
Computational Linguistics 20 (3), 421-451, 1994, Preprint

The Acquisition of Stress:
A Data-Oriented Approach

Walter Daelemans

Institute for Language Technology and AI (ITK)

Tilburg University

P.O. BOX 90153

5000 LE TILBURG

The Netherlands

walter.daelemans@kub.nl

Steven Gillis*

Gert Durieux

Center for Dutch Language and Speech

University of Antwerp, UIA

Universiteitsplein 1

2610 Wilrijk

Belgium

steven.gillis@uia.ac.be

gert.durieux@uia.ac.be

*National Fund For Scientific Research, Belgium

(Submitted to Computational Linguistics)



Data-oriented Acquisition of Stress 2

Acknowledgements

We thank G. De Schutter, A. Dirksen, P. Gupta, B. MacWhinney, M. van Oostendorp and

anonymous CL-reviewers for many helpful comments that led to substantial

improvements of both the content and the form of presentation of this paper.   Thanks

also to Antal van den Bosch who cooperated with us in earlier stages of this research.

The research of S. Gillis and G. Durieux was supported by a research grant

'Fundamentele Menswetenschappen' (8.0034.90).  This research was completed while S.

Gillis was a visiting researcher at the department of Psychology of Carnegie Mellon

University (Pittsburgh, PA) on a travel grant from the National Fund for Scientific

Research (Belgium) and with support from CMU, which is gratefully acknowledged.



Data-oriented Acquisition of Stress 3

Abstract

A data-oriented (empiricist) alternative to the currently pervasive (nativist) Principles and

Parameters approach to the acquisition of stress assignment is investigated. A similarity-

based algorithm, viz. an augmented version of Instance Based Learning is used to learn

the system of main stress assignment in Dutch. In this non-trivial task a comprehensive

lexicon of Dutch monomorphemes is used instead of the idealized and highly simplified

description of the empirical data used in previous approaches.

It is demonstrated that a similarity-based learning method is effective in learning the

complex stress system of Dutch. The task is accomplished without the a priori knowledge

assumed to pre-exist in the learner in a Principles and Parameters framework.

A comparison of the system’s behavior with a consensus linguistic analysis (in the

framework of Metrical Phonology) shows that ease of learning correlates with decreasing

degrees of markedness of metrical phenomena. It is also shown that the learning

algorithm captures subregularities within the stress system of Dutch which cannot be

described without going beyond some of the theoretical assumptions of metrical

phonology.
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1. Introduction

1.1 Metrical Phenomena and Theory

Machine learning of metrical phenomena is an interesting domain for exploring the

potential of particular machine learning techniques. First of all, the assignment of stress

in monomorphematic words, the subject of this paper, has been fairly well studied in

metrical phonology. Within this framework, the stress patterns of numerous languages

have been described in considerable detail. Thus, a solid theoretical framework as well as

elaborate descriptions of the linguistic data are available. Moreover, learning metrical

phenomena has been cast in terms of the Principles and Parameters (Chomsky 1981)

approach, which provides both the basic parameters along which possible stress systems

may vary, and makes strong claims about the allegedly innate knowledge of the natural

language learner.

Secondly, the domain of metrical phenomena can be studied as a (relatively) independent

problem domain (unlike other domains such as, for instance, linguistic pragmatics, that

typically have multiple dependencies with other domains like syntactic and/or semantic

phenomena).

Thirdly, metrical phenomena exhibit a number of interesting characteristics that make

them well-suited for testing the capacity of machine learning algorithms to generalize as

well as their ability to handle irregularities. On the one hand, stress assignment appears to

be governed by a number of solid generalizations. For instance, we found that in a

lexicon of 4868 Dutch polysyllabic monomorphematic words (for details see section 2.1),

approximately 80% are regular according to a generally accepted metrical analysis

(Trommelen & Zonneveld 1989, 1990). The remaining 20% have to be dealt with in

terms of idiosyncratic marking (such as, for instance, exception features or simply a
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marking of the irregular pattern in the lexicon). On the other hand, the domain exhibits a

large number of local ambiguities, or, in other words, it can be said to be noisy. For

instance, of the items in the aforementioned lexicon, a metrical encoding (using syllable

weights - see below) was performed and it revealed that only 44 of the 89 attested

combinations of syllable weights were unambiguous with respect to stress assignment.

In sum, it can readily be seen that the microcosm of metrical phonology is endowed with

generalizations as well as irregularities, a phenomenon characteristic of the macrocosm of

the linguistic system in general.

1.2 Machine Learning of Metrical Phenomena

Recently, computational learning models that specifically address the problem of learning

the regularities of stress assignment have been proposed: Gupta & Touretzky (1991,

1993), Dresher & Kaye (1990), Dresher (1992), Nyberg (1991).

Dresher & Kaye (1990) and Nyberg (1991) approach the learning problem from the angle

of the 'Principles and Parameters' framework (Chomsky 1981) and they explicitly

incorporate the constructs of that theory into their models. It is assumed in this approach

that the learner comes to the task of language learning equipped with a priori knowledge

incorporated in a universal grammar that constrains him to entertain only useful

generalizations. More specifically, the a priori knowledge consists of a finite set of

parameters, the values of which have to be fixed by the learner. Starting from a finite set

of parameters, each with a finite set of possible values, the number of possible grammars

that can be developed by the learner is restricted to a finite set.
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Computational models such as Dresher & Kaye's (1990) add a learning theory to the

(linguistic) notion of universal grammar. This learning theory specifies which aspects of

the input data are relevant to each parameter, and it determines how the data processed by

the learner are to be used to set the values of the parameters. Eventually, the learner will

be able to stress input words, and in doing so he will build metrical structures and

perform the structure-sensitive operations defined by metrical theory.

Gupta & Touretzky (1993) tackle the problem of learning linguistic stress from a

different angle: a simple two-layer perceptron is used as the learning device. In their

perceptron model there is no explicit representation of the notion of parameter or the

process of  parameter setting in any sense. Their system does not aim at setting the

correct values of parameters given a learning theory especially designed to do so: "the

learning theory employed consists of one of the general learning algorithms common in

connectionist modelling." (p.4) Moreover, their system does not build metrical

representations in the sense proposed in metrical theory when determining the stress

pattern of a particular word. Thus, learning in the perceptron is not related in any obvious

way to setting the values of parameters that specify the precise geometry of metrical

trees. Nor is producing the stress pattern of a particular word related in any obvious way

to the construction of a metrical tree and to structure-sensitive metrical operations.

The learning material for Gupta & Touretzky's perceptron consists of the stress patterns

of 19 languages1. It appears that the learning times for the stress patterns vary according

to several dimensions: they describe six dimensions that act as determinants of

learnability. For instance, it will take longer for the perceptron to learn the stress pattern

of a language that  incorporates the factor 'inconsistent primary stress' than to learn a

language that does not show that feature. These factors or - so to speak - 'parameters' do

not coincide with the parameters proposed in metrical theory. However it is pointed out
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that there is a close correspondence between ease of learning in the perceptron (as

measured by learning times) and some of the markedness and (un)learnability predictions

of metrical theory.

The simulations of Gupta & Touretzky show that data-oriented acquisition of stress

assignment is possible. Moreover, in observing the perceptron learn stress systems, a

number of factors are discovered that appear to determine the learning process. This

account of the behavior of the model is termed a 'pseudo-linguistic' theory and some

interesting parallels with metrical phonology are drawn. The crucial point is, however,

that the perceptron is not equipped with a priori knowledge about the domain, nor with a

specifically designed learning theory.

There are some drawbacks to the simulations presented by both Dresher & Kaye and

Gupta & Touretzky.  One of the main objections is that they use highly simplified

versions of the linguistic data, i.e. small samples encoded using syllable weight only, and

without attention for irregularities. Such highly stylized characterizations of stress

systems may well capture the core of a language system, but a processing model that

aims at learning the stress system of a language should go further. It should also deal with

the noise in the actual linguistic data, the irregularities and plain exceptions. Gupta &

Touretzky (1993: 27) appear to be aware of this limitation in their approach:

"It could be argued that a theoretical account is a descriptive formalism,

which serves to organize the phenomena by abstracting away from the

exceptions in order to reveal an underlying regularity, and that it is

therefore  a virtue rather than a failing of the theoretical analysis that it

ignores "performance" considerations. However, it becomes difficult to

maintain this with respect to a processing model that uses the descriptive
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formalism as its basis: the processing or learning account still has to deal

with actual data and actual performance phenomena."

The research reported in this paper aims at exploring the potential of a learning algorithm

that shares the data-oriented (empiricist) mode of learning with the perceptron used in the

simulation experiments discussed above, instead of the nativist approach exemplified by

the research of Dresher & Kaye (1990). The learning material consists of a lexicon that

contains a substantial amount of the attested monomorphemic multisyllabic words of

Dutch (see section 2.1).  In this learning material, the details of the stress system are not

simplified to arrive at a regularized description of the system. Instead, it actually contains

the patterns which we may expect a language learner to be confronted with.

