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Abstract

Machine learning is becoming recognised as a source of generic and powerful tools for tasks
studied and implemented in language technology. Lazy learning with information-theoretic
similarity matching has appeared a salient approach, demonstrated to be superior over other
machine-learning approaches in various comparative studies. It isasserted bothin theoretical
machine learning and in reports on applications of machine learning to natural language
that the success of lazy learning may be due to the fact that language data contains small
diguncts, i.e., small clusters of identically-classified instances. We propose three measures to
discover small digunctsin our data: (i) we count and analyse indexed clusters of instances
in induced decision trees; (ii) we count clusters of friendly (identically-classified) instances
immediately surrounding instances by using similarity metrics from lazy learning; (iii) we
compare average sizes of friendly-instance clusters using different similarity metrics. The
measures are illustrated by a sample languagetask, viz. word pronunciation. Two conclusions
are arrived at: (i) our data indeed contains large amounts of small diguncts of about three to
a hundred instances, and (ii) there are important differences in feature relevance in the data,
exploited appropriately when lazy learning is augmented with information-theoretic similarity
matching. We claim that the measures introduced in this paper are useful for predicting the
suitedness of lazy learning in general.

1 Lazy learning of language tasks

In language technology, machine learning is becoming recognised as a source of powerful generic
toolsfor learning complex language tasks (Daelemans, Van den Bosch, and Weijters, 1997b). Lazy
learning (Aha, Kibler, and Albert, 1991; Aha 1997) has been demonstrated to be an especialy
salient approach to learning various language tasks such as grapheme-phoneme conversion, stress
assignment, morphological segmentation, and part-of-speech tagging; for an overview, we refer
to Dadlemans et al. (1997). In many comparative studies, lazy learning is shown to outperform
traditional linguistics-based models and other machine-learning approaches such as decision-
tree learning and connectionist learning, when applied to various language tasks (Daelemans
et al., 1997; Van den Bosch, 1997). In these comparative studies, lazy learning augmented



with an information-theoretic weighted similarity function, 1B1-1G consistently offers the best
generalisation performances (Daglemans and Van den Bosch, 1992; Daelemans, Van den Bosch,
and Weijters, 1997a).

Lazy (or instance based) learning isthe common term for aclass of learning algorithmsdescending
from the k-nearest neighbour (k-NN) agorithm (Cover and Hart, 1967; Devijverand Kittler, 1982;
Ahaet al., 1991). Lazy learning is based on the hypothesis that performance in cognitive tasks
(e.g., language tasks) is based on computing the similarity between new instances of the task and
stored representations of instances encountered earlier, rather than on the application of mental
rules abstracted from earlier experiences (Ahaet al., 1991; Ahaand Goldstone, 1992; Daelemans,
1995). Instance-based learning is commonly referred to as lazy due to the minimal effort put in
the learning process.

This paper offers concrete estimates relating to two assumptionson the suitability of applying lazy
learning to language tasks:

1. When classes are spread disjunctively in an instance space over small clusters of instances
(small digiuncts) in adata set, lazy learning isgenerally assumed to bethe preferred learning
approach yielding the best performance (Holte, Acker, and Porter, 1989).

2. Two inherent data characteristics of language data are assumed to cause

(a) thehighperformance of lazy learning, viz. that instancesoccur in pockets of exceptions
(Daelemans, 1995) (which may be equivalent to the small digunctsmentioned in (1)),
and

(b) the consistent superiority of information-theory-weighted lazy learning in particular,
viz. that instancesof language tasksdisplay substantial differencesin featurerelevance
(Daelemans, 1995; Van den Bosch, 1997).

We provide characterisations of the two assumptionsin section 2. The remainder of the paper is
devoted to proposing and testing concrete measures for testing the assumption. The tests of the
proposed measures are performed on data representing a sample language task, viz. learning word
pronunciation. Section 3 briefly introduces the sample task and provides the empirical results of
a comparative study with learning algorithms applied to the task. In section 4 we investigate the
following:

1. We count and analyse the clusters of instances represented at end nodesin the decision trees
generated by IGTREE, applied to the word-pronunciation task.

