In Hans van Halteren (Ed.) Syntactic Wordclass Tagging.
Kluwer Academic Publishers, 285-304, 1999.

17 MACHINE LEARNING
APPROACHES

Walter Daelemans

17.1 INTRODUCTION

The usefulness and feasibility of automatically training a syntactic wordclass tagger
instead of hand-crafting it motivated a large body of work on statistical and rule-
learning approachesto theproblem. Syntactic wordclasstaggerstrained on corporaare
claimed to be equally accurate as, and more robust and more portabl e than, hand-crafted
systems'. Moreover, development time is considerably faster. Recently, inductive
machine learning approaches such as connectionist learning algorithms, decision tree
induction and case-based learning have also been applied to the syntactic wordclass
disambiguation problem. In some cases these approaches have interesting properties
not present in existing statistical and rule-based approaches.

A succesful inductive machine learning algorithm works by extracting generaliza-
tionsfrom a set of examples of adesired input-output mapping. Therelations between
input and output, implicit in these examples, are discovered by the algorithm and are
used to predict the correct output when presented with a new, previously unseen, input

1 Although we will report published accuracy figures for the taggers discussed, we should be cautious about
them. Evaluation of the different methods has not been achieved the same way in each case.

285

286 CHAPTER 17

Table 17.1 Tagging as a mapping from sentences to tag strings.

Input Output

John will join the board np md vb dt nn

Table 17.2 Tagging as a mapping from focus words with context to tags.

Input Output

L eft context Focus Right context
= = John will join np
= John will join the md
John will join the board vb
will join the board = dt
join the board = = nn

pattern. In other words, the algorithm classifies a new input pattern as belonging to a
particular output category.

Many problemsin Natural Language Processing (NLP), especially disambiguation
problems, can beformulated as classification tasks (Magerman 1994; Daelemans 1995;
Cardie 1996). Tagging, e.g., can be seen as a mapping from sentences to strings of
tags. In syntactic wordclasstagging, abbreviated tagging from here, a sentence should
be mapped into a string of morphosyntactic tags (table 17.1).

By approximating this mapping with a function from a focus word and its context
to the disambiguated tag belonging to the focus word in that context (table 17.2),
the mapping becomes a classification task amenable to symbolic and connectionist
Machine Learning (ML) approaches. Context size can vary from one word at each
side of the focus word (comparable to trigram models in statistics) to the complete
sentence. Some machine learning methods dynamically determine the context size
needed to disambiguate a particular focus word. The information provided to the
learning algorithm can consist aso of ‘morphological’ features (suffixes, presence or
absence of a hyphen, a capital or a digit), syntactic information (features representing
the syntactic context in which aword has to be tagged), or any other availablelinguistic
information. In general, there will be as many examples for the learning algorithm as
there are words in the training corpus.

In this chapter, we will provide an overview of basic conceptsin inductive learning
methods and discuss recent research on the application of these methods to tagging.

MACHINE LEARNING APPROACHES 287

We will discuss case-based classifiers, decision tree induction methods and neural
networks.

Another promising approach is Inductive Logic Programming (ILP; e.g. Muggle-
ton and De Raedt 1994), in which background knowledge and positive and negative
examples are used to induce a logic program compatible with the background know!-
edge and all of the positive examples, but none of the negative examples. Theinduced
logic programs are more expressive than the propositional language of feature vectors,
which makestheapproach potentially interesting toinducerecursive tagging rules. See
Cussens (1997) for an early example of this approach.

17.2 INDUCTIVE LEARNING FROM EXAMPLES

17.2.1 Concepts

MachineLearning (ML) isasub-disciplineof Artificial Intelligence (Al) which studies
algorithmsthat can learn either from experience or by reorganizing theknowledge they
already have. See Langley (1996) and Carbonell (ed.) (1990) for introductory material,
Weiss and Kulikowski (1991) for methodological issues and Natargjan (1991) for a
formal-theoretical approach.

Conceptually, alearning system consists of aperformance component which achieves
a specific task (given aninput, it produces an output) and a learning component which
modifies the performance component on the basis of its experience in such away that
performance of the system in doing the same or similar tasks improves (figure 17.1).
Experience is interpreted rather narrowly here and is represented as a set of examples
used to train the system. Examples usualy take the form of pairs of inputswith their
associated desired output. In tagging, the input is (a description of) a focus word and
its context and the desired output is the disambiguated tag to be assigned to the focus
word.

To achieve its task, the performance component uses an internal representation.
The task of the learning component may therefore be construed as a search in the
space of possible representations for a representation that is optimal for performing
the mapping. In this chapter, we will consider decision trees, case bases and sets
of connection weights as types of languages/formalisms for internal representations
for trainable taggers. In most cases, finding the optimal representation given a set of
examples and a representation language is computationally intractable. Some form of
heuristic search istherefore used by all learning systems.

