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Abstract

An exemplar-based computational framework is presented which is compatible with
Cognitive Grammar. In an exemplar-based approach, language acquisition is modeled
as the incremental, data-oriented storage of experiential patterns, and language perfor-
mance as the extrapolation of information from those stored patterns on the basis of a
language-independent information-theoretic similarity metric. We show that this simple
architecture works for many aspects of phonological, morphological, and morphosyntactic
acquisition and processing. Furthermore, we sketch how the approach may also work for
syntactic processing. A central insight of the approach, based on the results of computa-
tional modeling experiments, is that abstraction of representations is not only unnecessary
to achieve generalization (i.e. to make the system productive, and to make it go ‘beyond’
the learned patterns), but even harmful, and that useful language-independent metrics
can be found for defining similarity in the context of language processing.

1 Usage-based Models of Language Structure

In the generative tradition, generality is achieved by means of abstraction, and the repre-
sentations of choice to describe these abstractions are rules. This implies that redundancy
and the storage of individual instances are to be avoided, except for exceptions to the
generalizations expressed in rules. In Langacker, 1991 (Chapter 10), this methodology
is critically examined, and cognitive grammar is described as an alternative usage-based
model of language structure. In the latter, bottom-up, approach, patterns (rules, gener-
alizations) and (redundant) instantiations of those rules are assumed to co-exist in the
grammar, describing phenomena at all levels of generality, from exceptionless regularities
to idiosyncratic exceptions. Rules are presumed to be necessary for the computation of
novel instantiations.

In the remainder of this paper we will introduce an exemplar-based approach to lan-
guage acquisition and processing. The approach is in large part compatible with Lan-
gacker’s usage-based model, but is more radical in its " maximalism”: language knowledge
is supposed to consist only of ”instantiations” (exemplars); there is no role for explicit
abstractions corresponding to (sub)regularities. We will argue on the basis of computa-
tional modeling experiments that the adoption of abstractions (rules, patterns), taken as
necessary for explaining generalization and productivity in both the generative and the
cognitive grammar approach, is misguided. Furthermore, the exemplar-based approach
contributes to making cognitive grammar ideas more concrete by providing computational
operationalisations of both acquisition and processing in such a framework.
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2 An Exemplar-Based Linguistic Theory

The Chomskian view on the acquisition and nature of linguistic knowledge is familiar:
every individual is born with a ‘universal grammar’ as part of her genetic endowment,
consisting of rules (principles), and parameters with a predefined default value and a num-
ber of possible settings. In language acquisition, the parameters are set to their correct
values for the grammar of the specific language being learned, based on cues in the lan-
guage experience the individual is exposed to. A theoretical description of the language
knowledge in this framework takes the form of abstractions (rules or principles) manip-
ulating symbolic representations, and exception lists for irregular phenomena. When we
want to use such an architecture for language processing (i.e. when we want to give a
psycholinguistic performance interpretation to this architecture), procedures have to be
defined based on rule interpretation and conflict resolution for language generation (from
logical form to phonetic form) and language comprehension (from phonetic form to logical
form). Conflict resolution (deciding which rule or exception is applicable) usually takes
the form of rule ordering or some form of the elsewhere condition (i.e. some form of
non-monotonic reasoning).

In contrast to this nativist, rule-based approach, the exemplar-based theory proposed
here is empiricist in its acquisition method and based on memory traces (patterns) rather
than on explicit symbolic rules in its knowledge representation. We will call these patterns
exemplars. The main differences between both architectures are summarized in Figure 1,
where the vertical arrow denotes acquisition, and the horizontal arrows performance. The
left part of the figure describes the traditional view (parameter setting for language acqui-
sition; rules and exception lists for language knowledge representation; rule interpretation
and conflict resolution for language processing), the right part of the figure the exemplar-
based alternative, with storage of exemplars and computation of language-independent
metrics for acquisition, stored exemplars for representation, and analogy for processing.
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In an exemplar-based theoretical framework, Language Acquisition is reduced to the
incremental storage of exemplars of performance-level tasks. E.g. in learning the past
tense of verbs, to take a typical example, patterns of verb stems and their associated
past tense forms are incrementally stored in memory as they present themselves in the
language experience of the learner. How such associated pairs can be singled out from
language experience can be explained in this case by referring to general principles of
similarity and association: related verb forms are both formally and semantically similar.
We will not go into the computational modeling of this process, however, and start in our
experiments from associated pairs of ‘input’ and ‘output’. An experience-driven theory is
therefore of necessity performance-oriented (task-oriented): what is stored are exemplars
of input-output associations, not abstract, reusable, task-independent generalizations.