2. We measure the clusteredness of instanceswith 1B1 applied to the word-pronunciation task.

3. We measure the clusteredness of instanceswith 1B1-1G, and compare it with those measured
with 1B1 applied to the word-pronunciation task, and two distorted variations on the task.

In section 5, we formulate the conclusionsto be drawn from the present study.



2 Small disunctsand featurerelevance

All language tasks can be defined as classification tasks (Daelemans, 1995). Given a corpus
of examples of the task, data bases of these examples can be built to which machine-learning
algorithms can readily be applied. In such data bases, pockets of exceptions tend to occur;
“Exceptions tend to come in ‘families’ " (Daelemans, 1996b, p. 5). Keeping members of such
families in memory, enables accurate classification of members of the same family occurring
in new, unseen data. It can therefore be expected that lazy learning, which keeps all training
material in memory, will be ableto deal better with reoccurring family members of stored families
of exceptionsin test material, than decision-tree learning algorithms or supervised connectionist
algorithms, which show the tendency to ignore small groups of exceptions considered to be noise.
The observation of ‘families of exceptions' relates to an observation in machine-learning research
that “181 performswell for highly digunctivetarget concepts’ (Aha, 1992, p. 6). A target concept,
i.e, aclass, is highly digunctive when the instances of that class are very dissimilar globaly,
and similar locally. In data sets containing highly disjunctive target concepts, similar instances of
the same class are only found in small clusters (Daelemans’ (1996) families). The expectationis
that 181 will perform generally better than eager-learning algorithms on such data since it retains
all information concerning disuncts, no matter how small, while decision trees, notably those
implementing pruning (Quinlan, 1993), tend to overgeneralise and miss out on disambiguating
small diguncts(Holteet al., 1989; Ali. 1996). Our working assumption hereis, by abduction, that
language data contains many small disuncts.

Apart from ‘families of exceptions’, many language tasks display outspoken differencesin feature
relevance; language data is for a considerable part redundant (Zipf, 1935), and contains fairly
localised hot spots of information. Therefore, using information-theoretic functionsfor similarity
matching in lazy learning, e.g., asin I1B1-1G (Daelemans, Van den Bosch, and Weijters, 1997a),
may be advantageous in learning language tasks. With information-theoretic weighted similarity
matching, the multi-dimensional feature-value space is rescaled in such a way that instances
matching on important features are regarded as more similar to each other than instancesmatching
onanirrelevant feature. Itisunclear, however, what theexact influenceisonthefunctioning of lazy
learning with information-theoretic weighted similarity matching, as compared to flat weighting
in1B1. In sum, our working assumption is that with 1B1-1G, clustering of families of instancesin
the instance base improves.

3 Word pronunciation: the GStask

Converting written words to stressed phonemic transcription, i.e., word pronunciation, is a well-
known benchmark task in machine learning (Stanfill and Waltz, 1986; Sejnowski and Rosenberg,
1987; Dietterich, Hild, and Bakiri, 1990). Here, we provide an overview of experiments performed
on the word-pronunciation task, i.e., the conversion of fixed-sized instances representing parts of
words (windows), to a class representing the phoneme and the stress marker of the instance’s
middle letter. The task, henceforth referred to as Gs (Grapheme-phoneme conversion and stress
assignment) is similar to the NETTALK task presented by Sejnowski and Rosenberg (1986), but is
performed on alarger corpus of 77,565 English word-pronunciation pairs (Van den Bosch, 1997).
Convertedintofixed-sizedinstance, thefull instance baserepresenting the Gstask contains 675,745
instances. The task features 159 classes. When neither of these classes would be digjunctively
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Figure 1: Generalisation performance results on the Gs task in terms of percentage incorrectly
classified test instances of four learning algorithms.

clustered, one would expect an average cluster size of 675, 745/159 = 4249 instances.