First, we show that a data driven alternative to the 'Principles and Parameters' approach is

feasible, given a set of examples of a language, in this case Dutch. It is shown that (i) the

major generalizations governing main stress assignment, can be acquired as well as the

major classes of subregularities; and (ii) that the kind of a priori knowledge assumed in

the 'Principles and Parameters' approach appears to be unnecessary, even to the extent

that the less 'theoretical bias' encoded in the input, the better the learning results are. More

specifically, experimental results unequivocally indicate that a phonemic input encoding

yields superior results to an encoding in which only the phonological notion of 'syllable

weight' is represented.

Secondly, the correspondences of our learning results with metrical theory will be

studied: the results of the simulations reveal interesting correlations between learnability

by the artificial learner, and markedness in a metrical framework.
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Finally, the algorithm's own classification of the test words is analyzed. The algorithm

discovers subregularities in the data that are not expressible in metrical terms. Instead it

uses the phonemic material presented to form subcategories that act as homogeneous

classes with respect to stress assignment.  This finding suggests that metrical theory could

benefit from proceeding to incorporate segmental information in order to arrive at a more

complete description of the data.

The remainder of the paper will be organized as follows: we will first present the most

relevant facts about and a metrical analysis of the stress system of Dutch. Next the

artificial learning algorithm will be introduced, followed by a discussion of the

experimental results.
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2. The Problem Domain

2.1 Basic Facts about Dutch Stress Patterns

In this section we will introduce the problem domain, i.e. main stress assignment in

Dutch monomorphemic words.2 In order to do this, we will first discuss the general

characteristics of main stress assignment in Dutch, and then we will proceed to a metrical

analysis that adequately captures the generalizations governing the domain.

For the purpose of the experiments to be presented in this paper, we compiled a corpus

containing 4686 polysyllabic monomorphemic words. This corpus was extracted from the

CELEX3 lexical database (Burnage 1990), which contains 130,778 lemmas and 399,186

wordforms and was compiled on the basis of the INL corpus of present-day Dutch (more

than 42 million words in a variety of text types). As such, our corpus constitutes a

representative sample of Dutch monomorphemes.

In Table 1 and Table 2 these data are divided into bisyllabic and longer words. Within

each table, words are divided as to the phonological makeup of their two final syllables,

or more precisely their two final rhymes; syllable-initial consonants are not represented.

The pattern ´́́́    stands for syllables containing a schwa, optionally followed by a consonant

wordfinally4. VV denotes a long vowel in an open syllable, while VC stands for a closed

syllable containing a short vowel followed by a single consonant. Since Dutch lacks short

vowels in open syllables, a single intervocalic consonant is taken to be ambisyllabic when

following a short vowel, thus yielding a VC-pattern (cf. Van der Hulst 1984). The pattern

VXC  abbreviates both a long vowel followed by at least one consonant and a short vowel

followed by at least two consonants. This type of syllable is usually restricted to final

position. The column labels ANT , PEN  and FIN  denote antepenultimate, penultimate
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and final stress respectively. These columns provide information about the frequency of

each type of stress for each phonological pattern. The columns headed by the label MA

will be discussed later, they need not concern us at this point.
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Table 1: Stress Patterns in Bisyllabic Words.

Pattern PEN FIN Row

Total

# MA Example

IPA Transcription

Translation

# MA Example

IPA Transcription

Translation

´-´ 0 / / 0 / / 0

VV-´ 470 R tafel (‘table’)

/ta:f´l/

0 / / 470

VC-´ 494 R amper (‘hardly’)

/Amp´r/

0 / / 494

VXC-´ 35 R waarde (‘value’)

/wa:rd´/

0 / / 35

´-VV 0 / / 7 R revue (‘review’)

/r´vy:/

7

VV-VV 201 R lelie (‘lily’)

/le:li:/

64 LF, [-ex] cadeau (‘present’)

/kAdo:/

265

VC-VV 189 R armoe (‘poverty’)

/Armu:/

40 LF, [-ex] spondee (‘spondee’)

/spOnde:/

229

VXC-VV 17 R extra (‘extra’)

/Ekstra:/

3 LF, [-ex] tournee (‘tour’)

/tu:rne:/

20
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Table 1 continued.

´-VC 0 / / 9 R rebel (‘rebel’)

/r´bEl/

9

VV-VC 177 R epos (‘epic’)

/e:pOs/

135 [-ex] bizar (‘bizarre’)

/bi:zAr/

312

VC-VC 135 R cactus (‘cactus’)

/kAktÁs/

101 [-ex] trompet (‘trumpet’)

/trOmpEt/

236

VXC-VC 8 R oorlog (‘war’)

/o:rlOX/

5 [-ex] transfer (‘transfer’)

/trAnsfEr/

13

´-VXC 0 / / 21 R reflex (‘reflex’)

/r´flEks/

21

VV-VXC 45 I climax (‘climax’)

/kli:mAks/

384 R alarm (‘alarm’)

/a:lArm/

429

VC-VXC 43 I potlood (‘pencil’)

/pOtlo:t/

334 R albast (‘alabaster’)

/AlbAst/

377

VXC-VXC 6 I argwaan (‘suspicion’)

/ArXwa:n/

20 R punctuur (‘puncture’)

/pÁnkty:r/

26
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Table 2: Stress Patterns of Trisyllabic and Longer Words.

Pattern ANT PEN FIN Row

Total

# MA # MA # MA

-´-´ 1 R gisteren (‘yesterday’)

/VIs t´r´/

0 / / 0 / / 1

-VV-´ 9 R maluwe (‘malve’)

/ma:ly:w´/

219 R bagage (‘luggage’)

/ba:Va:J´/

0 / / 228

-VC- ´ 0 / 91 R amandel (‘almond’)

/a:mAnd´l/

0 / / 91

-VXC-´ 0 / 8 R / 0 / / 8

-´-VV 10 LF opera (‘opera’)

/o:p´ra:/

0 / / 21 LF, [-ex] selderie (‘celery’)

/sEld´ri:/

31

-VV-VV 125 LF eskimo (‘Eskimo’)

/Eski:mo:/

212 R calvarie (‘calvary’)

/kAlva:ri:/

91 LF, [-ex] fantasie (‘fantasy’)

/fAnta:zi:/

428

-VC-VV 2 I penalty (‘penalty’)

/pEnAlti:/

126 R placenta (‘placenta’)

/pla:sEnta:/

34 LF, [-ex] anarchie (‘anarchy’)

/a:nArXi:/

162

-VXC-VV 0 / / 1 R balalaika (‘balalaika‘)

/ba:lA:la:jka:/

2 LF, [-ex] chevalier (‘horseman’)

/S´va:lje:/

3

Table 2 continued.

-´-VC 19 R boemerang (‘boomerang’)

/bu:m´rAN/

0 / 19 [-ex] borderel (‘statement’)

/bOrd´rEl/

38

-VV-VC 170 R bariton (‘baritone’)

/ba:ri:tOn/

64 LF dictator (‘dictator’)

/dIkta:tOr/

67 [-ex] minaret (‘minaret’)

/mi:na:rEt/

301

-VC-VC 3 I badminton (‘badminton’)

/bAtmIntOn/

36 R universum (‘universe’)

/y:ni:vErsÁm/

12 [-ex] bombardon (‘bombardon’)

/bOmbArdOn/

51

-VXC-VC 0 / / 0 / / 0 / / 0

-´-VXC 12 I kandelaar (‘candlestick’)

/kAnd´la:r/

0 / / 78 R arsenaal (‘arsenal’)

/Ars´na:l/

90

-VV-VXC 11 I olifant (‘elephant’)

/o:li:fAnt/

0 / 404 R magistraat (‘magistrate’)

/ma:gi:stra:t

416

-VC-VXC 1 I leukoplast (‘leucoplast’)

/lØ:ko:plAst/

1 I appendix (‘appendix’)

/ApEndIks/

75 R resultaat (‘result’)

/re:zÁlta:t/

77

-VXC-VXC 0 / / 0 / / 1 R conjunctuur (‘conjuncture’)

/kOnjÁnkty:r/

1

From these tables it appears that the three possible stress patterns occur with different

frequency: PEN is the most frequent pattern (52.96% of all words), ANT is the least

frequent pattern (7.46% of all words) and FIN is in between (39.58% of all patterns). A
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first glance at both tables might suggest almost arbitrary variation of main stress. But a

number of near exceptionless generalizations can be formulated (see also Kager 1989):

(i) Main stress is restricted to a three syllable window from the right-hand word

edge.

(ii) Syllables containing a schwa are never stressed; moreover, stress almost always

falls on the immediately preceding syllable.