Generalization and abstraction are considered often as indistinguishable concepts in
cognitive science and linguistics: rule-based, stochastic, and connectionist approaches all
work from the presupposition that they are able to generalize to new exemplars because
of the fact that they abstract away from the data. This presupposition is false: the
experiences themselves, combined with an analogical reasoning mechanism are able to
generalize (handle new, previously unseen exemplars) equally well, even better as we will
show in the experimental results section.

In Language Performance, each (sub)task is represented as a set of exemplars (expe-
riences, cases) in memory, which act as models to new input. Each exemplar consists of
an input representation and an output representation. Inputs are vectors of symbolic fea-
tures describing the input representation (in our past tense example, e.g., the segmental
and syllable structure information of the stem). Outputs can be boundary types (e.g. in
a segmentation task), or symbolic classes (e.g. in a disambiguation task). In case of our
example, outputs could be past tense suffixes or forms. New instances of the task are
solved either through memory retrieval or by similarity-based (analogical) reasoning. In
our example of predicting the past tense form of a verb stem, if the stem is present in
memory for this task, the associated output is retrieved (or the most probable output).
If it has not been encountered yet, the best matching exemplars in memory are used to
extrapolate from. The computation of similarity is therefore essential for the performance
of such an architecture. It is our hypothesis that language-independent similarity metrics
can and should be used to compute the best matching exemplars. We will return to this
in the next section.

As far as knowledge representation is concerned, there is no representational difference
in an exemplar-based model between regularities, subregularities, and exceptions. As
there are only exemplars in memory, and no explicit rules, there is no need for rule
ordering or some form of non-monotonic reasoning. In case of ambiguity, when several
different outputs are associated with the same input, the most probable solution is chosen
(or a probabilistic random choice is made). Rule-like behaviour is therefore a side-effect of
the interaction between the analogical reasoning process and the contents of memory. In
other words, the contents of memory can be approximated as a set of rules for convenience,
but these rules have no ontological status in the model (and shouldn’t have in a linguistic
theory).

3 Computational Modeling

Storing memory traces in the form of exemplars, and combining them with analogical
reasoning in computational models of problem solving is by no means a new idea. In
Artificial Intelligence, the concept has appeared in several disciplines (from computer
vision to robotics), using terminology such as similarity-based, example-based, memory-
based, case-based, analogical, lazy, nearest-neighbour, and instance-based (Stanfill and
Waltz, 1986; Kolodner, 1993; Aha et al. 1991; Salzberg, 1990). Ideas about this type of



analogical reasoning are rare in linguistics and pyscholinguistics (Skousen, 1989; Derwing
& Skousen, 1989; Chandler, 1992; Scha, 1992 are salient examples). In computational
linguistics (apart from incidental computational work of the linguists referred to earlier),
the general approach has recently gained some popularity: e.g., Cardie (1994, syntactic
and semantic disambiguation); Daelemans (1995, an overview of work in the early nineties
on memory-based computational phonology and morphology); Jones (1996, an overview
of example-based machine translation research); Federici and Pirrelli (1996).

3.1 Similarity Metric

Accuracy of an exemplar-based system on previously unseen inputs crucially depends on
the similarity metric (or distance metric) used. The most straightforward distance metric
would be the one in Equation (1), where X and Y are the patterns to be compared (input
parts of exemplars), and §(z;,y;) is the distance between the values of the i-th feature in
a pattern with n features.

A(X,Y) = 25(%,%) (1)

Distance between two values is measured using Equation 2, an overlap metric for
symbolic features (we have no numeric features in our linguistic data sets).

d(zi,yi) =04f z; =y;, else 1 (2)

We will refer to this approach as IB1 (Aha et al., 1991). We extended the algorithm
described there in the following way: in case an exemplar is associated with more than
one output in its memory (i.e. the exemplar is ambiguous), the distribution of patterns
over the different output categories is kept, and the most frequently occurring category is
selected when the ambiguous exemplar is used to extrapolate from.

3.2 Feature Relevance Weighting

In this distance metric, all features describing the input pattern of an exemplar are in-
terpreted as being equally important in solving the classification problem, but this is not
necessarily the case. We therefore weigh each feature with its information gain; a num-
ber expressing the relevance of the feature in terms of the average amount of reduction
of information entropy in memory when knowing the value of the feature (Daelemans
& van den Bosch, 1992, Quinlan, 1993; Hunt et al. 1966) (Equation 3). We will call
this algorithm IB1-IG. Many other methods to weigh the relative importance of features
have been designed, both in statistical pattern recognition and in machine learning (see
Wettschereck et al. 1996 for an overview).

