
International Journal Human-Computer Studies 41, 149-177, 1994, Preprint

DEFAULT INHERITANCE
IN AN OBJECT-ORIENTED REPRESENTATION OF

LINGUISTIC CATEGORIES†

Walter Daelemans Koenraad De Smedt

ITK Experimental Psychology Unit

University of Brabant Leiden University

P.O.Box 90153, 5000 LE Tilburg,

The Netherlands

P.O.Box 9555, 2300 RB Leiden,

The Netherlands

Walter.Daelemans@kub.nl desmedt@rulfsw.leidenuniv.nl

ABSTRACT

We describe an object-oriented approach to the representation of linguistic

knowledge. Rather than devising a dedicated grammar formalism, we

explore the use of powerful but domain-independent object-oriented

languages. We use default inheritance to organize regular and exceptional

behavior of linguistic categories. Examples from our work in the areas of

morphology, syntax and the lexicon are provided. Special attention is given

to multiple inheritance, which is used for the composition of new categories

out of existing ones, and to structured inheritance, which is used to predict,

among other things, to which rule domain a word form belongs.

© 1991-1994 Walter Daelemans & Koenraad De Smedt

Printed Monday, May 16, 1994

† We would like to acknowledge the contributions of Josje de Graaf to the research described

in this paper. Part of this research was described earlier in De Smedt and de Graaf (1990) and

Daelemans (1990). Thanks are due to anonymous referees of IJMMS for useful comments and

suggestions.

2

1 INTRODUCTION

During the last few decades, research in knowledge representation and research in

computational linguistics have been getting closer to each other, but in two different ways. On

the one hand, the frame-based and object-oriented knowledge representation languages used in

AI have widened their grasp on linguistic knowledge: not only domain knowledge has been

‘framed’, but also syntax, morphology, phonology, and the lexicon (Daelemans, 1987, 1988;

De Smedt, 1984, 1990). On the other hand, dedicated linguistic formalisms have been

enriched by ideas coming from established work in knowledge representation. The

incorporation of inheritance in unification-based formalisms (e.g. Shieber, 1986) is an example

of such an enrichment.

We argue that it is better to refine and further tailor a general (but sophisticated) computer

language to the needs of the linguistic domain, than to design a specialized language from

scratch. Practical reasons for this preference are, first, that there is no point in reinventing the

object-oriented wheel, and second, that a general purpose language is more useful than a

special-purpose one. We also wish to consider linguistic competence as a sub-component of

knowledge in general as much as possible, thereby allowing maximal generalization.

Proponents of Word Grammar (Hudson, 1984; Frazer & Hudson, 1992), among others, have

set the same goal. In this context, we argue that the application of AI languages to linguistic

knowledge deserves more attention. Specifically, the mechanisms for inheritance,

encapsulation, and polymorphism, which are common in frame-based and object-oriented

programming are essentially domain-independent. They are eminently suited to the

representation of many kinds of knowledge, including linguistic knowledge.

To illustrate our point, we will show several examples of the interplay between inheritance,

encapsulation and polymorphism in the representation of linguistic categories. We will

concentrate on several aspects of default inheritance in this paper, and we will use selected parts

of our work in morphology, syntax and the lexicon of Dutch as an example domain. Due to

space limitations, our examples will be concise and will serve only to illustrate the main

theoretical concepts. Applications dealing with real world problems such as the generation of

written and spoken language in an actual man-machine interface fall outside the scope of this

paper.

The remainder of the paper is organized as follows. In the remainder of section 1, we will

present our basic starting points with respect to the object-oriented representation of knowledge

in general, and linguistic knowledge in particular. In section 2, we will describe the

architecture of an object-oriented model of morphology (the computation of word forms). In

Sections 3 and 4, specific issues concerning inheritance will be discussed and illustrated with

examples from this morphology model. Section 5 illustrates the use of inheritance to improve

the representation of feature structures. Here we will focus on the area of syntax (the

computation of sentence structure), using a unification grammar as a concrete example. Section

3

6 discusses an alternative representation for some problematic cases. The final section

concludes with evaluative comments and a future outlook.