(iii) Antepenultimate main stress may occur if the penult is a VV-syllable, but apart

from only a few exceptions never with a VC-syllable.

Apart from these observations, there are a number of general tendencies worth

mentioning.

(i) Final VXC syllables tend to attract main stress, both in bisyllabic and longer

words.

(ii) In other bisyllabic words, penultimate stress is the dominant pattern, although

final stress is more common in VX-VC words than in words ending in an open syllable.

(iii) In trisyllabic and longer words, VC-final words tend to have stress on the

antepenultimate syllable, if the penult is open, and stress on the penult if it is closed. For

VV-final words, penultimate stress is the dominant pattern, regardless of the structure of

the penult; final stress in these words does occur, but is more uncommon than

antepenultimate stress.

Given this description of the data, the challenge for a theoretical analysis is both to

capture the relevant generalizations in a natural way and to provide a principled account

for the relative markedness of non-dominant patterns. We will turn to such an analysis

which meets both requirements.

2.2 A Metrical Analysis of Dutch Stress Assignment
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The theoretical analysis of main stress assignment which we will present in this section is

cast in the framework of metrical phonology, a branch of non-linear phonology that is

concerned with phonological constituency and the prominence relations that hold

between categories at various hierarchical levels5.  Dutch stress has been the subject of a

lively discussion during the last decade (for an overview see Trommelen & Zonneveld

1989 and Kager 1989). We will briefly sketch the analysis of Trommelen & Zonneveld

which is not only the most fully articulated tree-based analysis of Dutch stress to date, but

also represents what has since become the consensus view.6

The focus will be on how the regularities of the stress system are captured, and how

markedness is related to non-dominant patterns. We will pay special attention to those

places where Dutch deviates from the universal 'default'.

2.2.1 Syllable Structure and Foot-Building

In Tables 1 and 2 four different rhyme templates were distinguished, ´ , VV, VC and

VXC, and it was shown that each one exhibited different stress properties. In various

analyses of Dutch these types have been referred to as superlight (´), light (VV), heavy

(VC) and superheavy (VXC). It is not uncommon that stress systems are sensitive to

syllable structure and languages that distinguish between light and heavy syllables are

known as quantity-sensitive. Yet the particular distinction proposed for Dutch merits

some further discussion since cross-linguistically, a VV rhyme counts as heavy whenever

a VC rhyme does - an observation which does not seem to hold for Dutch. In a tree-based

framework, syllable weight has been related to the degree of branching of the rhyme, in

the following manner (see (2)).  In what follows, ‘σ’ will be used as the label of a syllable

node, O and R are abbreviations for Onset and Rhyme, respectively. N stands for Nucleus

and when opposed to N, C is used to denote Coda.
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(2)

σ

O R

C0 V

σ

O R

C0 V V

σ

O R

C0 V C

a. b. c.

The dividing line between light and heavy syllables is usually drawn between (a) and (b).

However, in her study of Dutch syllable structure, Trommelen (1983) argues that for

Dutch a further distinction is needed, in which the rhyme is analyzed as consisting of a

peak (also called nucleus), containing the vocalic part, and a coda, containing any

remaining consonants. Further, she argues that Dutch rhymes can exhibit the structures

shown in (3), where (c) and (d) are restricted to the word edge:

(3)

  R

  N

  V   V

  R

  N  C

  V  C

  R

  N  C

  V  C  C

  R

  N  C

 C  V  V

a. b. c. d.

Since Dutch lacks short vowels in open syllables, mere branching of the rhyme is

insufficient to establish a weight distinction between syllables. Trommelen (1983)

therefore proposes that in Dutch this notion has to be replaced by that of direct vs.

indirect branching of the rhyme. Thus a rhyme which branches directly into a peak and a
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coda counts as heavy, whereas a branching peak only does not. In other words, the weight

distinction in Dutch between light and heavy  syllables seems to coincide with the

distinction between open and closed  syllables.

In a further elaboration of Trommelen’s analysis, Kager & Zonneveld (1986) focus on

‘superheavy’ and ‘superlight’ syllables. The excess consonant(s) in superheavy syllables

are analyzed as an extrasyllabic appendix, which is restricted to domain edges. More

importantly, word-final schwa-syllables are given the same treatment, based on

arguments distinct from their stress properties. The net effect of this analysis is that

preceding consonants are pushed onto the previous rhyme, making this rhyme

(super)heavy.

The relevance of these observations for stress assignment lies in their impact on foot

formation. The rules for foot-formation are the following:

- Construct maximally binary feet, going from right to left.

- Feet are labeled s-w.

Quantity-sensitivity (Q.S.) in the sense defined above allows the reformulation of a

universal restriction for Q.S. languages, i.e. that heavy syllables cannot occur in weak

foot position (Hayes 1981), in the following manner:

- Closed syllables may not occur in recessive (weak) foot position7.

This restriction leads to the creation of monosyllabic feet over VC and VXC syllables.

Some relevant examples are shown in (4).
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(4)

 gi bral tarpre si dent

s w

 pi ja ma

s w

presiDENT piJAma GiBRALtar

/pre:si:dEnt/ /pi:ja:ma:/ /Vi:brAltAr/

"president" "pyjamas" "Gibraltar"

2.2.2 Word Tree Labeling

Whereas the foot building conventions above have been relatively uncontroversial since

Kager (1985), word-tree formation has raised considerably more controversy. We will

now discuss Trommelen & Zonneveld’s (1990)  proposal, the approach that we will

adhere to in what follows.

Their starting point is to build a uniformly right-branching right-dominant word tree,

which locates main stress on the final foot.8 This makes the right predictions for VV and

VXC final words, i.e. stress on the penultimate and final syllable respectively. Obviously,

to generate stress on other positions, additional mechanisms are needed. Antepenultimate

stress, which is the dominant pattern in -VV-VC final words, cannot be achieved if stress

consistently falls within the final foot. Conversely, to account for final stress in VV-final

words, a monosyllabic foot seems required, in order to provide a landing site for the end

rule.

The devices which seem called for are the following: on the one hand, the possibility to

assign a lexically prespecified monosyllabic foot (henceforth abbreviated as LF), to cover

the VV-final words with final stress, and on the other hand, extrametricality to handle

antepenultimate stress. Extrametricality amounts to making an element invisible to stress
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rules, and is restricted to domain edges under the Peripherality Condition (Hayes, 1981).

Since in VC-final words final stress is not the dominant pattern, assignment of [+ex] for

this type of word should be rule-governed, rather than an exceptional marking. The rules

for word tree formation then are the following:

- Mark a final VC-rhyme as extrametrical before foot formation applies.

- Construct a right-branching word tree, labeled uniformly w-s.

This leads to the following trees for the regular patterns, where the word tree is drawn

above the horizontal marks. Note that in ‘gibraltar’ the final syllable is marked as

extrametrical before foot formation applies, and only later incorporated as a weak foot

member by a universal convention of Stray Syllable Adjunction (Hayes 1981)

(5)

 pi ja ma

s w

w  s

pre  si

w  s

s w

dent  gi bral (tar)

s (w)

w  s

presiDENT piJAma GiBRALtar

/pre:si:dEnt/ /pi:ja:ma:/ /Vi:brAltAr/

"president" "pyjamas" "Gibraltar"

Non-dominant patterns are handled with three exception features: a lexical foot (LF) for

VV-finals with final stress, [+ex] for VV-finals with antepenultimate stress, a lexical foot
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for VV-finals with final stress, and [-ex] for VC-finals with final stress. The trees in (6)

illustrate the analysis for these marked patterns:

(6)

pa  ra

w  s

s w

 plu

  LF

 co   lo

w  s

s w

 nel

   [-ex]

s

 (w)s  w

 ca  na  (da)

   [+ex]

paraPLU CAnada koloNEL

/pa:ra:ply:/ /ka:na:da:/ /ko:lo:nEl/

"umbrella" "Canada" "colonel"

This situation is clearly not ideal, for the following reasons: First, it is hard to account for

degrees of markedness when three exception mechanisms are at play. For example, final

stress is more common in VX-VC words than it is in VX-VV words, yet relating this to

[-ex] vs. LF respectively does not bring out this contrast. Another objection comes from

stress shifts and mispronunciations. Van Marle (1978) adduces various kinds of evidence,

of which the most illuminating example are words like ‘rococo’. Rococo is attested both

with final stress (as in ‘paraPLU’) and with antepenultimate stress (as in ‘CAnada’).

Under the current account, it is hard to explain how loss of the LF feature in the case with

final stress would automatically imply adoption of the [+ex] feature, to yield

antepenultimate stress, rather than producing the unmarked penultimate pattern. A third

problem is that by making a final VC syllable consistently extrametrical, the important

generalization about its footing behavior both word-finally and word-internally is lost.

