Machine Learning, special issue on natural language learning

34, pp. 11-41, 1999.

1-34 ()
’)
© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Forgetting Exceptions is Harmful in Language
Learning

WALTER DAELEMANS, ANTAL VAN DEN BOSCH, JAKUB ZAVREL

{walter,antalb,zavrel } @kub.nl
ILK / Computational Linguistics
Tilburg University
P.O. Bozx 90153
NL-5000 LE Tilburg
The Netherlands
Phone +31.13.4663070

Editor:

Abstract. We show that in language learning, contrary to received wisdom, keeping exceptional
training instances in memory can be beneficial for generalization accuracy. We investigate this
phenomenon empirically on a selection of benchmark natural language processing tasks: grapheme-
to-phoneme conversion, part-of-speech tagging, prepositional-phrase attachment, and base noun
phrase chunking. In a first series of experiments we combine memory-based learning with training
set editing techniques, in which instances are edited based on their typicality and class predic-
tion strength. Results show that editing exceptional instances (with low typicality or low class
prediction strength) tends to harm generalization accuracy. In a second series of experiments
we compare memory-based learning and decision-tree learning methods on the same selection
of tasks, and find that decision-tree learning often performs worse than memory-based learning.
Moreover, the decrease in performance can be linked to the degree of abstraction from exceptions
(i.e., pruning or eagerness). We provide explanations for both results in terms of the properties
of the natural language processing tasks and the learning algorithms.

Keywords: memory-based learning, natural language learning, edited nearest neighbor classifier,
decision-tree learning

1. Introduction

Memory-based reasoning (Stanfill and Waltz, 1986) is founded on the hypothesis
that performance in real-world tasks (in our case language processing) is based
on reasoning on the basis of similarity of new situations to stored representations
of earlier experiences, rather than on the application of mental rules abstracted
from earlier experiences as in rule-based processing. The type of learning associ-
ated with such an approach is called lazy learning (Aha, 1997). The approach has
surfaced in different contexts using a variety of alternative names such as example-
based, exemplar-based, analogical, case-based, instance-based, locally weighted,
and memory-based (Stanfill and Waltz, 1986; Cost and Salzberg, 1993; Kolodner,
1993; Aha, Kibler, and Albert, 1991; Atkeson, Moore, and Schaal, 1997). Histori-
cally, lazy learning algorithms are descendants of the k-nearest neighbor (henceforth
k-NN) classifier (Cover and Hart, 1967; Devijver and Kittler, 1982; Aha, Kibler, and
Albert, 1991).

Memory-based learning is ‘lazy’ as it involves adding training examples (feature-
value vectors with associated categories) to memory without abstraction or restruc-
turing. During classification, a previously unseen test example is presented to the
system. Its similarity to all examples in memory is computed using a similarity
metric, and the category of the most similar example(s) is used as a basis for ex-
trapolating the category of the test example. A key feature of memory-based learn-
ing is that, normally, all examples are stored in memory and no attempt is made
to simplify the model by eliminating noise, low frequency events, or exceptions.
Although it is clear that noise in the training data can harm accurate generaliza-
tion, this work focuses on the problem that, for language learning tasks, it is very
difficult to discriminate between noise on the one hand, and valid exceptions and
sub-regularities that are important for reaching good accuracy on the other hand.

The goal of this paper is to provide empirical evidence that for a range of language
learning tasks, memory-based learning methods tend to achieve better generaliza-
tion accuracies than (i) memory-based methods combined with training set editing
techniques in which exceptions are explicitly forgotten, i.e. removed from memory,
and (ii) decision-tree learning in which some of the information from the training
data is either forgotten (by pruning) or made inaccessible (by the eager construc-
tion of a model). We explain these results in terms of the data characteristics
of the tasks, and the properties of memory-based learning. In our experiments
we compare IB1-1G (Daelemans and Van den Bosch, 1992; Daelemans, Van den
Bosch, and Weijters, 1997), a memory-based learning algorithm, with (i) edited
versions of 1B1-1G, and (ii) decision-tree learning in ¢5.0 (Quinlan, 1993) and in
IGTREE (Daelemans, Van den Bosch, and Weijters, 1997). These learning methods
are described in Section 2. The compared algorithms are applied to a selection of
four natural language processing (NLP) tasks (described in Section 3). These tasks
present a varied sample of the complete domain of NLP as they relate to phonology
and morphology (grapheme-to-phoneme conversion); morphology and syntax (part
of speech tagging, base noun phrase chunking); and syntax and lexical semantics
(prepositional-phrase attachment).

First, we show in Section 4 that two criteria for editing instances in memory-
based learning, viz. low typicality and low class prediction strength, are generally
responsible for a decrease in generalization accuracy.

Second, memory-based learning is demonstrated in Section 5 to be mostly at an
advantage, and sometimes at a par with decision-tree learning as far as general-
ization accuracy is concerned. The advantage is puzzling at first sight, as 1B1-1qG,
€5.0 and IGTREE are based on similar principles: (i) classification of test instances
on the basis of their similarity to training instances (in the form of the instances
themselves in 1B1-1G or in the form of hyper-rectangles containing subsets of partly-
similar training instances in ¢5.0 and IGTREE), and (ii) use of information entropy
as a heuristic to constrain the space of possible generalizations (as a feature weight-
ing method in 1B1-1G, and as a split criterion in ¢5.0 and IGTREE).

Our hypothesis is that both effects are due to the fact that 1B1-1¢ keeps all train-
ing instances as possible sources for classification, whereas both the edited versions
of 1B1-1G and the decision-tree learning algorithms ¢5.0 and IGTREE make abstrac-

tions from irregular and low-frequency events. In language learning tasks, where
sub-regularities and (small families of) exceptions typically abound, the latter is
detrimental to generalization performance. Our results suggest that forgetting ex-
ceptional training instances is harmful to generalization accuracy for a wide range
of language-learning tasks. This finding contrasts with a consensus in supervised
machine learning that forgetting exceptions by pruning boosts generalization accu-
racy (Quinlan, 1993), and with studies emphasizing the role of forgetting in learning
(Markovitch and Scott, 1988; Salganicoff, 1993).

Section 6 places our results in a broader machine learning and language learning
context, and attempts to describe the properties of language data and memory-
based learning that are responsible for the ‘forgetting exceptions is harmful’ effect.
For our data sets, the abstraction and pruning techniques studied do not succeed in
reliably distinguishing noise from productive exceptions, an effect we attribute to a
special property of language learning tasks: the presence of many exceptions that
tend to occur in groups or pockets in instance space, together with noise introduced
by corpus coding methods. In such a situation, the best strategy is to keep all
training data to generalize from.

2. Learning methods

In this Section, we describe the three algorithms we used in our experiments. 1B1-
1G is used for studying the effect of editing exceptional training instances, and in a
comparison to the decision tree methods ¢5.0 and IGTREE.

2.1. IB1-IG

1B1-1G (Daelemans and Van den Bosch, 1992; Daelemans, Van den Bosch, and
Weijters, 1997) is a memory-based (lazy) learning algorithm that builds a data
base of instances (the instance base) during learning. An instance consists of a
fixed-length vector of n feature-value pairs, and a field containing the classification
of that particular feature-value vector. After the instance base is built, new (test)
instances are classified by matching them to all instances in the instance base, and
by calculating with each match the distance between the new instance X and the
stored instance Y.

The most basic metric for instances with symbolic features is the overlap metric
given in Equations 1 and 2; where A(X,Y") is the distance between instances X and
Y, represented by n features, w; is a weight for feature i, and 4 is the distance per
feature. The k-NN algorithm with this metric, and equal weighting for all features
is, for example, implemented in 1B1 (Aha, Kibler, and Albert, 1991). Usually k is
set to 1.

A(X,Y) = MU w; 0(xi,Y:) (1)

where:

0(zi,y;)) =04f x; =y, elsel (2)

We have made two additions to the original algorithm in our version of 1B1. First, in
the case of nearest neighbor sets larger than one instance (k > 1 or ties), our version
of 1B1 selects the classification with the highest frequency in the class distribution of
the nearest neighbor set. Second, if a tie cannot be resolved in this way because of
equal frequency of classes among the nearest neighbors, the classification is selected
with the highest overall occurrence in the training set.

The distance metric in Equation 2 simply counts the number of (mis)matching
feature values in both instances. In the absence of information about feature rele-
vance, this is a reasonable choice. Otherwise, we can add linguistic bias to weight
or select different features (Cardie, 1996) or look at the behavior of features in the
set of examples used for training. We can compute statistics about the relevance
of features by looking at which features are good predictors of the class labels.
Information theory gives us a useful tool for measuring feature relevance in this
way (Quinlan, 1986; Quinlan, 1993).

Information gain (IG) weighting looks at each feature in isolation, and measures
how much information it contributes to our knowledge of the correct class label. The
information gain of feature f is measured by computing the difference in uncertainty
(i.e. entropy) between the situations without and with knowledge of the value of
that feature (Equation 3).

H(C) = ey, P0)H(Cl0)
sif)

Sx”

3)

si(f) = = 3 P(v)log, P(v) (4)

vEVy

where C' is the set of class labels, V is the set of values for feature f, and H(C) =
— > ccc P(c)logy P(c) is the entropy of the class label probability distribution.
The probabilities are estimated from relative frequencies in the training set. The
normalizing factor si(f) (split info) is included to avoid a bias in favor of features
with more values. It represents the amount of information needed to represent all
values of the feature (Equation 4). The resulting IG values can then be used as
weights in equation 1.

The possibility of automatically determining the relevance of features implies that
many different and possibly irrelevant features can be added to the feature set. This
is a very convenient methodology if theory does not constrain the choice enough
beforehand, or if we wish to measure the importance of various information sources
experimentally. A limitation is its insensitivity to feature redundancy; although
a feature may be redundant, it may be assigned a high information gain weight.
Nevertheless, the advantages far outweigh the limitations for our data sets, and
1B1-1G consistently outperforms 1B1.

2.2. C5.0

€5.0, a commercial version of ¢4.5 (Quinlan, 1993), performs top-down induction
of decision trees (TDIDT). On the basis of an instance base of examples, 5.0
constructs a decision tree which compresses the classification information in the
instance base by exploiting differences in relative importance of different features.
Instances are stored in the tree as paths of connected nodes ending in leaves which
contain classification information. Nodes are connected via arcs denoting feature
values. Feature information gain (Equation 3) is used dynamically in ¢5.0 to de-
termine the order in which features are employed as tests at all levels of the tree
(Quinlan, 1993).

