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Abstract

In this paper, a data-oriented model of text-to-speech processing is described. On
the basis of a large text-to-speech corpus, the model automatically gathers a dis-
tributed, yet symbolic representation of subword-phoneme association knowledge,
representing this knowledge in the form of paths in a decision tree. Paths represent
context-sensitive rewrite rules which unambiguously map strings of letters onto sin-
gle phonemes. The more ambiguous the mapping is, the larger the stored context.
The knowledge needed for converting a spelling word to its phonemic transcription
is thus represented in a distributed fashion: many different paths contribute to the
phonemisation of a word, and a single path may contribute to phonemisations of
many words. Some intrinsic properties of the data-oriented model are shown to have
relations with psycholinguistic concepts such as a language’s orthographic depth,
and word pronunciation consistency.

1 Modelling reading aloud

Within psycholinguistics, various models have been proposed in which reading aloud in
skilled readers is modelled. These models vary considerably in their restrictions imposed
on the representation and processing of knowledge. All of these models face the problem
how to explain that experienced human readers are able to pronounce words with regu-
lar or irregular pronunciations, and also to pronounce words they have not encountered
before (e.g. nonwords). The ability to pronounce nonwords and regular words can be
explained in terms of a model which has knowledge of typical spelling-to-phonology rules;
the pronunciation of words with irregular pronunciations, however, implies that the model
needs some word-specific, lexical knowledge. Furthermore, three general desiderata for
a psychological model of skilled reading aloud are: (i) the model is able to account for
human performance on the level of word naming reaction times and pronunciation errors,
(ii) the model is able to build up its body of knowledge by learning from examples, and
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(iii) the model’s performance ‘gracefully degrades’ when it is damaged, or presented with
noise.

Before introducing our model, we present three existing examples of models that impose
different restrictions on knowledge representation and processing: (i) a dual-route model
(Coltheart, 1978), in which lexical knowledge and spelling-to-phonology rules are strictly
separated, (ii) a single-route model (Plaut et al, 1996), in which knowledge is repre-
sented and processed in a single system, allowing for any spelling-phonology correspon-
dence ranging from rules to lexical knowledge, and (iii) a multiple-level processing model
(Norris, 1993), which allows for predefined levels of correspondences between spelling and
phonology to interact in one system.

In Coltheart (1978; for an implementation, see also Coltheart et al., 1993), a model is
presented which presupposes that there are two separate processing routes available to
skilled human readers to convert text to speech: (i) by rule, i.e., converting spelling strings
to phonemic strings by applying rules that express grapheme-phoneme correspondences,
and (ii) by direct access to a phonological lexicon via the visual recognition of the whole
word. The model thus asserts a strict division between a rule-based strategy, where rules
express general grapheme-phoneme correspondences and are allowed to overgeneralise, and
an memory-based strategy, where the items stored in memory are whole spelling words.
To avoid confusion in terminology, we will use the term grapheme strictly in the meaning
of ‘a letter or a cluster of letters that is realised in the phonological transcription as a
single phoneme’. Examples of English graphemes are <b>, <ll>, <ea>, and <ough>.
When referring to subword units other than graphemes, we will use the term spelling unit.
It is assumed that words with regular pronunciations can be correctly converted from text
to speech via the rule-based route as well as via the lexical route, whereas irregular words
can only be converted to speech correctly via the lexical route.

Single-route theory (see, e.g., Glushko, 1979; Seidenberg & McClelland, 1989; Plaut et al.,
1996) states that skilled reading aloud is accomplished by a single mechanism, in which
a less strict distinction exists between different spelling-phonology correspondence levels.
Glushko (1979) introduces the idea of a similarity matching component, that converts
spelling strings to their pronunciation by matching them with stored lexical items. The
connectionist feed-forward model of Plaut, McClelland, Seidenberg, and Patterson (1996),
which is inspired and based on a similar model proposed by Seidenberg and McClelland
(1989), is a primary example of a single-route system successfully implemented and able
to learn. Plaut et al. (1996) train a multi-layered feed-forward network on grapheme-
to-phoneme conversion, resulting in a system of which the processing is neither purely
lexical nor purely rule-based. Rather, knowledge of text-to-speech correspondences is
stored in the automatically learned weights of the connections between the network units.
This distributed knowledge representation is opaque, in the sense that it cannot easily be
interpreted or translated into symbolic terms.

Plaut et al’s (1996) model learns automatically, which allows for training it on other
languages than English. The performance results reported by Plaut et al. (1996) on test
words are in any case quite good and are argued to correlate with naming latencies of



both regular and exception words.

