a computational
lexicon to predict the pronunciation of newly attested words in corpora.

4.2. CASE STUDY 2: GENDER PREDICTION

The previous case study showed how iterative application of machine
learning techniques can be instrumental in constructing and extending
large pronunciation dictionaries; this case study will focus on a rather
surprising use of such phonological information in a very different, syn-
tactic problem domain: gender assignment in Dutch.

Gender is a grammatical category used for the analysis of word
classes displaying such contrasts as masculine/feminine/neuter or ani-
mate/inanimate (Crystal, 1997). In contrast to a category such as num-
ber, most words have (or belong to) only a single gender, which is lexi-
cally determined. Genders thus form an important part of lexical struc-
ture and can be distinguished syntactically by the agreements nouns
take; agreeing elements (or agreement targets) are e.g. articles, demon-
stratives, adjectives or verbs. Under a sufficiently broad definition of
agreement®, control of anaphoric pronouns by their antecedent is cov-
ered as well, which is not without importance for Dutch. Historically,
Dutch had a three-gender system, distinguishing the traditional cate-
gories of masculine, feminine and neuter (Dekeyser, 1980). Currently,
the system is shifting towards a two-gender system, where the distinc-
tion between masculine and feminine is lost, and only the neuter/non-
neuter opposition persists, as can be witnessed from Table I. Remnants
of the three gender system, however, are still observed with pronom-
inal anaphora, as Table Il shows. Although in the Netherlands the
masculine/feminine distinction is only preserved when the antecedents

8 F.g. “some systematic covariance between a semantic or formal property of one
element and a formal property of another” (Steele, 1978).

il.tex; 8/01/1999; 16:43; p.17

18 Walter Daelemans and Gert Durieux

Table 1I. Pronominal agreement targets
(singular)

personal possessive relative

M hij zijn die
F oz haar die
N het zijn dat

denote persons (male/female respectively)?, in Flanders the opposition
extends to non-human antecedents as well. Thus, gender identification,
as exemplified by Dutch above, is ultimately a syntactic matter. Nev-
ertheless, syntax may not always provide the necessary cues: consider
e.g. a Natural Language Understanding system for Dutch, where the
pronoun resolution component is faced with a feminine pronoun, while
possible antecedents can only be diagnosed as non-neuter on the ba-
sis of agreement evidence. Clearly, proper assignment of the relevant
items to their respective genders would be an important step towards
disambiguation. Appropriate gender information in computational lex-
ica would therefore be an asset.

This problem of gender assignment is, of course, well-known and has
traditionally been handled by the formulation of gender assignment
rules (Corbett, 1991), which draw upon a number of different infor-
mation sources: in semantics-based gender systems, meaning is suffi-
cient to determine gender; here, oppositions such as animate/inanimate,
human /non-human, etc. assign words to their respective genders. In
predominantly morphological systems, word structure (both deriva-
tional and/or inflectional) is an important factor in gender assignment.
In phonological systems, finally, the sound shape of a single wordform
reliably indicates gender. The rule-based approach, however, is not
without problems. First, although all assignment systems are taken
to have at least a semantic core, most languages employ different com-
binations of assignment criteria, which renders the identification of ad-
equate rules difficult. Second, most assignment rules cover only specific
portions of the lexicon, and complete coverage of the lexicon by the
whole rule set is often not attained. Finally, varying numbers of ex-
ceptions exist, and having to list them separately begs the question of
lexicon extension. For Dutch, a number of gender assignment rules have
been formulated (Haeseryn et al., 1997), but none of them are entirely
satisfactory. This has led some researchers to flatly deny the possibility

® For non-human antecedents, the masculine forms are used.

il.tex; 8/01/1999; 16:43; p.18

Inductive Lexica 19

of solving the gender assignment problem for Dutch: “The relationship
between article and noun in Dutch is, except for a few exceptions, more
or less arbitrary: the form the article takes is not systematically deter-
mined by any phonological, morphosyntactic, semantic, or conceptual
features of the noun.” (Deutsch and Wijnen, 1985).

To take up the challenge within the context of Inductive Lexica, we
conducted some exploratory experiments with a memory-based learn-
ing algorithm. The only assumptions made in constructing the classifier,
were that gender and phonological information are available (or can be
obtained) for a sizeable part of the noun lexicon. Building on the ob-
servation that, cross-linguistically, there is often considerable overlap
among various types of assignment criteria, the expectation was that
—pace Deutsch and Wijnen (1985)—phonological information should
make at least some headway in supplying gender information for un-
known lemmas.