In Machine Learning, the concept of biasrefersto domain-dependent constraintson
the search process: knowledge about the task may be used to make the search simpler.
There may also be biasin the way the experience presented to the learning component
(the training examples) is preprocessed. The addition of linguistic bias to a learning
system isthe obviousway tolet learning taggers profit from lingui stic knowl edge about
the task.

288

CHAPTER 17

EXAMPLES

Inductive
Learning
System

LEARNING
COMPONENT

INPUT representations OUTPUT

PERFORMANCE
COMPONENT

Figure 17.1 General architecture of an inductive learning system.

17.2.2 Classification of learning methods

Given this very general model of inductive learning, a number of dimensions can be
distinguished that should be considered in comparing and experimenting with these
techniques.

Amount of Supervision. In supervised learning, experience takes the form of
examples of inputsand the corresponding desired output for each of these inputs.
The examples are presented to the system in atraining phase. In unsupervised
learning, examples are presented without information about the desired outpui.
Itisuptothesystemtofind similaritiesintheexamplesin such away that they can
be exploited by the performance component to solve the task. In reinforcement
learning, no examples are given; only an indication of the correctness of the
output the performance component produces given an input (feedback). Most of
the research described in this chapter concerns supervised approaches (learning
from examples).

Input Representation. Representationsused in the ML literature include vectors
of bits, vectors of feature-value pairs (numeric or nominal values; compare ‘flat’
feature structures in linguistics) and complex recursive representations such as

MACHINE LEARNING APPROACHES 289

Table 17.3 Comparison of inductive learning methods discussed in this chapter.

Decision Tree Case-based Neural Network
Supervised YES YES YES
Input Rep. feature value vector feature val ue vector bit string
Output Rep. symbolic category symbolic category bit string
Internal Rep. tree cases connection weights
Incremental NOlyes? YES NO
Noisetolerant YES YES YES

semantic nets (compare recursive feature structuresin linguistics). For tagging
problems, vectors of bitsand of nominal feature-val ue pairs have been proposed.

Output Representation. Output can be a binary category (yes/no) decision, a
symbolic category (afinite, discrete set of labels), a continuous category (areal
number) or a vector of any of these. In machine learning for tagging, vectors of
binary categories and symbolic categories are used (see also Chapter 4).

Internal Representation. The representation used by the performance compo-
nent, and optimized by the learning component, can be numeric (e.g. connection
weights with neural networks) or symbolic (semantic nets, rules, decision trees,
examples, .. .).

Incremental Learning. A learning system can be incremental. In that case,
relevant information in additional examples can be integrated by the learning
component into the performance component without re-learning everything from
scratch. Innon-incremental or batch learning systems (such as neural networks),
thisis not possible. In batch learning, the complete set of examples has to be
inspected (sometimes several times) before learning is completed and addition
of new examples makes complete rel earning necessary.

Noise Tolerance. Different algorithmscan bemoreor lesssensitiveto noiseinthe
input (wrongly coded examples, missing values, or even ambiguous examples,
i.e. examples which have been assigned contradictory outputs in the training
set). Algorithmsdealing with linguistic data should be noise-resistant.

Table 17.3 gives a characterization of the different inductive learning algorithms dis-

cussed in this chapter along these dimensions.

?In most versions, the decisiontree learning algorithm is batch learning, but incremental versionshave been

developed (e.g. Utgoff 1989).

290 CHAPTER 17

17.2.3 Performance evaluations

The success of alearning component inimproving performance can be evaluated using
anumber of different quantitative and qualitative measures:

= Generalization accuracy. Performance accuracy of the system on previously
unseen inputs (i.e. inputsit was not trained on). This aspect of learning is of
course crucia: it gives an indication of the quality of the inductive leap made
by the algorithm on the basis of the examples. A good generalization accuracy
indicates that the learning system has not overfit its training examples, as would
happen by generalizing on thebasisof errorsor exceptionspresentinthem. Toget
agood estimate of thereal generalization accuracy, cross-validation can be used,
e.g. in 10-fold cross-validation an algorithm is tested on ten different partitions
(90% training material, 10% testing material) of the full data set available. Each
dataitem occursoncein one of thetest sets. The average generalization accuracy
on the ten test sets is then a good statistical estimate of the real accuracy (see
also Chapter 6).

= Space and time complexity. The amount of storage and processing involved
in learning (training the system) and performance (producing output given the
input).

= Explanatory Quality. Usefulness of the representations found by the learning
system as an explanation of the way the task is achieved.

17.2.4 Overview of methods

To sum up this introductory section, we will give an intuitive description of how each
of the studied algorithms works, using tagging as an example application. We discuss
the algorithmsin an order of increasing abstraction of the internal representation used
by the performance component and created by the learning component. We start from
storage and table-lookup of the ‘raw’ examples as a non-learning baseline.