The general idea that both the dual-route and the single-route approaches subscribe to,
is that a psychologically realistic model of skilled reading aloud has to capture knowledge
of correspondences between spelling and speech ranging from the level of whole words to
the level of grapheme-phoneme correspondence rules. Lexical reading in isolation would
prevent the pronunciation of nonwords, which is clearly possible for human readers. Rule-
based reading in isolation (where rules apply to small spelling entities, such as graphemes)
does not explain that various experimental findings point to significant word similarity
effects in naming latencies (e.g., Glushko, 1979; Jared et al, 1990; Van Orden et al.,
1990). Two fundamental questions are whether the proposal by Coltheart (1978) is too
restrictive, and whether the proposal by Plaut et al. (1996) is too unrestrictive towards
the linguistic entities they presume. Coltheart’s (1978) dual-route model does not allow
for larger word chunks than graphemes to play a role in processing, whereas there are
indications that speakers use word chunks such as syllable bodies (Jared et al., 1990;
Patterson & Morton, 1985), syllable rimes, or whole syllables (Norris, 1993) as processing
units. Syllables, syllable rimes and syllable bodies appear to have a higher psycholinguistic
validity in reading aloud than letters, graphemes and phonemes (Liberman et al., 1974;
Mehler et al., 1981). Furthermore, there are large differences in sensitivity to spelling-
to-phonology units between speakers of different languages (Cutler et al., 1986). Models
in which all of the processing units are used that are especially significant and relevant
to word naming in the language the model is tuned to, are referred to as multiple-level
models (e.g., Patterson & Morton, 1985). Of course, such models easily run the risk of
being too unrestricted, by allowing any correspondence level to add to the spelling-to-
phonology conversion process, a situation that might be opaquely appearing in Plaut et

al’s (1996) model.

Norris (1993) describes a computational model that combines a large number of advan-
tageous model features from both dual-route and single-route models, and avoids most
of their disadvantages. Norris’ model is an connectionist interactive activation network,
which performs as a single route system (i.e., there is no internal modularisation). At the
input side of the model, several different types of spelling units are presented simultane-
ously, ranging from letters, via syllable rimes and bodies to whole words. The input thus
consists of all elements that might be of importance in the spelling-to-phonology con-
version. All information is allowed to interact via excitatory and inhibitory connections.
Norris (1993) presents comparative data between his model and human performance, and
shows that the correlation is high. Besides, he argues that his model is an example of
combining the dual-route and single-route approaches, and can be seen as an implemen-
tation of either of them. Again, the question could be asked whether the model is too
unrestrictive by allowing so many, possibly unimportant, spelling input units. Further-
more, processing within the model is dependent on a rather large number of parameters
(9), and finally, the model does not learn.

In conclusion, one could state that there has been a shift in modelling developments from
the very strict classical dual-route model (Coltheart, 1978) and the vague notion of a
single-route model (Glushko, 1979), towards the consensus view that a model of skilled



reading aloud has to capture spelling-phonology correspondences ranging from graphemes
to whole words (see also Humphreys & Evett, 1985; Norris, 1993). The simultaneously
growing interest in connectionist modelling of psychological processes has played a major
part in this shift. The Seidenberg and McClelland (1989) model, and more recently, the
Plaut et al. (1996) model have been crucial here. Connectionist learning and knowl-
edge representation is also proposed in Coltheart et al.’s (1993) implementation of the
dual-route model. Although the specific reasons for adopting connectionist modelling
techniques are not the same for every model proposal (actually, none of the models men-
tioned here incorporate all desirable properties), connectionist modelling is used because
(i) it enables learning; (ii) it enables interaction of knowledge at different levels of spelling-
phonology correspondences, modelling multiple-level processing (Plaut et al., 1996, as well
as Norris, 1993, argue that this is the key factor for the apparent success of their models
in accounting human reaction time performance); (iii) it introduces typically connection-
ist properties that positively discriminate such models from other classical approaches,
such as the use of nonsymbolic, distributed knowledge representation, and the consequent
resistance to fair amounts of noise or damage.

Although these three advantages are used to put forward connectionist modelling as es-
sential to modelling skilled reading aloud, it remains to be investigated whether there
might be other modelling techniques that incorporate these advantages. In fact, within
the Artificial Intelligence subdomain of machine learning, several examples can be found
of learning algorithms that are able to learn classification tasks on the basis of noisy
data. In this paper, we investigate the application of a simple data-oriented, inductive
machine learning algorithm to the task of converting spelling words to phonemic tran-
scriptions, and show that there are at least grounds to believe that this technique could in
fact incorporate the three advantages of connectionist modelling as well, using relatively
simple machinery. The resulting model is in effect a single-route model of skilled reading
aloud; we will, however, not focus on the psychological validity of the model here nor
its relations to models of the acquisition of the young reader’s skills, but rather on the
kind of knowledge representation automatically constructed by the model and the way
in which it radically differs from the acclaimed nonsymbolic, distributed connectionist
representations.

2 SPC: asymbolic, single-route, multiple-level model

2.1 Subword-phoneme correspondences

In this contribution, a non-connectionist single-route model of spelling-to-phonology con-
version is presented that uses subword letter strings of variable length as representa-
tion units. These subword chunks are not predefined or derived from linguistic morpho-
phonological theory, but are automatically extracted from a corpus of word-pronunciation
pairs. For a technical description of the learning and processing algorithms involved in
the model, the reader is referred to Appendices A-C, containing formulas and pseudo-



code descriptions of the algorithms; see also Daelemans and Van den Bosch (1992), and
Daelemans et al. (1996). Here, we present a more intuitive description of the model by
relating it to notions generally used in psycholinguistics.

