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Preface

Memory
Based Learning �mbl� has proven to be quite successful in a large num

ber of tasks in Natural Language Processing �NLP�� In our group at Tilburg
University we have been working since the end of the ���
�s on the development
of Memory
Based Learning techniques and algorithms�� With the establishment
of the ILK �Induction of Linguistic Knowledge� research group in ���	� the need
for a well
coded and uniform tool for our main algorithms became more urgent�
TiMBL is the result of combining ideas from a number of di�erent mbl imple

mentations� cleaning up the interface� and using a whole bag of tricks to make
it more e�cient� We think it can make a useful tool for NLP research� and� for
that matter� for all other domains with discrete classi�cation tasks�

Memory
Based Learning is a direct descendant of the classical k
Nearest
Neighbor �k
NN� approach to classi�cation� In typical NLP learning tasks� how

ever� the focus is on discrete data� very large numbers of examples� and many
attributes of di�ering relevance� Moreover� classi�cation speed is a critical is

sue in any realistic application of Memory
Based Learning� These constraints�
which are quite di�erent from those of traditional pattern recognition applica

tions with their numerical features� often lead to di�erent data
structures and
di�erent speedup optimizations for the algorithms� Our approach has resulted
in an architecture which makes extensive use of indexes into the instance mem

ory� rather than the typical �at �le organization found in straightforward k
NN
implementations� In some cases the internal organization of the memory results
in algorithms which are quite di�erent from k
NN� as is the case with igtree�
We believe that our optimizations make TiMBL one of the fastest discrete k
NN
implementations around�

The main e�ort in the development of this software was done by Ko van der
Sloot� The code started as a rewrite of nibl� a piece of software developed by
Peter Berck from a Common Lisp implementation by Walter Daelemans� Some
of the index
optimizations are due to Jakub Zavrel� The code has bene�ted sub

stantially from trial� error and scrutiny by the other members of the ILK group
�Sabine Buchholz� Jorn Veenstra and Bertjan Busser�� We would also like to
thank Ton Weijters of the Technical University of Eindhoven and the members

�Section ��� provides a historical overview of our work on the application of mbl in nlp�
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of the cnts research group at the University of Antwerp for their contributions�
This software was written in the context of the �Induction of Linguistic Knowl

edge� research programme� partially supported by the Foundation for Language
Speech and Logic �TSL�� funded by the Netherlands Organization for Scienti�c
Research �NWO��

The current release �version ��
� is a �rst beta release and although it was
tested for some time in our research group� it may still contain bugs and in

consistencies in certain places� This reference guide is also a �rst version� We
would appreciate it if you can send bug reports� ideas about enhancements
of the software and the manual� and any other comments you might have� to
Timbl�kub�nl�

This reference guide is structured as follows� In Chapter � you can �nd the
terms of the license according to which you are allowed to use TiMBL� The
following chapter gives some instructions on how to install the TiMBL package
on your computer� Readers who are interested in the theoretical and technical
details of Memory
Based Learning and of this implementation can then proceed
to Chapter �� Those who just want to get started using TiMBL can skip this
chapter� and directly proceed either to Chapters � and �� which respectively
provide a reference to the �le formats and command line options of TiMBL�
or to Appendix A� where a short hands
on tutorial is provided on the basis
of a case study with a data set from a linguistic domain �prediction of Dutch
diminutive su�xes��
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Chapter �

License terms

Downloading and using the TiMBL software implies that you accept the follow

ing license terms�

Tilburg University grants you �the registered user� the non
exclusive license
to download a single copy of the TiMBL program code and related documen

tation �henceforth jointly referred to as �Software�� and to use the copy of
the code and documentation solely in accordance with the following terms and
conditions�

� The license is only valid when you register as a user� If you have obtained
a copy without registration� you must immediately register by sending an
e
mail to Timbl�kub�nl�

� You may only use the Software for educational or non
commercial research
purposes�

� You may make and use copies of the Software internally for your own use�

� Without executing an applicable commercial license with Tilburg Univer

sity� no part of the code may be sold� o�ered for sale� or made accessible
on a computer network external to your own or your organization�s in any
format� nor may commercial services utilizing the code be sold or o�ered
for sale� No other licenses are granted or implied�

� Tilburg University has no obligation to support the Software it is pro

viding under this license� To the extent permitted under the applicable
law� Tilburg University is licensing the Software �AS IS�� with no express
or implied warranties of any kind� including� but not limited to� any im

plied warranties of merchantability or �tness for any particular purpose or
warranties against infringement of any proprietary rights of a third party
and will not be liable to you for any consequential� incidental� or special
damages or for any claim by any third party�

�
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� Under this license� the copyright for the Software remains the property
of the ILK Research Group at Tilburg University� Except as speci�cally
authorized by the above licensing agreement� you may not use� copy or
transfer this code� in any form� in whole or in part�

� Tilburg University may at any time assign or transfer all or part of its
interests in any rights to the Software� and to this license� to an a�liated
or una�liated company or person�

� Tilburg University shall have the right to terminate this license at any
time by written notice� Licensee shall be liable for any infringement or
damages resulting from Licensee�s failure to abide by the terms of this
License�

� In publication of research that makes use of the Software� a citation should
be given of� �Walter Daelemans� Jakub Zavrel� Ko van der Sloot� and
Antal van den Bosch ������� TiMBL� Tilburg Memory Based Learner�
version ��	� Reference Guide� ILK Technical Report ��
	�� Available from
http���ilk�kub�nl��ilk�papers�ilk�����ps�gz

� For information about commercial licenses for the Software�
contact Timbl�kub�nl� or send your request in writing to�

Dr� Walter Daelemans
ILK Research Group
Computational Linguistics
Tilburg University
PO Box �
���
�


 LE Tilburg
The Netherlands



Chapter �

Installation

You can get the TiMBL package as a gzipped tar archive from�

http���ilk�kub�nl�software�html

Following the links from that page� you will be required to �ll in registration
information and to accept the license agreement� You can then proceed to down

load the �le Timbl�	���tar�gz
This �le contains the complete source code �C��� for the TiMBL program�
a few sample data sets� the license and the documentation� The installation
should be relatively straightforward on most UNIX systems�

To install the package on your computer� unzip the downloaded �le�


 gunzip Timbl�	���tar�gz

and unpack the tar archive�


 tar �xvf Timbl�	���tar

This will make a directory Timbl�	�� under your current directory� Change
directory to this�


 cd Timbl�	��

and compile the executable by typing make�� If the process was completed
successfully� you should now have an executable �le named Timbl�

The e
mail address for problems with the installation� bug reports� comments
and questions is Timbl�kub�nl�

�We have tested this only with gcc version �����
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Chapter �

Learning algorithms

TiMBL is a program implementing several Memory
Based Learning techniques�
All the algorithms have in common that they store some representation of the
training set explicitly in memory� During testing� new cases are classi�ed by
extrapolation from the most similar stored cases� The main di�erences between
the algorithms incorporated in TiMBL lie in�

� The de�nition of similarity�

� The way the instances are stored in memory� and

� The way the search through memory is conducted�

In this chapter� various choices for these issues are described� We start in
section ��� with a formal description of the basic Memory
Based Learning al

gorithm� i�e� a nearest neighbor search� We then introduce di�erent similarity
metrics� such as Information Gain weighting� which allows us to deal with fea

tures of di�ering importance� and the Modi�ed Value Di�erence metric� which
allows us to make a graded guess of the match between two di�erent symbolic
values� In section ��� and ���� we give a description of various optimizations
for nearest neighbor search� Finally� in section ���� we describe the fastest opti

mization� igtree� which replaces the exact nearest neighbor search with a very
fast heuristic that exploits the di�erence in importance between features�

��� Memory Based Learning

Memory
based learning is founded on the hypothesis that performance in cog

nitive tasks is based on reasoning on the basis of similarity of new situations
to stored representations of earlier experiences� rather than on the application
of mental rules abstracted from earlier experiences �as in rule induction and
rule
based processing�� The approach has surfaced in di�erent contexts using a
variety of alternative names such as similarity
based� example
based� exemplar

based� analogical� case
based� instance
based� and lazy learning ���� �� ��� �� ���

�



CHAPTER �� LEARNING ALGORITHMS �

Historically� memory
based learning algorithms are descendants of the k
nearest
neighbor �henceforth k
nn� algorithm ��� ��� ���
An mbl system� visualized schematically in Figure ���� contains two compo


nents� a learning component which is memory
based �from which mbl borrows
its name�� and a performance component which is similarity
based�
The learning component of mbl is memory
based as it involves adding train


ing instances to memory �the instance base or case base�� it is sometimes referred
to as �lazy� as memory storage is done without abstraction or restructuring� An
instance consists of a �xed
length vector of n feature
value pairs� and an infor

mation �eld containing the classi�cation of that particular feature
value vector�
In the performance component of an mbl system� the product of the learning

component is used as a basis for mapping input to output� this usually takes the
form of performing classi�cation� During classi�cation� a previously unseen test
example is presented to the system� The similarity between the new instance X
and all examples Y in memory is computed using a distance metric ��X�Y ��
The extrapolation is done by assigning the most frequent category within the k
most similar example�s� as the category of the new test example�

EXAMPLES

CASESINPUT OUTPUT

Similarity−Based Reasoning

Storage
Computation of Metrics

Memory−Based
Learning
Architecture

Learning

Performance

Figure ���� General architecture of an mbl system�

����� Overlap metric

The most basic metric for patterns with symbolic features is the Overlap met�

ric given in equations ��� and ���� where ��X�Y � is the distance between
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patterns X and Y � represented by n features� and � is the distance per feature�
The distance between two patterns is simply the sum of the di�erences between
the features� The k
nn algorithm with this metric is called ib� ���� Usually k is
set to ��

��X�Y � �

nX
i��

��xi� yi� �����

where�

��xi� yi� �

�

 if xi � yi
� if xi �� yi

�����

We have made two additions to the original algorithm ��� in our version of
ib�� First� in the case of nearest neighbor sets larger than one instance �k � � or
ties�� our version of ib� selects the classi�cation that has the highest frequency
in the class distribution of the nearest neighbor set� Second� if a tie cannot be
resolved in this way because of equal frequency of classes among the nearest
neighbors� the classi�cation is selected with the highest overall occurrence in
the training set�

����� Information Gain weighting

The distance metric in equation ��� simply counts the number of �mis�matching
feature
values in both patterns� In the absence of information about feature
relevance� this is a reasonable choice� Otherwise� we can add domain knowledge
bias to weight or select di�erent features �see e�g� Cardie ��� for an application of
linguistic bias in a language processing task�� or look at the behavior of features
in the set of examples used for training� We can compute statistics about the
relevance of features by looking at which features are good predictors of the
class labels� Information Theory gives us a useful tool for measuring feature
relevance in this way ��
� ����

Information Gain �IG� weighting looks at each feature in isolation� and
measures how much information it contributes to our knowledge of the correct
class label� The Information Gain of feature i is measured by computing the
di�erence in uncertainty �i�e� entropy� between the situations without and with
knowledge of the value of that feature �equation �����

wi � H�C��
X
v�Vi

P �v��H�Cjv� �����

Where C is the set of class labels� Vi is the set of values for feature i�
and H�C� � �

P
c�C P �c� log� P �c� is the entropy of the class labels� The

probabilities are estimated from relative frequencies in the training set�
It is important to realize that the IG weight is really a probability weighted

average of the informativity of the di�erent values of the feature� On the one
hand� this pre
empts the consideration of values with low frequency but high
informativity� Such values �disappear� in the average� On the other hand� this
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also makes the IG weight very robust to estimation problems� Each parameter
��weight� is estimated on the whole data set�
Information Gain� however� tends to overestimate the relevance of features

with large numbers of values� Imagine a data set of hospital patients� where
one of the available features is a unique �patient ID number�� This feature
will have very high Information Gain� but it does not give any generalization
to new instances� To normalize Information Gain for features with di�erent
numbers of values� Quinlan ���� has introduced a normalized version� called
Gain Ratio� which is Information Gain divided by si�i� �split info�� the entropy
of the feature
values �equation �����

wi �
H�C��

P
v�Vi

P �v��H�Cjv�

si�i�
�����

si�i� � �
X
v�Vi

P �v� log
�
P �v� �����

The resulting Gain Ratio values can then be used as weights wf in the
weighted distance metric �equation ������ The k
nn algorithm with this metric
is called ib��ig ����

��X�Y � �
nX
i��

wi ��xi� yi� �����

The possibility of automatically determining the relevance of features im

plies that many di�erent and possibly irrelevant features can be added to the
feature set� This is a very convenient methodology if domain knowledge does
not constrain the choice enough beforehand� or if we wish to measure the im

portance of various information sources experimentally� However� because IG
values are computed for each feature independently� this is not necessarily the
best strategy� Sometimes better results can be obtained by leaving features out
than by letting them in with a low weight� Very redundant features can also be
challenging for ib��ig� because IG will overestimate their joint relevance� Imag

ine an informative feature which is duplicated� This results in an overestimation
of IG weight by a factor two� and can lead to accuracy loss� because the doubled
feature will dominate the similarity metric�

����� Modi�ed Value Di�erence metric

It should be stressed that the choice of representation for instances in mbl

remains the key factor determining the strength of the approach� The features
and categories in NLP tasks are usually represented by symbolic labels� The
metrics that have been described so far� i�e� Overlap and IG Overlap� are limited
to exact match between feature
values� This means that all values of a feature

�In a generic use IG refers both to Information Gain and to Gain Ratio throughout this
manual� In specifying parameters for the software� the distinction between both needs to be
made� because they often result in di�erent behavior�
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are seen as equally dissimilar� However� if we think of an imaginary task in
e�g� the phonetic domain� we might want to use the information that �b� and
�p� are more similar than �b� and �a�� For this purpose a metric was de�ned by
Stan�ll � Waltz ���� and further re�ned by Cost � Salzberg ���� It is called the
�Modi�ed� Value Di�erence Metric �mvdm� equation ��	�� and it is a method to
determine the similarity of the values of a feature by looking at co
occurrence
of values with target classes� For the distance between two values V�� V� of a
feature� we compute the di�erence of the conditional distribution of the classes
Ci for these values�

��V�� V�� �

nX
i��

jP �CijV��� P �CijV��j ���	�

For computational e�ciency� all pairwise ��V�� V�� values can be computed
before the actual nearest neighbor search starts�
Although the mvdm metric does not explicitly compute feature relevance�

an implicit feature weighting e�ect is present� If features are very informative�
their conditional class probabilities will on average be very skewed towards a
particular class� This implies that on average the ��V�� V�� will be large� For
uninformative features� on the other hand� the conditional class probabilities
will be pretty uniform� so that on average the ��V�� V�� will be very small�

mvdm di�ers considerably from Overlap based metrics in its composition
of the nearest neighbor sets� Overlap causes an abundance of ties in nearest
neighbor position� For example� if the nearest neighbor is at a distance of one
mismatch from the test instance� then the nearest neighbor set will contain
the entire partition of the training set that matches all the other features but
contains any value for the mismatching feature �see ��	� for a more detailed
discussion�� With the mvdm metric� however� the nearest neighbor set will
only contain patterns which have the value with the lowest ��V�� V�� in the
mismatching position�� In sum� this means that the nearest neighbor set is
usually much smaller for mvdm at the same value of k� In NLP tasks we have
found it very useful to experiment with values of k larger than one for mvdm�
because this re
introduces some of the bene�cial smoothing e�ects associated
with large nearest neighbor sets�
One cautionary note about this metric is connected to data sparsity� In many

practical applications� we are confronted with a very limited set of examples�
This poses a serious problem for the mvdm metric� Many values occur only
once in the whole data set� This means that if two such values occur with the
same class the mvdm will regard them as identical� and if they occur with two
di�erent classes their distance will be maximal� The latter condition reduces
the mvdm to the Overlap metric for many cases� with the addition that some
cases will be counted as an exact match or mismatch on the basis of very shaky
evidence�

�Or mvdm will select a totally di�erent nearest neighbor which has less exactly matching
features� but a smaller distance in the mismatching feature�
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��� Tree�based memory

The discussion of the algorithm and the metrics in the section above is based
on a naive implementation of nearest neighbor search� a �at array of instances
which is searched from beginning to end while computing the similarity of the
test instance with each training instance �see the left part of Figure ����� Such
an implementation� unfortunately� reveals the �ip side of the lazy learning coin�
Although learning is very cheap� just storing the instances in memory� the
computational price of classi�cation can become very high for large data sets�
The computational cost is proportional to N � the number of instances in the
training set�
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Figure ���� The instance base for a small object classi�cation toy problem�
The left �gure shows a �at array of instances through which sequential nearest
neighbor search is performed to �nd the best match for a test instance �shown
below the instance base�� In the right part� an inverted index �see text� is used
to restrict the search to those instances which share at least one feature value
with the test instance�

In our implementation of mbl we use a more e�cient approach� The �rst
part of this approach is to replace the �at array by a tree
based data structure�
Instances are stored in the tree as paths from a root node to a leaf� the arcs
of the path are the consecutive feature
values� and the leaf node contains a
distribution of classes� i�e� a count of how many times which class occurs with
this pattern of feature
values �see Figure �����
Due to this storage structure� instances with identical feature
values are
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collapsed into one path� and only their separate class information needs to be
stored in the distribution at the leaf node� Many di�erent tokens of a particular
instance type share one path from the root to a leaf node� Moreover� instances
which share a pre�x of feature
values� also share a partial path� This reduces
storage space �although at the cost of some book
keeping overhead� and has two
implications for nearest neighbor search e�ciency�
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Figure ���� A tree
structured storage of the instance base from �gure ���� An
exact match for the test is in this case directly found by a top down traversal
of the tree �grey path�� If there is no exact match� all paths are interpreted as
instances and the distances are computed� The order of the features in this tree
is based on Gain Ratio�

In the �rst place� the tree can be searched top
down very quickly for exact
matches� Since an exact match ���X�Y � � 
� can never be beaten� we choose to
omit any further distance computations when one is found with this shortcut��
Second� the distance computation for the nearest neighbor search can re
use

partial results for paths which share pre�xes� This re
use of partial results is in
the direction from the root to the leaves of the tree� When we have proceeded to
a certain level of the tree� we know how much similarity �equation ���� can still
contribute to the overall distance �equation ����� and discard whole branches
of the tree which will never be able to rise above the partial similarity of the
current least similar best neighbor�
Disregarding this last restriction� the number of feature
value comparisons

is equal to the number of arcs in the tree� Thus if we can �nd an ordering of
the features which produces more overlap between partial paths� and hence a
smaller tree� we can gain both space and time improvements� An ordering which
was found to produce small trees for many of our NLP data sets is Gain Ratio
divided by the number of feature
values �this is the default setting�� Through

�There is a command line switch ��x	 which turns the shortcut o� in order to get exact
results when k � � �i�e� get neighbors at further distances	�
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the �T command line switch� however� the user is allowed to experiment with
di�erent orderings�

��� Inverse index

The second part of our approach to e�ciency is a speedup optimization based
on the following fact� Even in the tree
based structure� the distance is com

puted between the test instance and all instance types� This means that even
instance types which do not share a single feature
value with the test instance
are considered� although they will surely yield a zero similarity� The use of an
inverted index excludes these zero similarity patterns� The construction of
the inverted index records for all values of each feature a list of instance types
�i�e� leaf nodes in the tree described in the previous section� in which they oc

cur� Thus it is an inverse of the instance
base� which records for each instance
type which feature
values occur in it��
When a test instance is to be classi�ed� we select the lists of instance types

for the feature
values that it contains �illustrated in the rightmost part of Fig

ure ����� We can now �nd the nearest neighbor in these lists in a time that is
proportional to the number of occurrences of the most frequent feature
value of
the test pattern� instead of proportional to the number of instance types�
Although worst case complexity is still proportional to N � the size of the

training set� and practical mileage may vary widely depending on the peculiar

ities of your data� the combination of exact match shortcut� tree
based path
re
use� and inverted index has proven in practice �for our NLP datasets� to
make the di�erence between hours and seconds of computation��

��� IGTree

Using Information Gain rather than unweighted Overlap distance to de�ne sim

ilarity in ib� improves its performance on several nlp tasks ��� ��� ���� The
positive e�ect of Information Gain on performance prompted us to develop an
alternative approach in which the instance memory is restructured in such a
way that it contains the same information as before� but in a compressed de

cision tree structure� We call this algorithm igtree ���� �see Figure ��� for
an illustration�� In this structure� similar to the tree
structured instance base
described above� instances are stored as paths of connected nodes which contain
classi�cation information� Nodes are connected via arcs denoting feature values�

�Unfortunately this also implies that the storage of both an instance
base and an inverted
index takes about twice the amount of memory�

�Due to the reasons described in footnote �� mvdm cannot make use of the inverted index
optimization� Because the precomputation of di�erences between values is often impossible
in tasks with a large number of feature values �n� di�erences must be stored per feature�
if n is the number of values of that feature	� and because mvdm then e�ectively multiplies
the number of distance computations per instance by the number of classes� this metric is
currently one of the slowest in the package�
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Information Gain is used to determine the order in which instance feature
values
are added as arcs to the tree� The reasoning behind this compression is that
when the computation of information gain points to one feature clearly being
the most important in classi�cation� search can be restricted to matching a test
instance to those memory instances that have the same feature
value as the test
instance at that feature� Instead of indexing all memory instances only once
on this feature� the instance memory can then be optimized further by exam

ining the second most important feature� followed by the third most important
feature� etc� Again� considerable compression is obtained as similar instances
share partial paths�

nut

nut pen

nut screw key key

key

small large

1 none 2 1 2

long shape

size

# holes

scissors

Figure ���� A pruned igtree for the instance base of Figure ���� The classi�ca

tion for the test instance is found by top down search of the tree� and returning
the class label �default� of the node after the last matching feature
value �arc��
Note that this tree is essentially a compressed version of the tree in Figure ����

Because igtree makes a heuristic approximation of nearest neighbor search
by a top down traversal of the tree in the order of feature relevance� we no
longer need to store all the paths� The idea is that it is not necessary to fully
store those feature
values of the instance that have lower Information Gain than
those features which already fully disambiguate the instance classi�cation�
Apart from compressing all training instances in the tree structure� the

igtree algorithm also stores with each non
terminal node information concern

ing the most probable or default classi�cation given the path thus far� according
to the bookkeeping information maintained by the tree construction algorithm�
This extra information is essential when processing unknown test instances�
Processing an unknown input involves traversing the tree �i�e�� matching all
feature
values of the test instance with arcs in the order of the overall feature
Information Gain�� and either retrieving a classi�cation when a leaf is reached



CHAPTER �� LEARNING ALGORITHMS ��

�i�e�� an exact match was found�� or using the default classi�cation on the last
matching non
terminal node if an exact match fails�
In sum� it can be said that in the trade
o� between computation during

learning and computation during classi�cation� the igtree approach chooses
to invest more time in organizing the instance base using Information Gain
and compression� to obtain considerably simpli�ed and faster processing during
classi�cation� as compared to ib� and ib��ig�
The generalization accuracy of igtree is usually comparable to that of

ib��ig� most of the time not signi�cantly di�ering� and occasionally slightly
�but statistically signi�cantly� worse� or even better� The two reasons for this
surprisingly good accuracy are that �i� most �unseen� instances contain con

siderably large parts that fully match stored parts of training instances� and
�ii� the probabilistic information stored at non
terminal nodes �i�e�� the default
classi�cations� still produces strong �best guesses� when exact matching fails�
The di�erence between the top
down traversal of the tree and precise nearest
neighbor search becomes more pronounced when the di�erences in informativity
between features are small� In such a case a slightly di�erent weighting would
have produced a switch in the ordering and a completely di�erent tree� The
result can be a considerable change in classi�cation outcomes� and hence also
in accuracy� However� we have found in our work on NLP datasets that when
the goal is to obtain a very fast classi�er for processing large amounts of text�
the slight tradeo� between accuracy and speed can be very attractive�

��� NLP applications of TiMBL

This section provides a historical overview of our own work with the application
of mbl type algorithms to NPL tasks�
The ib��ig algorithm was �rst introduced in ��� in the context of a com


parison of memory
based approaches with backprop learning for a hyphenation
task� Predecessor versions of igtree can be found in ��
� ��� where they are
applied to grapheme
to
phoneme conversion� See ���� for a detailed description
and review of the algorithms� A recent development� not yet implemented in the
TiMBL package is tribl ����� an algorithm which constitutes a hybrid between
the ib��ig and igtree algorithms�
The memory
based algorithms implemented in the TiMBL package have

been successfully applied to a large range of Natural Language Processing tasks�
hyphenation and syllabi�cation ������ assignment of word stress ������ grapheme

to
phoneme conversion ������� diminutive formation ������� morphological analy

sis ������� part of speech tagging ������� PP
attachment ������� Not yet published
experimental results exist for word sense disambiguation� subcategorisation� and
chunking �partial parsing��
Relations to statistical language processing are discussed in ��	�� A par


tial overview paper is �	�� The �rst dissertation
length study devoted to the
approach is ����� in which the approach is compared to alternative learning
methods for NLP tasks related to English word pronunciation �stress assign
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ment� syllabi�cation� morphological analysis� alignment� grapheme
to
phoneme
conversion��
All papers referred to in this section are available in electronic form from

the ILK homepage� http���ilk�kub�nl� We are grateful for any feedback on
the algorithms and the way we applied them�
Whereas the work in Tilburg has been oriented primarily towards language

engineering applications� the cnts research group of Antwerp University� with
which close research ties exist� has studied the linguistic and psycholinguistic
relevance of memory
based learning for stress assignment in Dutch ���� ����� and
as a model for phonological bootstrapping� A recently started project has as its
aim to test predictions from memory
based models for language processing with
psycholinguistic experiments�
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File formats

This chapter describes the format of the input and output �les used by TiMBL�
Where possible� the format is illustrated using the same small toy data set that
is shown in Figure ���� It consists of �� instances of � di�erent everyday objects
�nut� screw� key� pen� scissors�� described by � discrete features �size� shape�
and number of holes��

��� Data format

The training and test sets for the learner consist of descriptions of instances
in terms of a �xed number of feature
values� TiMBL supports a number of
di�erent formats for the instances� but they all have in common that the �les
should contain one instance per line� The number of instances is determined
automatically� and the format of each instance is inferred from the format of
the �rst line in the training set� The last feature of the instance is assumed to
be the target category� Should the guess of the format by TiMBL turn out to
be wrong� you can force it to interpret the data as a particular format by using
the �F option� Note that TiMBL is designed to deal with symbolic� discrete
values� and that it will not interpret numbers as such but as just another string
of characters�
Once TiMBL has determined the input format� it will skip and complain

about all lines in the input which do not respect this format �i�e� have a di�erent
number of feature
values with respect to that format��
During testing� TiMBL writes the classi�cations of the test set to an output

�le� In most cases� the format of this output �le is the same as the input
format� with the addition of the predicted category being appended after the
correct category�

��
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����� Column format

The column format uses white space as the separator between features� White
space is de�ned as a sequence of one or more spaces or tab characters� Every
instance of white space is interpreted as a feature separator� so it is not possible
to have feature
values containing white space� The column format is auto

detected when an instance of white space is detected on the �rst line before a
comma has been encountered� The example data set looks like this in the column
format�

small compact 	 nut

small long none screw

small long 	 key

small compact 	 nut

large long 	 key

small compact none screw

small compact 	 nut

large long none pen

large long � scissors

large long 	 pen

large other � scissors

small other � key

����� C��� format

This format is a derivative of the format that is used by the well
known C���
decision tree learning program ����� The separator between the features is a
comma� and the category �viz� the last feature on the line� is followed by a
period �although this is not mandatory� TiMBL is robust to missing periods���
White space within the line is taken literally� so the pattern a
 b c
d will
be interpreted as �a�
� b c�
�d�� When using this format� especially with
linguistic data sets or with data sets containing �oating point numbers� one
should take special care that commas do not occur in the feature
values and
that periods do not occur within the category� Note that TiMBL�s C��� format
does not require a so called names�le� However� TiMBL can produce such a �le
for C��� with the �n option� The C��� format is auto
detected when a comma
is detected on the �rst line before any white space has been encountered� The
example data set looks like this in the C��� format�

small
compact
	
nut�

small
long
none
screw�

small
long
	
key�

small
compact
	
nut�

large
long
	
key�

small
compact
none
screw�

�The periods after the category are not reproduced in the output
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small
compact
	
nut�

large
long
none
pen�

large
long
�
scissors�

large
long
	
pen�

large
other
�
scissors�

small
other
�
key�

����� ARFF format

ARFF is a format that is used by the WEKA machine learning workbench ��	���
Although TiMBL at present does not entirely follow the ARFF speci�cation� it
still tries to do as well as it can in reading this format� In ARFF the actual data
are preceded by a header with various types of information and interspersed with
lines of comments �starting with ��� The ARFF format is auto
detected when
the �rst line starts with � or  � TiMBL ignores lines with ARFF comments and
instructions� and starts reading data from after the �data statement until the
end of the �le� The feature
values are separated by commas� and white space is
deleted entirely� so the pattern a
 b c
d will be interpreted as �a�
�bc�
�d��
We plan to include better support for the ARFF format in future releases�

� There are � attributes�

� There are 	� instances�

� Attribute information� Ints Reals Enum Miss

� �size� � � 	� �

� �shape� � � 	� �

� �n�holes� � � � �

� �class�� � � 	� �

�relation �example�data�

�attribute �size� � small
 large�

�attribute �shape� � compact
 long
 other�

�attribute �n�holes� � 	
 none
 ��

�attribute �class�� � nut�
 screw�
 key�
 pen�
 scissors��

�data

small
compact
	
nut�

small
long
none
screw�

small
long
	
key�

small
compact
	
nut�

large
long
	
key�

small
compact
none
screw�

small
compact
	
nut�

large
long
none
pen�

large
long
�
scissors�

large
long
	
pen�

large
other
�
scissors�

�WEKA is available from the Waikato University Department of Computer Science�
http���www�cs�waikato�ac�nz��ml��
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small
other
�
key�

����� Compact format

The compact format is especially useful when dealing with very large data �les�
Because this format does not use any feature separators� �le
size is reduced
considerably in some cases� The price of this is that all features and class labels
must be of equal length �in characters� and TiMBL needs to know beforehand
what this length is� You must tell TiMBL by using the �l option� The compact
format is auto
detected when neither of the other formats applies� The same
example data set might look like this in the column format �with two characters
per feature��

smco	�nu

smlonosc

smlo	�ke

smco	�nu

lalo	�ke

smconosc

smco	�nu

lalonope

lalo��sc

lalo	�pe

laot��sc

smot��ke

��� Weight �les

The feature weights that are used for computing similarities and for the internal
organization of the memory
base can be saved to a �le� A �le with weights can
be constructed or altered manually and then read back into TiMBL� The format
for the weights �le is as follows� The weights �le may contain comments on lines
that start with a ! character� The other lines contain the number of the feature
followed by its numeric weight� An example of such a �le is provided below�
The numbering of the weights starts with � and follows the same order as in the
data �le� If features are to be ignored it is advisable not to set them to zero�
but give them the value �Ignored� or to use the �s option�

� DB Entropy� �������

� Classes� �

� Lines of data� 	�

� Fea� Weight

	 ��������

� ���	����

� �������
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��� Tree �les

Although the learning phase in TiMBL is relatively fast� it can sometimes be
useful to store the internal representation of the data set for even faster subse

quent retrieval� In TiMBL� the data set is stored internally in a tree structure
�see Section ����� When using mbl� this tree representation contains all the
training cases as full paths in the tree� When using igtree� unambiguous paths
in the tree are pruned before it is used for classi�cation or written to �le� In
either tree� the arcs represent feature
values and nodes contain class �frequency
distribution� information� The features are in the same order throughout the
tree� This order is either determined by memory
size considerations in mbl� or
by feature relevance in igtree� It can explicitly be manipulated using the �T
option�
We strongly advise to refrain from manually editing the tree �le� However�

the syntax of the tree �le is as follows� After a header consisting of information
about the algorithm and the feature
ordering �the permutation from the order
in the data �le to the order in the tree�� the tree�s nodes and arcs are given in
non
indented bracket notation�
Starting from the root node� each node is denoted by an opening parenthesis

���� followed by a default class� After this� there is an optional class distribution
list� within curly braces �f g�� containing a non
empty list of categories followed
by integer counts� After this comes an optional list of children� within �� ��
brackets� containing a non
empty list of nodes� The choice whether distributions
are present is maintained throughout the whole tree� Whether children are
present is really dependent on whether children are present�
The mbl tree that was constructed from our example data set looks as

follows�

� Algorithm� MBL

� Permutation� � 	
 �
 � 


�

� nut � nut � screw � key � pen � scissors � �

� small � nut � nut � screw � key � �

� 	 � nut � nut � key 	 �

� compact � nut � nut � �

�

long � key � key 	 �

�

�

�

none � screw � screw � �

� compact � screw � screw 	 �

�

long � screw � screw 	 �

�Although in this header each line starts with ���� these lines cannot be seen as comment
lines�
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�

�

�

� � key � key 	 �

� other � key � key 	 �

�

�

�

�

�

large � pen � key 	 pen � scissors � �

� 	 � key � key 	 pen 	 �

� long � key � key 	 pen 	 �

�

�

�

none � pen � pen 	 �

� long � pen � pen 	 �

�

�

�

� � scissors � scissors � �

� long � scissors � scissors 	 �

�

other � scissors � scissors 	 �

�

�

�

�

�

�

�

The corresponding compressed igtree version is much smaller� Note also
that it does not contain a distribution� while an mbl tree must always contain
distributions�

� Algorithm� IG�tree

� Permutation� � 	
 �
 � 


�

� nut � small � nut � 	 � nut � long � key �

�

�

none � screw �

� � key �

�
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�

large � pen � 	 � key �

� � scissors �

�

�

�

�
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Command line options

The user interacts with TiMBL through the use of command line arguments�
When you have installed TiMBL successfully� and you type Timbl at the com

mand line without any further arguments� it will print an overview of the most
basic command line options�

TiMBL Version 	��
 �c� ILK 	����

Tilburg Memory Based Learner

Induction of Linguistic Knowledge Research Group
 Tilburg University�

usage� Timbl �f data�file ��t test�file�

or see� Timbl �h

for all possible options

If you are satis�ed with all of the default settings� you can proceed with just
these basics�

�f �datafile
 � supplies the name of the �le with the training items�

�t �testfile
 � supplies the name of the �le with the test items�

�h � prints a glossary of all available command line options�

The presence of a training �le will make TiMBL pass through the �rst two
phases of its cycle� In the �rst phase it examines the contents of the training
�le� and computes a number of statistics on it �feature weights etc��� In the
second phase the instances from the training �le are stored in memory� If no
test �le is speci�ed� the program exits� possibly writing some of the results of
learning to �les �see below�� If there is a test �le� the selected classi�er� trained
on the present training data� is applied to it� and the results are written to
a �le of which name is a combination of the name of the test �le and a code
representing the chosen algorithm settings� TiMBL then reports the percentage
of correctly classi�ed test items� The default settings for the classi�cation phase
are� a Memory
Based Learner� with Gain Ratio feature weighting� with k � ��

��
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and with optimizations for speedy search� If you need to change the settings�
because you want to use a di�erent type of classi�er� or because you need to
make a trade
o� between speed and memory
use� then you can use the options
that are shown using �h� The sections below provide a reference to the use of
these command line arguments� and they are roughly ordered by the type of
action that the option has e�ect on�

��� Algorithm and Metric selection

�a �n
 � chooses between the standard mbl �nearest neighbor search� algo

rithm �n�
� this is the default value�� and the decision tree
based opti

mization igtree �n����

�m �n
 � chooses between similarity metrics� Only applicable in conjunction
with mbl ��a ��� The possible values are�

n�
 " Weighted Overlap metric �default�� See section ������ The dif

ference between two feature
values is � if they are di�erent and 
 if
they are exactly the same� Can be used in combination with feature

weights that are speci�ed using the �w argument�

n�� " Modi�ed Value Di�erence Metric� See section ������ The di�erence
between two feature
values is a continuous measure which depends on
the di�erence between their conditional probability distribution over
the target categories� The di�erences between all pairs of feature

values are computed before the test phase� unless the number of
feature
values is too large� or the �� option is used� This metric can
be used in combination with feature
weights that are speci�ed using
the �w argument�

�w �n
 � chooses between feature
weighting possibilities� The weights are used
in the metric of mbl and in the ordering of the igtree� Possible values
are�

n�
 " No weighting� i�e� all features have the same importance �weight
� ���

n�� " Gain Ratio weighting �default�� See section ������

n�� " Information Gain weighting� See section ������

n��lename " Instead of a number we can supply a �lename to the �w
option� This causes TiMBL to read this �le and use its contents as
weights� �See section ��� for a description of the weights �le�

�k �n
 � Number of nearest neighbors used for extrapolation� Only applicable
in conjunction with mbl ��a ��� The default is �� Especially with the
mvdm metric it is often useful to determine a good value larger than � for
this parameter �usually an odd number� to avoid ties�� Note that due to
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ties �instances with exactly the same similarity to the test instance� the
number of instances used to extrapolate might in fact be much larger than
this parameter�

�R �n
 � Resolve ties in the classi�er randomly� using a random generator
with seed n� As a default this is OFF� and ties are resolved in favor of the
category which is more frequent in the training set as a whole#remaining
ties are resolved on a �rst come �rst served basis�

�t ��file
 � If the �lename given after �t starts with ���� TiMBL will read
commands for testing from file� This �le should contain one set of in

structions per line� On each line new values can be set for the following
command line options� �d �D �e �k �m �o �O �p �P �R �v �w �x ��

��� It is compulsory that each line contains a �t �file
 argument to
specify the name of the test �le�

��� Input options

�F �format
 � Force TiMBL to interpret the training and test �le as a speci�c
data format� Possible values for this parameter are� Compact
 C���


ARFF
 Columns �case
sensitive�� The default is that TiMBL guesses the
format from the contents of the �rst line of the data �le� See section ���
for description of the data formats and the guessing rules�

�s �n
���
 � Skip features n���� After the �s option a string is given with
a comma
separated list of features which will be ignored during training
and testing� The e�ect is the same as setting a feature�s weight to the
value Ignored� This has an advantage over setting the weights to zero�
because zero
weighted features are still present in the learner�s internal
representation and can have undesirable side
e�ects� especially with the
igtree algorithm�

�l �n
 � Feature length� Only applicable with the Compact data format�
�n
 is the number of characters used for each feature
value and category
symbol�

�i �treefile
 � Skip the �rst two training phases� and instead of processing
a training �le� read a previously saved �see �I option� instance
base or
igtree from the �le treefile� See section ��� for the format of this �le�

�P �path
 � Specify a path to read the data �les from� This path is ignored
if the name of the data �le already contains path information�

��� Output options

�I �treefile
 � After phase one and two of learning� save the resulting tree

based representation of the instance
base or igtree in a �le� This �le can
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later be read back in using the �i option �see above�� See section ��� for
a description of the resulting �le�s format�

�d � Keep distributions� This option only has e�ect with the above �I option�
and causes the information about target category frequencies to be re

tained in the tree �le� With mbl this is always ON� For igtree it is OFF�
turning it ON has no e�ects on classi�cation accuracy� but only writes the
distributions in the tree �le�

�W �file
 � Save the used feature
weights in a �le�

�n �file
 � Save the feature
value and target category symbols in a C��� style
�names �le� with the name �file
�

�p �n
 � Indicate progress during training and testing after every n processed
patterns� The default setting is �



�

�e �n
 � During testing� compute and print an estimate on how long it will
take to classify n test patterns� This is o� by default�

�v �n
 � Verbosity Level� determines how much information is written to
standard output during a run� This parameter can take on the following
values�

n�
 " output just the minimal amount of information�

n�� " give an overview of the settings�

n�� " show the computed feature weights �this is the default�

n�� " show each exact match�

Setting n to be the sum of any number of the above values� results in
combined levels of verbosity�

�D � Write the distance of the nearest neighbor of each test item� In the case
of the igtree algorithm the resulting number represents the depth of the
tree at which the classi�cation decision was made�

�� � Write the percentage of correctly classi�ed test instances to a �le with the
same name as the output �le� but with the su�x �����

�o �suffix
 � Add suffix to the name of the output �le� Useful for di�erent
runs with the same settings on the same test�le�

�O �path
 � Write all output to the path given here� The default is to write
all output to the directory where the test �le is located�
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��� Internal representation options

�T �n
 � Order the instance
base according to one of the following measures�
Di�erent measures produce di�erent tree sizes� and thus this option can
be used to get smaller memory usage� depending on the peculiarities of
the data set

n�� " use the order of the features in the training �le�

n�� " use Gain Ratio to order features �default for igtree��

n�� " use Information Gain to order the features�

n�� " order according to the quantity �

number of feature values
�

n�� " order according to the quantity GainRatio
number of feature values

� �default

for mbl�

n�� " order according to the quantity InformationGain
number of feature values

�

�x � Turns o� the shortcut search for exact matches in mbl� The default is for
this to be ON �which is usually much faster�� but when k � �� the shortcut
produces di�erent results from a �real� k nearest neighbors search�

�� � Turn o� the use of �memory
for
speed� optimizations� This option has
a di�erent e�ect depending on which metric is used� With the Weighted
Overlap metric ��m ��� it turns o� the computation of inverted �les� Turn

ing this o� will make testing slower� but reduces the memory load approx

imately by a half� With the mvdm metric� ��m 	� it turns o� the pre

computation of the value di�erence matrices� Turning this o� will make
testing slower� but is sometimes a sheer necessity memory
wise� With
both metrics� the default is ON�
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Appendix A