1 . 1 Language as an open system

What we do in defining a knowledge representation language is to make an abstraction over a

class of representational structures and introduce a syntactic mechanism to express that

abstraction. The resulting new primitives will manage the complexity of knowledge so that

programs will be more understandable, modularity will improve, and efficiency will be gained

in several other ways. But the relevance of postulating new representational primitives goes

beyond mere productivity concerns. They state generalizations about the representational

structures used by processes in intelligent systems (Steels, 1978). As with all empirical

generalizations, it may not be possible to absolutely prove that it is adequate or valid, but it may

be possible to find cases demonstrating why a generalization is notationally adequate, for

example from a viewpoint of economy.

Default inheritance in taxonomies of object classes or types is such a representational

primitive. It refers to the ability to generalize and specialize mental concepts, and to reason by

virtue of prototypes while keeping the system open to exceptions. This form of reasoning

pervades much of our common sense knowledge but is also a high-level mechanism for the

symbolic manipulation of important concepts in a scientific domain. Fikes and Kehler (1985)

point out that representations based on hierarchically ordered, structured objects “capture the

way experts typically think about much of their knowledge, provide a concise structural

representation of useful relations, and support a concise definition-by-specialization technique

that is easy for most domain experts to use.” This is also true for the way linguists generally

think.

The software engineering advantages in using object-oriented programming (modularity,

conciseness, reusability) are well-documented and apply a fortiori to the design and

implementation of natural language processing systems, where hierarchical reasoning with

defaults is necessary for a practical and realistic representation of linguistic knowledge. A

natural language is an open system. The development of extensible and adaptable natural

language processing systems crucially depends on a knowledge representation paradigm within

which generalizations are effectively exploited (Jacobs, 1985).

This is not to say that inheritance is only a software engineering tool. Especially in a

lexicalized grammar, the avoidance of redundancy is mandatory, while the possibility to

incorporate exceptions must be left open (Flickinger, 1987). We are trying to model linguistic

knowledge the way linguists typically work. Many grammars, especially traditional ones, are

implicitly organized by means of abstraction over linguistic categories. The hierarchical

relations between grammar concepts may emerge in the organization of a grammar book: one

finds a chapter on The noun, which in turn has a specialized section on The proper noun, etc.

While we think this is basically the right approach, it is nonetheless necessary to make the

nature of inheritance in the hierarchy much more explicit. This can be achieved by developing

4

formal theories of default inheritance and proposing algorithms for their implementation. In

short, the achievement of a hierarchical theory of language must be supported by a knowledge

representation framework which incorporates primitives for hierarchical reasoning. For a

broader thematic and historical overview of the use of inheritance in linguistics and natural

language processing, we refer to Daelemans et al. (1992).

1 . 2 Inheritance as a multi-purpose mechanism

An important feature of object-oriented languages is that they provide some kind of mechanism

for objects to inherit their structure and behavior from other ones. The application of

inheritance can be seen from different points of view which we will list below. Notice that

these perspectives are overlapping: stepwise refinement, for example, is a particular use of

specialization .

1 Specialization. From a conceptual point of view, inheritance allows the representation

of more specific objects as specializations of more general objects. In this way a specialization

hierarchy is produced, which corresponds closely to the hierarchy of ‘is a’ links in a semantic

network. For example, the objects vowel and consonant might be specializations of

phonological segment. A hierarchy of grammar concepts might contain objects for word and its

specializations noun, verb, preposition, etc.

2 Combination. Another kind of inheritance, multiple inheritance, represents the behavior

of an object as a combination of the behaviors of two or more other objects. This is often done

if an object needs to integrate knowledge from different sources or perspectives. For example,

the behavior of the objects plural and noun could be combined to describe a plural noun.

Objects are rarely combined on the basis of equality. It will often consist of the addition of a

few special features (for example those of plural) to a more general object (in this case noun).

The secondary object whose features are ‘added’ is sometimes called a mixin. A transitive

plural strong verb could be defined as a combination of the object verb with the mixins

transitive, plural, and strong.

3 Stepwise refinement. A program can be constructed by first modeling the most general

concepts in the application domain, and then dealing with special cases through more

specialized objects. The programmer is not so much concerned here with the construction of a

taxonomy but uses refinement as a programming methodology. Stepwise refinement by

specialization can be compared with the well-known methodology of stepwise refinement by

decomposition (Wirth, 1971). It is significant that the effort of defining an object is

proportional to the extent in which it differs from other objects. Thus, refinement is not only

useful as a programming methodology, but it can also be thought of as a general cognitive

mechanism, for it reflects a principle of least effort.