The model, called the Subword-Phoneme Correspondence (SPC) model, is a single-route
model which finds its inspiration from the general notion of analogy in the overall corre-
spondence of a writing system and the pronunciation of a certain language, viz. words
that are spelled similarly, are pronounced similarly. The SPC model automatically learns
to find those parts of words, or subword chunks, on which similarity matching can safely
be performed. This is perhaps best illustrated in the example of the pronunciation of
the English word <behave>. An ‘analogical’ model which operates on a certain simi-
larity metric, and which has already encountered (learned) roughly similar words such
as <shave>, <beehive>, and <have>, and perhaps even <behave> itself, will certainly
have a number of clues as to how <behave> is pronounced. However, in this example,
problems may arise with the <a> of <behave>. If the similarity matcher of the analogi-
cal model decides to retrieve the pronunciation of the word <have> as the pronunciation
of <-have> in <behave>, the incorrect pronunciation /biheev/ would result. The spc
model does not take such overgeneralisation risks. The model is extremely sensitive to
context, in the sense that it will have stored the knowledge that <have> is not enough
context to be certain of the pronunciation of the <a>. The SPC model will look for more
contextual information. In a present implementation of the SPC model trained on English
words, the SPC model decides to take /e1/ as output only when it finds the subword chunk
<ehave> in the input word. Note that this model has encountered the word <behave>
during learning, but that for the case of the pronunciation of the <a>, it was not neces-
sary to store the complete word, as there were no other words with the subword chunk
<ehave> with a different pronunciation of the <a>. In sum, the SPC model stores single
letter-phoneme correspondences with the context that is sufficient to be certain that the
mapping is unambiguous (in the learning material).

Each of these subword-phoneme correspondences can be seen as a context-sensitive rewrite
rule, which rewrites a letter to a phoneme. As the context may be of any width, many
of these rewrite rules are much more specific than a typical rewrite rule would be; many
even contain whole words. Although one would be tempted to categorise the SPC model
as a rule-based model, it is just as well possible to view the SPC model as a lexical model.
Basically, the SPC model is just a compressed version of the word-pronunciation corpus
it is trained on. After training, it contains in a compressed format complete knowledge
of the pronunciation of all words of the learning material, except for homophones such as
<read> (pronounced as /rid/ or /red/), of which only one pronunciation is stored.

To illustrate the appearance of automatically extracted subword-phoneme correspon-
dences (SPCs), Table 1 lists some example SPCs that the model extracted from English
data and French data.

From Table 1, it can clearly be seen that some SPCs express very general pronunciation
knowledge (e.g., the French <¢> is always pronounced /s/), whereas other SPCs are used
to disambiguate between only a few words, e.g., <esiden> — /1/ discriminates <president>



English spc Phoneme || Example Word

viol| .| .|.]. v voucher
e|ls|ifdle|n]|.]. 1 president
wilofl | .| .]-]|: u two
. _lhijalv|e|_|.]|. & have
French spc Phoneme || Example Word
I N R $ francgais
_|_|blefalu|x ) beaux
viifn|_|.]|.]|. E vin
nijfcllo|.|.].]. k francophone

Table 1: Examples of automatically extracted subword-phoneme correspondences (SPCs),
with their associated phonemes, from English and French data. Example words containing
the sPCs are given. Dots represent unused context positions; underscores represent word
boundaries.

from <reside>.

2.2 Compressing SPC knowledge into a decision tree

The model, which has been implemented and trained on various corpora of the Dutch,
French and English language (Van den Bosch & Daelemans, 1993; Daelemans & Van
den Bosch, 1993, 1994; Van den Bosch et al., 1994) does not actually store a large list of
context-sensitive rewrite rules. It compresses the information contained in these rules even
more by storing them in a decision tree. Each rule is represented as a path in this tree.
A path consists of a starting node which represents the target letter that is to be mapped
to a phoneme; the consecutive nodes represent the consecutive context letters. The order
in which these letters are attached to the path is governed by computing their overall
relative importance in disambiguating the mapping. This is done using Information Gain,
a computational metric from Information Theory. A description of this metric is given in
Appendix B. Computation of the Information Gain of context positions renders a result
that is consistent for the three corpora of English, French, and Dutch used. Trivially, the
focus letter itself is the most important ‘context’ letter. The further the context position
is removed from the focus letter, the less important that position is for disambiguation,
on the average. Furthermore, there is an as yet unexplained difference between right and
left context: right context positions are computed to be slightly more important than
their respective left context positions. In practice, this leads to an ordering in which the
first character on the right is the first context expansion, i.e., the first node down the tree.
Then follows the first character on the left, then the second character on the right, then
the second character on the left, and this alternating pattern simply repeats. To visualise
the way in which knowledge is organised in the decision tree, Figure 1 displays the part
of the tree in which the pronunciation of the <a> in the word <behave> is stored.



Figure 1: Retrieval of the pronunciation of < a >, /e1/, of the word < behave >. The
path represents the minimally disambiguating context < ehave >.