1. Data was extracted from the CELEX lexical database. Two series
(A and B) of three experiments were carried out, one for each rel-
evant gender distinction. Experiments A1-A3 involved 6090 noun
lemmas; target classes were M(asculine), F(eminine), N(euter). Ex-
periments B1-B3 involved 7651 noun lemmas; here, target classes
were DE and HET, for non-neuter and neuter resp. For each of the
two series, the number of features was gradually increased over the
three experiments: the simplest encoding (Experiments Al and B1)
only used onset, nucleus, and coda of the final syllable as features.
For Experiments A2 and B2, onset, nucleus and coda of the initial
syllable was added. Finally, for Experiments A3 and B3, the stress
pattern and number of syllables were included as well, yielding a to-
tal of eight features per input example. An overview of the different
encodings for the Dutch word tafel (‘table’) is given in Table III.
The column labels OF, NF and CF denote the Onset, Nucleus and
Coda of the Final syllable, OI, NI and CI stand for Onset, Nucleus
and Coda of the Initial syllable, Stress denotes the stress pattern,
and Syls the number of syllables.

2. All tests were run with 1B1-1G (Daelemans and van den Bosch,
1992), which is the basic memory-based learning algorithm, aug-
mented with information gain for feature weighting. Predictions
were based on a single nearest neighbor, and the test regime was
leaving-one-out. Results for the experiments are displayed in Ta-

bles IV and V.

From Table IV it can be seen that the three-way gender distinction
remains fairly well predictable, even though agreement marking

il.tex; 8/01/1999; 16:43; p.19

20

Walter Daelemans and Gert Durieux

Table 11I. Encodings for ‘tafel’

Exzp Class OF NF CF OI NI CI Stress Syls

Al

A2 F f Q 1 t a -

A3 F f Q 1 t a - 10 2
B1 DE

B2 DE f Q 1 t a -

B3 DE f Q 1 t a - 10 2

Table IV. Success rates for Experiments

Al1-A3

target Exp A1 Fxp A2 Fap A3

79.99% 80.26% 81.54%
F 89.03% 88.91% 91.97%
N 81.58% 81.96% 80.75%

total 83.15% 83.35% 84.30%

for this distinction is disappearing from the language. The overall
success rates are situated around 84%, which is significantly bet-
ter than the claims of “arbitrariness of the Dutch gender system”
would lead one to suspect. For the individual target categories, F
is predicted best, with success scores around 90%, while the other
two target categories reach scores of about 80%. Augmenting the
number of features increases predictive accuracy.

The results from Table V for the two-way distinction confirm the
previous finding that augmenting the number of features yields

Table V. Success rates for Experiments

B1-B3

target Exp B1 Fap B2 Faxp B3

DE 90.25% 90.49% 91.00%
HET 76.17% 77.26% 78.04%

total 86.37% 86.84% 87.65%

il.tex; 8/01/1999; 16:43; p.20

Inductive Lexica 21

Table VI. Confusion ma-

trix for Experiment A3

target predicted
M F N
M — 77 339
F 74 — 68
311 87 —

higher success rates. Overall success rates are higher than for the
previous experiment, with about 87% correct predictions; success
rates for the individual target categories are comparable: around
90% for DE and (slightly less than) 80% for HET.

Even though these experiments were largely exploratory in nature,
and little effort was made to maximize performance, the results suggest
that an Inductive Lexicon approach to this problem is feasible. Whether
these results are good enough to warrant practical application remains
to be seen, although a glance at the confusion matrix for Experiment
A3 (Table VI) might be instructive: Returning to our pronoun resolu-
tion problem from the introduction to this section, the main difficulty
resided in the masculine/feminine distinction, for which agreement ev-
idence within NPs is lacking. It is precisely for this distinction that the
classifier makes relatively few errors.

5. Conclusion

In this paper we introduced a machine learning solution to the problem
that computational lexica are never complete, and that to be useful,
they should have self-extending properties. Inductive Lexica associate
with each lexical predicate in the lexicon a classifier, which makes it
possible to compute this predicate for new lexical entries. Inductive
Lexica bootstrap on the knowledge implicit in the lexical entries al-
ready present in the lexicon (however small it may be), and if present,
on information from corpora. We have shown the feasibility of the ap-
proach on the basis of two case studies.