The main idea of information gain weighting is to interpret the memory exemplars as
an information source capable of generating a number of messages (the different output
category labels) with a certain probability. The information entropy of such an informa-
tion source can be compared in turn for each feature to the average information entropy
of the information source when the value of that feature is known. Database information
entropy is equal to the number of bits of information needed to know the category given
a pattern, where the probability of a category is estimated by its relative frequency in
memory. From this amount, for each feature, the average memory information entropy
when knowing each of the values of that feature, is subtracted (Equation 3).

w(f) = =X P(C)log, P(C) -
~ Sy (=P(V}) x S P(CIVy) log, P(CIV7)



Finally, the distance metric in Equation 1 is modified to take into account the infor-
mation gain weight associated with each feature (Equation 4).

A(X,Y) = Zw(fi)é(a:i,yi) (4)

It is important to emphasize that the metrics used in exemplar-based models are, and
should be, language-independent: they are not linguistically informed, and are applicable
to domains as different as perception, medical diagnosis and robotics. This is crucial,
because otherwise, the nativist presuppositions would move from the universal grammar
principles and rules to the tailoring of linguistically motivated metrics. The representa-
tions on which these metrics work (i.e. the feature-value inventory used to describe the
input and output parts of the exemplars) are of course linguistically informed; they are
linguistic representations. Ideally, this feature-value inventory (the ontology used by the
representations) should be derived automatically from the data as well, a problem inves-
tigated with unsupervised learning approaches. Progress has been made in these areas.
See e.g. Zavrel & Veenstra (1996) for an example of the distributional bootstrapping
of syntactic categories, and Daelemans et al. (1996) where it is shown how learning to
produce morphologically complex words allows a system to discover phonological features
automatically. We will presuppose the existence of the feature-inventories of our linguistic
representations in what follows, however.

4 Experimental Results

In previous research!, we have applied the experience-driven approach to a number of lan-
guage processing tasks: syllabification (segment a word into syllables taking into account
morphological structure), grapheme-to-phoneme conversion (identify the pronunciation of
words), stress assignment (identify the stress pattern of words), morphology (both syn-
thesis and analysis), and morphosyntactic disambiguation (identify for each word in a
text its morpho-syntactic category). See Daelemans (1995) for a discussion of the general
approach, and van den Bosch & Daelemans, 1992, 1993; Daelemans & van den Bosch,
1992ab, 1993, 1994; van den Bosch et al. 1996; Daelemans et al. 1994, 1995, 1996ab for
the details.

There are some general trends which become clear when analysing the results of all
these experiments. First, the most striking result is that the generalization accuracy of
the induced systems is always comparable and often better than equivalent hand-crafted
systems. Second, when comparing different non-abstracting experience-driven algorithms
(notably IB1, IB1-IG, and variants) to other learning approaches which do abstract from
the data (the decision tree and rule induction programme C4.5 or Backprop learning in
connectionist networks, e.g.), we find that IB1-IG (the simplest possible exemplar-based
algorithm, extended with information-entropy-based feature weighting and a probabilistic
decision rule) always obtains the best generalization accuracy. The picture is less clear
for second place. Thirdly, in the same comparison, there is a tendency that the more
abstracting the technique is, the less accurate generalization becomes. More theoretical
and empirical work is needed to explain and refine these results. However, it is clear
that the universal structure of linguistic tasks (some regularities, many subregularities
and many exceptions) favours a learning approach in which abstraction from specific
exemplars is avoided.

We will briefly describe morphosyntactic disambiguation as an example of the experience-
driven approach (Daelemans et al. 1996 for details) and show how a complete syntactic
analysis approach can be based on a similar approach.
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4.1 An Illustration: Morphosyntactic Disambiguation

The problem of morphosyntactic desambiguation (for a human language understander as
well as an automatic one) is the following: given a text, provide for each word in the text its
contextually disambiguated morphosyntactic category. L.e., the words in the sentence the
0ld man the boats should be interpreted as belonging to the following parts of speech
respectively: Art Noun Verb Art Noun. In experiments on automatic morphosyntactic
disambiguation, the inventory of part of speech categories ranges from extremely simple
(order 10) to extremely complex (order 1000). Ideally, the inventory should be learned
from the data in an unsupervised way, e.g. through distributional clustering. Morphosyn-
tactic disambiguation is a hard task because of the massive ambiguity in natural language
text. E.g. in the example above, man can be both a noun and a verb, lexical probability
forces at first a noun reading, but context determines that in this case it is a verb. The
correct category of a word thus depends on a smooth integration of its lexical probability
Pr(cat|word), and its contextual probability Pr(cat|context).

There are rule-based systems (hand made or using rule-induction), and statistical
systems (using markov modeling and dynamic programming) to solve this task. Although
a thorough and reliable comparison of these approaches has not yet been achieved, it
seems to be the case that all approaches converge to a 96-97% accuracy on new text from
the same type as the training material.