5.0 can be tuned by several parameters. In our experiments, we chose to vary the
pruning confidence level (the ¢ parameter), and the minimal number of instances
represented at any branch of any feature-value test (the m parameter). The two
parameters directly affect the degree of ‘forgetting’ of individual instances by ¢5.0:

e The ¢ parameter denotes the pruning confidence level, which ranges between
0% and 100%. This parameter is used in a heuristic function that estimates
the predicted number of misclassifications of unseen instances at leaf nodes, by
computing the binomial probability (i.e, the confidence limits for the binomial
distribution) of misclassifications within the set of instances represented at that
node (Quinlan, 1993). When the presence of a leaf node leads to a higher
predicted number of errors than when it would be absent, it is pruned from the
tree. By default, ¢ = 25%; set at 100%, no pruning occurs. The more pruning
is performed, the less information about the individual examples is remembered
in the abstracted decision tree.

e The m parameter governs the minimum number of instances represented by a
node. By setting m > 1, ¢5.0 can avoid the creation of long paths disambiguat-
ing single-instance minorities that possibly represent noise (Quinlan, 1993). By
default, m = 2. With m = 1, ¢5.0 builds a path for every single instance not yet
disambiguated. Higher values of m lead to an increasing amount of abstraction
and therefore to less recoverable information about individual instances.

Moreover, we chose to set the subsetting of values (s) parameter at the non-default
value ‘on’. The s parameter is a flag determining whether different values of the
same feature are grouped on the same arc in the decision tree when they lead to
identical or highly similar subtrees. We used value grouping as a default for reasons
of computational complexity for the POS, PP, and NP data sets, and because that
setting yields higher generalization accuracy for the as data set.

2.3. IGTREFE

The IGTREE algorithm was originally developed as a method to compress and in-
dex case bases in memory-based learning (Daelemans, Van den Bosch, and Weijters,
1997). It performs TDIDT in a way similar to that of ¢5.0, but with two important

differences. First, it builds oblivious decision trees, i.e., feature ordering is com-
puted only at the root node and is kept constant during TDIDT, instead of being
recomputed at every new node. Second, IGTREE does not prune exceptional in-
stances; it is only allowed to disregard information redundant for the classification
of the instances presented during training.

Instances are stored as paths of connected nodes and leaves in a decision tree.
Nodes are connected via arcs denoting feature values. The global information gain
of the features is used to determine the order in which instance feature values are
added as arcs to the tree. The reasoning behind this compression is that when
the computation of information gain points to one feature clearly being the most
important in classification, search can be restricted to matching a test instance to
those memory instances that have the same feature value as the test instance at
that feature. Instead of indexing all memory instances only once on this feature,
the instance memory can then be optimized further by examining the second most
important feature, followed by the third most important feature, etc. A considerable
compression is obtained as similar instances share partial paths.

The tree structure is compressed even more by restricting the paths to those
input feature values that disambiguate the classification from all other instances
in the training material. The idea is that it is not necessary to fully store an
instance as a path when only a few feature values of the instance make the instance
classification unique. This implies that feature values that do not contribute to the
disambiguation of the instance (i.e., the values of the features with lower information
gain values than the lowest information gain value of the disambiguating features)
are not stored in the tree.

Apart from compressing all training instances in the tree structure, the IGTREE
algorithm also stores with each non-terminal node information concerning the most
probable or default classification given the path thus far, according to the book-
keeping information maintained by the tree construction algorithm. This extra
information is essential when processing unknown test instances. Processing an
unknown input involves traversing the tree (i.e., matching all feature-values of the
test instance with arcs in the order of the overall feature information gain), and
either retrieving a classification when a leaf is reached (i.e., an exact match was
found), or using the default classification on the last matching non-terminal node
if an exact match fails.

In sum, in the trade-off between computation during learning and computation
during classification, the IGTREE approach chooses to invest more time in organizing
the instance base than 1B1-1G, but less than ¢5.0, because the order of the features
needs to be computed only once for the whole data set.

3. Benchmark language learning tasks

We investigate four language learning tasks that jointly represent a wide range
of different types of tasks in the NLP domain: (1) grapheme-phoneme conversion
(henceforth referred to as GS), (2) part-of-speech tagging (P0S), (3) prepositional-
phrase attachment (PP), and (4) base noun phrase chunking (NP). In this section,

we introduce each of the four tasks, and describe for each task the data collected
and employed in our study. First, properties of the four data sets are listed in
Table 1, and examples of instances for each of the tasks are displayed in Table 2.

Table 1. Properties of the four investigated data sets of the GS, Pos, PP, and NP learning
tasks: numbers of features, values per feature, classes, and instances.

Values of feature # | # Data set
Task | Features 1 2 3 4 5 6 7 8 9 10 11|Classes| instances
GS 7 42 42 42 41 42 42 42 159 675,745
POS 5 170 170 498 492 480 169 1,046,152
PP 4| 3,474 4,612 68 5,780 2 23,898
NP 11|20,231 20,282 20,245 20,263 86 87 86 89 3 3 3 3 251,124

Table 2. Example of instances of the GS, POS, PP, and NP learning tasks. All instances represent
fixed-sized feature-value vectors and an associated class label. Feature values printed in bold are
focus features (description in text).

Features

Task 1 2 3 4 5 6 7 8 9 10 11|label
GS - h e a r t S 0A:
b o o k i n g Ok

t i e s - - - 0z

- - a f a r - 1f

POS - SQSO VB VBG NN VB
NNS BEZ TO/IN BE VBN/VBD TO

NP HVZ VB/VBN/VBD RP/IN AT VBN

- - PP3 MD RN PP3
PP is chairman of NV noun
pour cash into funds verb
asked them for views verb
caused swings in prices noun

NP | definitive agreement between the 13 N~ INprI I If O
when they need money WRB pp vBPNN I I O] O

pose a new challenge VB pT JJ NNO I I| I
performance that would compare NN wpT MD VB O B I| O

3.1. GS: grapheme-phoneme conversion with stress assignment

Converting written words to stressed phonemic transcription, i.e., word pronunci-
ation, is a well-known benchmark task in machine learning (Sejnowski and Rosen-
berg, 1987; Stanfill and Waltz, 1986; Stanfill, 1987; Lehnert, 1987; Wolpert, 1989;

Shavlik, Mooney, and Towell, 1991; Dietterich, Hild, and Bakiri, 1995). We define
the task as the conversion of fixed-sized instances representing parts of words to
a class representing the phoneme and the stress marker of the instance’s middle
letter. We henceforth refer to the task as GS, an acronym of Grapheme-phoneme
conversion and Stress assignment. To generate the instances, windowing is used
(Sejnowski and Rosenberg, 1987). Table 2 (top) displays four example instances
and their classifications. Classifications, i.e., phonemes with stress markers, are
denoted by composite labels. For example, the first instance in Table 2, _hearts,
maps to class label 0A:, denoting an elongated short ‘a’-sound which is not the first
phoneme of a syllable receiving primary stress. In this study, we chose a fixed win-
dow width of seven letters, which offers sufficient context information for adequate
performance (in terms of the upper bound on error demanded by applications in
speech technology).

From CELEX (Baayen, Piepenbrock, and van Rijn, 1993) we extracted, on the basis
of the standard word base of 77,565 words with their corresponding transcription,
a data base containing 675,745 instances. The number of classes (i.e., all possible
combinations of phonemes and stress markers) occurring in this data base is 159.

3.2. POS: Part-of-speech tagging of word forms in context

Many words in a text are ambiguous with respect to their morphosyntactic category
(part-of-speech). Each word has a set of lexical possibilities, and the local context
of the word can be used to select the most likely category from this set (Church,
1988). For example in the sentence “they can can a can”, the word can is tagged as
modal verb, main verb and noun respectively. We assume a tagger architecture that
processes a sentence from the left to the right by classifying instances representing
words in their contexts (as described in Daelemans et al. (1996)). The word’s
already tagged left context is represented by the disambiguated categories of the
two words to the left, the word itself and its ambiguous right context are represented
by categories which denote ambiguity classes (e.g. verb-or-noun).

The data set for the part-of-speech tagging task, henceforth referred to as the Pos
task, was extracted from the LOB corpus'. The full data set contains 1,046,152
instances. The “lexicon” of ambiguity classes was constructed from the first 90%
of the corpus only, and hence the data contains unknown words. To avoid a com-
plicated architecture, we treat unknown words the same as the known words, i.e.,
their ambiguous category is simply “UNKNOWN” | and they can only be classified on
the basis of their context?.

3.3. PP: Disambiguating verb/noun attachment of prepositional phrases

As an example of a semantic-syntactic disambiguation task we consider a simplified
version of the task of Prepositional Phrase (henceforth PP) attachment: the attach-
ment of a PP in the sequence VP NP PP (VP = verb phrase, NP = noun phrase, PP
= prepositional phrase). The data consists of four-tuples of words, extracted from
the Wall Street Journal Treebank (Marcus, Santorini, and Marcinkiewicz, 1993) by

a group at 1BM (Ratnaparkhi, Reynar, and Roukos, 1994).% They took all sentences
that contained the pattern VP NP PP and extracted the head words from the con-
stituents, yielding a V. N1 P N2 pattern (V = verb, N = noun, P = preposition). For
each pattern they recorded whether the PP was attached to the verb or to the noun
in the treebank parse. For example, the sentence “he eats pizza with a fork” would
yield the pattern:

EXAMPLE: eats, pizza, with, fork, verb. O

because here the PP is an instrumental modifier of the verb. A contrasting sentence
would be “he eats pizza with anchovies”, where the PP modifies the noun phrase
PLz2a.

EXAMPLE: eats, pizza, with, anchovies, noun. O

From the original data set, used in statistical disambiguation methods by Ratna-
parkhi, Reynar, and Roukos (1994) and Collins and Brooks (1995), we took the
train and test set together to form a new data set of 23,898 instances.

Due to the large number of possible word combinations and the comparatively
small training set size, this data set can be considered very sparse. Of the 2390
test instances in the first fold of the 10 cross-validation (CV) partitioning, only 121
(5.1%) occurred in the training set; 619 (25.9 %) instances had 1 mismatching word
with any instance in the training set; 1492 (62.4%) instances had 2 mismatches;
and 158 (6.6 %) instances had 3 mismatches. Moreover, the test set contains many
words that are not present in any of the instances in the training set.

The pp data set is also known to be noisy. Ratnaparkhi, Reynar, and Roukos
(1994) performed a study with three human subjects, all experienced treebank
annotators, who were given a small random sample of the test sentences (either as
four-tuples or as full sentences), and who had to give the same binary decision. The
humans, when given the four-tuple, gave the same answer as the Treebank parse
only 88.2% of the time, and when given the whole sentence, only 93.2% of the time.