= TableLook-Up. Store all examples (patterns of target words with their context
and their corresponding disambiguated tag) in atable. When anew input pattern
isgiventotheperformancesystem, look it upinthetableand retrievethe output of
the stored example. Inthisapproach the system does not actually learn anything
and it fails miserably whenever an input pattern is not present in the table (there
is no generalization).

m Case-Based Learning. Store all examplesin atable. When a new input pattern
isgiven to the performance system, look up the most similar examples (interms
of number of feature values common to the stored pattern and the new pattern,
for example) and extrapolate from the tags assigned to these nearest matches

MACHINE LEARNING APPROACHES 291

to the new case. Various statistical and information-theoretic techniques can be
used to design the similarity metric. The similarity metric is also a place where
linguistic bias can be introduced in the learning algorithm.

= Rule and Decision Tree Induction. Use similarities and differences between
examplesto construct adecisiontreeor arule set (thesetwo arelargely equivalent
and can be trandlated to each other) and use this constructed representation to
assign atag to anew input pattern. Forget the individual examples.

m Connectionism, Neural Networks. Use the examples to train a network. In
back-propagation learning, thistraining is done by repeatedly iterating over all
examples, comparing for each example the output predicted by the network
(random at first) to the desired output and changing connection weights between
network nodes in such away that performance increases. Keep the connection
weight matrix and forget the examples.

The place of stochastic (statistical) approaches deserves some discussion at this
point. In this popular approach to tagging, statistical models (e.g. about the N-grams
occurring in alanguage) are computed on the examples (the corpus) and these are used
to extrapolate to the most probableanalysisof new input. Interms of abstraction versus
data-orientation, stochastic, neural network and rule induction approaches are greedy
learning techniques. These techniques abstract knowledge from the examples as soon
asthey arepresented. Case-Based Learningisalazylearningtechnique: generalization
only occurswhen anew patternisofferedto the performance component and abstraction
isthereforeimplicit in the way the contents of the case base and the similarity metric
interact.

One succesful statistical approach, recently applied to the tagging problem, is Rat-
naparkhi’s use of Maximum Entropy Models (1996). In this classification-based ap-
proach, diverse sources of contextual information (comparable to those used by the
machine learning approaches discussed below) are expressed as binary features, and
are combined in a statistical model that makes no further distributional assumptionson
thetraining data by maximizing the entropy of the distribution subject to the constraints
of the training data. The model parameters for the distribution are estimated using an
iterative procedure called generalized iterative scaling.

In the remainder of this chapter, we will discuss each of the learning methods
and their application to tagging in turn. We conclude with a general discussion and
evaluation of the methods described.

17.3 CASE-BASED LEARNING

The case-based learning paradigm is founded on the hypothesis that performance in
cognitivetasks (in our case language processing) is based on reasoning on the basis of
analogy of new situationsto stored representations of earlier experiences rather than on

292 CHAPTER 17

the application of mental rules abstracted from representations of earlier experiences
asin ruleinduction and rule-based processing.

Theconcept hasappearedin several Al disciplines(from computer vision to robotics)
several times, using apart from case-based al so label ssuch assimilarity-based, example-
based, exemplar-based, anaogical, nearest-neighbour, instance-based and memory-
based (Stanfill and Waltz 1986; Kolodner 1993; Aha et al. 1991; Salzberg 1990).
These different names are conveniently captured under the term lazy learning (Aha
1997).

17.3.1 Algorithm

Examplesarerepresented asavector of feature valueswith an associated category label.
Features define a pattern space. During training, a set of examples (the training set)
is presented in an incremental fashion to the learning a gorithm and added to memory.
During processing, a vector of feature values (a previously unseen test pattern) is
presented to the system. Its distance to all examples in memory is computed using a
similarity metric and the category of the most similar instance(s) is used as a basisto
predict the category for the test pattern.

Inthistype of lazy learning, performance crucially depends on the similarity metric
used. The most straightforward metric for a problem like tagging with nominal (non-
numeric) feature valueswould be an overlap metric: similarity isdefined asthe number
of feature values that are equa in two patterns being compared. In such a distance
metric, all features describing an example are interpreted as being equally important
in solving the classification problem, but thisis not necessarily the case: the category
of theword immediately before a word to be tagged is obviously more important than
the category of the word three positions earlier in the sentence. We call this problem
the feature relevance problem. Various feature weighting and sel ection methods have
been proposed to differentiate between the features on the basis of their relevance for
solving the task (see Wettscherek et al. (1996) for an overview).

Another addition to the basic algorithm that has proved relevant for many natural
language processing tasks is a value difference metric (Stanfill and Waltz 1986; Cost
and Salzberg 1993). Such ametric assigns different distances to pairs of valuesfor the
same feature. In tagging, e.g., such a metric would assign a smaller distance between
NP andnN than between Ny and vBG. These biases can of course al so be added by hand
tothelearner (e.g. by adomain expert). Severa other improvements and modifications
tothe basic case-based | earning scheme have been proposed and should be investigated
for linguistic problems. Two promising further extensions are weighting the examples
inmemory and minimizing storage by keeping only asel ection of examples. Inexample
weighting, examples are differentiated according to their quality as predictors for the
category of new input patterns. Thisquality can be based on their typicality or on their

MACHINE LEARNING APPROACHES 293

actual performance as predictors on a held-out test set. In example selection, memory
is pruned by deleting those examples which are bad predictors or which are redundant.