The solution Trommelen & Zonneveld (1990) propose for these problems is that, in

principle, nothing prevents extrametricality from applying ‘late’, i. e. after foot formation.
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Extrametricality would then affect the word tree only, and leave the foot-formation rules

untouched. A further modification they propose is to mark all final VX syllables as

extrametrical, including final VV. The cases which were handled correctly by the end

rule are still regular, since final VXC syllables are exempt from extrametricality.  Also,

because extrametricality is not allowed to percolate from non-head position, for VV-final

words the default is still penultimate stress. The trees in (5) are modified now, to yield the

trees in (7) for the regular cases:

(7)

 pi ja (ma)

s (w)

w  s

pre  si

w  s

s w

dent  gi bral (tar)

s

 (w)w  s

presiDENT piJAma GiBRALtar

/pre:si:dEnt/ /pi:ja:ma:/ /Vi:brAltAr/

"president" "pyjamas" "Gibraltar"

For the  marked patterns, lexical feet are retained, but exceptional extrametricality is no

longer needed, since antepenultimate stress now results from such an idiosyncratically

specified foot. The other problems are solved, since the opposition between VX-VC and

VX-VV words  amounts to the difference between LF and [-ex] vs. [-ex] by itself. Stress

shifts of the type ‘rocoCO’-’ROcoco’ are explained by loss of the feature [-ex] only,

where LF is retained (compare the trees for ‘paraPLU’ and ‘CAnada’ in (8) below).

Hence, in their final analysis the patterns in (6) are analyzed as in (8).
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(8)

 co   lo

w  s

s w

 nel

   [-ex]

pa  ra

w  s

s w

 plu

  LF

   [-ex]

 ca  na

 s  (w)

s w

 (da)

  LF

paraPLU CAnada koloNEL

/pa:ra:ply:/ /ka:na:da:/ /ko:lo:nEl/

"umbrella" "Canada" "colonel"

We can now return to Table 1 and Table 2. In the columns headed 'Metrical Analysis'

(MA), the lexical markings of the various patterns are indicated. In these tables, R stands

for regular, LF for a lexically prespecified foot, [-ex] for an exception to rule-governed

extrametricality and I  for unexplained exceptions that need full lexical marking. It

appears that out of the 4868 words in our lexicon, 81.1 % are regular (R), 6.96% are

exceptions to the extrametricality condition ([-ex]), 4.07% require a specified lexical foot

(LF), and 5.24% a combination of the two preceding features (LF, [-ex]), and finally

2.59% are plain exceptions (I). These five categories can be scaled according to their

markedness within the metrical framework: the regular case (R) is of course the least

marked, the irregular (I) the most marked. In-between these extremes, one single

exception feature is less marked than two exception features, i.e., items that need a LF

and a [-ex] are more marked than items that are either marked as LF or [-ex].

In this section we have sketched a metrical analysis of the Dutch stress system, which

captures the relevant generalizations in a natural way and provides a principled account

for the relative markedness of non-dominant patterns. The dominant patterns are rule

generated, while deviations from this pattern are handled by two types of lexical marking.
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Cumulation of these markings accounts for degrees of exceptionality, and explains why

stress shifts do not always move in the direction of the dominant pattern.

In the analysis, it was pointed out that Dutch is fairly idiosyncratic in a number of ways:

first, the weight distinction between VV and VC is odd from a universal perspective, and

secondly, extrametricality in Dutch influences the word tree only. Furthermore, Dutch

makes liberal use of lexical markings, and this has led Kager (1989) to conclude that

Dutch, while not being a free stress language, occupies a middle ground between free and

fixed stress systems.
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3. The Learning Algorithm

Assigning stress to a word can be interpreted as a classification problem: given a pattern

(a set of feature-value pairs describing a word), the task of the system is to decide

whether stress is on the final (FIN), penultimate (PEN) or antepenultimate (ANT)

syllable. In other words, the system has to decide whether the word belongs to category

FIN, PEN or ANT.  Notice that we are only trying to predict main stress, for predicting

secondary stress or different stress levels, a more elaborate category system has to be

used.

3.1 Instance-Based Learning

The data-oriented algorithm we used is a variant of Instance-Based Learning (IBL, Aha et

al. 1991).  IBL is a framework and methodology for incremental, supervised, similarity-

based learning.

• Supervised . The system is trained by presenting a number of patterns with their

classification.

• Incremental . Training material can be added one item after the other, without a need to

retrain the system (unlike e.g. backpropagation in connectionist networks, where batch

learning is used).

• Similarity-Based.  The system bases its category prediction on the similarity of an

unseen test pattern to the training patterns to which it was exposed earlier.  The distance

metric used to compare similarity of patterns is therefore the most important aspect of the

algorithm.
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In research described elsewhere (Gillis et al., 1992, Daelemans et al., 1993), we

experimented with two additional learning algorithms: Backpropagation of Errors in

Feedforward Networks (Rumelhart, Hinton & Williams, 1986), and Analogical Modeling

(Skousen, 1989). Although there are small differences in the learning behavior of systems

trained with these different learning algorithms on the task of stress assignment, the

overall performance of the systems was highly similar.  We therefore decided to limit our

attention to IBL, which is the simplest and most transparent of the three learning

algorithms.

The distinguishing feature of IBL is the fact that no explicit abstractions are constructed

on the basis of the training examples during the training phase. A selection of the training

items themselves is used to classify new inputs.  IBL shares with Memory-Based

Reasoning (Stanfill & Waltz 1989) and Case-Based Reasoning (Riesbeck & Schank

1989) the hypothesis that much of intelligent behavior is based on the immediate use of

stored episodes of earlier experience rather than on the use of explicitly constructed

abstractions extracted from this experience (e.g. in the form of rules or decision trees).  In

the present context of learning linguistic tasks, the hypothesis would be that much of

language behavior is based on this type of memory-based processing rather than on rule-

based processing.  In linguistics, a similar emphasis on analogy to stored examples

instead of explicit but inaccessible rules, is present in the work of, amongst others,

Derwing and Skousen (1989).

IBL is inspired to some extent by psychological research on exemplar-based

categorization (as opposed to classical and probabilistic categorization, Smith and Medin,

1981; Nosofsky et al., 1989). Finally, as far as algorithms are concerned, IBL finds its
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inspiration in statistical pattern recognition, especially the rich research tradition on the

nearest-neighbour decision rule (see e.g. Devijver & Kittler, 1982, for an overview).

3.2 The Algorithm

It is useful to distinguish between a learning component  and a  performance component

when describing learning systems.  The performance component carries out the required

task (in this case predicting the stress category of unseen words), the learning component

changes the system in response to the examples presented (in the case of IBL by simply

storing the examples) such that the accuracy of the system increases.

3.2.1 Training

During training, pre-categorized training items are presented in an incremental fashion to

the learning component. A training item is a sequences of feature-value pairs (for

instance, a sequence of the weights associated with a word’s syllables) with its category

(in this case, the stress category of a word). If the pattern was not encountered earlier, a

new memory record is created, listing the pattern and initializing its category distribution

(a record showing for each possible category the number of times the pattern was

associated with this category in the training set).  As the same pattern may represent

different words, depending on the encoding used, the category distribution contains

probabilistic information about the category of ambiguous  patterns (patterns which are

assigned different categories in the training set). If the training pattern was encountered

earlier during training, its category distribution is updated.

3.2.2 Testing
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The operation of the performance component of the IBL algorithm is quite simple: for

each test item (a sequence of feature-value pairs to be assigned a category), it is checked

whether it is present in memory.  If this is the case, the category assigned most often to

this pattern (as evidenced in its category distribution) is assigned to the test item. If the

test item has not yet been encountered, its similarity to all patterns kept in memory is

computed, and a category is assigned based on the category of the most similar item(s).

Similarity is measured using a distance metric: two patterns are similar if their distance in

pattern space is small. If there is only one best match, the most frequent category in its

category distribution is used. If there is a tie between two or more patterns in memory,

their category distributions are combined (summed) before selecting the most frequent

category as the category predicted for the test item.

The performance of an IBL classifier crucially depends on the selection of training items

to be kept in memory, and the distance metric used. In the experiments described here, we

‘remembered’ all training items. The distance metric will be elaborated on in what

follows.

The most straightforward distance metric would be the one in equation (9), where X  and

Y are the patterns to be compared, and δ(xi,yi) is the distance between the values of the i-

th feature in a pattern with n features.

(9) ∆(X,Y) = δ (xi
i=1

n

∑ , yi )

Distance between two values is measured using equation (10) for numeric features, and

equation (11) for symbolic features.
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(10)
δ (xi , yi ) =

xi − yi

maxi− mini

(11) δ (xi , yi ) = 0 if xi = yi ,  else 1

Dividing by the difference between maximum value and minimum value of a feature in

computing the distance between numeric values, scales numeric features with different

lower and upper bounds to comparable differences between 0 and 1.