4 Avoiding redundancy. From the point of view of data storage, inheritance is a way of

knowledge sharing. A piece of information which is necessary in many objects needs to be

stored in only one object, where others can access it. Avoiding redundancy in this way reduces

memory requirements. It also improves modularity, because the shared knowledge only needs

5

to be updated in one place. Again, the principle of system economy is thought of as a general

cognitive principle and not just a software engineering strategy.

5 Predictions about new objects. When new objects are created in the course of the

computation, inheritance can be used to predict their default behavior. For example, if we say

that the mother of person inherits from woman, we predict that if a certain object is the mother

of a specific person, it will—at least by default—be a woman. Structured inheritance is a

mechanism capable of making such default predictions. It offers many opportunities for the

representation of linguistic knowledge and will be dealt with in more detail below.

It is important to mention here that our view of inheritance is always based on defaults rather

than absolute and irretractable statements. If we say “birds fly”, then we mean “birds typically

fly” and we have no problems to accept and handle exceptions—for instance, ostriches and

penguins—adequately. Similarly, if we say “nouns are countable”, then there may still be a

special class of uncountable nouns. All inherited knowledge only holds in so far as it is not

overruled by knowledge in the inheriting object. Consequently, our view of inheritance

incorporates an implicit blocking of defaults in view of more specific knowledge.

We conduct our work in the frame-inspired object-oriented languages CommonORBIT (De

Smedt, 1987, 1989) and KRS (Van Marcke, 1987) which are based on the notion of

prototypes. For examples we will use the syntax of CommonORBIT, which is implemented as

an extension of Common LISP. Whereas in some other object-oriented languages, every object

must belong to some class (or type, or flavor), this is not the case in CommonORBIT. Instead,

an object in CommonORBIT can be a prototype (or model, or proxy) for any other object. This

untyped view of inheritance uses ‘is-like’ (or ‘shares-with’, or ‘delegates-to’) relations, which

have a more general semantics than the ‘is-a’ relations in typed object-oriented languages. A

similar view of inheritance based on prototypes and delegation has been proposed by

Lieberman (1986).

2 A HIERARCHICAL MODEL OF MORPHOLOGY

We have developed and implemented a model of Dutch morphology which generates

structured, phonologically and orthographically specified word forms from their bases in the

lexicon. The model, which covers Dutch nouns, verbs and adjectives, consists of the

following modules: (1) a hierarchical lexicon with objects representing simple unstructured

words (base forms), (2) a morphological component consisting of a hierarchy of morphological

categories and associated rules, and (3) a phonological component consisting of a hierarchy of

phonological categories and rules. The three modules are not independent in their

representation; as will be shown below, they are only different locations in the topology of a

single large lexical hierarchy of linguistic concepts. The model is meant to be embedded in a

6

larger system for natural language generation1 for which other components are under

development. The input to the morphology component consists of base forms with

grammatical features such as singular, third person, etc. On the output side of the

morphological component, structured word forms are passed on to a phonological component,

which applies a set of phonological rules (for instance, assimilation) to yield fully specified

phonetic strings, and a spelling component which produces orthographic strings. In addition,

the morphological component may be used to extend the lexicon with newly formed words.

The system is roughly outlined in Figure 1.

syntactic
component

morphological
component

phonological
component

base forms
+ grammatical

features

morphologically
structured

word forms

meaning
representations

phonological
strings

lexicon

base forms
morphologically

structured
word forms

Figure 1

The place of the morphology component in the natural language generation system.

2 . 1 The lexicon as a hierarchy

The morphological knowledge needed for the computation of word forms is embedded in a

larger object-oriented lexicon architecture in which maximal use is made of the information

combination, default reasoning, and sharing possibilities of multiple default inheritance.

Linguistic knowledge is organized in a specialization hierarchy of objects representing

semantic, syntactic and morphological categories. Lexical base forms are the bottom nodes of

this hierarchy. They have associated with them idiosyncratic information (their lexical

representation), and inherit from different objects in different subhierarchies (semantic,

morphological, syntactic). Both procedural knowledge (i.e. rules) and declarative knowledge

(for example features) become available to the base forms by default inheritance.