3.4. NP: Base noun phrase chunking

Phrase chunking is defined as the detection of boundaries between phrases (e.g.,
noun phrases or verb phrases) in sentences. Chunking can be seen as a ‘light’
form of parsing. In NP chunking, sentences are segmented into non-recursive NP’s,
so called baseNP’s (Abney, 1991). NP chunking can, for example, be used to
reduce the complexity of sub-sequential parsing, or to identify named entities for
information retrieval. To perform this task, we used the baseNP tag set as presented
in (Ramshaw and Marcus, 1995): I for inside a baseNP, O for outside a baseNP,
and B for the first word in a baseNP following another baseNP. As an example, the
IOB tagged sentence: “The/I postman/I gave/O the/I man/I a/B letter/I./O0” will
result in the following baseNP bracketed sentence: “[The postman] gave [the man]
[a letter].” The data we used are based on the same material as (Ramshaw and
Marcus, 1995) which is extracted from the Wall Street Journal text in the parsed
Penn Treebank (Marcus, Santorini, and Marcinkiewicz, 1993). Our NP chunker

10

consists of two stages, and in this paper we have used instances from the second
stage. An instance (constructed for each focus word) consists of features referring
to words, POS tags, and IOB tags (predicted by the first stage) of the focus and the
two immediately adjacent words. The data set contains a total of 251,124 instances.

3.5. Experimental method

We used 10-fold CV (Weiss and Kulikowski, 1991) in all experiments comparing
classifiers (Section 5). In this approach, the initial data set (at the level of instances)
is partitioned into ten subsets. Each subset is taken in turn as a test set, and the
remaining nine combined to form the training set. Means are reported, as well as
standard deviation from the mean. In the editing experiments (Section 4), the first
train-test partition of the 10-fold CV was used for comparing the effect on the test
set accuracy of applying different editing schemes on the training set.

Having introduced the machine learning methods and data sets that we focus on
in this paper, and the experimental method we used, the next Section describes
empirical results from a first set of experiments aimed at getting more insight into
the effect of editing exceptional instances in memory-based learning.

4. Editing exceptions in memory-based learning is harmful

The editing of instances from memory in memory-based learning or the k-NN clas-
sifier (Hart, 1968; Wilson, 1972; Devijver and Kittler, 1980) serves two objectives:
to minimize the number of instances in memory for reasons of speed or storage,
and to minimize generalization error by removing noisy instances, prone to being
responsible for generalization errors. Two basic types of editing, corresponding to
these goals, can be found in the literature:

e Editing superfluous regular instances: delete instances for which the dele-
tion does not harm the classification accuracy of their own class in the training
set (Hart, 1968).

¢ Editing unproductive exceptions: deleting instances that are incorrectly
classified by their neighborhood in the training set (Wilson, 1972), or roughly
vice-versa, deleting instances that are bad class predictors for their neighbor-
hood in the training set (Aha, Kibler, and Albert, 1991).

We present experiments in which both types of editing are employed within the
1B1-1G algorithm (Subsection 2.1). The two types of editing are performed on
the basis of two criteria that estimate the exceptionality of instances: typicality
(Zhang, 1992) and class prediction strength (Salzberg, 1990) (henceforth referred
to as cPs). Unproductive exceptions are edited by taking the instances with the
lowest typicality or cPs, and superfluous regular instances are edited by taking
the instances with the highest typicality or cps. Both criteria are described in
Subsection 4.1. Experiments are performed using the 1B1-1G implementation of the

11

TiMBL software package* (Daelemans et al., 1998). We present the results of the
editing experiments in Subsection 4.2.

4.1. Two editing criteria

We investigate two methods for estimating the (degree of) exceptionality of instance
types: typicality and class prediction strength (Cps).

4.1.1. Typicality Inits common meaning, “typicality” denotes roughly the oppo-
site of exceptionality; atypicality can be said to be a synonym of exceptionality. We
adopt a definition from (Zhang, 1992), who proposes a typicality function. Zhang
computes typicalities of instance types by taking the notions of intra-concept sim-
ilarity and inter-concept similarity (Rosch and Mervis, 1975) into account. First,
Zhang introduces a distance function which extends Equation 1; it normalizes the
distance between two instances X and Y by dividing the summed squared distance
by n, the number of features. The normalized distance function used by Zhang is
given in Equation 5.

”_. n

A »N‘“ Y)= -) iy Yi 2)
(X,Y) - WMA (i, yi)) (5)
The intra-concept similarity of instance X with classification C is its similarity
(i.e., 1—distance) with all instances in the data set with the same classification
C': this subset is referred to as X’s family, Fam(X). Equation 6 gives the intra-
concept similarity function Intra(X) (|[Fam(X)| being the number of instances in

X'’s family, and Fam/(X); the ith instance in that family).

|Fam(X)]
> 10— A(X,Fam(X);) (6)

i=1

1
Intra(X) = Fam(X)]

All remaining instances belong to the subset of unrelated instances, Unr(X). The
inter-concept similarity of an instance X, Inter(X), is given in Equation 7 (with
|[Unr(X)| being the number of instances unrelated to X, and Unr(X); the ith
instance in that subset).

|Unr(X)|
> 10— A(X,Unr(X),) (7)

i=1

1

Inter(X) = ————

%)= ur ()

The typicality of an instance X, Typ(X), is X’s intra-concept similarity divided by
X’s inter-concept similarity, as given in Equation 8.

_ Intra(X)

~ Inter(X) ®)

Typ(X)

12

An instance type is typical when its intra-concept similarity is larger than its inter-
concept similarity, which results in a typicality larger than 1. An instance type is
atypical when its intra-concept similarity is smaller than its inter-concept similarity,
which results in a typicality between 0 and 1. Around typicality value 1, instances
cannot be sensibly called typical or atypical; Zhang (1992) refers to such instances
as boundary instances.

We adopt typicality as an editing criterion here, and use it for editing instances
with low typicality as well as instances with high typicality. Low-typical instances
can be seen as exceptions, or bad representatives of their own class and could
therefore be pruned from memory, as one can argue that they cannot support
productive generalizations. This approach has been advocated by Ting (1994a) as
a method to achieve significant improvements in some domains. Editing atypical
instances would, in this line of reasoning, not be harmful to generalization, and
chances are that generalization would even improve under certain conditions (Aha,
Kibler, and Albert, 1991). High-typical instances, on the other hand, may be good
predictors for their own class, but there may be enough of them in memory, so that
a few may also be edited without harmful effects to generalization.

Table 3 provides examples of low-typical (for each task, the top three) and high-
typical (bottom three) instances of all four tasks. The Gs examples show that loan
words such as czech introduce peculiar spelling-pronunciation relations; particu-
larly foreign spellings turn out to be low-typical. High-typical instances are parts
of words of which the focus letter is always pronounced the same way. Low-typical
POS instances tend to involve inconsistent or noisy associations between an unam-
biguous word class of the focus word and a different word class as classification:
such inconsistencies can be largely attributed to corpus annotation errors. Focus
tags of high-typical POS instances are already unambiguous. The examples of low-
typical PP instances represent minority exceptions or noisy instances in which it is
questionable whether the chosen classification is right (recall that human annota-
tors agree only on 88% of the instances in the data set, cf. Subsection 3), while the
high-typical PP examples have the preposition ‘of” in focus position, which typically
attaches to the noun. Low-typical NP instances seem to be partly noisy, and oth-
erwise difficult to interpret. High-typical NP instances are clear-cut cases in which
a noun occurring between a determiner and a finite verb is correctly classified as
being inside an NP.

4.1.2. Class-prediction strength A second estimate of exceptionality is to mea-
sure how well an instance type predicts the class of all other instance types within
the training set. Several functions for computing class-prediction strength have
been proposed, e.g., as a criterion for removing instances in memory-based (k-NN)
learning algorithms, such as 1B3 (Aha, Kibler, and Albert, 1991) (cf. earlier work
on edited k-NN (Hart, 1968; Wilson, 1972; Devijver and Kittler, 1980; Voisin and
Devijver, 1987)); or for weighting instances in the EACH algorithm (Salzberg, 1990).
We use the class-prediction strength function as proposed by Salzberg (1990). This
is the ratio of the number of times the instance type is a nearest neighbor of an-
other instance with the same class and the number of times that the instance type

13

Table 3. Examples of low-typical (top three) and high-typical (bottom
three) instances of the Gs, pos, PP, and NP learning tasks. For each instance
its typicality value is given.

as |
feature values class typicality _
ureaucr 0Qu 0.43
freudia 001 0.44
__czech 0- 0.54
bjectio 0kS 10.57
lk-over 2QU 10.39
ey-jack 2 9.41
POS |
feature values class typicality _
SXM SQSC CC TO/IN VB FW 0.05
CD NNU NN BO AA AQ 0.07
PP30S DO CC VB PP3AS cs 0.08
Cs3 cs4 PP1As NN/JJB/IN PP30s PP1AS 3531.53
csl ¢s2 ¢D NNU1/IN NNU2 cD 2887.29
NN2 IN2 CD NNU/Zz IN/CC cD 2526.98
PP |
feature values class typicality _
accuses Motorola of turnabout verb 0.01
cleanse Germany of muck verb 0.01
directs flow through systems noun 0.02
excluding categories of food noun 94.52
underscoring lack of stress noun 94.52
calls frenzy of legislating noun 94.53
NP |
feature values class typicality _
generally a bit safer RB DT NN JJR O O O (0) 0.27
“ No matter how “bT NN WRB O O O ¢} 0.27
I know that voluntarily PP VBP IN RB O O B I 0.27
that the legislator wins IN DT NN vBZ O B B I 6.93
that the bank supports IN DT NN vBz O B B I 6.94
that the company hopes IN DT NN vBZ O B B I 6.97

is the nearest neighbor of another instance type regardless of the class. An instance
type with class-prediction strength 1.0 is a perfect predictor of its own class; a
class-prediction strength of 0.0 indicates that the instance type is a bad predictor
of classes of other instances, presumably indicating that the instance type is excep-
tional. Even more than with typicality, one might argue that bad class predictors
can be edited from the instance base. Likewise, one could also argue that instances

14

with a maximal CPS could be edited to some degree too without harming general-
ization: strong class predictors may be abundant and some may be safely forgotten
since other instance types may be strong enough to support the class predictions
of the edited instance type.

In Table 4, examples from the four tasks of instances with low (top three) and
high (bottom three) cps are displayed. Many instances with low CPS are minority
ambiguities. For instance, the GS examples represent instances which are completely
ambiguous and of which the classification is the minority. For example, there
are more words beginning with algo that have primary stress (class ‘lae’) than
secondary stress (class ‘2ae’), which makes the instance ‘___algo 2ae’ a minority
ambiguity.