3.2.3 Information Gain

When using a geometrical distance metric for numeric features (geometrical distance

between two patterns in pattern space), or an overlap metric for symbolic features

(number of features with equal values in both patterns), all features are interpreted as

being equally important.  But this is of course not necessarily the case.  We extended the

basic IBL algorithm proposed by Aha et al.  (1991) with a technique for automatically

assigning a different importance to different features.  Our approach to the problem of

weighing the relative importance of features is based on the concept of Information Gain

(IG, also used in learning inductive decision trees, Quinlan, 1986), and first introduced

(as far as we know) in IBL in (Daelemans & Van den Bosch, 1992) in the context of a

syllable segmentation task. The idea is to interpret the training set as an information

source capable of generating a number of messages (the different categories) with a

certain probability.  The information entropy of such an information source can be

compared in turn for each feature to the average information entropy of the information

source when the value of that feature is known.
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Database information entropy is equal to the number of bits of information needed to

know the category given a pattern. It is computed by the formula in (12) where pi

(probability of category i) is estimated by its relative frequency in the training set.

(12)
H(D) = − pi

i
∑ log2 pi

For each feature (position in the patterns), it is now computed what the information gain

is of knowing its value. To do this we have to compute the average information entropy

for this feature and subtract it from the information entropy of the database. To compute

the average information entropy for a feature, we take the average information entropy of

the database restricted to each possible value for the feature. The expression D[f=v] refers

to those patterns in the database that have value v  for feature f, V is the set of possible

values for feature f.

(13)
H(D f[ ]) = H(D

f =vi[ ]
vi ∈V
∑ )

D
f =vi[ ]

D

Information gain is then obtained by equation (14), and scaled to be used as a weight for

the feature during similarity matching.

(14)
G( f ) = H(D) − H(D f[ ])

The distance metric in equation (9) is then modified to take into account the information

gain weight associated with each feature.

(15)
∆(X,Y) = Gi δ (xi

i=1

n

∑ , yi )
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To retain the incremental character of IBL, we updated the information gain weights with

every new training item. For the present task, the weights hardly change after about one

hundred training patterns, and further changes have no effect on performance.
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4. Experiment

Having introduced the problem domain and the learning algorithm, we are ready to

discuss the results of the experiment on stress assignment.  For this task, words (training

and test patterns) were represented by three different feature-value pair encodings which

will be discussed in the next section.  Output of the system consists of a prediction of the

category (FIN, ANT, or PEN) of the input word.  Actually, more detailed information is

provided: by using the category distribution  described earlier, for each possible category,

a value between 0 and 1 representing the probability that the word has this category, can

be provided.  However, no use was made of this in the experiment.  A single output

category is selected for each pattern: the one with the highest probability, or a random

choice in case of a tie.

The main aims of the experiment are (i) to assess the role of the encoding used, and more

specifically, to investigate the impact of 'theoretical bias' in the input encodings on the

learning success, and (ii) to relate the learning performance of the algorithm to the

metrical analysis of the previous section.

4.1 Method

The method used in this experiment consisted of a ten-fold cross-validation experiment

(Weiss & Kulikowski, 1991). In this set-up, the database is partitioned ten times, each

with a different 10% of the dataset as the test part, and the remaining 90% as training

part.

For each of the ten simulations in our experiment, the test part was used to test

generalization performance. The size of the training set was varied from 500 to 4000



Data-oriented Acquisition of Stress 33

items randomly chosen from the training part in order to assess the system's learning

performance.

4.2 Data and Data Encoding

In the experiment we used the lexicon of 4868 Dutch multisyllabic monomorphemes

introduced in section 2. In order to use test sets of equal magnitude in the ten-fold cross-

validation experiments, 8 items were randomly selected from the lexicon and withdrawn

from the experiment, so that ten test sets of 486 items were constructed.

In order to investigate the impact of the input encodings, the three encoding schemes

were implemented. In each instance only the three last syllables are encoded.

Encoding 1: Strings of syllable weights of the last three syllables of a word, i.e., the kind

of encoding judged to be necessary and sufficient for learning a quantity sensitive

language (Dresher & Kaye, 1990, Gupta & Touretzky, 1993);

Encoding 2: The phonemic information contained in the rhyme projections of the last

three syllables;

Encoding 3: A plain phonemic transcription of the word.

Encoding 1 is based on the notion of syllable weight and uses a single feature for each

syllable. Since in metrical phonology syllable weight is a function of the degree of

branching of the rhyme, the set of values chosen discriminate among different rhyme

types. We used numerical values, ranging from one to five, to set up a weight scale (see

2.2.1 for a discussion of the weight scale) in the following manner9:

1 = superlight rhymes (rhymes containing a schwa, ´ );

2 = light rhymes (a long vowel in an open syllable, VV);
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3 = heavy rhymes (a short vowel followed by a single consonant, VC);

4 = superheavy rhyme of the type VCC;

5 = superheavy rhyme of the type VVC.

The word agenda  (‘agenda’, IPA transcription: /a:VEnda:/) is encoded as the  sequence 2 3

2   i.e., a light syllable (2) followed by a heavy one (3) and a light one (2). Thus in this

encoding only three features are used. The value of the first feature is the syllable weight

of the antepenultimate syllable, the value of the second feature, the weight of the

penultimate syllable, and the value of the third the weight of the final syllable.

Encoding 2 provides a phonemic encoding of the rhyme and uses two features per

syllable, one for the nucleus and one for the coda. It coincides with the previous encoding

in the sense that it too provides the necessary information on which syllable weight is

based, albeit without  abstracting over phonemic detail as was done in Encoding 1. Thus

the encoding for the word agenda (‘agenda’) looks as follows: a - E n  a - 10. The first

syllable has  nucleus /a/ (/a:/) and an empty coda, denoted with a dash; the second

syllable nucleus /E/ (/E/) and its coda /n/ (/n/). The last syllable has nucleus /a/ (/a:/) and

an empty coda. Thus, in the second encoding, six features are used. The first two features

stand for the nucleus and the coda of the antepenultimate syllable, the next two features

stand for the nucleus and the coda of the penultimate syllable and the last two features

stand for the nucleus and the coda of the final syllable. The values of the features are the

phonemes or phoneme strings that occupy these respective positions in the word.

Encoding 3 extends the rhyme encoding by adding a feature for the onset of each syllable.

As such, it consists of a complete phonemic encoding of the last three syllables. Thus,

each of the last three syllables of a word is represented by three features, the values of

which represent the phonemes that fill the onset, nucleus and coda slot of the syllable. For

instance, the encoding for the word agenda  (‘agenda’) looks as follows: -  a - G E n d a-.
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The onset of the first (or antepenultimate) syllable is empty, hence a dash in the encoding,

the nucleus is /a/ (/a:/) and the coda is empty. The second syllable consists of onset /G/

(/P/) , nucleus /E/ (/E/) and coda /n/ (/n/). The last syllable consists of onset /d/ (/d/),

nucleus /a/ (/a:/) and an empty coda.

The three encodings for the word agenda (‘agenda) are given in Table 3.

Table 3: Sample Encodings Using the Three Encoding Schemes.

Encoding Number Target Word Encoding

1 PEN agenda 2 3 2

2 PEN agenda a - E n a -

3 PEN agenda - a - G E n d a -

It should be noted that the more detailed the representation is (Encoding 3 being the most

detailed), the less ambiguous the training patterns are.  On the other hand, the more

detailed the encoding, the more irrelevant features are presented to the learning system

(the data are noisier from the point of view of linguistic theory). Onsets are of little or no

use for stress assignment according to metrical analyses, but they are present in the third

encoding, thus adding (allegedly) irrelevant information.

The success rate of the algorithm is obtained by calculating the average accuracy (number

of test pattern categories correctly predicted) over the ten test sets in the ten-fold cross-

validation experiment.
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4.3 Results

4.3.1 Analysis of General Performance

In this section we will discuss the performance of the algorithm at a general level. The

most striking result is that IBL, when trained with phonemic encodings (Encoding 2 and

Encoding 3), yields significantly better results than when trained with Encoding 1, the

weight string representation.

In Figure 1 results for the three encodings are plotted. Overall peak success scores for the

three encodings lie between 80% and 90%, ranging from 81.26% for Encoding 1, 88.11%

for Encoding 2 to 88.81% for Encoding 3. Considering the fact that in a theoretical

analysis about 80% of the data was considered regular, and that perfect predictions are

beyond reach for the Dutch stress system, these figures indicate that the algorithm has

picked up the regularities governing the field, and this for all three encodings. This does

not mean however that the three encodings are equally good.