The architecture of our exemplar-based morphosyntactic disambiguator takes the fol-
lowing form: given a corpus tagged with the desired morphosyntactic categories (the
experience of the system), a disambiguator is produced which maps the words of new text
to categories according to the same systematicity. This is achieved in the following way.
Given the annotated training corpus, three datastructures are automatically extracted:
a lexicon (associating words to possible categories as evidenced in the training corpus),
an exemplar memory for known words (words occurring in the lexicon), and an exemplar
memory for unknown words. During disambiguation, each word in the text is looked up
in the lexicon. If it is found, its lexical representation is retrieved and its context is de-
termined, and the resulting pattern is disambiguated using extrapolation from the most
similar exemplars in the known words memory. When a word is not found in the lexicon,
its lexical representation is computed on the basis of its form, its context is determined,
and the resulting pattern is disambiguated using extrapolation from the most similar ex-
emplars in the unknown words exemplar memory. In each case, output is a best guess of
the category for the word in its current context.

For known words, exemplars consist of information about a focus word to be disam-
biguated, its left and right context, and an associated category valid for the focus word
in that context. For unknown words, a category can be guessed only on the basis of the
form or the contezt of the word. In our experience-driven approach, we provide word form
information (especially about suffixes) indirectly to the disambiguator by encoding the
three last letters of the word as separate features in the exemplar representation. The first
letter is encoded as well because it contains information about prefix and capitalization
of the word. Context information is added to the exemplar representation in a similar
way as with known words.

For evaluation, we performed the complete disambiguator generation process on a 2
million words training set (lexicon construction and known and unknown words exemplar
memory construction), and tested on 200,000 test words. Generalization performance on
known words (96.7%), unknown words (90.6%), and total (96.4%) is competitive with
alternative hand-crafted and statistical approaches. The experiment shows that it is
possible to achieve high accuracy morphosyntactic disambiguation in a system that does
not abstract on the basis of experiences, but rather uses the exemplars themselves directly.



4.2 Syntax

Exemplar-based acquisition and processing is fundamentally a classification paradigm.
Given a description in terms of feature-value pairs of an input, an output category is
produced. This category should normally be taken from a finite inventory of possibilities,
known beforehand. How could such a paradigm be used for syntactic analysis?

It is our claim that all useful linguistic tasks, including parsing, can be redefined as
classification. All linguistic problems can be described as context-sensitive mappings.
These mappings can be of two kinds: disambiguation and segmentation (disambiguation
of boundaries) (see Daelemans, 1995).

e Disambiguation. Given a set of possibilities (categories) and a relevant context in
terms of attribute values, determine the correct possibility for this context. Instances
of identification include morphosyntactic disambiguation, grapheme-to-phoneme con-
version, lexical selection in generation, morphological synthesis, word sense disam-
biguation, term translation, stress assignment, etc.

e Segmentation. Given a target and a context, determine whether a boundary is
associated with this target, and if so which one. Examples include syllabification,
morphological analysis, syntactic analysis, etc.

Syntactic analysis (parsing) could then be defined as a cascade of morphosyntactic
disambiguation (tagging), segmentation into constituents, constituent disambiguation (la-
beling), and disambiguation of relations between constituents (attachment).

CLASSIFICATION

DISAM7GUATION SEGMENTATION
CONSTITUENT
/ CRBELING T BOUNDARY
TAGGING DETECTION
ATTACHMENT
Syntactic Analysis

It remains to be seen whether each of these in itself plausible subproblems (many
of which have already been solved in an experience-driven framework), produce useful
syntactic analyses when combined. Preliminary results on some segmentation problems
(finding NPs in text) and some attacthment problems (finding the correct attachment
point for PPs) are encouraging.

5 Conclusion

We presented an exemplar-based model of language acquisition and processing compatible
with but more radical than cognitive grammar. The model is performance-oriented and
is based on the storage of task-dependent input-output patterns (exemplars) in memory.
Acquisition consists of filling memory incrementally with such patterns, and processing
is based on retrieval of previously stored exemplars, and similarity-based (analogical) ex-
trapolation from previously stored exemplars to new task instances. We discussed the
implementation of a computational model for this theoretical framework in which sim-
ilarity is defined by means of a task- and language-independent distance metric based



on work in information theory and statistical pattern recognition. Several experiments
on phonological, morphological, and morphosyntactic linguistic performance tasks show
that the generalization accuracy of this simple computational model (its ability to solve
previously unencountered cases) is comparable to or better than hand-crafted or induced
rule-based approaches, suggesting that abstraction is harmful in learning linguistic per-
formance tasks. Finally, we showed how such an exemplar-based model could be applied
to the more complex problem of syntactic analysis.
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