17.3.2 Case-based tagging

KENMORE (Cardie 1994, 1996) is presented as a general framework for knowledge
acquisition for NLP using different symbolic machine learning techniques. As an
instance of this general methodology, a case-based learning approach is suggested for
both morphosyntactic and semantic tagging. The architecture presupposes a corpus, a
sentence analyser and a learning algorithm. During knowledge acquisition (training)
for a specific disambiguation task (e.g. tagging), a case is created for each instance of
the problem in the corpus. Each case is an example of the input-output mapping to be
learned; the input part is a context describing the ambiguity and the output part is the
solutionto the particular ambiguity. The examples may be produced from an annotated
version of the corpus or through human interaction. During application, the case-base
is used to predict the solution to a new instance of the ambiguity given the input (the
context) without intervention.

In a tagging experiment based on 2056 cases from the Tipster V corpus, a fairly
complex case representation based on output from the circus conceptua sentence
analyser isused. Figure 17.2% showsthe case representation containing context features
of the focus word “parts’, for which the word sense and the part of speech has to be
decided.

Local context features describe the syntactic and semantic information about afive-
word window centered on the word to be tagged (the words themselves, their part of
speech and their word sense). Global context features provide information about the
major constituents parsed aready (word sense of the subject and type, concept and
semantic feature associated with the last parsed constituent). The class to be predicted
isthe part of speech and the semantic sense of themiddleword. All words (except 129
function words) are initially assumed unknown.

As a solution to the feature relevance problem, Cardie (1993) applies a decision
tree learning algorithm (see below) to the dataset and uses only those features which
have been selected by the decision tree induction algorithm as being relevant during
similarity comparison. This turns out to be an effective way to discard irrelevant
features.

MBT (Memory-Based Tagging; Daelemans 1995; Daglemans et al. 1996) is a case-
based approach in which thefeasibility of theapproach onalarger scaleisinvestigated,
with simpler case representations and with amore elegant solution to the feature rele-

3 Reprinted from Cardie (1996) with permission.

294 CHAPTER 17

Retrieved Case

Subject
word sense: company-name

Last Constituent \
type: prepositional-phrésg

concept: production \Training Sentence
semantic feature: industry ~ Daihatsu...
2nd Preceding Word has so far been
word: of \ in aliance
part of speech: preposition w/ Astra Motor
Preceding Word N in production
word: auto \\~Of P
part of speech: noun modifier 1 auto
word sense: product
Current Word and
word: parts engines...[]

word sense: product

part of speech: noun
Following Word

word: and

part of speech: conjunction
2nd Following Word

word: engines

part of speech: noun

word sense: product

N

context feature ——»
solution feature ——p»

Figure 17.2 Case representation in KENMORE.

vance problem. Experimentswere performed on the 3 million word tagged Wall Street
Journal corpus®.

In order to adopt the memory-based approach to the problem of tagging, the follow-
ing procedure is used:

Lexicon Construction. A lexicon isextracted from thetraining corpus by computing
for each word the number of times it occurs with each category. A new, possibly
ambiguoustag (e.g. N-v for wordswhich can be both a noun and a verb) is assigned
to each word based on thislexical definition.

4ACL Data Collection Initiative CD-ROM 1, September 1991; the tagset is the Penn Treebank tagset,
consisting of 40 tags. See Appendix 17.6 for afull list.

MACHINE LEARNING APPROACHES 295

Case-Base Construction. Two case bases are constructed, one for known words and
one for unknown words. The former contains as information the possibly ambiguous
category of the word to be tagged (the focus word) and of one context word to theright
and the disambiguated category of two wordsto the left. The latter contains the same
context information, but instead of the ambiguous category of the focus word (which
is unknown), the first letter and the last three letters of the focus word are added as
features. These features provideinformationabout the ‘ morphology’ of theword. The
unknown-words case base is constructed on the basis of open class words only.

Tables 17.4 and 17.5 list samples of the known-words and unknown-words case
bases for part of the first sentence of the corpus. In the first table, we use the fol-
lowing abbreviations for the known-words case base: f for focus word (the word to
be disambiguated, represented by its ambiguous category), d for disambiguated word
(a previously contextually disambiguated word to the left of the focus word), « for
ambiguousword, a still to be disambiguated word to the right of the focus word, repre-
sented by its ambiguous category, and ¢ for the target, disambiguated, category of the
focusword. In the unknown-wordscase base, we find featuresfor left (d) and right («)
context, and instead of the lexical representation of the focus word, we have features
representing prefix letters (p) and suffix letters (s) of the focus word.

Tagging. Intagging, new input text istransformed into case representationsfor case-
based reasoning on the basis of either the known- or unknown-words case base.