With the <a>-node as starting point, the node labelled with the first character on the
right, <v>, is the second node accessed in the path. Then, the <h>-node, the first
character to the left of the <a>, is taken. At that point, the only possible extensions
stored in the tree are <have>, <havi> (from <having>) and <havo> (from <havoc>);
the pronunciation at that point is still ambiguous. Then, the <e>-node is accessed, which
leaves open the extensions <_have> (underscores depict word boundaries), <ehave>, and
<shave>. As mentioned earlier, at the next step, the model, retrieves the unambiguous
phonemic mapping /e1/, when the final <e> node is reached.

It can be seen that the depth of a path reflects in a certain sense the ambiguity of the
mapping it represents. End nodes near the top of the decision tree typically belong to
highly regular pronunciations. For example, the French model contains at the top layer
of the tree the end node <¢>, as this special character always maps to /s/, regardless of
the context. An example of an extremely ambiguous mapping is that of the first <o> of
<photograph>, /oU/, as opposed to the highly similar <photography>, in which the <o>
maps to /o/. In this case, a context to the right of eight letters is needed to disambiguate
between the two pronunciations.

2.3 A best guess strategy when exact matching fails

In the sPC model, all spelling-to-phonology knowledge contained within the learning mate-
rial is stored lossless, with the exception of homophones, of which only one pronunciation
is kept. The rule-based aspect of the decision tree, however, enables the model also to



generalise to new cases. To retrieve the pronunciation of a word or nonword! that was
not in the learning material, each letter of the new word is taken as a starting point of
a tree search. The search then traverses the tree, up to the point where the search suc-
cessfully meets an end node, or where the search fails as the specific context of the new
word was not encountered in the learning material, and consequently was not stored as a
path in the tree. In the first case, the phonemic label of the end node is simply taken as
the phonemic mapping of the new word’s letter. In the second case, the exact matching
strategy is taken over by a best guess strategy.

In present implementations of the SPC model, the best guess strategy is implemented
in a straightforward way. When building a path in the tree, the construction algorithm
constantly has to check whether an unambiguous phonemic mapping has been reached.
At each node, the algorithm searches in the learning material for all phonemic mappings
of the path at that point of extension. In cases when there is more than one possible
phonemic mapping, the algorithm computes what is the most probable mapping at that
point. Computation is based on occurrences: the most frequent mapping in the learning
material is preferred (in case of ties, a random choice is made). This extra information is
stored with each non-ending node. When a search fails, the SPC model returns the most
probable phonemic mapping stored in the node at which the search fails.

A pseudo-code description of the decision-tree-construction algorithm, the decision-tree-
retrieval algorithm and the best-guess addition described here are given in Appendix C.

2.4 Preparing a corpus: automatic alignment

The sPC model processes words letter by letter. For each letter, it attempts to find a
phonemic mapping. However, in many writing systems, such as those of English, French,
and Dutch, words exist of which the phonemic transcription contains less phonemes than
the word has letters, for example, the English word <book> - /buk/. This is because
these words contain graphemes of more than one letter (the <oo> in <book>). The
problem is how to present the word to the SPC construction algorithm while avoiding the
counter-intuitive mapping of the third letter <o> to the third phoneme /k/. This is done
by aligning the phonemic transcription to the spelling word, and inserting phonemic nulls
in the phonemic transcription at those points where in the spelling there is a grapheme
containing more than one letter. In the example of <book>, an aligned phonemic tran-
scription of /bu-k/ (the hyphen depicts the phonemic null) would be appropriate. With
this alignment, the SPC model has to store the knowledge that only one of the two <o>’s
of the word <book> maps to the phonemic mapping /u/, and that the other <o> maps
to a phonemic null, which is not realised in the resulting phonemic transcription.

The problem of how to align a phonemic transcription to a spelling word is not trivial.
Sejnowski and Rosenberg (1987) use a pre-aligned text-to-speech corpus to train their
connectionist NETtalk model, but are not very explicit about the way in which the corpus

!Note that from the viewpoint of the sPc model, all unencountered words can be regarded as nonwords,
as the model, like most other models, does not take lexical-semantic knowledge into account.



is prepared. In fact, the problem of aligning spelling strings to phonemic strings involves
a non-trivial amount of linguistic knowledge engineering, and removes a considerable
amount of complexity from the text-to-phoneme conversion problem. Daelemans and
Van den Bosch (1994) present a solution to this knowledge acquisition problem by using
a simple automatic, data-oriented algorithm that searches for the most probable spelling-
phoneme alignment of a word. The model uses a probabilistic association matrix between
letters and phonemes, which is based on the target corpus itself. This method results
in aligned corpora of which some alignments are counter-intuitive, but not unreasonable.
It is important to note that for the SPC model construction, it is not essential that the
alignment is (intuitively) optimal; bad or strange alignments only lead to more nodes in
the tree, as the corpus becomes less redundant. The strange alignments proposed by the
automatic alignment algorithm do not lead to significantly worse performance (Daelemans
& Van den Bosch, 1994). In Appendix A, a pseudo-code description of the basis of the
automatic alignment algorithm is given.