First of all, the results for Encoding 1 are significantly lower than those for the two other

encodings. An analysis of variance (ANOVA) performed over the pooled results per

encoding shows a highly significant difference between the results for the three encodings

(F (2, 237) = 286.0978, p < .0001). Paired t-tests indicate that there is a highly significant

difference between the results for Encoding 1 and the two other encodings (Encoding 1-

Encoding 2: t=20.1985, df = 158, p < . 0001; Encoding 1-Encoding 3: t = 22.7998, df =

158, p < .0001). In the same vein the difference between the results for the second and the

third encodings were calculated, showing a significant difference between the two, i.e.,

Encoding 3 yields significantly higher success rates than Encoding 2 (t = 2.2792, df =

158, p < .02).
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Figure 1: General Comparison of Success Rates
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A comparison of the peak success scores in the three conditions, reveals that Encoding 1

scores significantly less well than the other two (Encoding 1-Encoding 2: χ2 = 149.803, p

< .01; Encoding 1-Encoding 3: χ2 = 181.955, p < .01), while the peak score for Encoding

3 is not significantly better than the peak score for Encoding 2 (χ2 = 2.27, p > .05). This
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shows that the weight string encoding leads to significantly poorer results than the two

other encodings.

A second piece of evidence comes from an analysis of the performance of the classifier

with regard to the specific target categories. In Table 4 the peak success scores for the

individual target categories are displayed.11

Table 4: Highest Success Rates for the Three Encodings Relative to Target Categories

Encoding Number FIN PEN ANT

1 74.90 93.60 53.19

2 87.94 92.20 61.77

3 89.00 92.93 62.05

These results show that stress on the penultimate syllable, which is the case for 52.96% in

the corpus used for training, is learned best with peak success rates varying from 92.0%

for Encoding 2 to 93.63% for Encoding 1. Stress on the antepenultimate syllable, which

is found in only 7.46 % of the lexicon used for training, seems much harder to predict,

with peak success rates ranging from 53.19% for Encoding 1 to 62.05% for Encoding 3.

Stress on the final syllable (39.58 % of the corpus) is predicted correctly in 74.9% of the

cases for Encoding 1, in 87.94 % for Encoding 2 and 89.0% for Encoding 3.

Thus, Encoding 1 was shown to lead to lower success rates in the global comparison of

the experimental results. The data per target category provide the following picture. It is

still the case that the peak performances of Encoding 2 and Encoding 3 do not differ

significantly for the three target categories. Moreover, they are both significantly better
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than Encoding 1 for stress on the final and the antepenultimate syllable. However,

Encoding 1 yields equally high (even better) results than the two other encodings when

the penultimate syllable is the target category.

In order to fully appreciate the results for penultimate stress, we tested whether IBL

shows a tendency to select the most frequent class as an appropriate response, and to

overgeneralize that response, a phenomenon not uncommon for statistical learning

algorithms. In Figure 2 we plot out the number of times 'Penultimate stress' (PEN), the

most frequent stress pattern, is

Figure 2: Number of PEN Classifications.
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predicted by IBL (the total test set consists of 2575 words with PEN as their category).

The graph clearly shows that the three encodings have a tendency to generate more PEN

responses than there are actual PEN targets in the test set from the very start (training set

of 500 items). However, it also clearly shows that Encoding 1 does not behave as

Encoding 2 and Encoding 3: in contrast with the two other encodings, the number of PEN

predictions increases to arrive at more than 3000 PEN predictions from a training set size

of 2000 items onwards. This means that the algorithm has found a generalization, and

overgeneralizes it due to the low discriminatory ability of the encoding used: at the same

time that Encoding 1 shows an increase of PEN answers, Encoding 2 and Encoding 3

seem to offer enough information to make more fine grained distinctions, so that the

overgeneralization of the PEN-response is minimized.

Another way of showing this same effect is by analyzing the confusion matrices. We

selected the results of the ten-fold cross-validation experiments with a training set of

4000 items, i.e., the largest training set. From these results, confusion matrices were

drawn (see Table 5). These matrices should be read as follows: the vertical dimension

gives the target category, and the horizontal dimension the predicted category. So, the

first matrix (with the data from IBL trained with Encoding 1) shows in its upper row the

classification of the words that have final stress (FIN). It appears that the classifier

predicted this outcome correctly in 70.37% of the cases (upper left cell). However, IBL

also predicted the outcome penultimate stress (PEN) in 25.26% of the words and

antepenultimate stress (ANT) in 4.37% of the words (two remaining cells in the top row).

This means that 25.26 % of the words that should receive final stress actually were

classified as words with penultimate stress.



Data-oriented Acquisition of Stress 41

Table 5: Confusion Matrices for IBL trained with 4000 items (row percentages between

brackets, rows represent targets, columns predicted classifications)

Encoding 1 FIN PEN ANT

FIN 1354 (70.37) 486 (25.26) 84 (4.37)

PEN 105 (4.08) 2408 (93.51) 62 (2.41)

ANT 45 (12.47) 138 (38.23) 178 (49.30)

Encoding 2 FIN PEN ANT

FIN 1692 (87.94) 194 (10.08) 38 (1.98)

PEN 148 (5.75) 2369 (92.00) 58 (2.25)

ANT 45 (12.47) 95 (26.31) 221 (61.22)

Encoding 3 FIN PEN ANT

FIN 1710 (88.88) 181 (9.41) 33 (1.71)

PEN 152 (5.90) 2379 (92.39) 44 (1.71)

ANT 53 (14.68) 84 (23.27) 224 (62.05)

If IBL would perform without any misclassifications, a confusion matrix would look

perfectly diagonal. But that is not the case: from the confusion matrices in Table 5 it

appears that for a training set of 4000 items, the rows representing stress on the

penultimate syllable are almost perfect (no exorbitant migration to other cells on the same

row). For the targets FIN and ANT (resp. the first and the third row in the matrices) this

does not hold to the same extent. Moreover, there is a remarkable difference between

Encoding 1 on the one hand and Encodings 2 and 3 on the other hand with respect to the
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misclassification of words that have FIN and ANT as their target categories. Significantly

more items arrive in the PEN category when IBL uses Encoding 1 than when Encoding 2

or Encoding 3 are used.

A third analysis that shows this overgeneralization looks as follows. We calculated

Tanimoto's dichotomy coefficient (Gower, 1985) for each individual target category. This

statistic compares the number of words in the lexicon that have a particular target

category, in this case PEN, with the predictions of IBL for those words. Thus it takes into

account the proportion of agreements between the targets and the predictions. The

measure is standardized by all possible patterns of agreements and disagreements. For the

target category PEN the dichotomy coefficient equals .720 for Encoding 1, .815 for

Encoding 2 and .827 for Encoding 3. Hence, the overgeneralization of the PEN category

is reflected in the lower value of the dichotomy coefficient for Encoding 1 as compared to

Encoding 2 and Encoding 3.

In this section we showed that an encoding of the input material using weight strings

(Encoding 1) yields inferior results as compared to an encoding that uses a phonemic

representation. This finding was substantiated both at the level of the general

performance of the classifier as well as at the level of the individual target categories.

Encoding 1, the weight string representation was seen to find the most frequent pattern,

viz. stress on the penultimate syllable, and this pattern was overgeneralized (with no

recovery when more training items were used). This overgeneralization was far from

being as pronounced with Encoding 2 and Encoding 3.

A comparison of Encoding 2 (rhyme projections) and Encoding 3 (full phonemic

representation) shows that in general Encoding 2 yields slightly worse results than
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Encoding 3, but the peak performance of both encodings does not manifest a statistically

significant difference.

In the following sections we will analyze the results of the classifier in view of the

metrical analysis of the Dutch data presented in section 2.

4.3.2 Analysis of the Acquisition of General Tendencies

In section 2.1. an overview of the stress patterns in our lexicon was provided. Three near

exceptionless generalizations were pointed out. The first generalization, viz. stress is

restricted to a three syllable window from the right-hand word edge, could of course not

be tested due to the format of the training material. The other two generalizations

constitute a good test of how well IBL traced the main regularities governing the domain.

A first test concerns the exceptionless generalization that a syllable containing a schwa is

never stressed, and that words with a final schwa-syllable get penultimate stress almost

without exception. In Table 6, IBL's predictions for words with a final schwa-syllable are

presented.

Table 6: Success Scores for Words with a Final Schwa-syllable

Encoding Number Error Correct % Correct

1 9 1316 99.32

2 8 1317 99.40

3 8 1317 99.40
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IBL clearly caught the generalization that if the final syllable contains a schwa, stress

lands on the penultimate syllable. More than 99% of these words are classified correctly.

It (over)generalized this rule also to cases where the schwa-syllable has an empty onset,

in which case stress is on the antepenultimate syllable instead of the penultimate. As can

be appreciated from the results, the three encodings do not differ significantly.

A second general tendency relates to the content of the penultimate syllable of words that

receive antepenultimate stress. Antepenultimate stress may occur in a VV-penult but not

in a VC-penultimate syllable. In Table 7 we show the number of words adhering to each

pattern in the lexicon and the number of words that receive antepenultimate stress in the

three encoding conditions.