Tutorial� a case study

In this tutorial is meant to get you started with TiMBL quickly� We discuss
how to format the data of a task to serve as training examples� which choices
can be made during the construction of the classi�er� how various choices can be
evaluated in terms of their generalization accuracy� and various other practical
issues� The reader who is interested in more background information on TiMBL
implementation issues and a formal description of Memory
Based Learning� is
advised to read Chapter ��
Memory
Based Learning �mbl� is based on the idea that intelligent behavior

can be obtained by analogical reasoning� rather than by the application of ab

stract mental rules as in rule induction and rule
based processing� In particular�
mbl is founded in the hypothesis that the extrapolation of behavior from stored
representations of earlier experience to new situations� based on the similarity
of the old and the new situation� is of key importance�

mbl algorithms take a set of examples ��xed
length patterns of feature

values and their associated class� as input� and produce a classi�er which can
classify new� previously unseen� input patterns� Although TiMBL was designed
with linguistic classi�cation tasks in mind� it can in principle be applied to
any kind of classi�cation task with discrete features and categories for which
training data is available� The only limitation is that numeric features are at
present not supported� and will be treated as unordered discrete values� As an
example task for this tutorial we go through the application of TiMBL to the
prediction of Dutch diminutive su�xes� The necessary data sets are included in
the TiMBL distribution� so you can replicate the examples given below on your
own system�

A�� Data

The operation of TiMBL will be illustrated below by means of a real natural
language processing task� prediction of the diminutive su�x form in Dutch �����
In Dutch� a noun can receive a diminutive su�x to indicate small size literally

�
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or metaphorically attributed to the referent of the noun� e�g� mannetje means
little man� Diminutives are formed by a productive morphological rule which
attaches a form of the Germanic su�x 
tje to the singular base form of a noun�
The su�x shows variation in its form �Table A���� The task we consider here is
to predict which su�x form is chosen for previously unseen nouns on the basis
of their form�

Noun Form Su�x
huis �house� huisje 
je
man �man� mannetje 
etje
raam �window� raampje 
pje
woning �house� woninkje 
kje
baan �job� baantje 
tje

Table A��� Allomorphic variation in Dutch diminutives�

For these experiments� we collect a representation of nouns in terms of their
syllable structure as training material�� For each of the last three syllables of
the noun� four di�erent features are collected� whether the syllable is stressed
or not �values 
 or ��� the string of consonants before the vocalic part of the
syllable �i�e� its onset�� its vocalic part �nucleus�� and its post
vocalic part
�coda�� Whenever a feature value is not present �e�g� a syllable does not have
an onset� or the noun has less than three syllables�� the value ��� is used� The
class to be predicted is either E �
etje�� T �
tje�� J �
je�� K �
kje�� or P �
pje��
Some examples are given below �the word itself is only provided for conve


nience and is not used�� The values of the syllabic content features are given in
phonetic notation�


 b i � 
 z  � � m A nt J biezenmand
� � � � � � � � � b I x E big
� � � � � b K � 
 b a n T bijbaan
� � � � � b K � 
 b  l T bijbel

Our goal is to use TiMBL in order to train a classi�er that can predict
the class of new� previously unseen words as correctly as possible� given a set
of training examples that are described by the features given above� Because
the basis of classi�cation in TiMBL is the storage of all training examples in
memory� a test of the classi�er�s accuracy must be done on a separate test set�
We will call these datasets dimin�train and dimin�test� respectively� The
training set dimin�train contains �


 words and the test set contains ��

words� none of which are present in the training set� Although a single train$test
partition su�ces here for the purposes of explanation� it does not factor out the
bias of choosing this particular split� Unless the test set is su�ciently large� a
more reliable generalization accuracy measurement is used in real experiments�

�These words were collected form the celex lexical database 
��
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e�g� �

fold cross
validation ����� This means that �
 separate experiments are
performed� and in each �fold� �
� of the data is used for training and �
� for
testing� in such a way that each instance is used as a test item exactly once�

A�� Using TiMBL

Di�erent formats are allowed for training and test data �les� TiMBL is able to
guess the type of format in most cases� We will use comma
separated values
here� with the class as the last value� This format is called C��� format in TiMBL
because it is the same as that used in Quinlan�s well
known C��� program for
induction of decision trees ����� See Section � for more information about this
and other �le formats�
An experiment is started by executing TiMBL with the two �les �dimin�train

and dimin�test� as arguments�

Timbl �f dimin�train �t dimin�test

Upon completion� a new �le has been created with name
dimin�test�mbl�wo�gr�k	�out� which is in essence identical to the input test
�le� except that an extra comma
separated column is added with the class pre

dicted by TiMBL� The name of the �le provides information about the mbl
algorithms and metrics used in the experiment �the default values in this case��
We will describe these shortly�
Apart from the result �le� information about the operation of the algorithm

is also sent to the standard output� It is therefore advisable to redirect the
output to a �le in order to make a log of the results�

Timbl �f dimin�train �t dimin�test � dimin�exp�

The defaults used in this case work reasonably well for most problems� We
will now provide a point by point explanation of what goes on in the output�

TiMBL Version ���� �c� ILK ���	�

Tilburg Memory Based Learner

Induction of Linguistic Knowledge Research Group� Tilburg University

Wed Mar �� �
��	��
 ���	

Examine datafile gave the following results�

Number of Features� ��

InputFormat � C
�


TiMBL has detected �� features and the C��� input format �comma
separated
features� class at the end��
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Phase �� Reading Datafile� dimin�train

Start� � � Wed Mar �� �
��	��
 ���	

Finished� ���� � Wed Mar �� �
��	��� ���	

Calculating Entropy Wed Mar �� �
��	��� ���	

Lines of data � ����

DB Entropy � �����	���

Number of Classes � 


Feature Values SplitInfo InfoGain GainRatio

� � ���

�
�	 ����������
 ����
	��
��

� 
� ����	���� �����	����	 �����

����

� �� ����	���� �����
��	
� ����	����	�


 �� ����	
		�
 ���
�

���� ���
�����
�


 � ��
���
�� ����

����
 ���
�������

� �� 
������	� ������

�� ����

�����

� �� ��
����

 �����
	��	 ����
�
����

	 �� �����	��� �������	��� ���
��	�	�


� � ���������� ���

�
��	� ���
�	����


�� �
 
�������� �����		�
� ���
�	


	�

�� �	 ����	�
�� �������

	 ���	
����	

�� 
� ����	�
	
 ����	���� ����
���	�

Feature Permutation based on GainRatio�Values �

� �� 
� ��� �� ��� �� 
� �� ��� 	� �� � �

Phase � is the training data analysis phase� Time stamps for start and
end of analysis are provided� Some preliminary analysis of the training data
is done� number of training items� number of classes� entropy of the train

ing data� For each feature� the number of values� and three variants of an
information
theoretic measure of feature relevance are given� These are used
both for memory organization during training and for feature relevance weight

ing during testing �see Chapter ��� Finally� an ordering �permutation� of the
features in terms of decreasing relevance for solving the task is provided�

Phase �� Learning from Datafile� dimin�train

Start� � � Wed Mar �� �
��	��� ���	

Finished� ���� � Wed Mar �� �
��	��� ���	

Phase � is the learning phase� all training items are stored in an e�cient
way in memory for use during testing� Again timing �real time� is provided�
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Phase �� Starting to test� Testfile� dimin�test

Algorithm � MBL

Test metric � weighted overlap �Using Inverted files� preferring exact matches�

Weighting � GainRatio

Calculating inverted files

Writing output in� ��dimin�test�mbl�wo�gr�k��out

Tested� � � Wed Mar �� �
��	��� ���	

Tested� � � Wed Mar �� �
��	��� ���	

Tested� � � Wed Mar �� �
��	��� ���	

Tested� 
 � Wed Mar �� �
��	��� ���	

Tested� 
 � Wed Mar �� �
��	��� ���	

Tested� � � Wed Mar �� �
��	��� ���	

Tested� � � Wed Mar �� �
��	��� ���	

Tested� 	 � Wed Mar �� �
��	��� ���	

Tested� � � Wed Mar �� �
��	��� ���	

Tested� �� � Wed Mar �� �
��	��� ���	

Ready� �
� � Wed Mar �� �
�����
 ���	

Seconds taken� �� ��
��� p�s�

��	��
� ����������� of which �� exact matches

In Phase �� the trained classi�er is applied to the test set� Because we have
not speci�ed which algorithm to use� the default settings are used �mbl with
information theoretic feature weighting�� This algorithm computes the similar

ity between a test item and each training item in terms of weighted overlap�
the total di�erence between two patterns is the sum of the relevance weights of
those features which are not equal� The class for the test item is decided on the
basis of the least distant item�s� in memory� To compute relevance� Gain Ra

tio is used �an information
theoretic measure� see Section ������� Time stamps
indicate the progress of the testing phase� Finally� accuracy on the test set is
logged� and the number of exact matches�� In this experiment� the diminutive
su�x form of ����� of the new words was correctly predicted�
The meaning of the output �le names can be explained now�

dimin�test�mbl�wo�gr�k	�outmeans output �le ��out� for dimin�test with
algorithm mbl� similarity computed as weighted overlap ��wo�� relevance weights
computed with gain ratio ��gr�� and number of most similar memory patterns
on which the output class was based equal to � ��k	��

A�� Algorithms and Metrics

A precise discussion of the di�erent algorithms and metrics implemented in
TiMBL is given in Chapter �� We will discuss the e�ect of the most important

�An exact match in this experiment can occur when two di�erent nouns have the same
feature
value representation�
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ones on our data set�
A �rst choice in algorithms is between using mbl and igtree� In the trade


o� between generalization accuracy and e�ciency� mbl usually� but not always�
leads to more accuracy at the cost of more memory and slower computation�
whereas igtree is a fast heuristic approximation of mbl� but sometimes less
accurate� The igtree algorithm is used when �a 	 is given on the command
line� whereas the mbl algorithm used above �the default� would have been
speci�ed explicitly by �a ��

Timbl �a � �f dimin�train �t dimin�test

When using the mbl algorithm� there is a choice of metrics for in�uencing
the de�nition of similarity� With weighted overlap� each feature is assigned a
weight� determining its relevance in solving the task� With the modi�ed value
di�erence metric �mvdm�� each pair of values of a particular feature is assigned
a value di�erence� The intuition here is that in our diminutive problem� for
example� the codas n and m should be regarded as being more similar than n
and p� These pair
wise di�erences are computed for each pair of values in each
feature �see Section ������� Selection between weighted overlap and mvdm is
done by means of the �m parameter� The following selects mvdm� whereas �m
� �weighted overlap� is the default�

Timbl �m � �f dimin�train �t dimin�test

Especially when using mvdm� but also in other cases� it may be useful to
extrapolate not just from the most similar example in memory� which is the
default� but from several� This can be achieved by using the �k parameter
followed by the wanted number of nearest neighbors� E�g�� the following applies
mbl with the mvdm metric� with extrapolation from the � nearest neighbors�

Timbl �m � �k 
 �f dimin�train �t dimin�test

Within thembl weighted overlap option� the default feature weighting method
is Gain Ratio� By setting the parameter �w to 
� an overlap de�nition of sim

ilarity is created where each feature is considered equally relevant� Similarity
reduces in that case to the number of equal values in the same position in the
two patterns being compared� As an alternative weighting� users can provide
their own weights by using the �w parameter with a �lename in which the fea

ture weights are stored �see Section ��� for a description of the format of the
weights �le��
Table A�� shows the e�ect of algorithm� metric� and weighting method choice

on generalization accuracy for our training 
 test set partition� We see that
igtree performs slightly worse than mbl for this task �it uses less memory and
is faster� however�� When comparing mvdm and feature weighting� we see that
the overall best results are achieved with mvdm� but only with a relatively high
value for k� the number of memory items on which the extrapolation is based�
Increasing the value of k for �weighted� Overlap metrics decreased performance�
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gain ratio inform� gain overlap mvdm

igtree ���� ����
mbl� �k� ���� ���� ���� ����
mbl� �k�
 �	��

Table A��� Some results for diminutive prediction�

Within the feature weighting approaches� overlap �i�e� no weighting� performs
markedly worse than the default information gain or gain ratio weighting meth

ods�

A�� More Options

Several input and output options exist to make life easier while experimenting�
See Chapter � for a detailed description of these options� One especially useful
option for testing linguistic hypotheses is the �s command line option� which
allows you to skip certain features when computing similarity� E�g� if we want
to test the hypothesis that only the rime �nucleus and coda� of the last syllable
are actually relevant in determining the form of the diminutive su�x� we can
execute the following to disregard all but the last two features� As a result we
get an accuracy of �	�����

Timbl �s ������
�
�����	����� �f dimin�train �t dimin�test

The last parameter we discuss here is the �D command line option which has
as e�ect that in the output �le not only the extrapolated class is appended to
the input pattern� but also the distance to the nearest neighbor�

Timbl �D �f dimin�train �t dimin�test

The resulting output �le contains lines like the following�

��t�������l�������G���n�T�T ��������

����I�n���str�y�����m�E�nt�J�J ��������

������������������br�L�t�J�J ���
�	



����������zw�A�����m���r�T�T ���
�
�


����������f�u�����dr�a�l�T�T �������	

������������������l�e�w�T�T ���
�	



����������tr�K�N���k�a�rt�J�J ����	

�

������������o�����p�u���T�T �������


������������������l�A�m�E�E ���
�	



������������������l�A�p�J�J ���
�	



������������������sx�E�lm�P�P ���
�	



��l�a�����d�������k�A�st�J�J ��������

�It should be kept in mind that the amount of overlap in training and test set has signi�

cantly increased� so that generalization is based on retrieval more than on similarity compu

tation�
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This can be used to study how speci�c instances �low distance� and more
general patterns �higher distance� are used in the process of generalization�

Summarizing� we hope that this tutorial has made it clear that� once you
have coded your data in �xed
length discrete feature
value patterns� it should
be relatively straightforward to get the �rst results using TiMBL� You can then
experiment with di�erent metrics and algorithms to try and further improve
your results� We wish you happy learning%