3 Analysing orthographic depth

Being based on data only, rather than on linguistically motivated rules, the SPC model
directly and objectively reflects after construction some of the statistical properties of
the data. Trained on different languages, the SPC model behaves very differently, for
example, in terms of model magnitude and generalisation performance on unseen words.
These comparative data, which basically reflect complexity differences of the learning
material, can be used in view of the psycholinguistic concept of orthographic depth. This
term is used in psycholinguistics to denote the complexity of the relation between a
language’s writing system and its pronunciation (e.g., Katz and Frost, 1992). On the
complex end of the orthographic depth continuum, one finds languages such as Hebrew,
of which the spelling of a word presents few clues as to how the word is pronounced.
Such writing systems are said to have a deep orthography. On the other end of the
continuum one finds languages such as Serbo-Croatian, of which the conversion from
spelling to phonology is perfectly regular, which are said to have a shallow orthography.
Frost, Katz & Bentin (1987) report on comparative experiments with naming and lexical
decision tasks between speakers of Hebrew, English and Serbo-Croatian, and find that
speakers of the shallow language (Serbo-Croatian) appear to use much more a kind of
rule-based spelling-to-phonology conversion than do speakers of the languages with the
deeper orthographies (English and Hebrew). Seen from the viewpoint of the dual-route
model, it is argued that the shallower the orthography of a language is, the more speakers
tend to use the rule-based route, simply because this route is very reliable in a regular
spelling-to-phonology system. The deeper the orthography, the less use is being made of
the rule-based route, although it is never totally unused (Carello et al., 1992). Katz and
Frost (1992) refer to this apparent dependency of the ratio between the two routes and
the depth of the orthography as the Orthographic Depth Hypothesis (ODH).

In Van den Bosch et al. (1994), a detailed analysis is given of the application of the spc



Generalisation Accuracy
Language on Letter-Phoneme Mappings
American English 91.0
French 98.3
Dutch 97.6

Table 2: Generalisation accuracy performance of three SPC models trained on comparable
corpora of English, Dutch and French, on correct letter-phoneme mappings.

model to three comparable corpora of English, French and Dutch. For each language,
a 20,000-word corpus was constructed containing randomly extracted dictionary words,
i.e., the words in the corpora can be of any size, and of any syllabic or morphological
complexity. The English and Dutch data were extracted from the CELEX (Burnage,
1990) lexical data bases; these data bases contain more than 20,000 words, but were
downsized by random sampling to match the size of the French word corpus, which was
extracted from the BRULEX lexical data base (Content et al., 1990). Each word corpus
was partitioned once in a 1/13 test set (7.7% of the material) and a 12/13 training set.
Although this is an arbitrary partitioning, our primary goal was to measure generalisation
performance on unseen material, represented by the test words which are not shown to the
learning algorithms during the learning phase. Please note that each test set thus contains
randomly picked dictionary words; the test set does not contain especially selected words
which display only general or irregular text-to-phoneme mappings, or which are only
monosyllabic or monomorphemic. Furthermore, it should be noted that to the learning
algorithms, the test words are what nonwords are to experienced human readers; they
are similar to existing words (the words in the training set), but are never seen during
the training phase, and chances are that many of these words contain unique, unseen
letter-phoneme mappings.

When the decision tree is constructed for each language, large differences become apparent
in the number of tree nodes: the English model contains 49,064 nodes, the Dutch model
contains 24,266 nodes, and the French model contains 16,313 nodes. The number of
nodes is a rough indication of the ambiguity of the corpus. The English corpus is the
most irregular in the mapping between spelling and (pre-aligned) phonology. The French
corpus is the most regular. The differences between the three languages become even more
apparent in Figure 2. In this Figure, the number of end nodes (i.e., nodes containing an
unambiguous phonemic mapping) per tree depth, or path length, is represented by bars.
For example, the largest white bar in the front row, labelled ‘1-1-2’, indicates that, in
the French model, most paths end with one left context character and two right context
characters.

The generalisation performance on unseen words, as reported in Van den Bosch et al
(1994), is listed in Table 2. Generalisation performance on unseen words (for each spc
model, approximately 1,500 words were used for this purpose) is expressed in the percent-
age of correctly converted letter-to-phoneme conversions of these unseen words.
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Figure 2: Numbers of end nodes, represented by bars, per tree depth (path length), for
three SPC models trained on comparable corpora of English, Dutch and French.