In MmBT, the feature relevance problem is solved by weighting each feature with the
average amount of case base information entropy reduction it can provide (i.e. its
Information Gain, | G; see Daelemans et al. (1996) for moreinformation). Theweights
for the different features are aso listed in tables 17.4 and 17.5. They express the
relativerelevance of thefeaturesand are used asaweight during similarity computation.
Advantages of this approach (compared to KENMORE'S) are that feature relevance is
not interpreted as a yes/no property but as agradual one and that it does not presuppose
using two inductive classification learning algorithms (decision treeinduction and case-
based learning), one of whichis only used for feature selection.

To solve the computational complexity problem inherent in matching all feature
values of anew case to the corresponding values of all stored cases, MBT USESIGTREE,
a memory- and processing-time-saving heuristic implementation of memory-based
reasoning. Thisformalism (fully describedin Daelemansetal. 1996, 1997) compresses
amemory baseinto atreeusing aninformation-theoretic heuristic, reducing storage and
retrieval complexity considerably without an adverse effect on generalization accuracy.
An additional advantage is that thistree structure allows dynamic selection of context
width (see also 17.4 below on decision trees).

296 CHAPTER 17

Table 17.4 Case representation and information gain pattern for known words.

Word Case Representation

d d f a t
IG .06 22 .82 23
Pierre = = np np np
Vinken = np np , np
, np np , cd ,
61 np , cd nns cd
years , cd nns ji-np nns
old cd nns ji-np , i

Table 17.5 Case representation and information gain pattern for unknown words.

Word Case Representation

d p S S S a t
IG 21 21 15 20 32 14
Pierre = P r r e np np
Vinken np \Y k e n , np
61 , 6 = 6 1 nns cd
years cd y a r S ji-np nns
old nns o] 0 I d , i

17.3.3 Evaluation

In the experiment with KENMORE, accuracy of tagging turned out to be 95% overall
and 91% on contents words only. In MBT on the Wall Street Journal corpus, over-
all generalization accuracy was 96.4% (96.7% on known words, 90.6% on unknown
words). The level of accuracy attained by probabilistic taggers seems to be well in
reach of case-based taggers. Already at small data set sizes, performance is relatively
high. We obtained similar scores when adapting the tagger architecture to Dutch by
training it on a Dutch tagged corpus.

An important advantage of the case-based approach isthe flexibility of case repre-
sentations. there are several types of information which can be stored in the memory
base, ranging from thewordsthemselvestointricatelexical representations. Combined
with feature-weighting approaches, this flexibility offers a new approach to informa-

MACHINE LEARNING APPROACHES 297

tion sourceintegration (datafusion) intagging. The unknown-wordscase baseinMBT,
e.g., integrates context information and ‘ morphological’ information (suffix letters) in
a smooth way. It would be impossible at present, for reasons of sparseness of data
and computational complexity, to estimate probabilitiesfor such intricate contextsin
a stochastic approach.

Additional advantagesinclude incremental learning (new cases can be added incre-
mentally to the case bases without need for relearning®), explanation capabilities (the
best memory matches serve as explanations for the tagging behaviour of the system)
and, at least in MBT, fast learning and tagging (more than 1000 words per second).

17.4 DECISION TREE INDUCTION

The decision tree learning paradigm is based on the assumption that similarities be-
tween examples can be used to automatically extract decision trees and categories with
explanatory and generalization power. In other words, the extracted structure can be
used to solve new instances of a problem and to explain why a performance system
behaves theway it does. Inthis paradigm, learningis greedy and abstraction occurs at
learning time. There are systematic ways in which decision trees can be transformed
into rule sets (the two representations are equivalent).
Decisiontreeinductionisawell-devel oped field within Al. See, e.g., Quinlan (1993)
for a synthesis of magjor research findings. More ancient statistical pattern recognition
work (suchasHunt et al. 1966; Breimanet al. 1984) also still makesfor useful reading.

17.4.1 Algorithm

A decision tree is a data structure in which nodes represent tests, and arcs between
nodesrepresent possibleanswerstotests. Leaf hodesrepresent answersto problems. A
problemis solved by followingapath from the root node through the decision tree until
aleaf nodeisreached. The path taken depends on the answersthat aparticular problem
providesto the tests at the nodes. Decision tree learning works by repeatedly dividing
the set of examples into subsets according to whether the examples in a particular
subset have afeature-value pair in common, until the subsets are homogeneous, i.e. all
examples in the subset have the same category. The a gorithm achieves this according
to the simplified recursive scheme in Figure 17.3.

To classify new input patterns with a decision tree, start at the root node of the tree
and find the value in the input pattern for the corresponding feature. Take the branch
corresponding to that value and perform this process recursively until a leaf node is
reached. The category corresponding to this leaf nodeis the output.

5 Computation of feature weights is not incremental, it presupposes access to a complete batch of training
examples, but usually, the weight values become stable after only afew hundred training examples.