Van den Bosch (1997) reports on 10-fold cross validation experiments performed with back-
propagation (Rumelhart, Hinton, and Williams, 1986), the decision-tree algorithm IGTREE (Daele-
mans et al., 1997a), and the two lazy-learning algorithms iB1 (Aha et al., 1991; Daelemans et al,
19974) and 1B1-1G (Daglemans and Van den Bosch, 1992; Daelemans et al., 1997a). Figure 1
displaysall generalisation errorsin terms of incorrectly classified test instances. A test instanceis
classified incorrectly when the phoneme part is misclassified, or the stress-marker part, or both.

TheresultsdisplayedinFigurelindicatethat 1B1-1G performsbest ontest instances. Thedifferences
between 1B1-1G and the other algorithms are significant, the smallest difference being between 1B1-
IG and IGTREE (¢(19) = 9.05, p < 0.001). The results thus display a superior performance of
IB1-IG.

4 Measuring small diguncts

4.1 Countingsmall disunctsin decision trees

Small disjunctscan be discovered by counting disambiguated instances at different levelsin trees
constructed by IGTREE. During the construction of a tree, IGTREE is assumed to disambiguate as
large numbers of instances as possible and as early in the tree as possible. The strategy of IGTREE
is to detect clusters of instances and to represent them by paths, ending at leaf nodes. When
IGTREE isable, for example, to construct apath ending in aleaf node at level three, representing the
disambiguated classification of 100 instances, it has discovered three feature-val ue tests indexing
acluster of instances of size 100 of the same class. The assumption underlying the clustering of
instances at leaf nodes in IGTREE is that information gain, computed over the full instance base,
provides an adequate approximation of the ordering of features to be investigated for maximising



[ level || average #instances per leaf ||

1 5| 6.91 + 273
172 | 15.56 +3.72
3413 | 16.02 +2.87
18842 | 8.08 + 0.98
32017 | 5.46 +0.74
22565 | 3.85 +0.18
7 24208 | 6.36 + 0.95

OO WN

Table 1: Numbers of leafs and average numbers of instances represented by these leafs (with
standard deviations), for each of the seven levelsin trees constructed by IGTREE on the Gs instance
base.

the numbers of disambiguated instances as high as possiblein thetree* (Daglemans et al. 1997a).

Table 1 liststhe numbersof |eafs, and average numbers of instances represented by those leafs, per
level, produced by IGTREE on the full Gs instance base. Two attributes of the tree appear salient:
first, at levels 2 and 3 of the tree, IGTREE is able to form clusters of (on average) 16 instances
of the same class. Thus, by deciding on two or three feature-value tests, approximately 3,500
clusters of size 16 (on average) can be identified. Second, at deeper levelsin the Gs tree, clusters
size decreases, though on average it remains at three instances or more. For example, on level 4,
clusters contain on average approximately 5 instances (the small standard deviationsin Table 1
indicate that the average number of instances per cluster per level isquite stable).

We conclude from these results that, under the assumption that IGTREE performs an adequate
clustering of the data (whichis biased by the specific choice of information-gain feature ordering),
the instances in the Gs instance base are clustered in small disjuncts of size three to sixteen, on
average. Itislikely that given enough training instances, one of the minimal two or three instances
of adigunct are stored in memory —each of these singleinstances can then serve asmini-prototypes
for test instances belonging to the same disjunct. Thus, storingall training instances of the Gs task
is expected to favour 1B1 and 1B1-1G, and disfavour approaches which stop storing information
below a certain utility threshold, ignoring small disuncts, such as decision-tree learning with
pruning (Quinlan, 1993; Holte et al., 1989).