As can be seen from Table 2, the smallest model, i.e., the French model, generalises best
to unseen data. The Dutch model performs slightly worse; the English model performs
significantly worse than the two other models. One could extrapolate these results by
asserting a one-dimensional scale of orthographic depth, where these generalisation per-
formance values mark the ranking of a language (or rather, of a corpus) on this scale.
However, as was put forward earlier, the problem of converting spelling to phonology
also involves the parsing of words into graphemes, i.e., the spelling-phonology alignment
problem. Van den Bosch et al. (1994) use the data-oriented alignment algorithm de-
scribed earlier, trained to align phonemic transcriptions to spelling strings. They find
that the French corpus is the most complex corpus to be aligned, and the English corpus
the easiest one; the Dutch corpus is slightly more complex than the English. This result
is reverse to that obtained with the SPC model. It is mainly caused by the fact that
French graphemes are on the average longer and internally more confusible (e.g., <eux>,
<aux>, <eau>, <au>) than English or Dutch graphemes. Van den Bosch et al. (1994)
conclude by proposing a two-dimensional complexity measure denoting the orthographic
depth of a corpus, of which the coordinates are the performance results obtained with
spelling-phonology alignment, and spelling-to-phonology conversion with the SPC model.
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4 Discussion

4.1 Requirements for psychological validity

With a brief overview of the developments within the field of psycholinguistic modelling
of reading aloud, we have tried to identify the state of affairs both on a theoretical level
as well as on the level of modelling. There has been a large influence from developments
with connectionist modelling techniques on the latter. Connectionism offers the tools
for learning, for combining several processes into one single-processing system, and for
generating robust models that can generalise to new data. The success of connectionist
models of reading aloud (Plaut et al, 1996; Seidenberg & McClelland, 1989; Norris,
1993) has even put forward the connectionist paradigm as a theoretical basis, a view that
notably Seidenberg and McClelland (1989) have pioneered. Yet, these models have some
practical deficiencies, such as the large number of parameters that must be set correctly
in order to let Norris’ (1993) model perform like human beings do. As far as learning is
concerned, there are alternatives to connectionist modelling that lead to automatically
learned models which are able to generalise to new unseen words, and which use a sort of
knowledge representation that is neither strictly rule-based nor strictly lexical. We have
presented such a model. However, this SPC model has not yet been reviewed in terms of
the three general requirements for the validity of a psychological model of reading aloud:

(i) A model of reading aloud should be able to learn its knowledge automatically. This
statement is still quite distant to the question how knowledge of text-to-speech is acquired
by a child; it is far from clear how to relate the learning of a connectionist model, or the
SPC model for that matter, to human learning of reading aloud. Sejnowski and Rosenberg
(1987) carefully argue that there is a correlation between the learning curves of their
NETtalk model and human learning curves, both on a global scale as well as on the level
of specific letters, such as the English <c> (Sejnowski & Rosenberg, 1987, pp. 155-156).
Not addressing that discussion here, we can safely argue that the SPC model is able to
learn its knowledge automatically, without being bound to linguistic engineering or hand-
wiring. The storage of knowledge in a tree and the use of a best guess strategy can be
further specified as a kind of lazy learning (cf. Daelemans, 1995), with which learning is
relatively straightforward storage of examples, and performance is some kind of intelligent,
example-based similarity matching. For a discussion on the psychological validity of lazy
learning, see for example Smith and Medin (1981); Derwing and Skousen (1989).

(ii) The model should have the ability to convert spelling to phonology via multiple levels,
using those spelling units that are most relevant, to approach human performance. We
have shown that the construction of the sPC model involves a process in which relevant
pieces of spelling strings are automatically extracted from example words. The resulting
model does not manipulate clear-cut syllable bodies or rimes, but operates on SPCs which
can range from very general to extremely specific. The explanatory value (or ‘readability’)
of an SPC model in this respect is not very high, although one could argue that the
majority of the SPCs in most SPC models have a letter span of only four letters wide (see
Figure 2), which is slightly larger than the average syllable (which is roughly three to four
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letters wide, averaging over languages); there might be a correlation in this fact. More
generally, we would like to argue that the kind of processing in the SPC model is a form
of multiple-level processing, that is not even bounded to a number of levels.

(iii) The model should be robust, and should be able to generalise to new data. The
SPC model uses a kind of knowledge representation that is symbolic, but also distributed.
Converting one spelling word into its phonemic transcription involves many SPCs (i.e.,
paths in the decision tree); one SPC stores one bit of spelling-to-phonology knowledge that
in principle applies to many words. The decision tree stores knowledge that goes from
general (small, interpretable rules) to specific (whole-word information), and is shown to
be successfully applicable to new words containing partially new letter-phoneme mappings

(Van den Bosch and Daelemans, 1993, Van den Bosch et al., 1994).

As regards robustness of the model, cutting the tree at certain points does not lead to a
system breakdown. Rather, pruning the tree is a simple yet interesting experimental tool
to simulate certain text-to-speech conversion deficiencies. Cutting all paths at a certain
depth, for example, would leave the general spelling-to-phonology intact, and would lose
the more specific knowledge. It can be imagined that model performance would be similar
to that of patients suffering from Surface Dyslexia (Marshall & Newcombe, 1973). Future
research should certainly address in this respect the six questions formulated in Coltheart
et al. (1993) that models of reading aloud should address. Especially the questions
concerning Surface, Phonological and Developmental Dyslexia.