We would like to conclude with an alternative idea about the role of
computational lexica. Although some Machine Learning techniques are
eminently suited for the Inductive Lexicon approach discussed, they
also suggest a radically different approach to computational lexicogra-
phy. The holy grail of computational lexicology has been the concept

il.tex; 8/01/1999; 16:43; p.21

22 Walter Daelemans and Gert Durieux

of reusable, explicit, knowledge-oriented, theory-neutral, polytheoretic
computational lexica, useful in a large number of natural language pro-
cessing tasks. Machine Learning of Natural Language research suggests
a radical performance-oriented view, in which the idea of generic lexica
is abandoned. Different language processing tasks may need different
categories and structures to solve the task. These categories may be
lexical, grammatical, or a combination thereof. When shifting atten-
tion to acquisition, the task dictates the acquisition method, and the
acquisition method dictates which information (lexical and contextual)
is needed to solve the task. There is therefore a shift from the reusabil-
ity of the lexical knowledge to the reusability of the acquisition method
(e.g. memory-based learning, Daelemans (1995)).

E.g. in word sense disambiguation, both lexical and contextual infor-
mation is needed for acceptable performance. By providing a learning
algorithm with a sufficient amount of examples of word sense disam-
biguation instances in context, the learning algorithm extracts the nec-
essary information and categories (some of them lexical, some of them
contextual, some of them combined) to solve the task. These catego-
rizations need not, and in most cases will not, coincide with catego-
rizations induced for other tasks, such as part of speech tagging. The
linguistic view inherent in this approach is therefore task-relativistic:
different tasks need different linguistic category systems, including com-
bined lexical-contextual categorizations, and the concept of a unitary,
central, reusable lexicon therefore may not be universally applicable.

Acknowledgments

This research was partially funded by a grant to the Tilburg ILK (In-
duction of Linguistic Knowledge) project from the Dutch National Sci-
ence Foundation (NWO, geesteswetenschappen), and partially belongs
to a concerted research action on computational psycholinguistics of
the University of Antwerp.

References

Aha, D. W., D. Kibler, and M. Albert: 1991, ‘Instance-based learning algorithms’.
Machine Learning 7, 37-66.

Allen, J., S. Hunnicut, and D. H. Klatt: 1987, From Text to Speech: The MITalk
System. Cambridge, UK: Cambridge University Press.

Barg, P.: 1994, ‘Automatic acquisition of PATR theories from observations’. Tech-
nical Report 59, Theorie des Lexicons: Arbeiten des Sonderforschungsbereichs
282.

il.tex; 8/01/1999; 16:43; p.22

Inductive Lexica 23

Boguraev, B. and J. Pustejowsky (eds.): 1996, Corpus Processing for Lexical Acqui-
sttton. Cambridge, MA: MIT Press.

Breiman, L., J. Friedman, R. Ohlsen, and C. Stone: 1984, Classification and regres-
ston trees. Belmont, CA: Wadsworth International Group.

Briscoe, T., V. de Paiva, and A. Copestake (eds.): 1993, Inheritance, Defaults, and
the Lexicon. Cambridge, UK: Cambridge University Press.

Carbonell, J. G.: 1990, Machine learning: paradigms and methods. Cambridge, MA:
MIT Press.

Corbett, G.: 1991, Gender, Cambridge Textbooks in Linguistics. Cambridge, UK:
Cambridge University Press.

Cost, S. and S. Salzberg: 1993, ‘A weighted nearest neighbour algorithm for learning
with symbolic features’. Machine Learning 10, 57-78.

Crystal, D.: 1997, A Dictionary of Linguistics and Phonetics., The Language Li-
brary. Oxford, UK: Blackwell Publishers Ltd., 4 edition.

Daelemans, W.: 1995, ‘Memory-Based Lexical Acquisition and Processing’. In: P.
Steffens (ed.): Machine Translation and the Lexicon, No. 898 in Springer Lecture
Notes in Artificial Intelligence. Springer, pp. 85-98.

Daelemans, W. and A. van den Bosch: 1992, ‘Generalization Performance of Back-
propagation Learning on a Syllabification Task’. In: M. F. J. Drossaers and
A. Nijholt (eds.): Connectionism and Natural Language Processing. Proceedings
Third Twente Workshop on Language Technology. Twente, The Netherlands, pp.
27-38.

Daelemans, W. and A. van den Bosch: 1993, ‘TABTALK: Reusability in Data-
oriented grapheme-to-phoneme conversion’. In: Proceedings of FEurospeech.
Berlin, Germany, pp. 1459-1466

Daelemans, W. and A. van den Bosch: 1996, ‘Language-Independent Data-Oriented
Grapheme-to-Phoneme Conversion’. In: J. P. H. van Santen, R. W. Sproat, J. P.
Olive, and J. Hirschberg (eds.): Progress in Speech Synthesis. New York, NY:
Springer Verlag, pp. 77-90.