To test the utility of these measures as criteria for justifying forgetting of specific
training instances, we performed a series of experiments in which 1B1-1G is applied
to the four data sets, systematically edited according to each of four tested criteria.
We performed the editing experiments on the first fold of the 10-fold CV partitioning
of the four data sets. For each editing criterion (i.e., low and high typicality, and
low and high cps), we created eight edited instance bases by removing 1%, 2%, 5%,
10%, 20%, 30%, 40%, and 50% of the instance tokens (rounded off so as to remove
a whole number of instance types) according to the criterion from a single training
set (the training set of the first 10-fold CV partition). IB1-1G was then trained on
each of the edited training sets, and tested on the original unedited test set (of the
first 10-fold CV partition).

Overlapping instance types (%)

Overlapping instance types (%)

20 25 30
Removed instance tokens (%)

35

5
=
5

15

20 25 30
Removed instance tokens (%)

35

Figure 1. The percentage of instance types that are edited by both the typicality and the class
prediction strength criterion. The left part of the figure shows the results for editing exceptional
instances, the right part shows the results for editing regular instances.

To measure to what degree the two criteria are indeed different measures of
exceptionality, the percentage of overlap between the removed types was measured
for each data set. As can be seen in Figure 1, the two measures mostly have fairly
little overlap, certainly for editing below 10%. The reason for this is that typicality
is based on global properties of the data set, whereas class prediction strength is
based only on the local neighborhood of each instance. Only for the PP attachment
and POS tagging tasks do the sets of edited exceptional instances overlap up to
70% when editing 10%.

15

Table 4. Examples of instances with low class prediction strength
(top three) and high class prediction strength (bottom three) of the
as, pos, PP, and NP tasks. For each instance its class prediction
strength (cps) value is given.

Gs |
feature values class cps |
___algo 2ae 0.00
ck-benc 1b 0.00
erby___ Oal 0.00
___week 1w 1.00
ainders 0od 1.00
eracted 0k 1.00

POS |
feature values class cps |

SCOM NPT IN NP NP/NN IN 0.00
== == NPT NP GENM/BEZ NN 0.00
ATI NNS VBN/VBD IN NP vBD 0.00
SQSO WRB XNOT VB ATI XNOT 1.00
BER CD NNS IN NN NNS 1.00
AT JNP NN VBZ IN NN 1.00
PP |
feature values class cps _
allowed access notwithstanding designations verb 0.00
had yield during week noun 0.00
make commodity of luxury verb 0.02
is one of strategy noun 0.99
is one of restructuring noun 0.99
is one of program noun 0.99

NP |
feature values class cps _
of KLM Royal Dutch IN NP NP NPIT O I 0.00
in ethics charges against IN NNS NNS IN O I O I 0.00

assets . The axiom NNs STOP DT NNI O I I 0.00
I drink to your PP VBP TO PP I O I I 1.00
share price could zoom NN NN MD VB I T O ¢} 1.00
work force as well NN NN RB RB O 11 (0) 1.00

4.2. Editing exceptions: Results

The general trend we observe in the results obtained with the editing experiments is
that editing on the basis of typicality and class-prediction strength, whether low or
high, is not beneficial, and is ultimately harmful to generalization accuracy. More
specifically, we observe a trend that editing instance types with high typicality or

16

high cps is less harmful than editing instance types with low typicality or low class
prediction strength — again, with some exceptions. The results are summarized in
Figure 2. The results show that in any case for our data sets, editing serves neither
of its original goals. If the goal is a decrease of speed and memory requirements,
editing criteria should allow editing of 50% or more without a serious decrease in
generalization accuracy. Instead, we see disastrous effects on generalization accu-
racy at much lower editing rates, sometimes even at 1%. When the goal is improving
generalization accuracy by removing noise, the focus of the editing experiments in
this paper, none of the studied criteria turns out to be useful.

GS POS
100.0 100.0
95.0 4
_ —~ 97514
S 90.0 5
3 x 3
8 85.0 . 8 95.0
3 e 3
S 80.0 . 3
g o S 925
S 75.0 - x 2
@ . @
S 7001 o ‘s 90.0
o caali T b o low typicality ——
< 1 low typicality —— o = ¢ g
g 6507 pigh typicality o & g5 Nohtypicalty -
low CPS -~ - low CPS -8~
60.0 high CPS s high CPS -
55.0 -+ T T T T T 85.0 -+ T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
% of removed instances types % of removed instances types
PP NP
100.0 100.0
90.0 1 97.54
S g
= = 95.0 4
g 80.0 - g
5 5 92514
g 70.0 g
.01 ©
m c 90.04
2 2
& 6001 & 151
8 8
2 low typicality —— 2 850{ I icality ——
c 1 I« Icall B = X ow typicality
g 50.01 high _J\U_mw_v_N . g high typicality -+ .
high GPS = 82.5 1 low CPS -
40.0 9 x high CPS - *
T T T T T T 80.0 -+ T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
% of removed instances types % of removed instances types

Figure 2. Generalization accuracies (in terms of % of correctly classified test instances) of 1B1-I1G
on the four tasks with increasing percentages of edited instance tokens, according to the four
tested editing criteria.

To compute the statistical significance of the effect of editing, the output for
each criterion was compared to the correct classification and the output of the
unedited classifier. The resulting cross-tabulation of hits and misses was subjected
to McNemar’s x? test (Dietterich, 1998 in press). Differences with p < 0.05 are
reported as significant.

A detailed look at the results per data set shows the following results. Editing
experiments on the Gs task (top left of Figure 2) show significant decreases in gen-
eralization accuracy with all editing criteria and all amounts (even 1% is harmful);

17

editing on the basis of low and high cps is particularly harmful, and all criteria
except low typicality show a dramatic drop in accuracy at high levels of editing.

The editing results on the POs task (top right of Figure 2) indicate that editing
on the basis of either low typicality or low class prediction strength leads to sig-
nificant decreases in generalization accuracy even with the smallest amount (1%)
of edited instance types. Editing on the basis of high typicality and high cPS can
be performed up to 10% and 5% respectively without significant performance loss.
For this data set, the drop in performance is radical only for low typicality.

Editing on the PP task (bottom left of Figure 2) results in significant decreases
of generalization accuracy with respectively 5% and 10% of edited instance tokens
of low typicality and low cps. Editing with high typicality and high cps can be
performed up to 20% and 10% repectively, without significant performance loss,
but accuracies drop dramatically when 30% or more of high-typical or high-cps
instance types are edited.

Finally, editing on the NP data (bottom right of Figure 2) can be done without
significant generalization accuracy loss with either the low or the high ¢Ps criterion,
up to respectively 30% and 10%. Editing with low or high typicality, however, is
harmful to generalization immediately from editing 1% of the instance tokens.

In sum, the experiments with editing on the basis of criteria estimating the excep-
tionality of instances show that forgetting of exceptional instances in memory-based
learning while safeguarding generalization accuracy can only be performed to a very
limited degree by (i) replacing instance tokens by instance types with frequency in-
formation (which is trivial and is done by default in 1B1-1G), and (ii) removing
small amounts of minority ambiguities with low (0.0) cps. None of the editing
criteria studied is able to reliably filter out noisy instances. It seems that for the
linguistic tasks we study, methods filtering out noise tend to also intercept at least
some (small families of) productive instances. Our experiments show that there is
little reason to believe that such editing will lead to accuracy improvement. When
looking at editing from the perspective of reducing storage requirements, we find
that the amount of editing possible without a significant decrease in generalization
accuracy is limited to around 10%. Whichever perspective is taken, there does not
seem to be a clear pattern across the data sets favoring either the typicality or class
prediction strength criterion, which is somewhat surprising given their different
basis (i.e., as a measure of global or local exceptionality).

5. Forgetting by decision-tree learning can be harmful in language
learning

Another way to study the influence of exceptional instances on generalization ac-
curacy is to compare 1B1-1G, without editing, to inductive algorithms that abstract
from exceptional instances by means of pruning or other devices. ¢5.0 and IGTREE,
introduced in Section 2 are decision tree learning methods that abstract in various
ways from exceptional instances. We compared the three algorithms for all data
sets using 10-fold CV. In this Section, we will discuss the results of this comparison,
and the influence of some pruning parameters of ¢5.0 on generalization accuracy.

18

5.1. Results

Ordered on a continuum representing how exceptional instances are handled, 1B1-
IG is at one end, keeping all training data, and ¢5.0 with default settings (¢ = 25,
m = 2, value grouping on) is at the other end, making abstraction from exceptional
(noisy) instances by pruning, constructing features (by grouping subsets of values of
a feature), and enforcing a minimal number of instances at each node. In between
is IGTREE, which collapses instances that have the same class and the same values
for the most relevant features into one node.

Table 5. Generalization accuracies (in terms of per-
centages of correctly classified test instances) on the
GS, POS, PP, and NP tasks, by IB1-1G, IGTREE, and ¢5.0
with parameter setting ¢ = 25 and m = 2 (default

setting).
Generalization accuracy
IB1-1G IGTREE c5.0
Task % + % + % + |

GS 93.45 0.15 | 93.09 0.15 | 9248 0.14
POS 97.94 0.05 | 97.75 0.03 | 97.97 0.04
PP 83.48 1.16 | 78.28 1.79 | 80.89 1.01
NP 98.07 0.05 | 97.28 0.08 — —

Table 5 displays the generalization accuracies, measured in percentages of cor-
rectly classified test instances, for 1B1-1G, IGTREE, and ¢5.0 on the four tasks. We
were unfortunately unable to finish the ¢5.0 experiment on the NP data set for
memory reasons (running on a SUN Sparc 5 with 160 Mb internal memory and 386
Mb swap space). The statistical significance of the differences between the algo-
rithms is summarized in Table 6. We performed a one-tailed paired t-test between
the results of the 10 CV runs.

As the results in these Tables show, IB1-1G has significantly better generalization
accuracy than IGTREE for all data sets. In two of the three data sets where the
comparison is feasible, 1B1-1G performs significantly better than ¢5.0. For the
pPOs data set, ¢5.0 outperforms 1B1-1G with a small but statistically significant
difference.

5.1.1. Abstraction in C5.0 We performed additional experiments with ¢5.0 with
increasing values for the ¢ and m parameters, to gain more insight into the effect
of explicitly forgetting feature-value information through pruning (¢) or blocking
the disambiguation of small amounts of instances (m). The following space of
parameters was explored for each data set on the first fold of the 10 CV partitioning.

1. m =1and ¢ = 100,75, 50, 40, 35, 30, 25, 20, 15, 10, 5, 2, 1 to visualize the gradual
increase of pruning, and

19

Table 6. Significance of the differences between the generalization performances of IB1-1G,
¢5.00PT, ¢5.0DEF, and IGTREE, for the four tasks. A one-tailed paired t-test (df = 9) was
performed, to see whether the generalization accuracy of the algorithm to the left is better
than that of the algorithm to the right (indicated by a greater than “>” sign), or the other
way around (less than sign “<”).