4.2 'Word pronunciation consistency metrics: a potential con-
tribution of SPC

We have presented SPC, a data-oriented model of the conversion of text to phonemic
speech. We have argued that it presents an alternative to connectionist modelling, dis-
playing most of the properties that typically are attributed to connectionist models. Fur-
thermore, we have shown the model to be an indicator of the complexity of grapheme-to-
phoneme conversion for a certain corpus. Thus far, we have not analysed the SPC model
on its ability to predict the complexity of the phonemisation of single words, nor the rela-
tion this metric might have with human reaction time latencies during the pronunciation
of these words.

Processing within the SPC model is strongly related to the ambiguity of the pronunciation
of a word. Within psycholinguistics, the term ‘word pronunciation consistency’ is used to
denote this average regularity of the pronunciation of a word. There is a tendency within
psycholinguistics to focus on syllable nuclei or syllable bodies to determine whether the
pronunciation of a word is consistent or inconsistent. This at least correlates with the fact
that in general, vowels (i.e., syllable nuclei) are much more ambiguous than consonants
as regards their pronunciation.

The sPC model provides an unbiased measure which does not focus on any predefined
entity, but which computes for a word simply the sum of the path lengths involved in

13



Letter in Context Phoneme | Depth
Nfffo] .| .].]. f 2
fllollr|k|.|.]|. 3: 3

flofc|k|_].|.]. - 4
r ||k - S k 2

Total Depth Sum | 11

Average Depth | 2.8
|| _-lh|a|v|e|n]|. h 7
|- |hial|]v]|e . e1 7
allvie|n|.|.]|. v 3
. a|viel|n|_|- - 6
h|a elln| -|-|-|-]. n 8
Total Depth Sum | 31

Average Depth | 6.2

Table 3: Example computation of the average tree search depths (context widths) of
retrieved paths for the English words <fork> and <haven>.

finding the phonemic mappings of all of its letters, or the mean of this sum, by dividing it
by the number of letters. An example of the computation of these metrics for two English
words is given in Table 3.

A word which involves only shallow decision tree searches, as the word <fork> in Table 3,
contains relatively unambiguous letter-phoneme correspondences, and could be said to be
‘consistent’; when the processing of a word involves some deep tree searches, as with the
word <haven> in Table 3, the word could be regarded ‘inconsistent’. It should be noted
that this consistency metric is not directly based on the regularity of a word as compared
to the pronunciation of similarly spelled words, which might have partly agreeing or
disagreeing pronunciations; the SPC model does not operate on the lexical level. Rather,
the metric takes into account on a detailed level all subword disagreements between the
target word and all other words in the learning material.

There are basically two existing alternatives to this word pronunciation consistency metric,
viz. neighbour word counts and mean bigram frequency. Neighbour word counts are used
under the assumption that the process of pronouncing a word is influenced by numbers
and/or frequencies of similar words. Jared et al. (1990) proposes a function for estimating
the complexity of a word’s phonemisation as opposed to neighbour words by counting
frequencies of friends, i.e., neighbour words with identical phonology, and enemies, i.e.,
neighbour words with conflicting phonology. A significant effect of longer naming latencies
was found with words with high frequency enemies, as well as shorter naming latencies
with words with high frequency friends (Jared et al., 1990). These experimental results
appear to point at a lexical effect of activation among friends, and competition between
enemies, at the level of words. This effect is in fact modelled by the DRC implementation
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of the dual route model (Coltheart et al., 1993).

At the subword level, mean bigram frequency is commonly used to measure a word’s
overall similarity to other words. It does not take into account phonological inconsistency
of similar words, nor their frequency. Mean bigram frequency of a word is the average of
the occurrences of all of its position-specific bigrams (e.g., <save> contains the bigrams
<sa>, <av> and <ve>). Bigram occurrences are computed on the basis of a large corpus.
This way, the metric expresses the ‘typicality’ of a spelling. Experiments with varying
mean bigram frequency have rendered no significant naming latency effects (Andrews,

1992).

Since the SPC word metric has only been tested in preliminary word naming experiments,
we can only evaluate its possible validity by comparing it on an abstract level to the
concepts of frequency of friends and enemies, and mean bigram frequency. In comparison
with the latter, the SPC word metric does take phonological consistency into account. In
fact, it is a direct measure of letter-phoneme correspondence consistency. In comparison
with metrics of friends and enemy words, the SPC model is not able to give direct informa-
tion on numbers of words, as the knowledge in the SPC model is not word-oriented. If the
information is present in the metric, it is only very indirectly. Word frequency information
is not available in the SPC model either. Analogous to the findings of Andrews (1992), it
might be the case that a naming latency effect could be found using the SPC word metric,
but only between consistent low-frequency words versus inconsistent low-frequency words.