4.2 Countingfriendly-neighbour clusterswith 1B1

An alternative method of detecting clusters less biased than the information-gain ordered cluster
detection by IGTREE, can be implemented using 1B1. We performed |eaving-one-out experiments
(Weissand Kulikowski, 1991) in which we computed for each instancein the Gs dataset aranking
of the 100 nearest neighboursin terms of their distance to the left-out instance. Within thisranked
list, we count the ranking of the nearest neighbour of a different class than the left-out instance.
Thisrank number minus oneis then taken as the cluster size surrounding the left-out instance. If,
for exampl e, aleft-out instanceis surrounded by threeinstances of the same classat distance 1 (i.e.,
one mismatching feature-value), followed by a fourth nearest-neighbour instance of a different

11t should be noted that c4.5 (Quinlan, 1993) arguably provides a better approximation than IGTREE, sinceit adjusts
the information-gain ordering of features at every non-ending nodein order to maximise the numbers of instancesthat
can be disambiguated as high in the tree as possible.
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Figure 2: Scatter plot of numbers of friendly-neighbour clusters of sizes 0 to 99, asfound by 181
on the Gs data set.

class at distance 2, the left-out instance is said to be in a friendly-neighbour cluster of size three.
The results of the leaving-one-out experiment are displayed graphically in Figure 2.

Thez-axisof Figure 2 denotesthe numbersof friendly neighboursfound surroundinginstances; the
y-axis denotes (in logarithmic scale) the occurrences of friendly-neighbour clusters of particular
sizes. 1Bl isabletofind thousandsto ten thousandsof clustersof sizes1to 60, and still hundreds of

clusters containing more than 60 friendly neighbours. Combining these results obtained with 181

with those obtained with IGTREE, we can concludethat the Gs data containsmany tens of thousands
of small disjunct clusters containing about three to about a hundred instances each.

4.3 Countingfriendly-neighbour clusterswith I1B1-1G

Having collected broad indications for the degree of digunctive clusteredness of the data, which
generally favours lazy learning over greedy approaches (Holte et al., 1989), we now turn to
searching arelevant characteristic of our datafavouring 1B1-1G over IB1. To compare IB1 and IB1-
IG, we performed the same |eaving-one-out experiment with 1B1-1G as described above to compute
the numbers and sizes of friendly-neighbour clusters.

We extend the comparison as performed on 1B1 in section 4.2 on 1B1-1G by introducing two
additional data sets, which are derived from the Gs data set by systematic distortions:

1. Inthefirst data set, called Gs-PERM, we permute randomly for each word all letters along
with their corresponding stressed phonemes; i.e, for each word, all |etter-phoneme cor-
respondences are shuffled. Gs-PERM distorts the context around focus letters, but leaves
the correspondences between the focus letters and phonemes intact. This means that the
information-theoretic similarity function of IB1-1G is able to detect that the middle letter in
an instance is highly relevant for classification, and that all remaining context letters are



average #
friendly neighbours
data set 1B1 IB1-I1G
GS 15.01 25.58
GS-PERM 0.50 341
GS-RAND 0.11 0.11

Table 2: Average numbers of friendly (identically-classified) nearest neighbours of Gs instances,
measured with 1B1 and IB1-IG.

irrelevant. 181 isnot taking feature relevance into account, and will missout on therelevance
of the middle letter.

2. Thesecond dataset, called Gs-RAND, randomisesfor eachword all letters. Whilethe stressed-
phonemic transcription is maintained, all letters of the word are randomly picked from the
letter alphabet. This distorts al letter-phoneme correspondences, and makes the relation
between spelling and pronunciation fully arbitrary (not unlikeideographic writing systems).
The information-theoretic similarity function of 1B1-1G will not detect any (significant)
differences in feature relevance, which will reflect chance and thus be low.