Algorithm 1 Algorithm 2	Gs	POS	PP	NP
Blic 5.0	>(p<1079)	< (p=4x10"%)	> (p=2x107%)] NA	
Blc IGTREE	> (p < 1076)] > (p<1076)	> (p<1076)	> (p<1079)	
1GTREE 5.0	>(<107%)] <(p<1076)	<(p=10"%)	NA	

2. ¢=100 and m = 1,2,3,4,5,6,8,10,15, 20, 30,50 to visualize the gradual de-
crease in the level of instance granularity at feature tests.

Figure 3 displays the effect on generalization accuracy of varying the ¢ parameter
from 1 to 100 (left) and the m parameter from 1 to 50 (right). Performance of ¢5.0
on the POS and PP tasks is only slightly sensitive to the setting of both parameters,
while the performance on the GS task is seriously harmed when ¢ is too small (i.e.,
when pruning is high), or when m is larger than 1 (i.e., when single instances to
be disambiguated are ignored). The direct effect of changing both parameters is
shown in Figure 4; small values of ¢ lead to smaller trees, as do large values of m.
For the Pos, and PP tasks, it is interesting to note that the performance of ¢5.0,
although usually lower than that of IB1-1G, is maintained even with a small number
of nodes: with m = 50 and ¢ = 100, ¢5.0 needs 1324 nodes for the poOs task and 34
nodes for the PP task. However, nodes in these trees contain a lot of information
since grouping of feature values was used.

100.0 100.0
97.5 4" 9751+ e .
g 90 g 90
> 9251 > 9251
I I
3 900 3 900
& &
c 8751 Gs c 8751
2 POS -+t 2
g 8501 op o g 8501
3 3
5 8251 5 8251
5 E— o 5 [-
S 800 S 800
775 775
75.0 , , , , : 75.0 , , , , :
0 20 40 60 80 100 0 10 20 30 40 50
C parameter m parameter

Figure 3. Generalization accuracies (in terms of % of correctly classified test instances) of ¢5.0
with increasing ¢ parameter (left) and increasing m parameter (right), for the as, pos, and pp
tasks.

20

35000 § 35000 §
30000 4 30000 4
25000 1 25000 1

20000 4 20000 4

nodes
nodes

15000 1 e 15000 1 |

10000 4 10000 4

5000 q 5000 q

0 20 40 60 80 100 0

C parameter m parameter

Figure 4. Tree sizes (number of nodes) generated by ¢5.0 with increasing ¢ parameter (left) and
increasing m parameter (right), for the Gs, Pos, and pP tasks.

Table 7 compares ¢5.0 with default settings (¢5.0DEF) to ¢5.0 with ‘lazy’ pa-
rameter setting ¢ = 100 and m = 1 (¢5.0LAZY). The differences are significant at
the p < 0.05 level for the as and POs data sets, but not for the PP data set.

Table 7. 10 fold CV generalization
accuracies (in terms of percentages of
correctly classified test instances) on
the Gs, POs, and PP tasks, by ¢5.0 with
parameter setting ¢ = 25 and m = 2
(default setting), and ¢5.0 with pa-
rameter setting ¢ = 100 and m =1
(‘lazy’ setting).

Omzmgzgiocmg:ﬁmo%
¢5.0LAZY ¢5.0DEF
Task % + % +

GS 93.34 0.13 | 92.48 0.14
POS 97.92 0.04 | 97.97 0.04
PP 80.85 1.07 | 80.89 1.01

These parameter tuning results indicate that decision-tree pruning is not bene-
ficial to generalization accuracy, but neither is it generally harmful. Only on the
Gs task are strong decreases in generalization accuracy found with decreasing c.
Likewise, small decreases in performance are witnessed with increasing m for the
POs and PP tasks, while a strong accuracy decrease is found with increasing m for
the as task.

5.1.2. Efficiency In addition to generalization accuracy, which is the focus of our
attention in this research, efficiency, measured in terms of training and testing speed
and in terms of memory requirements, is also an important criterion to evaluate
learning algorithms. For training, 1B1-1G is fastest as it reduces to storing instances

21

and computing information gain (although in the implementation we used, various
indexing strategies are used), and ¢5.0, because of the computation involved in
recursively partitioning the training set, value grouping, and pruning, is the slowest.
IGTREE occupies a place in between, similar to 1B1-I1G in training time. Memory
requirements are, in theory, highest in 1B1-1G and lowest for 5.0 with default
parameter settings. Again, IGTREE is in between, similar to ¢5.0 in memory usage.
However, in practice, the implementations of ¢5.0 and IGTREE store the entire data
set during training and hence take up more space than 1B1-1a. Finally, for testing
speed, the most important efficiency measurement, IGTREE and ¢5.0 are on a par,
and both are some 2 orders of magnitude faster than 1B1-1G. In Daelemans, Van
den Bosch, and Weijters (1997), the asymptotic complexity of IB1-1G and IGTREE
is described. Illustrative timing results on the first partition of each of the data sets
are provided in Table 8. See Daelemans et al. (1998) for the details of the effects
of various optimizations in the TiMBL package.

Table 8. Timing results in seconds (elapsed wall clock time) for the first par-
tition of all four data sets, measured on a SUN Sparc 5 with 160 MB internal
memory. The results for ¢5.0 were obtained through its own internal timer
which does not differentiate between training and testing time. The results for
IB1-1G and IGTREE were obtained using TiMBL and its internal timer.

| | Time (seconds) |

Task 5.0 IGTREE IB1-1G |

7 7 train test total | train test total | train test total _
GS - - 2406 79 9 88 83 2391 2474
POS - - 7234 43 18 61 211 6416 6627
PP - - 295 6 1 7 7 10 17
NP - - - 152 8 160 98 19474 19572

In this Section, we have shown that when comparing the generalization accuracy
of IB1-IG to that of decision tree methods, we see the same results as in our ex-
periments on editing: different types of abstraction (some of them explicitly aimed
at removing exceptional instances) do not succeed in general in providing a better
generalization accuracy than 1B1-1G. However, for some data sets, if a lower gener-
alization accuracy is acceptable, the pruning and abstraction methods of ¢5.0 are
able to induce compact decision trees without a significant loss in initial general-
ization accuracy.

6. Why forgetting exceptions is harmful

In this section we explain why forgetting exceptional instances, either by editing
them from memory or by pruning them from decision trees, is harmful to general-
ization accuracy for the language processing tasks studied. We explain this effect
on the basis of the properties of this type of task and the properties of the learning

22

algorithms used. Our approach of studying data set properties, to find an explana-
tion for why one type of inductive algorithm rather than another is better suited
for learning a type of task, is in the spirit of Aha (1992) and Michie, Spiegelhalter,
and Taylor (1994).

6.1. Properties of language processing tasks

Language processing tasks are usually described as complex mappings between
representations: from spelling to sound, from strings of words to parse trees, from
parse trees to semantic formulas, etc. These mappings can be approximated by (cas-
cades of) classification tasks (Ratnaparkhi, 1997; Daelemans, 1996; Cardie, 1996;
Magerman, 1994) which makes them amenable to machine learning approaches.
One of the most salient characteristics of natural language processing mappings is
that they are noisy and complex. Apart from some regularities, they contain also
many sub-regularities and (pockets of) exceptions. In other words, apart from a
core of generalizable regularities, there is a relatively large periphery of irregular-
ities (Daelemans, 1996). In rule-based NLP, this problem has to be solved using
mechanisms such as rule ordering, subsumption, inheritance, or default reasoning
(in linguistics this type of “priority to the most specific” mechanism is called the
elsewhere condition). In the feature-vector-based classification approximations of
these complex language processing mappings, this property is reflected in the high
degree of disjunctivity of the instance space: classes exhibit a high degree of poly-
morphism. Another issue we study in this Section is the usefulness of exceptional
as opposed to more regular instances in classification.

6.1.1. Degree of polymorphism Several quantitative measures can be used to
show the degree of polymorphism: the number of clusters (i.e., groups of nearest-
neighbor instances belonging to the same class), the number of disjunct clusters per
class (i.e., the numbers of separate clusters per class), or the numbers of prototypes
per class (Aha, 1992). We approach the issue by looking at the average number
of friendly neighbors per instance in a leave-one-out experiment (Weiss and Ku-
likowski, 1991). For each instance in the four data sets a distance ranking of the 50
nearest neighbors to an instance was produced. In case of ties in distance, nearest
neighbors with an identical class as the left-out instance are placed higher in rank
than instances with a different class. Within this ranked list we count the ranking
of the nearest neighbor of a different class. This rank number minus one is then
taken as the cluster size surrounding the left-out instance. If, for example, a left-out
instance is surrounded by three instances of the same class at distance 0.0 (i.e., no
mismatching feature values), followed by a fourth nearest-neighbor instance of a
different class at distance 0.3, the left-out instance is said to be in a cluster of size
three. The results of the four leave-one-out experiments are displayed graphically
in Figure 5. The z-axis of Figure 5 denotes the numbers of friendly neighbors found
surrounding instances; the y-axis denotes the cumulative percentage of occurrences
of friendly-neighbor clusters of particular sizes.

23

100

[%)]
(O]
(&)
c
©
o
(2]
£
o
>
(]
=
=]
K]
>
IS
>
o
| o
20 =) xxxxxxxxxxxxx
o Xxxxx.xxxx N
o XK e S
o e A X‘X‘HWHH++++++++L\T¢ SR
h V%w.mwmwmwmx‘\jri\rJr
x
A
0 , , , ,
0 10 20 30 40

friendly NN cluster size

Figure 5. Cumulative percentages of occurrences of friendly-neighbor clusters of sizes 0 to 45, as
found in the Gs, pos, PP, and NP data sets.

The cumulative percentage graphs in Figure 5 display that for the case of the Gs
task, many instances have only a handful of friendly neighbors; 59.9% of the Gs
instances have five friendly neighbors or less, while 35.8% has no friendly neighbors
at all. For the case of the PP task, the number of friendly neighbors is larger; 50.1%
of the PP instances have 40 or less friendly neighbors. Instances of the POs and NP
tasks tend to have even more friendly neighbors surrounding them. In sum, the as
task appears to display high disjunctivity (i.e., a high degree of polymorphism) of
its 159 classes; for the other three tasks, disjunctivity appears to be slightly lower,
but still the classes are scattered across many unconnected clusters in the instance
space.

In sum, we find indications for a high disjunctity or polymorphism of the lan-
guage data sets investigated in this study. Other studies in which machine learning
algorithms are applied to language data, and in which special attention is payed
to learning exceptions, mention similar indications (e.g., Mooney and Califf (1995;
Van den Bosch et al. (1995)). However, the question whether language data in gen-
eral exhibits a higher degree of disjunctiveness or polymorphism than comparable
data sets of non-linguistic origin remains an open one, and will be a focal point in
future research.