298 CHAPTER 17

Given aset of examplesT'

If T contains one or more casesall belonging to the sameclassC';,
then the decision tree for T" isaleaf with category C;.

If T contains different classesthen

m Choose a feature, and partition 7" into subsets that have the same vaue for the
feature chosen. The decision tree consists of a node containing the feature name
and abranch for each valueleading to a subset.

m Apply the procedure recursively to subsets created this way.

Figure 17.3 Recursive scheme for constructing decision trees.

Again, weare confronted with afeature rel evance probleminthisapproach. Inorder
to obtain a concise tree with good generalization performance (i.e. atreereflecting the
structure of the domain), we have to select at each recursion of the above algorithm a
test which is optimal in achieving this goal). The agorithm is non-backtracking and
considering all trees consistent with the data is an NP-complete problem, so areliable
heuristic feature selection criterion is essential. Information-theoretic or statistical
techniques maximizing homogeneity of subsets by selecting a particular feature are
usually applied to this end. Several variants and extensions have been developed to
the basic algorithm for pruning (making the tree more compact by cutting off subtrees
on the basis of a statistical criterion), grouping similar values of afeature into classes,
making tree building incremental, etc.

17.4.2 Decision tree tagging

Work on parsing (including tagging) of text with decision trees was pioneered at IBM

(Black et al. 1992; Magerman 1994, 1995). spATTER (Magerman 1995) starts from
the premise that a parse tree can be viewed as the result of a series of classification
problems (tagging, choosing between constituents, labelling constituents, etc.). The
most probabl e sequence of decisionsfor asentence, given atraining corpus, isitsmost
probable analysis. In the statistical decision tree technology used (based on Breiman
et al. 1984), decision trees are constructed for each sub-problem in the parsing task
(tagging is one of them). In such a decision tree, leaf nodes contain distributionsover
categoriesinstead of asingle category. E.g., intagging, the feature associated with the
root node of the decision tree might be theword to be tagged. In caseitsvalueis“the”,
the category “article” can be returned with certainty. In case itsvalue is “house”’, a
test at the next level of the tree corresponds to the feature “tag of the previousword”.
In case itsvalue is “article”, the probability distribution returned by the decision tree
would be “noun (.8); verb (.2)” (Magerman 1995). In practice, SPATTER USeS binary
trees, however. Searching for the most probable tag series for a sentence is done by

MACHINE LEARNING APPROACHES 299

the

Previous Tag

N:0.8, V:0.2

Figure 17.4 A statistical decision tree for tagging.

means of stack decoder search with abreadth-first algorithm and probabilistic pruning.
Figure 17.4 shows such atree, based on Magerman (1995).

Schmid (1994b) describes TREETAGGER, atagger which takes basically the same
approach as spATTER. Transition probabilities between tags in a tag sequence are
estimated using a decision tree induced from a set of N-grams occurring in the Penn
Treebank corpus. The features are the tags of the words preceding the word to be
tagged. He experimented with one, two and three such context features. The category
to be predicted is the tag of the focus word. Using an information-theoretic heuristic
feature selection method, the tree is built using the recursive algorithm discussed ear-
lier. Asin sPATTER, all tests have binary results. Instead of having a subtree for each
possible tag in a context position, corresponding to questions like “what is the tag of
the word before the target?’, tests are instead individual feature-value combinations
with a binary branching, corresponding to questionslike “is the tag of the word before
the target equal to ADJ?". This resultsin deeper trees. Again asin sPATTER, at the
leaf nodes a probability distribution over the categories is given for those patterns for
whichthe sequence of testsleadingto thisleaf nodearetrue. Theinformation-theoretic
feature selection method ensures that the test chosen maximizes the distinctiveness of
the probability distribution of the subtrees. For pruning the resulting decision tree, an
information-theoretic heuristic is used as well. Finally, the Viterbi algorithm (Viterbi
1967; see also Chapter 16) is used to find the best tag sequence for a sentence, given
the probability distributions obtained by decision tree lookup. The approach is com-

300 CHAPTER 17

bined with a lexicon system containing a priori tag probabilitiesfor each word and a
probabilistic suffix analyser.

17.4.3 Evaluation

Decisiontree model s are equivalent in expressive power to interpol ated N-gram model s
(Magerman 1995), but whereas in N-gram models the number of parameters to be
estimated grows exponentialy with NV, in decision-tree learning, the size of the model
depends on the number of training examples and remains constant with the number of
decisions taken into account. Also, the decision tree approach automatically selects
relevant context size: uninformative context positions are not used in the tree and
because of its computational properties (constant with wider context) larger contexts
(corresponding to 4 or 5-grams) can initialy be considered. That way, decision tree
approaches are potentially more sensitive to context and therefore better equiped to
solve long-distance dependencies. Finally, Schmid also reports robustness relative to
training set size: TREETAGGER ‘degrades gracefully’ with smaller training set sizes.