Table 2 displays the average size of friendly-neighbour clusters found by 181 and 1B1-1G in the
GS, GS-PERM, and GS-RAND data sets, averaged over al instances. It provides three relevant
indications. First, comparing I1B1 and 1B1-1G on the GS task, it can be seen that larger clusters of
friendly neighboursare found with 1B1-1G than with 1B1. Thus, by weighting the distance function
with information gain, a metric from information theory, 1B1-1G is able to rescale the instance
space in such a way that instances of the same class become surrounded with more instances
of the same class as compared to when the similarity function of 1B1 is used (Daelemans et al,
19974). Second, the resultsin Table 2 on the Gs-PERM data set indicate that with 1B1, the average
friendly-neighbour cluster size is smaller than 1, i.e.,, most nearest neighbours are of a different
class. With 1B1-1G, however, the average friendly-neighbour cluster size is 3.41: on average,
each instance is surrounded by over 3 instances of the same class. Perturbing the context around
the focus letter causes the flat-weighted distance function of 1B1 to lose the ability to discern
between instances of the same class and instances of different classes. In contrast, because of
the information-gain-weighted distance function of 181-1G still recognising that the focus letter is
highly relevant to classification, 1B1-1G is till able to rescale the instance space making instances
of the same class (on average) more similar to each other than instances of different classes. Third,
when the correspondence between focus | etters and phonemesis|ost and the information-theoretic
similarity function is not able to detect any relevance differences between features, which is the
case in the GS-RAND data set, both 1B1 and 1B81-1G fail to measure differences in average distance
between instances of the same class and between instances of different classes.

In sum, the feature values of word-pronunciation instances, computed on the full data set, display
outspoken relevance differences (the middle letter of awindow being by far the most relevant for
classification); by adapting the distance functionin 1B1 to thisintrinsic global characteristic of the
data, 1B1-1G is able to employ an empirically appropriate estimate of distance between instances.



5 Conclusions

We conclude that the sample data representing the word-pronunciation task is indeed abundant
in small diguncts. Combining the results obtained with IGTREE (Table 1) and 1B1 (Figure 2),
we conclude that these small diguncts contain about three to a hundred instances. Second, we
conclude that there are important differences in feature relevance exploited appropriately when
lazy learning is augmented with information-theoretic similarity matching in i1B1-1G. Thus, the
latter algorithm combinestwo strategiesthat match the datafavourably, inthe sensethat they relate
directly to the abundance of small disunctsin the data:

1. 1B1-1G store al instances in memory. Decision-tree and connectionist approaches tend to
miss out on small diguncts because they ignore certain instances when they fall below
a certain utility threshold (e.g., when they occur infrequently, such as instances in very
small disjuncts). Lazy learning does not ignore any instances; with small digunctsit is at
an advantage because instances in small disuncts may reoccur in test material, and lazy
learning is always able to match such instances with its stored family members.

2. While the first advantage applies to lazy learning in general, 1B1-1G is also able to detect
sdlient differences in feature relevance. Language data, such as the sample data presented
here, often displayssuch differences (Daelemans et al., 1997b; Van den Bosch, 1997). With
information-theoretic weighted similarity matching, the multi-dimensional feature-value
gpace isrescaled in such away that instances matching on important features are regarded
as more similar to each other than instances matching on an irrelevant feature. Our concrete
measurementsindicate that, on average, the information-theoretic similarity function causes
clusters of friendly instances to contain about 25 instances on average, rather than 15 with
the flat-weighted similarity function 1B1. The larger the clusters, the more accurate I1B1-1G
can be expected to classify; generalisation performance results in comparative studies (e.g.,
Figure 1) corroborate this expectation.

Future work should investigate the transfer of our conclusionsto other (non-linguistic) tasks with
similar characteristics. We claim that the methods of estimating digunct clusters in data can be
employed to analyse the applicability of lazy learning to many real-world domains. Comparative
studies should be performed on benchmark tasks and real-world tasks (e.g., medical diagnosis
tasks, visual object recognition tasks). Furthermore, studies with artificial data sets should be
performed in which data characteristics are systematically varied and tested (Aha, 1992), to further
and refine our understanding of the relations between data characteristics and lazy |earning.