6.1.2. Usefulness of exceptional instances Having established a fairly high degree
of disjunctivity for our data sets, an indication is needed that fully retaining this
disjunctivity is indeed beneficial. With this in mind, we can return to our editing
experiments and examine why even instances with low typicality or low prediction

24

strength cannot be removed from the training data. For this purpose, we have
looked at the instances that are actually used in the memory-based classification
process to classify the test instances. We call the nearest neighbors that were used
to classify test instances the support set. The distribution of both typicality and
CPs over the support set can be seen in Figure 6. The support set can be divided
into support for correct decisions (Right) and errors (Wrong). The average number
of neighbors for correct decisions is approximately the same as for errors. The
figures clearly show that even instances with respectively low typicality (below 1.0)
or low cps (below 0.5) are more often used to support correct decisions than errors.
Although this does not present a proof of the detrimental effects of their removal,
it does show that exceptional events can be beneficial for accurate generalization.
The small disjunctive clusters are productive for classifying new instances.

6.2. Properties of learning algorithms

If we classify instance X by looking at its nearest neighbors, we are in fact esti-
mating the probability P(class|X), by looking at the relative frequency of the class
in the set defined by sim(X), where simy(X) is a function from X to the set of
most similar instances present in the training data. The simg(X) function given
by the overlap metric groups varying numbers of instances into buckets of equal
similarity. A bucket is defined by a particular number of mismatches with respect
to instance X. Each bucket can further be decomposed into a number of schemata
characterized by the position of the mismatch.

The search for the nearest neighbors results in the use of the most similar instan-
tiated schema or bucket for extrapolation. In statistical language modeling this is
known as backed-off estimation (Collins and Brooks, 1995; Katz, 1987). The dis-
tance metric defines a specific-to-general ordering (X < Y: read X is more specific
than Y, see also Zavrel and Daelemans (1997)), where the most specific schema is
the schema with zero mismatches (i.e., an identical instance in memory), and the
most general schema has a mismatch on every feature, which corresponds to the
entire memory being retrieved.

If information gain weights are used in combination with the overlap metric,
individual schemata instead of buckets become the steps of the back-off sequence
(unless two schemata are exactly tied in their IG values). The < ordering becomes
slightly more complicated now, as it depends on the number of wild-cards and on
the magnitude of the weights attached to those wild-cards. Let S be the most
specific (zero mismatches) schema. We can then define the < ordering between
schemata in the following equation, where A(X,Y") is the distance as defined in
Equation 1.

S'< 8" & A(S,S') < A(S,S") 9)
This approach represents a type of implicit parallelism. The importance of all of

the 27 schemata is specified using only F parameters (i.e., the IG weights), where
F' is the number of features. Moreover, using the schemata keeps the information

25

s s
45000 — T T T T T T — T 45000 T T T T T T T T
Right — Right —
wrong - wrong -
40000 4 40000 4
35000 4 35000 4
30000 | 4 30000 4
& &
§ 25000 4 8 25000 4
s s
H H
£ 20000 | 4 € 20000 4
2 2
15000 A 15000 4
10000 4 10000 4
5000 - 4 5000 4
ol . . [l j = j o § e e [) — i . [
0204 0406 0608 0810 1015 1! 0001 0102 0203 0304 0405 0506 0607 0708 0809
class prediction strength
postag
25000 T T T T T T T T 25000 T T T T T T T T T
Right — Right —
Wrong wrong -
20000 4 20000 | 4
9 15000 4 g 15000 | 4
8 8
8 — 8
s s
3 3
2 2
E E
2 10000 [4 2 10000 4
5000 - 4 5000 4
0 l—t L — —] j, i j_ i 0 H H
0002 0204 0406 0608 1045 1520 2040 4080 0607 0708 0809
ppattach
8000 — T T T T T T T 7000 — T T T T T T T T
__ Right — Right —
Wrong - wWrong -
7000 - 4 6000 | — i
6000 - 4
M 5000 - 4
, 5000 | 1 .
8 8
8 g o000 - J
S 4000 | 4 %
3 3
2 2
£ £ 3000 [1
S 3000 | 4 F
2000 - 4
2000 - 4
1000 L 4 1000 - 4
o j, i i i ; i i o — i i i i i
0002 0204 0406 0608 0810 1015 1520 2040 4080 0001 0102 0203 0304 0405 0506 0607 0708 0809
typicaiity class prediction strength
npchunk npchunk
60000 — T T T T T T — T 25000 — T T T T T T T T
Right — Right —
Wrong - - Wrong -
50000 4
20000 4
40000 M 4
8 % 15000 1
8 8
S 30000 [4 ®
3 3
2 2
E E
E 2 10000 i
20000 | 4
5000 4
10000 4
ol . = | 0 o . . e [P = .
0002 0204 0406 0608 0810 1015 1520 2040 4080 0001 0102 0203 0304 0405 0506 0607 0708 0809
typic: class prediction strength

Figure 6. Histograms per typicality (left) and class-prediction strength (right) of the neighbors
present in support sets for each of the four tasks. For each range (indicated at the z-axes), the
number of instances leading to a correct classification (Right), and to a misclassification (Wrong),

is displayed as a bar.

26

from all training instances available for extrapolation in those cases where more
specific information is not available.

Decision trees can also be described as backed-off estimators of the class proba-
bility conditioned on the combination of the features-values. However, here some
schemata are not available for extrapolation. Even in a decision tree without any
pruning, such abstraction takes place. Once a test instance matches an arc with a
certain value for a particular feature, the set of schemata from which it can receive a
classification is restricted to those for which that feature matches. This means that
other schemata which are more specific when judged by the ordering of Equation 9,
are unavailable. If pruning is applied, even more schemata are blocked.

8 X,
3 x
1=
©
0.6 |- E
05 - PP —o— A
NP —-- :
POS -&--
GS .
0.4 | "
0.3 1 1 1 1
0 0.2 0.4 0.6 0.8 1

distance

Figure 7. Percentage correct for our data sets plotted as a function of distance between the
test instance and its nearest neighbor. The distances are normalized between zero and one, and
discretized into a maximum of ten evenly spaced intervals to make a comparison across data sets
possible.

Figure 7 shows why this elimination of schemata can be harmful. In this figure
the percentage correct for our data sets is plotted as a function of specificity. The
decrease of the accuracy seen in the graph clearly confirms the intuition that an
extrapolation from a more specific support set is more likely to be correct. Rea-
soning in the other direction, it suggests that any forgetting of specific information
from the training set will push at least some test instances in the direction of a less
specific support set, and thus of lower accuracy.

A more direct illustration of this matter can be given for the limited accessibility
of schemata in IGTREE. As the ordering of features is constant throughout the tree,
the schemas that are accessible at any given node in the tree are limited to those
that match all features with a higher 1G weight. The depth of the IGTREE node
at which classification was performed can directly be translated into a distance

27

Table 9. The average distance at which classification takes place for IB1-1G
(listed under 1B1) and IGTREE (listed under 1GT). The distances have been split
out into four conditions: FF, FT, TF, and TT; the first letter refers to 1B1-1G
giving a False or True answer, the second refers in the same manner to the
output of IGTREE. The third column gives the number of instances for that
condition. The IGTREE distances have been computed from an unpruned tree.

| | Average IG Overlap Distance (number of instances) |

FF FT TF T _

Task
Bl I1GT n Bl IGT n Bl IGT n Bl I1GT n _

Gs [0.03 0.05 (4083)|0.08 0.14 (249)]0.10 0.19 (552)|0.01 0.02 (62633)
POS |0.18 0.23 (1876)|0.26 0.37 (440)|0.27 0.40 (524)|0.07 0.08 (101776)
PP [0.06 0.07 (275) |0.06 0.08 (111)|0.06 0.07 (184)|0.05 0.06 (1820)
NP [0.12 0.19 (343) |0.14 0.24 (160)|0.14 0.26 (324)|0.08 0.15 (24286)

between the test pattern and the branch of the tree, using the 1G weights. To make
the comparison fair, we have used an unpruned IGTREE. Table 9 shows the average
distances at which classifications were made for the four tasks at hand. IGTREE
consistently classifies at a larger average distance than 1B1-1G. Moreover, through
analysis of those test instances that were misclassified by IGTREE, but classified
correctly by 1B1-1G (i.e., TF in Table 9), we found that for a majority (69% for
GS, 90% for pPOs, 55% for PP, and 100% for NP) of these instances the classification
distance was larger for IGTREE than for 1B1-1G. This means that in all these cases a
closer neighbor was available to support a correct classification, but was not used,
because its schema was not accesible.

6.2.1. Increasing k As an aside, we note that we have reported solely on exper-
iments with 1B1-1¢ with £ = 1. Although it is not directly related to “forgetting”,
taking a larger value of k can also be considered as a type of abstraction, because
the class is estimated from a somewhat smoothed region of the instance space.
Only on the basis of the results described so far, we cannot claim that k& = 1 is
the optimal setting for our experiments. The results discussed above suggest that
the average ‘k’ actually surrounding an instance is larger than 1, although many
instances have only one or no friendly neighbor, especially in the case of the Gs task.
The latter suggests that a considerable amount of ambiguity is found in instances
that are highly similar; matching with &£ > 1 may fail to detect those cases in which
an instance has one best-matching friendly neighbor, and many next-best-matching
instances of a different class.

We performed experiments with 1B1-1G on the four tasks with £ = 2, k£ = 3, and
k = 5, and mostly found a decrease in generalization accuracy. Table 10 lists the
effects of the higher values of k. For all tasks except NP, setting k& > 1 leads to a
harmful abstraction from the best-matching instance(s) to a more smoothed best
matching group of instances.

28

Table 10. Generalization accuracies (in terms of percentages of cor-
rectly classified test instances) on the as, pos, pPp, and NP tasks, by
B1-1G with £ =1, 2, 3, and 5.

Generalization accuracy (%) |
Hmmr \AHH \@Hm \@Hw \on_

GS 93.45 £0.15 93.00 £ 0.15 92.71 £ 0.13 92.30 &+ 0.12
POS 97.86 £ 0.05 97.72 £ 0.05 97.27 £ 0.04 95.91 &+ 0.05
PP 83.48 £ 1.16 78.10 £ 1.26 75.19 £ 1.75 75.67 + 1.53
NP 98.07 £ 0.05 98.05 £ 0.05 98.23 £ 0.07 98.15 &+ 0.09

In this Section, we have tried to interpret our empirical results in terms of prop-
erties of the data and of the learning algorithms used. A salient characteristic of
our language learning tasks, shown most clearly in the GS data set but also present
in the other data sets, is the presence of a high degree of class polymorphism (high
disjunctivity). In many cases, these small disjuncts constitute productive (pockets
of) exceptions which are useful in producing accurate extrapolations to new data.
1B1-1G, through its implicit parallelism and its feature relevance weighting, is bet-
ter suited than decision tree methods to make available the most specific relevant
patterns in memory to extrapolate from.