Daelemans, W., A. Weijters, and A. van den Bosch (eds.): 1997, ‘ECML’97 Workshop
Notes on Empirical Learning of Natural Language Processing Tasks’. Prague,
Czech Republic: Laboratory of Intelligent Systems.

Dekeyser, X.: 1980, ‘The diachrony of the gender systems in English and Dutch’. In:
J. Fisiak (ed.): Historical Morphology, No. 17 in Trends in Linguistics: Studies
and Monographs. The Hague, The Netherlands: Mouton, pp. 97-111.

Deutsch, W. and F. Wijnen: 1985, ‘The article’s noun and the noun’s article: ex-
plorations into the representation and access of linguistic gender in Dutch’. Lin-
guistics 23, 793-810.

Domenig, M. and P. ten Hacken: 1992, Word Manager: A system for morphological
dictionaries. Hildesheim, Germany: Olms.

Evans, R. and G. Gazdar: 1996, ‘DATR: A Language for Lexical Knowledge Repre-
sentation.”. Computational Linguistics 22(2), 167-216.

Haeseryn, W., K. Romijn, G. Geerts, J. de Rooij and M.C. van den Toorn: 1997,
Algemene Nederlandse Spraakkunst. Groningen, The Netherlands: Martinus Nij-
hoff.

Hunt, E., J. Marin, and P. Stone: 1966, Ezperiments in induction. New York, NY:
Academic Press.

Ide, N. and J. Véronis: 1995, ‘Knowledge Extraction from Machine-Readable Dic-
tionaries: An Evaluation’. In: P. Steffens (ed.): Machine Translation and the
Lexicon, No. 898 in Springer Lecture Notes in Artificial Intelligence. Springer,
pp- 19-34.

il.tex; 8/01/1999; 16:43; p.23

24 Walter Daelemans and Gert Durieux

Kolodner, J. D.: 1992, Case-Based Reasoning. San Mateo, CA: Morgan Kaufmann.

Langley, P.: 1996, Elements of Machine Learning. Los Altos, CA: Morgan Kaufmann.

Miller, G.: 1990, ‘Special Issue. WordNet: an on-line lexical database’. International
Journal of Lexicography 3(4).

Mitchell, T. M.: 1997, Machine Learning. New York: McGraw-Hill Companies, Inc.

Natarajan, B.: 1991, Machine learning: a theoretical approach. San Mateo, CA:
Morgan Kaufmann.

Quinlan, J. R.: 1993, C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann.

Salzberg, S.: 1990, ‘A nearest hyperrectangle learning method”. Machine Learning
6, 251-276.

Schiitze, H.: 1993, ‘Word space’. In: C. S.J.Hanson, J.D.Cowan (ed.): Advances in
Neuwral Information Processing Systems, Vol. 5. Morgan Kaufmann, pp. 895-902.

Stanfill, C. and D. Waltz: 1986, ‘Toward memory-based reasoning’. Communications
of the ACM 29, 1212-1228.

Steele, S.: 1978, ‘Word order variation: a typology study’. In: J. H. Greenberg, C. A.
Ferguson, and E. A. Moravcsik (eds.): Universals of Human Language, Vol. 4.
Stanford: Stanford University Press, pp. 585-623.

van den Bosch, A. and W. Daelemans: 1993, ‘Data-oriented methods for grapheme-
to-phoneme conversion’. In: Proceedings of the Sixth conference of the Furopean
chapter of the ACL. pp. 45-53.

Weiss, S. and C. Kulikowski: 1991, Computer systems that learn. San Mateo, CA:
Morgan Kaufmann.

Wettschereck, D., D. W. Aha, and T. Mohri: 1996, ‘A review and comparative eval-
uation of feature weighting methods for lazy learning algorithms’. Technical
Report AIC-95-012, Naval Research Laboratory, Navy Center for Applied Re-
search in Artificial Intelligence, Washington, DC.

Wilks, Y., B. Slator, and L. Guthrie: 1996, Flectric Words. Dictionaries, Computers,
and Meanings. Cambridge, MA: MIT Press.

Zernik, U. (ed.): 1991, Lexzical acquisition: exploiting on-line resources to build a
lexicon. Hillsdale, NJ: Lawrence Erlbaum.

il.tex; 8/01/1999; 16:43; p.24