Asfar as performance is concerned, decision tree methods seem to be comparable
to stochastic appoaches. Schmid reports 96.4% generalization on the Penn Treebank
using 4-grams (0.3% better than asimilar probabilistictrigram tagger, which, however,
uses a different lexicon system). Magerman reports 96.5% for sentences up to 40
words in length in the Wall Street Journal corpus. Schmid also reports fast tagging
speed performance (10,000 words per second).

In the examples discussed here, decision tree technology does not deliver a solution
to the complete tagging problem. The tag probabilitiesreturned by the tree are used
by a search mechanism (stack decoder or Viterbi) to find the best series of tags. Also,
both versions of the decision tree approach are not completely non-parametric; sPaT-
TER requires smoothing of the decision trees and TREETAGGER requires a pruning
threshold. In principle, however, it would be possible to produce a complete tagger on
the basis of alearned statistical decision tree. Recently, this approach has indeed been
explored (Marquez & Rodriguez, 1998).

17.5 NEURAL NETWORK METHODS

Multilayer Perceptrons (Rumelhart et al. 1986) are the most popular neural network
architecture. As an inductive learning technique, supervised neural network learning
is a greedy learning approach. During learning, the set of examples is repeatedly
inspected to find an optimal set of connection weights between layers of simple units.
The training material is thus abstracted into a set of numeric weights which is then
used to predict the output of new input patterns. There is an immense literature on
neural network algorithms (see Aleksander and Morton (1990), Bishop (1995) and
Fausett (1994) for recent introductions). There isalso a considerable body of research

MACHINE LEARNING APPROACHES 301

N AV
i

OMOOOMN inputLayer
NAVNAYV

Output Layer

Hidden layer

Previous Following

Figure 17.5 A simple neural network architecture for tagging. Activation of units is
shown by colouring. In a situation where the previous word is an adjective and the
following word a verb, this hypothetical 3-layer network would predict the current word
to be a noun.

on applying neural network technology to language processing problems (Reilly and
Sharkey (eds.) 1992; Sharkey 1992).

17.5.1 Algorithm

A multilayer perceptron consist of an input and an output layer of simple processing
units and one or more intermediate, ‘hidden’ layers (figure 17.5). The input layer is
used to code the input part of an example, the output layer to encode the output part.
Wewill assume asinglehiddenlayer here. All adjacent layersarefully interconnected,
i.e. each unit in each layer connected to each unit in the next layer. Each unit has an
activation and athreshold. Each connection between twounitshasaweight. Activation
can be expressed as 1 or 0, or as area number; thresholds and connection weight are
usually expressed as real numbers. Activation flows from the input layer to the output
layer viathe hidden layer.

Two simple rules govern the training and use of a multilayer perceptron. The
activation rule is a local rule which is used by each unit to compute its activation.
Consider for instance the activation flow from input layer to hidden layer. The input
activation of a particular unit of the hidden layer (a;), isequal to)", a; x w; ;, where
the a; are the activations of the units in the input layer connected to that unit at the
hidden layer and the w; ; are the weights of the connections from those input layer
unitsto that hidden layer unit. The threshold value determineswhether, given theinput
activation to a unit, that unit will become active (if the input activation exceeds the

302 CHAPTER 17

threshold the unit becomes active, otherwise it stays ‘off’). By making use of such a
threshold value, the activation of aunit isanon-linear function of activation values of
the unitsin the previous layer connected to it.

Thelearning rule (in this case back-propagation learning) incrementally adapts the
connection weights until an acceptable performance is reached by the system (this
involves repeatedly cycling through all training examples). This adaptation process
works by changing the connection weights depending on the quality of the output of
the network (i.e. the activation pattern at the output layer). The output of the network
is compared to the desired output. Those connections that contributed to the wrong
activation of an output unit are weakened, those that were responsiblefor not activating
an output unit that should have been active are strengthened. These error corrections
are also ‘ back-propagated’ to the connections between input and hidden layer.

17.5.2 Neural network tagging

NETGRAM (Nakamura et al. 1980) is a multilayer neural network for word category
prediction in the context of a speech recognition system. The input consists of the
category of two (or more) preceding words, the output is the category of the current
word. Words are encoded the following way. Each word is represented by a number
of unitsequal to the number of categories. The unit associated with the category of the
word is made active, the other units are inactive. Given two words preceding context
and 89 categories, the network has an input layer of 178 unitsand an output layer of
89 units. Back-propagationisused to train the network. When aninput is presented to
the network, the two input units corresponding to the categories of the two preceding
words are made active and the output unit with the highest activation is taken as the
category of the current word.