7. Related research

Daelemans (1995) provides an overview of memory-based learning work on phono-
logical and morphological tasks (grapheme-to-phoneme conversion, syllabification,
hyphenation, morphological synthesis, word stress assignment) at Tilburg Univer-
sity and the University of Antwerp in the early nineties. The present paper directly
builds on the results obtained in that research. More recently, the approach has
been applied to part-of-speech tagging (morphosyntactic disambiguation), morpho-
logical analysis, and the resolution of structural ambiguity (prepositional-phrase
attachment) (Daelemans and Van den Bosch, 1996; Van den Bosch, Daelemans,
and Weijters, 1996; Zavrel, Daelemans, and Veenstra, 1997). Whenever these stud-
ies involve a comparison of memory-based learning to more eager methods, a clear
advantage of memory-based learning is reported.

Cardie (1993; 1994) suggests a memory-based learning approach for both (mor-
pho)syntactic and semantic disambiguation and shows excellent results compared
to alternative approaches. Ng and Lee (1996) report results superior to previous
statistical methods when applying a memory-based learning method to word sense
disambiguation. In reaction to Mooney (1996) where it was shown that naive Bayes
performed better than memory-based learning, Ng (1997) showed that with higher
values of k, memory-based learning obtained the same results as naive Bayes.

The exemplar-based reasoning aspects of memory-based learning are also promi-
nent in the large literature on example-based machine translation (cf. Jones (1996)

29

for an overview), although systematic comparisons to eager approaches seem to be
lacking in that field.

In the recent literature on statistical language learning, which currently still
largely adheres to the hypothesis that what is exceptional (improbable) is unimpor-
tant, similar results as those discussed here for machine learning have been reported.
In Bod (1995), a data-oriented approach to parsing is described in which a treebank
is used as a ‘memory’ and in which the parse of a new sentence is computed by
reconstruction from subtrees present in the treebank. It is shown that removing
all hapaxes (unique subtrees) from memory degrades generalization performance
from 96% to 92%. Bod notes that “this seems to contradict the fact that prob-
abilities based on sparse data are not reliable.” (Bod (1995), p.68). In the same
vein, Collins and Brooks (1995) show that when applying the back-off estimation
technique (Katz, 1987) to learning prepositional-phrase attachment, removing all
events with a frequency of less than 5 degrades generalization performance from
84.1% to 81.6%. In Dagan, Lee, and Pereira (1997), finally, a similarity-based es-
timation method is compared to back-off and maximum-likelihood estimation on
a pseudo-word sense disambiguation task. Again, a positive effect of events with
frequency 1 in the training set on generalization accuracy is noted.

In the context of statistical language learning, it is also relevant to note that as
far as comparable results are available, statistical techniques, which also abstract
from exceptional events, never obtain a higher generalization accuracy than 1B1-1G
(Daelemans, 1995; Zavrel and Daelemans, 1997; Zavrel, Daelemans, and Veenstra,
1997). Reliable comparisons (in the sense of methods being compared on the same
train and test data) with the empirical results reported here cannot be made, how-
ever.

In the machine learning literature, the problem of small disjuncts in concept
learning has been studied before by Quinlan (1991), who proposed more accurate
error estimation methods for small disjuncts, and by Holte, Acker, and Porter
(1989). The latter define a small disjunct as one that has small coverage (i.e., a
small number of training items are correctly classified by it). This definition differs
from ours, in which small disjuncts are those that have few neighbors with the same
category. Nevertheless, similar phenomena are noted: sometimes small disjuncts
constitute a significant portion of an induced definition, and it is hard to distinguish
productive small disjuncts from noise (see also Danyluk and Provost (1993)). A
maximum-specificity bias for small disjuncts is proposed to make small disjuncts
less error-prone. Memory-based learning is of course a good way of implementing
this remedy (as noted, e.g., in Aha (1992)). This prompted Ting (1994b) to propose
a composite learner with an instance-based component for small disjuncts, and a
decision tree component for large disjuncts. This hybrid learner improves upon the
4.5 baseline for several definitions of ‘small disjunct’ for most of the data sets
studied. Similar results have recently been reported by Domingos (1996), where
RISE, a unification of rule induction (c4.5) and instance-based learning (PEBLS)
is proposed. In an empirical study, RISE turned out to be better than alternative
approaches, including its two ‘parent’ algorithms. The fact that rule induction in
RISE is specific-to-general (starting by collapsing instances) rather than general-to-

30

specific (as in the decision tree methods used in this paper), may make it a useful
approach for our language data as well.

8. Conclusion and future research

We have provided empirical evidence for the hypothesis that forgetting exceptional
instances, either by editing them away according to some exceptionality criterion
in memory-based learning or by abstracting from them in decision-tree learning, is
harmful to generalization accuracy in language learning. Although we found some
exceptions to this hypothesis, the fact that abstraction or editing is never beneficial
to generalization accuracy is consistently shown in all our experiments.

Data sets representing NLP tasks show a high degree of polymorphism: categories
are represented in instance space as small regions with the same category separated
by instances with a different category (the categories are highly disjunctive). This
was empirically shown by looking at the average number of friendly neighbors per
instance; an indirect measure of the average size of the homogeneous regions in
instance space. This analysis showed that for our NLP tasks, classes are scattered
across many disjunctive clusters in instance space. This turned out to be the case
especially for the Gs data set, the only task presented here which has extensively
been studied in the ML literature before (through the similar NETTALK data set).
It will be necessary to investigate polymorphism further using more language data
sets and more ways of operationalizing the concept of ‘small disjuncts’.

The high disjunctivity explains why editing the training set in memory-based
learning using typicality and CPs criteria does not improve generalization accuracy,
and even tends to decrease it. The instances used for correct classification (what we
called the support set) are as likely to be low-typical or low-class-prediction-strength
(thus exceptional) instances as high-typical or high-class-prediction-strength in-
stances. The editing that we find to be the most harmless (although never ben-
eficial) to generalization accuracy is editing up to about 20% high-typical and
high-class-prediction-strength instances. Nevertheless, these results leave room for
combining memory-based learning and specific-to-general rule learning of the kind
presented in Domingos (1996). It would be interesting further research to test his
approach on our data.

The fact that the generalization accuracies of the decision-tree learning algorithms
¢5.0 and IGTREE are mostly worse than those of 1B1-1G on this type of data set
can be further explained by their properties. Interpreted as statistical backed-off
estimators of the class probability given the feature-value vector, due to the way
the information-theoretic splitting criterion works, some schemata (sets of partially
matching instances) are not accessible for extrapolation in decision tree learning.
Given the high disjunctivity of categories in language learning, abstracting away
from these schemata and not using them for extrapolation is harmful. This type of
abstraction takes place even when no pruning is used. Apparently, the assumption
in decision tree learning that differences in relative importance of features can
always be exploited is, for the tasks studied, untrue. Memory-based learning, on the
other hand, because it implicitly keeps all schemes available for extrapolation, can

31

use the advantages of information-theoretic feature relevance weighting without the
disadvantages of losing relevant information. We plan to expand on the encouraging
results on other data sets using TRIBL, a hybrid of IGTREE and IB1-1G that leaves
schemas accesible when there is no clear feature-relevance distinction (Daelemans,
Van den Bosch, and Zavrel, 1997).

When decision trees are pruned, implying further abstraction from the training
data, low-frequency instances with deviating classifications constitute the first in-
formation to be removed from memory. When the data representing a task is highly
disjunctive, and instances do not represent noise but simply low-frequency instances
that may (and do) reoccur in test data, as is especially the case with the as task,
pruning is harmful to generalization. The first reason for decision-tree learning
to be harmful (accesability of schemata) is the most serious one, since it suggests
that there is no parameter setting that may help ¢5.0 and similar algorithms in
surpassing or equaling the performance of 1B1-1G in these tasks. The second reason
(pruning), less important than the first, only applies to data sets with low noise.
However, there exist variations of decision tree learning that may not suffer from
these problems (e.g., the lazy decision trees of Friedman, Kohavi, and Yun (1996))
and that remain to be investigated in the context of our data.

Taken together, the empirical results of our research strongly suggest that keeping
full memory of all training instances is at all times a good idea in language learning.

Acknowledgments

This research was done in the context of the “Induction of Linguistic Knowledge”
research programme, supported partially by the Foundation for Language Speech
and Logic (TSL), which is funded by the Netherlands Organization for Scientific
Research (NWO). AvdB performed part of his work at the Department of Computer
Science of the Universiteit Maastricht. The authors wish to thank Jorn Veenstra
for his earlier work on the PP attachment and NP chunking data sets, and the
other members of the Tilburg ILK group, Ton Weijters, Eric Postma, Jaap van den
Herik, and the MLJ reviewers for valuable discussions and comments.

Notes

1. The LOB corpus is available from ICAME, the International Computer Archive of Modern and
Medieval English; consult http://www.hd.uib.no/icame.html for more information.

2. In our full POS tagger we have a separate classifier for unknown words, which takes into
account features such as suffix and prefix letters, digits, hyphens, etc.

3. The data set is available from ftp://ftp.cis.upenn.edu/pub/adwait/PPattachData/. We
would like to thank Michael Collins for pointing this benchmark out to us.

4. TiMBL, which incorporates IB1-1¢ and IGTREE and additional weighting metrics and search
optimalizations, can be downloaded from http://ilk.kub.nl/.

References

32

Abney, S. 1991. Parsing by chunks. In Principle-Based Parsing. Kluwer Academic Publishers,
Dordrecht.

Aha, D. W. 1992. Generalizing from case studies: a case study. In Proceedings of the Ninth
International Conference on Machine Learning, pages 1-10, San Mateo, CA. Morgan Kaufmann.

Aha, D. W. 1997. Lazy learning: Special issue editorial. Artificial Intelligence Review, 11:7-10.

Aha, D. W., D. Kibler, and M. Albert. 1991. Instance-based learning algorithms. Machine
Learning, 6:37—-66.

Atkeson, C., A. Moore, and S. Schaal. 1997. Locally weighted learning. Artificial Intelligence
Review, 11(1-5):11-73.

Baayen, R. H., R. Piepenbrock, and H. van Rijn. 1993. The CELEX lexical data base on
CD-ROM. Linguistic Data Consortium, Philadelphia, PA.

Bod, R. 1995. Enriching linguistics with statistics: Performance models of natural language.
Dissertation, ILLC, Universiteit van Amsterdam.

Cardie, C. 1993. A case-based approach to knowledge acquisition for domain-specific sentence
analysis. In AAAI-93, pages 798-803.

Cardie, C. 1994. Domain Specific Knowledge Acquisition for Conceptual Sentence Analysis.
Ph.D. thesis, University of Massachusets, Amherst, MA.