4.3 Future research

In this paper, we have not addressed the dependencies of the spelling-to-phonology do-
main on related morpho-phonological domains such as word morphology and word stress
assignment. Morphology has a notoriously noisy influence on the pronunciation of mor-
phologically complex words in some languages (e.g., Dutch, English), as it may over-
rule grapheme-phoneme regularities. See, e.g., the English example <photograph> vs.
<photography> that was given earlier. Word stress assignment is also influenced by
morphology, and is at least interrelated with grapheme-phoneme conversion. Any model
that is aimed at modelling word pronunciation should incorporate stress assignment; most
models mentioned in this paper do not (an exception is NETtalk, Sejnowski & Rosenberg,
1987); their correlation results with human data are mostly obtained with training their
models on simple monomorphemic, monosyllabic words (Seidenberg & McClelland, 1989;
Plaut et al., 1996; Norris, 1993; Coltheart et al,, 1993). Future extensions to the spc
model should include the incorporation of morphology and stress assignment; isolated
data-oriented accounts of both domains already exist (e.g., see Daelemans et al., 1994;
Gillis et al., 1993; Van den Bosch et al,, 1996). Further experimental research should
address the question whether the word pronunciation complexity measure described in
the previous subsection is psychologically valid.
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Appendices

A. Automatic Alignment

Given a corpus of unaligned pairs of words and their phonemic transcriptions, an associ-
ation matrix is built between spelling letters and phonemes. In pseudo code:

Procedure COMPUTE-ASSOCIATION-SCORES
Input: A corpus C of unaligned word-transcription pairs

Output: An association matrix between all letters and phonemes in C

1. Initialise the association matrix M between all letters [ in C' and all phonemes p in C, to
My =0

2. For each word W and its associated phonemic transcription P,

(a) Let d = |W|— |P| (i-e., d is the length difference between W and P)

(b) For each possible alignment of W and P, do
For z =1 to |W| do

s Mw,p, = Mw,p, +8

o My, p,_, =My, p,_,+4
o My, p,_,=Mwy, p _,+2
o My, p,_,=Mw,p,_,+1

The association scores thus computed are converted into probabilities, and the most
probable alignment for each word-pronunciation pair is computed.

B. Information Gain

The main idea of information gain weighting is to interpret the training material as an
information source capable of generating a number of messages (the different phoneme
labels) with a certain probability. The information entropy of such an information source
can be compared in turn for each feature to the average information entropy of the infor-
mation source when the value of that feature is known (features in this case are context
positions).

Database information entropy is equal to the number of bits of information needed to know
the category given a pattern. It is computed by equation (1), where p; (the probability
of category ¢) is estimated by its relative frequency in the training set.

H(D) = -} _ pilog:p; (1)

For each feature, it is now computed what the information gain is of knowing its value. To
do this, we compute the average information entropy for this feature and subtract it from
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the information entropy of the database. To compute the average information entropy for
a feature (equation 2), we take the average information entropy of the database restricted
to each possible value for the feature. The expression D[;_,) refers to those patterns in
the database that have value v for feature f, V is the set of possible values for feature f.
Finally, |D| is the number of patterns in a (sub)database.

|D[f=vi]

H(Dip) = > H(Dig=oi) =5 (2)
v, eV
Information gain is then obtained by equation (3).
G(f) = H(D) — H(Dy) (3)

C. Decision Tree

C.1. Decision tree construction

On the basis of a corpus of aligned word-pronunciation instances (i.e., fixed-length win-
dows of letters associated with phonemes), and given the information gain values of all
letter positions computer over the full corpus, a decision tree is built in which instances
are stored in a compressed fashion (i.e., as partially overlapping paths of variable length).
In pseudo code:

Procedure BUILD-IG-TREE:
Input:
e A training set T of instances (letter windows) with their associated phonemes (start value:
a full instance base),

e an information-gain-ordered list of features (tests) F;...F, (start value: Fy...Fy,).
Output: A subtree.

1. If T is unambiguous (all instances in T map to the same phoneme p), or i = (n + 1), create
a leaf node with unique phoneme label p.

2. Otherwise, until ¢ = n (the number of features)
o Select the first feature (test) F; in F;...F,, and construct a new node N for feature F;,
and as default phoneme p (the phoneme occurring most frequently in T').

e Partition T into subsets 73...T,, according to the values (letters) vj...v, which occur
for F; in T (instances with the same letters for this feature in the same subset).

e For each je{l,...,m}:
if not all instances in 7; map to phoneme p, BUILD-IG-TREE (T}, Fi4...F,), connect
the root of this subtree to N and label the arc with letter value v;.
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C.2. Decision tree processing and retrieval

After tree construction, the phonemic transcription of a word can be looked up in the
tree. The word is converted by windowing into fixed-length instances. Each instance is
matched against paths in the decision tree, leading to a leaf node with a unique phoneme
label or, if no unambiguous mapping can be found, to the probable mapping at the point
of tree search failure. In pseudo-code:

Procedure SEARCH-IG-TREE:
Input:
e The root node N of an subtree (start value: top node of a complete IGTree),
e an unlabeled instance I (a letter window) with information-gain-ordered feature values (let-

ters) v;...v, (start value: vy...v,).

Output: A phoneme label.

1. If N is a leaf node, output default phoneme p associated with this node.

2. Otherwise, if test F; of the current node does not originate an arc labeled with letter value
v;, output default phoneme p associated with N.

3. Otherwise,
e new node M is the end node of the arc originating from N with as label letter v;.

e SEARCH-IG-TREE (M, vi41...v5)
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