IBL definitely captured this regularity in the data: in the three experimental conditions the

number of ANT responses for a VC penult is extremely limited while the number of ANT

responses for a VV penult is the common case.

Table 7: Prediction of Antepenultimate Stress Relative to the Content of the Penultimate

Syllable.

Structure of

Penult

Lexicon Encoding 1 Encoding 2 Encoding 3

-VV- 313 255 264 297

-VC- 7 4 6 0

-´- 41 25 24 25

-VXC- 0 0 0 2
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These findings suggest that IBL detected the strong generalizations governing the

domain. In the following section we will investigate if this also holds for the cases

distinguished in the metrical analysis.

4.3.3 Analysis of Learning and Markedness

In the theoretical analysis we pointed out that approximately 80% of the data were regular

according to a metrical analysis. Deviations from the regular pattern were handled by

marking the deviant words in the lexicon. It was argued that only two exception features

were required, viz. [-ex], for exceptions on the extrametricality condition, and LF for

prespecified lexical feet. It was also pointed out that degrees of markedness followed

from cumulation of these two features, yielding the following markedness scale:

R(egular) < [-ex] or LF < [-ex] and LF < I(rregular). When we classify the words in our

lexicon relative to the lexical marking they need, and plot the results for each class, a

highly illuminating picture (Figure 3) appears.

A first observation that can be made from Figure 3 is that the regular cases (R) are

learned almost perfectly using the three encodings. However, there is still an important

difference between the success scores of Encoding 1 (99.24%) and Encoding 2 (92.88%)

and Encoding 3 (92.90%). Encoding 1 yields a significantly higher success score than the

two other encodings (p < .01 in the χ2-test) . In other words, an encoding in terms of

syllable weight proves to be almost completely predictive for handling the regular cases,

even without intermediate structures such as feet and word trees.
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Figure 3: Success Rates per 'Metrical Category'
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Encoding 2 and Encoding 3 are less successful for the regular cases. However for the

marked categories, the weight string encoding (Encoding 1) does not even attain a

success score of 10%. Encoding 2 and Encoding 3 are far more successful in this respect.

This is most impressive for words that are marked as exceptional to extrametricality

([-ex]): performance increases from 0.89% for Encoding 1 to 75.2% for Encoding 2 and

even 78.1% for Encoding 3. Taken together the results for the marked classes of words

explains the observed global performance differences between Encoding 1 and the other

two encodings.



Data-oriented Acquisition of Stress 47

As for the comparison of Encoding 2 and Encoding 3, Figure 3 shows that Encoding 3

consistently scores higher, but none of the comparisons of the success scores yields a

statistically significant difference.

An analysis of the learning results for Encoding 2 and Encoding 3 from the perspective of

the metrical markedness scale, reveals an interesting correspondence. The less marked a

class of words is according to the metrical analysis, the better the class is learned in the

experiments:

Markedness Scale: R < [-ex] or LF < LF, [-ex] LF < I

Learning Performance R < [-ex] < LF < LF, [-ex] < I12

Hence, the regular cases are learned best, while the success rates for the irregular words is

lowest. In-between, the words that require one single marking are learned better than

those that require two markings. Thus, the markedness relations between those classes of

words are reflected in the success scores. In the metrical analysis, no predictions are made

about the relative degree of markedness of [-ex] versus LF. Yet in our experiments

Encoding 2 and Encoding 3 agree that [-ex] words are easier to learn than LF words.

These results lead us to conclude that there is a close overall correspondence between

markedness as a function of the number of lexical markings needed for particular classes

of words and the learnability of those words: for unmarked classes of words, the learning

algorithm reaches a superior success score than for the marked classes, and performance

decreases as the number of markings increases.
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Does this close correspondence between markedness in the metrical framework and

learnability in the computational context also hold when we scrutinize the results for

specific types of words? To examine this in detail, we will look at different types of

words as was done in Tables 1 and 2.

For the ´-final words success rates for the regular pattern are 99.39% for Encoding 2 and

99.47% for Encoding 3. The handful of exceptions which require full lexical marking (I)

were all wrongly classified as regular (R), so that for superlight syllables a drastic

difference in performance exists between words on different ends of the markedness

scale.

For words ending in superheavy syllables too, alternation exists only between R(egular)

and I(rregular) patterns. The regular ones (final stress) are predicted with 96.80%

accuracy for Encoding 2 and 96.35% for Encoding 3. The irregular patterns reach success

scores of 55.83% for Encoding 2 and 61.67% for Encoding 3, again yielding a highly

significant difference.

For words ending in light or heavy syllables, the situation is slightly more involved; here

the R(egular) pattern alternates with different kinds of marked patterns, depending on the

form of the prefinal syllable. In the following tables we select those types from Table 1

where the regular pattern alternates with cases that need [-ex], LF or a combination of

both. Thus, in Table 8 and Table 9  alternations between R(egular) and I(rregular) are left

out.
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Table 8: Results for VV-final Words Relative to their Metrical Analysis

Syllable

Pattern

Stress Marking # Words Encoding 2 Encoding 3

VV-VV PEN R 201 96.52 89.55

FIN [-ex], LF 64 56.25 54.69

VC-VV PEN R 188 98.94 97.34

FIN [-ex], LF 40 75.00 80.00

VXC-VV PEN R 17 100 100

FIN [-ex], LF 3 66.67 66.67

-VV-VV PEN R 212 75.47 81.60

ANT LF 124 66.94 73.39

FIN [-ex], LF 91 52.75 59.34

-VC-VV PEN R 126 92.06 96.83

FIN [-ex], LF 34 67.65 64.71

-VXC-VV PEN R 1 100 100

FIN [-ex], LF 2 100 100
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Table 9: Results for VC-final Words Relative to their Metrical Analysis

Syllable

Pattern

Stress Marking # Words Encoding 2 Encoding 3

VV-VC PEN R 177 75.71 75.71

FIN [-ex] 134 78.36 79.10

VC-VC PEN R 135 77.78 79.26

FIN [-ex] 101 80.20 81.19

VXC-VC PEN R 8 50.00 62.50

FIN [-ex] 5 60.00 80.00

-VV-VC ANT R 170 67.06 63.53

PEN LF 64 61.19 69.84

FIN [-ex] 67 73.02 68.66

-VC-VC PEN R 36 88.24 88.23

FIN [-ex] 12 66.67 91.67

When we look at the data for VV-final words, the correspondence between relative

markedness and learnability holds across the board. For bisyllabic words, performance

for the regular case varies between 90 and 100%, whereas final stress, which needs two

exception features, is predicted with success rates ranging from 55 to 80% The

differences between both categories are statistically significant in each case (p < .01 in

the χ2 test). For trisyllabic and longer words, the -VV-VV-type is the most interesting

one, because the regular pattern (PEN) alternates with two different marked patterns, i.e.

ANT, which results from a lexical foot and FIN, which needs both LF and [-ex]. For both

Encoding 2 and Encoding 3 the regular pattern is learned best, followed by the one which

needs a  single lexical marking, whereas the most marked pattern is the hardest to predict.
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For -VC-VV words,  the regular case is once again learned better than the marked one.

Thus, the results for individual VV-final word-types corroborate the correspondence

between markedness from a theoretical perspective and ease of learning for the algorithm.

Only for the VC-finals this correspondence does not seem to hold. The marked pattern

[-ex]  is predicted better than the regular pattern in most cases. This might be related to

the fact that unlike with the VV-final words, the contrast between regular and marked

involves only a single lexical marking. Yet, the high success rate for final stress ([-ex]

words), which was already pointed out in section 4.3.1, merits further discussion, because

it seems to imply that the phonemic encodings permit the algorithm to capture relevant

generalizations governing the presence of [-ex].

Closer scrutiny of the results reveals that the high performance for [-ex] words can be

attributed to the fact that the algorithm has discovered subregularities in the data which

are tied to segmental information, and hence, cannot be captured using syllable weight

alone. For instance, the high success scores for final stress in VC-final words is due to a

considerable extent to the fact that almost half of these words (48%) have /E / in their

final syllable. Success rates for predicting final stress for these words are 92.90% for

Encoding 2 and 95.74% for Encoding 3, while the success rates for this group as a whole

(i.e., including those with PEN and APU stress) are 82.82% for Encoding 2 and 84.66%

for Encoding 3. The IBL algorithm also seems to have discovered the more general

subregularity in the lexicon with respect to words ending in /E /, viz. they almost

unanimously prefer final stress (88 % vs. 9.53% PEN and 2.46% ANT on a total of 325

words). This strikingly homogeneous behavior of words with /E / in their final syllable is

reflected in a success rate of 88% for Encoding 2 and 89.53% for Encoding 3. For the

regular (superheavy) words in this class, the success rate was as high as 93.21% for

Encoding 2 and 94.44% for Encoding 3.
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While this illustrates how the segmental information in Encoding 2 and Encoding 3

enables the algorithm to learn marked patterns, these subregularities sometimes cut across

the metrical classification based on syllable weight. This phenomenon can also be

illustrated for other types of words: words with /e:/ in their final syllable have a strong

preference for final stress (96.67%), irrespective of whether the final syllable is closed

(i.e. superheavy, and hence R) or open (and hence requiring both LF and [-ex] in the

theoretical analysis). The regular words are stressed with 97.62% accuracy for both

encodings, the marked ones with approximately 90%, yielding a total success rate of

94.29% for Encoding 2 and 94.76% for Encoding 3.