NET-TAGGER (Schmid 1994a) also used back-propagation learning, but inthiscase
the problem handled is disambiguation (tagging) rather than tag prediction. In the
input layer, information about the word to be tagged and one or more preceding and
followingwordsis encoded. Again, for each tag and each word pattern position, aunit
iscreated. E.g., supposing40tags, 3 wordsleft context, afocusword and 2 wordsright
context, an input layer of 240 (40 x 6) unitsis needed. For the left context words, the
previous output of the network (the activation levels of the output layer units) is used
asinput. For the focusword and the right context, the lexical probabilitiesof thewords
are used. Adding ahidden layer to atwo-layer network did not improve performance.
The output layer has one unit for each possible wordclass. The output unit with the
highest activation, given an input pattern, is interpreted as the tag of the focus word.
In order to attach lexical probabilitiesto words, alexicon system based on Cutting et
al. (1992) isused, combined with an unknown-word guesser using information about
suffix letters.

MACHINE LEARNING APPROACHES 303

17.5.3 Evaluation

Accuracy of NETGRAM and NET-TAGGER is comparable to stochastic trigram meth-
ods, themain advantage being that unseen patternsare interpol ated effectively, without
requiring expensive special interpolation methodsasin stochastic approaches. Connec-
tioni st approaches also require the computation of fewer parameters (weights) than sta-
tistical models (N-gram probabilities), which becomes especially useful when consid-
ering awider context than trigrams. The number of wei ght-parametersgrowsquadratic
withthenumber of input nodes. Asinthelearning methodsdiscussed earlier, itispossi-
bleto output more than one possibletag for aword, e.g. alist of tagsordered according
to their likelihood.

17.6 DISCUSSION

With the availability of only a relatively small body of empirical data and theoretical

analysis on the applicability of inductive machine learning techniques to tagging, it is
too early for strong conclusions. On the empirical side, there is a hard-felt need for
a methodologically sound, reliable, empirical comparison of statistical and machine
learning approaches to automatic tagging. On the theoretical side, there is a need for
more insight into the differences and similaritiesin how generalization is achieved in
thisarea by different statistical and machine learning techniques. Inthe absence of this
knowledge, our discussion will necessarily turn out to be preliminary and superficial.

Our discussion will take the form of a number of theses.

m Learning is preferable to programming. Compared to hand-crafted rule-based
(or constraint-based approaches), an inductive learning approach, such as in
the methods discussed here and in stochastic approaches, provides a solution
to the knowledge-acquisition and reusability bottlenecks and to robustness and
coverage problems. As an example, afast and accurate tagger for Dutch was
learned withthe MmBT tagger-generator in half aday, with aminimum of linguistic
engineering. On the other hand, it should be noted that the accuracy which can
be obtained using hand-crafted constraint-based methods (cf. Chapter 14) still
seems to be out of reach for automatic learning approaches.

= MachineLearningis a different type of statistics. Decision tree induction, case-
based learning and neural networks are statistical methods, but they use a dif-
ferent kind of statistics than the well-known maximum-likelihood and Markov
model methods, e.g. in case-based learning, no assumptions are made about the
distribution of the data whereas most statistical techniques presuppose normal
distributions. Different statistical methods have different propertieswhich make
them more or less suited for a particular type of application. If only for that
reason, the applicability of all types of statistics to the tagging problem should
be studied thoroughly. Already from the preliminary empirical data, important

304 CHAPTER 17

advantages of these methods compared to current statistical methods suggest
themselves:

1. They require less training data.

2. They require less parameters to be computed and can therefore take into
account more context.

3. They provideelegant and computational ly attractive sol utionstothe smooth-
ing problem and to the integration of different information sources.

4. Training is often much faster.

= Abstractioncan be harmful. In many linguistictasks, we have found (see Daele-
mans, Van den Bosch and Zavrel 1999) that an approach keeping complete
memory of all training data provides better performance than techniquesthat ab-
stract from low-frequency and exceptional events, such as rule(learning)-based
systems. Neura networks and stochastic approaches are similar to rule- and
decision-tree-induction methods in that they abstract from their experience (to
amatrix of connection weightsin neural networks, to a set of probabilitiesin
stochastic approaches and to a set of rules in rule-induction approaches) and
forget about the original data on which these abstractionswere based. The effect
that full memory of all examples yields better generalization is probably related
tothefact that natural |anguage processing tasks such as morphosyntactic disam-
biguation can be characterised by theinteraction of regularities, sub-regularities
and pockets of exceptions. Abstracting away from these exceptions causes a
performance degradation because new similar exceptions are overgeneralized:
being there is better than being probable.

Compared to the well-developed theoretical and empirical foundations of statistical
approaches to tagging, the machine learning approach to this problem has only just
started. In all methods described, there is still alot of room for improvement, espe-
cialy inthree areas: exploring variationsor extensions of the basic algorithms, adding
linguistic bias to the learning algorithms and combining them with other approaches
in hybrid architectures. A fourth area where machine learning methods may provide
increased tagging accuracy isin the development of machine learning agorithms that
take as input the outputs of different taggers (trained, statistical or even hand-crafted)
and learn when to trust which tagger. Initial work on thisapproach is described by van
Halteren, Zavrel and Daelemans (1998) and by Brill and Wu (1998).