Acknowledgements

We thank Eric Postma, David Aha, and Jakub Zavrel for fruitful discussionsand comments. Part
of this research was done in the context of the “Induction of Linguistic Knowledge® research
programme, partially supported by the Foundation for Language Speech and Logic (TSL), which
isfunded by the Netherlands Organization for Scientific Research (NWO).



References

Aha, D. W. (1992). Generalizing from case studies: a case study. In Proceedings of the Ninth
Inter national Conference on Machine Learning, pages 1-10. San Mateo, CA: Morgan Kauf-
mann.

Aha, D. W. (1997). Lazy learning: Special issue editorial. Artificial Intelligence Review, 11:7-10.

Aha, D. W. and Goldstone, R. L. (1992). Concept learning and flexible weighting. In Proceedings
of the Fourteenth Annual Conference of the Cognitive Science Society, pages 534-539.
Bloomington, IN: Lawrence Erlbaum.

Aha, D. W., Kibler, D., and Albert, M. (1991). Instance-based learning agorithms. Machine
Learning, 7:37—66.

Ali, K. (1996). Learning probabilistic relational concept descriptions. PhD thesis, Department of
Information and Computer Science, University of Californiaat Irvine.

Cover, T. M. and Hart, P. E. (1967). Nearest neighbor pattern classification. Institute of Electrical
and Electronics Engineers Transactions on Information Theory, 13:21-27.

Daglemans, W. (1995). Memory-based lexical acquisition and processing. In Steffens, P, editor,
Machine translation and the lexicon, number 898 in Springer Lecture Notes in Artificial
Intelligence, pages 87-98. Berlin: Springer-Verlag.

Daelemans, W. and Van den Bosch, A. (1992). Generalisation performance of backpropagation
learning on a syllabification task. In Drossaers, M. F. J. and Nijholt, A., editors, TWLT3:
Connectionismand Natural Language Processing, pages 27-37, Enschede. Twente Univer-
sity.

Daelemans, W., Van den Bosch, A., and Weijters, A. (1997a). IGTree: usingtreesfor classification
inlazy learning algorithms. Artificial Intelligence Review, 11:407—423.

Daglemans, W., Weijters, A., and Van den Bosch, A., editors (1997b). Workshop Notes of the
ECML/MLnet familiarisation workshop on Empirical learning of natural language processing
tasks, Prague, Czech Republic. University of Economics.

Devijver, P. A. and Kittler, J. (1982). Pattern recognition. A statistical approach. Prentice-Hall,
London, UK.

Dietterich, T. G., Hild, H., and Bakiri, G. (1990). A comparison of ID3 and backpropagation for
English text-to-speech mapping. Technical Report 90204, Oregon State University.

Holte, R. C., Acker, L. E., and Porter, B. W. (1989). Concept learning and the problem of
small diguncts. In Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, pages 813-818. San Mateo, CA: Morgan Kaufmann.

Quinlan, J. R. (1993). c4.5: Programsfor machinelearning. San Mateo, CA: Morgan Kaufmann.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal representations by
error propagation. In Rumelhart, D. E. and McClelland, J. L., editors, Parallel Distributed
Processing: Explorationsin the Microstructure of Cognition, volume 1: Foundations, pages
318-362. Cambride, MA: The MIT Press.



Sejnowski, T. J. and Rosenberg, C. S. (1987). Parallel networksthat learn to pronounce English
text. Complex Systems, 1:145-168.

Stanfill, C. and Waltz, D. (1986). Toward memory-based reasoning. Communicationsof the AcMm,
29(12):1213-1228.

Van den Bosch, A. (1997). Learning to pronounce written words: A study in inductive language
learning. PhD thesis, Universiteit Maastricht. forthcoming.

Weiss, S. and Kulikowski, C. (1991). Computer systems that learn. San Mateo, CA: Morgan
Kaufmann.

Zipf, G. K. (1935). The psycho-biology of language. Cambride, MA: The MIT Press. Second
paperback edition, 1968.