The breadth of the ability to trace subregularities in the data based on segmental

information is further illustrated by the following example: 25% of VC-final words have

/u:/ in their final syllable. Of these words 48.08% have stress on the penultimate syllable

and 44.23% on the antepenultimate syllable. Yet, the success rate for this class of words

is 81.54% for Encoding 2 and 83.46% for Encoding 3, which is more than expected given

the distribution of target categories. It appears (again) that the algorithm discovered finer

distinctions within this set of words. A particularly striking one concerns Latinate words

in /i:u:m/ . These words have antepenultimate stress in 95.24% of the cases, and a success

rate of 95.24% (both encodings) for this type of words indicates that the algorithm has

successfully captured this  minor generalization.

Summarizing, we found a correspondence between markedness in the metrical

framework and ease of learning by the algorithm. This correspondence was first observed

on a global level, where the regular cases in the metrical analysis were learned more

accurately than the marked cases for which the metrical analysis proposes lexical
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markings. The correspondence was also found to a large degree at the level of individual

word types.

4.3.4 Summary of Results

The experiment set out to investigate the ability of IBL to acquire main stress assignment

in Dutch monomorphemic words. The system was largely successful in this enterprise: its

general performance attained a success score of almost 90%.  The experimental findings

clearly indicate that the major generalizations in the domain were captured (i) although

the learning material was noisy to a considerable extent, and (ii) without using the tree

building operations deemed necessary in learning theories in the framework of metrical

phonology.

In order to investigate the effects of the knowledge provided to IBL in the training

examples, three encodings were used in the experiment, varying in the degree of

'theoretical bias'. The encoding incorporating the metrical notion 'weight', as represented

in the weight string encoding, was less successful overall than the encodings in terms of

the actual phonemic content of the words. This finding shows that important information

was lost in the abstraction of syllable-weights from the phonemic content.  The relative

poverty of the weight string representation, which is interpreted as necessary and

sufficient for stress assignment in metrical phonology, resulted in an overprediction of the

most frequent pattern. The phonemic encodings, which make less or no abstraction of the

segmental details, were less prone to overgeneralize the most frequently observed pattern

in the input.

The performance of the algorithm shows some interesting relationships with a metrical

analysis. On a general level, the success rates of IBL correlated with a markedness scale
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that was defined in terms of the idiosyncratic marking of words. Regular words from a

metrical perspective do not require specific marking and they were learned very

successfully. Irregular words, the other extreme on the markedness scale showed the

lowest success rates. In-between these two extremes, words that require one feature are

more easily learned than words that require two features. This correspondence between

relative markedness and relative ease of acquisition is consistent with Gupta &

Touretzky’s (1993) results.

When tracing the correspondence between relative markedness and ease of learning down

to the level of individual types of words, the analysis was quite successful again: for ´-

final, VXC-final and VV-final words, the stress pattern of regular words is more

accurately predicted than the stress pattern of marked words. Moreover the more marked

a type of word is in  metrical terms, the lower the success rate for that type turns out to

be.

The sole exception to this correspondence was the class of VC-final words. For these

words, a marked pattern, viz. the [-ex] type, was found to be as easily (or even better)

learned than the regular type. In order to explain this deviant finding, the processing of

the system was traced. It turned out that the algorithm detected subregularities in the data.

These subregularities could be defined in terms of characteristic segments in particular

positions in the word, or clusters of segments. This is why VC-words with final stress that

are marked in the metrical analysis actually turn out to be fairly regular, as judged from

the learning results. ‘Markedness’ in metrical phonology is defined relative to an analysis

in which segmental information is abstracted away in the derivation of syllable weight.

But the subregularities detected by the algorithm were shown to be defined in terms of

segmental information, especially vowel quality. Moreover, they cut across the metrical

classification in terms of syllable weight, and, hence, markedness as conceptualized here.
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The finding that, on the one hand, a metrical analysis reveals the dominant patterns in the

data, but, on the other hand, does not capture important subgeneralizations in the domain,

may be considered as an indication that  metrical analyses should pay more attention to

segmental information than is the case at present. Our research shows some directions in

which such a quest can proceed.
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5. Conclusion

Dresher & Kaye (1990:146) argue that "A rich and highly structured theory of UG

[Universal Grammar] is otiose if the same results can be achieved by simpler means."

What might these alternatives be? A possible alternative, is a data-oriented one, which

can be described as follows: it appears that stress patterns are sensitive to sequences of

syllables and syllable weights. We could simply map strings of weighted syllables

(weight strings) into sequences of stresses (stress strings). In this way a record would be

kept of the stress strings associated with each weight string. This alternative was

suggested by Church (1992)13 and by Dresher and Kaye (1990). The latter conclude their

discussion of this alternative by stating that it is empirically inadequate: "It would be

unable to project its grammar to assign stress to weight strings not yet encountered"

(Dresher 1992: 301).

In this paper we investigated a learning device that incorporates the very simple data-

driven alternative described above.  The memory of an Instance-Based Learning (IBL)

system is a kind of table in which representations of words are associated with stress

assignments.  However, by using simple similarity-based reasoning, the algorithm can

generalize beyond the data on which it was trained.

We showed that IBL was able to acquire a considerable portion of the regularities

governing the stress system of Dutch. This finding is in agreement with a similar

enterprise undertaken by Gupta & Touretzky (1993), who used a simple perceptron as

their data-driven approach, and shows that the tree building operations proposed in

learning theories for metrical phonology are not necessary for learning stress assignment.
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We also investigated two other aspects of the learning process. First of all, in the learning

experiments described in the literature thus far, only stereotyped representations of the

stress patterns of languages have been used as learning material. In this study we used a

lexicon of 4868 attested monomorphemes. This lexicon showed all the general

characteristics of the intricate Dutch stress system, but it also contained a fair amount of

noise: exceptional words from a metrical point of view as well as plain irregular cases. It

was shown that IBL discovered the regularities despite the noise.

Secondly, we investigated the effect of using different representations for the training

material of the learner on the learning results. The input encodings reflected the amount

of 'theoretical bias' or a priori knowledge that a learner could be provided with. More

specifically, a weight-string encoding is considered to be necessary and sufficient in the

literature for learning a quantity-sensitive language such as Dutch. We contrasted such an

encoding of our learning material with an encoding that consisted of rhyme projections,

and with a plain phonemic representation (that included syllable boundaries). It turned

out that the phonemic representations yield significantly better results than the encoding

in terms of syllable weights. This implies that a data-driven approach to the task of

acquiring main stress assignment is feasible even without the a priori knowledge

incorporated in weight-strings.

Taken together, our results suggest that the representations and operations specified by

metrical theory may be neither necessary nor sufficient for learning stress assignment.

More specifically, information about segmental content may warrant more attention in

metrical phonology.  More generally, the results weaken Dresher & Kaye’s (1990)

argument for the necessity of a principles and parameters approach to the acqusiition of

stress.
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formalism using bracketed grids (see Halle & Vergnaud 1987), the main insights from Trommelen &

Zonneveld 1989 concerning the nature and amount of lexical markings needed are retained.

7 This formulation has been made first by Kager (1985).

8 This rule is therefore often referred to as the End Rule

9 See  (Visch & Kager 1984) for a discussion why VVC should be ‘heavier’ than VCC.

10 The actual encodings are in DISC format (see Burnage 1990) which has the advantage that each

phoneme is transcribed by means of a single symbol.

11 In this table the highest success score per target category is displayed regardless of the number of

training items that were involved to reach this peak score (for instance, the highest score for the target

category 'penultimate stress' is reached with 3000 items in the Encoding-1 condition, 3500 items in the

Encoding-3 condition and 4000 items in the Encoding-2 condition. Since we are not mainly concerned with

an analysis of the learning curves in these various conditions, these differences will not be of any further

concern.

12 All comparisons reveal a statistically highly significant difference, p < .01, as measured by the χ2-

test.
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13 Church (1992), in a reaction to Dresher (1992) proposes lookup in a table of syllable weight

strings  (associated with their stress string) as an alternative approach. However, he glosses over the

problem of ambiguity and noise, and of how to arrive at a syllable weight representation on the basis of the

spelling of words.