Cardie, C. 1996. Automatic feature set selection for case-based learning of linguistic knowledge.
In Proc. of Conference on Empirical Methods in NLP. University of Pennsylvania.

Church, K. W. 1988. A stochastic parts program and noun phrase parser for unrestricted text.
In Proc. of Second Applied NLP (ACL).

Collins, M.J and J. Brooks. 1995. Prepositional phrase attachment through a backed-off model.
In Proc. of Third Workshop on Very Large Corpora, Cambridge.

Cost, S. and S. Salzberg. 1993. A weighted nearest neighbour algorithm for learning with
symbolic features. Machine Learning, 10:57-78.

Cover, T. M. and P. E. Hart. 1967. Nearest neighbor pattern classification. Institute of Electrical
and Electronics Engineers Transactions on Information Theory, 13:21-27.

Daelemans, W. 1995. Memory-based lexical acquisition and processing. In P. Steffens, editor,
Machine Translation and the Lezicon, volume 898 of Lecture Notes in Artificial Intelligence.
Springer-Verlag, Berlin, pages 85-98.

Daelemans, W. 1996. Experience-driven language acquisition and processing. In T. Van der
Avoird and C. Corsius, editors, Proceedings of the CLS Opening Academic Year 1996-1997.
CLS, Tilburg, pages 83-95.

Daelemans, W. and A. Van den Bosch. 1992. Generalisation performance of backpropagation
learning on a syllabification task. In M. F. J. Drossaers and A. Nijholt, editors, Proc. of
TWLT3: Connectionism and Natural Language Processing, pages 27-37, Enschede. Twente
University.

Daelemans, W. and A. Van den Bosch. 1996. Language-independent data-oriented grapheme-
to-phoneme conversion. In J. P. H. Van Santen, R. W. Sproat, J. P. Olive, and J. Hirschberg,
editors, Progress in Speech Processing. Springer-Verlag, Berlin, pages 77-89.

Daelemans, W., A. Van den Bosch, and A. Weijters. 1997. 1GTree: using trees for compression
and classification in lazy learning algorithms. Artificial Intelligence Review, 11:407-423.

Daelemans, W., A. Van den Bosch, and J. Zavrel. 1997. A feature-relevance heuristic for indexing
and compressing large case bases. In M. Van Someren and G. Widmer, editors, Poster Papers
of the Ninth European Conference on Machine Learing, pages 29-38, Prague, Czech Republic.
University of Economics.

Daelemans, W., J. Zavrel, P. Berck, and S. Gillis. 1996. MBT: A memory-based part of speech
tagger generator. In E. Ejerhed and I.Dagan, editors, Proc. of Fourth Workshop on Very Large
Corpora, pages 14-27. ACL SIGDAT.

Daelemans, W., J. Zavrel, K. Van der Sloot, and A. Van den Bosch. 1998. TiMBL: Tilburg
Memory-Based Learner, version 1.0, reference guide. Technical report, ILK 98-03, Tilburg, The
Netherlands.

Dagan, I., L. Lee, and F. Pereira. 1997. Similarity-based methods for word sense disambiguation.
In Proceedings of the 35th ACL and the 8th EACL, Madrid, Spain, pages 56—63.

Danyluk, A. P. and F. J. Provost. 1993. Small disjuncts in action: learning to diagnose errors in
the local loop of the telephone network. In Proceedings of the Tenth International Conference
on Machine Learning, pages 81-88, San Mateo, CA. Morgan Kaufmann.

33

Devijver, P. A. and J. Kittler. 1980. On the edited nearest neighbor rule. In Proceedings
of the Fifth International Conference on Pattern Recognition. The Institute of Electrical and
Electronics Engineers.

Devijver, P. .A. and J. Kittler. 1982. Pattern recognition. A statistical approach. Prentice-Hall,
London, UK.

Dietterich, T. G. 1998 (in press). Approximate statistical tests for comparing supervised classifi-
cation learning algorithms. Neural Computation.

Dietterich, T. G., H. Hild, and G. Bakiri. 1995. A comparison of ID3 and backpropagation for
English text-to-speech mapping. Machine Learning, 19(1):5-28.

Domingos, P. 1996. Unifying instance-based and rule-based induction. Machine Learning,
24:141-168.

Friedman, J. H., R. Kohavi, and Y. Yun. 1996. Lazy decision trees. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence, pages 717-724, Cambridge, MA. The
MIT Press.

Hart, P. E. 1968. The condensed nearest neighbor rule. IEEE Transactions on Information
Theory, 14:515-516.

Holte, R. C., L. E. Acker, and B. W. Porter. 1989. Concept learning and the problem of
small disjuncts. In Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, pages 813-818, San Mateo, CA. Morgan Kaufmann.

Jones, D. 1996. Analogical natural language processing. UCL Press, London, UK.

Katz, S. M. 1987. Estimation of probabilities from sparse data for the language model component
of a speech recognizer. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-
35:400-401, March.

Kolodner, J. 1993. Case-based reasoning. Morgan Kaufmann, San Mateo, CA.

Lehnert, W. 1987. Case-based problem solving with a large knowledge base of learned cases.
In Proceedings of the Sizth National Conference on Artificial Intelligence (AAAI-87), pages
301-306, Los Altos, CA. Morgan Kaufmann.

Magerman, D. M. 1994. Natural language parsing as statistical pattern recognition. Dissertation,
Stanford University.

Marcus, M., B. Santorini, and M.A. Marcinkiewicz. 1993. Building a large annotated corpus of
english: The penn treebank. Computational Linguistics, 19(2):313-330.

Markovitch, S. and P. D. Scott. 1988. The role of forgetting in learning. In Proceedings of the
Fifth International Conference on Machine Learning, pages 459-465, Ann Arbor, MI. Morgan
Kaufmann.

Michie, D., D.J. Spiegelhalter, and C.C. Taylor. 1994. Machine learning, neural and statistical
classification. Ellis Horwood, New York.

Mooney, R. J. 1996. Comparative experiments on disambiguating word senses: An illustration
of the role of bias in machine learning. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, EMNLP, pages 82-91.

Mooney, R. J. and M. E. Califf. 1995. Induction of first-order decision lists: Results on learning
the past tense of english verbs. Journal of Artificial Intelligence Research, 3:1-24.

Ng, H. T. 1997. Exemplar-based word sense disambiguation: some recent improvements. In
Proceedings of the Second Conference on Empirical Methods in Natural Language Processing,
pages 208-213.

Ng, H. T. and H. B. Lee. 1996. Intergrating multiple knowledge sources to disambiguate
word sense: An exemplar-based approach. In Proc. of 34th meeting of the Assiociation for
Computational Linguistics.

Quinlan, J. R. 1991. Improved estimation for the accuracy of small disjuncts. Machine Learning,
6:93-98.

Quinlan, J.R. 1986. Induction of Decision Trees. Machine Learning, 1:81-206.

Quinlan, J.R. 1993. ¢4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA.

Ramshaw, L.A. and M.P. Marcus. 1995. Text chunking using transformation-based learning. In
Proc. of third workshop on very large corpora, pages 82-94, June.

Ratnaparkhi, A. 1997. A linear observed time statistical parser based on maximum entropy
models. In Proceedings of the Second Conference on Empirical Methods in Natural Language
Processing, EMNLP, pages 1-10.

34

Ratnaparkhi, A., J. Reynar, and S. Roukos. 1994. A maximum entropy model for prepositional
phrase attachment. In Workshop on Human Language Technology, Plainsboro, NJ, March.
ARPA.

Rosch, E. and C. B. Mervis. 1975. Family resemblances: studies in the internal structure of
categories. Cognitive Psychology, 7:573-605.

Salganicoff, M. 1993. Density-adaptive learning and forgetting. In Proceedings of the Fifth Inter-
national Conference on Machine Learning, pages 276-283, Amherst, MA. Morgan Kaufmann.
Salzberg, S. 1990. Learning with nested generalised exemplars. Kluwer Academic Publishers,

Norwell, MA.

Sejnowski, T. J. and C. S. Rosenberg. 1987. Parallel networks that learn to pronounce English
text. Complex Systems, 1:145-168.

Shavlik, J. W., R. J. Mooney, and G. G. Towell. 1991. An experimental comparison of symbolic
and connectionist learning algorithms. Machine Learning, 6:111-143.

Stanfill, C. 1987. Memory-based reasoning applied to English pronunciation. In Proceedings of
the Sizth National Conference on Artificial Intelligence (AAAI-87), pages 577-581, Los Altos,
CA. Morgan Kaufmann.

Stanfill, C. and D. Waltz. 1986. Toward memory-based reasoning. Communications of the ACM,
29(12):1213-1228, December.

Ting, K. M. 1994a. The problem of atypicality in instance-based learning. In Proceedings of the
The Third Pacific Rim International Conference on Artificial Intelligence, pages 360-366.

Ting, K. M. 1994b. The problem of small disjuncts: Its remedy in decision trees. In Proceedings
of the Tenth Canadian Conference on Artificial Intelligence, pages 91-97.

Van den Bosch, A., W. Daelemans, and A. Weijters. 1996. Morphological analysis as classification:
an inductive-learning approach. In K. Oflazer and H. Somers, editors, Proceedings of the Second
International Conference on New Methods in Natural Language Processing, NeMLaP-2, Ankara,
Turkey, pages 79-89.

Van den Bosch, A., A. Weijters, H. J. Van den Herik, and W. Daelemans. 1995. The profit of
learning exceptions. In Proceedings of the 5th Belgian-Dutch Conference on Machine Learning,
pages 118-126.

Voisin, J. and P. A. Devijver. 1987. An application of the Multiedit-Condensing technique to the
reference selection problem in a print recognition system. Pattern Recognition, 5:465-474.

Weiss, S. and C. Kulikowski. 1991. Computer systems that learn. San Mateo, CA: Morgan
Kaufmann.

Wilson, D. 1972. Asymptotic properties of nearest neighbor rules using edited data. Institute of
FElectrical and Electronic Engineers Transactions on Systems, Man and Cybernetics, 2:408—421.

Wolpert, D. 1989. Constructing a generalizer superior to NETtalk via mathematical theory of
generalization. Neural Networks, 3:445-452.

Zavrel, J. and W. Daelemans. 1997. Memory-based learning: Using similarity for smoothing. In
Proc. of 35th annual meeting of the ACL, Madrid.

Zavrel, J., W. Daelemans, and J. Veenstra. 1997. Resolving pp attachment ambiguities with
memory-based learning. In M. Ellison, editor, Proc. of the Workshop on Computational Lan-
guage Learning (CoNLL’97), ACL, Madrid.

Zhang, J. 1992. Selecting typical instances in instance-based learning. In Proceedings of the
International Machine Learning Conference 1992, pages 470-479.