1 One may wonder how suitable these methods are for applications other than generation. We

will not address this question in depth here, but we admit that it is not straightforward to rearrange

the system so that it is suitable for parsing. Although generation and parsing are assumed to

operate largely on the same kinds of structures, it is not possible to simply run the programs

described here ‘in reverse’.

7

Part of the lexical hierarchy for English is shown in Figure 2, where relations allowing

inheritance are depicted as arrows. The base form (to) pay is defined as inheriting from

transitive, regular verb, and commercial action. The hierarchy represents surface semantic,

syntactic, and morphological knowledge. Through default inheritance, the base form gains

access to the syntactic knowledge that it is a normal verb (not an auxiliary), that its (direct)

object is an noun phrase (NP) with the accusative case, and that its subject is an NP with the

nominative case. The semantics inherited includes the knowledge that the agent of the action

referred to by pay is the referent of the subject, and the patient is the referent of the object. By

virtue of the inheritance link to regular verb2, a number of word formation rules (methods)

become available to pay. In contrast, buy has a link to irregular verb, and consequently inherits

different morphological rules. These rules allow new word forms to be created and assigned

their proper place in the hierarchy. That way, lexical information becomes available through

inheritance to these derived forms as well.

ACTION
 Agent >> Subject
 Patient >> Object

COMMERCIAL-ACTION
 Buyer >> Agent

PAY-ACTION
 Amount >> Patient

BUY-ACTION
 Goods >> Patient

VERB
 Cat = Verb

INTRANSITIVE
 Subject = an NP
 Case = Nominative

TRANSITIVE
 Object = an NP

WORD

REGULAR-VERB
 3rd Person Suffix = +s
 Past Tense Suffix = +(e)d

NP
 Case = Accusative

IRREGULAR-VERB
 Past Tense Suffix = 0

PAY BUY

Figure 2

Integration of knowledge in a hierarchical lexicon

The uniform representation of lexical knowledge enables the definition of the interaction

between different sources of knowledge at a high level of abstraction (for example, the

2 Morphologically speaking, to pay is seen as a regular verb despite superficial spelling

changes in its past tense and past participle.

8

definition of semantic agents as syntactic subjects), while at the same time allowing for

exceptions and sub-regularities (for example, subjects of passives are patients). In the

remainder of this article, we will mainly focus on the organization of the morphological

subhierarchy within this lexicon architecture.

2 . 2 Word formation as a recursive process

Dutch morphology is somewhat richer than English. Dutch polymorphemic word forms may

be derived from simpler forms by means of prefixing, for instance, her+doe (redo), by

suffixing, for instance, groen+ig (greenish), or by a combination of both prefixing and

suffixing, for instance, ge+werk+t (worked, past participle). This process covers both

derivation and inflection3. In addition, words may be compounded, for instance, lucht+haven

(airport) or can undergo simultaneous compounding and affixing, for instance, drie+kopp+ig4

(three-headed). As can be expected, polymorphemic word forms may themselves be the base

for other word formation processes as if they were simple morphemes, which makes word

formation a recursive process. It is easy to assign a structure to polymorphemic words which

reflects the ordering of the various recursive derivations and compoundings by which they are

generated. For example, the Dutch word ge+her+structur+eer+d+e (restructured) can be

represented as a bracketed structure where each successive recursive layer of the derivation is

represented as a concatenation of a prefix, a base, and a suffix, where the prefix or the suffix

may possibly be empty, represented by a space (" "):

(" " (ge+ (her+ (" " structur +eer) " ") +d) +e)

This representation, which we call the lexical representation, is computed by means of the

list concatenation of the lexical representations of a (possibly empty) prefix, a base, and a

(possibly empty) suffix. The CommonORBIT code of the prototypical wordform contains a

procedure for creating such a list:

(DEFOBJECT WORD
 (PREFIX (A 0-MORPHEME)) ;default = empty
 (BASE :IF-NEEDED #'IDENTITY) ; default = the word itself
 (SUFFIX (A 0-MORPHEME)) ;default = empty
 (LEXICAL-REPRESENTATION :IF-NEEDED
 #'(LAMBDA (SELF)
 (LIST
 (LEXICAL-REPRESENTATION (PREFIX SELF))
 (LEXICAL-REPRESENTATION (BASE SELF))
 (LEXICAL-REPRESENTATION (SUFFIX SELF))))))

3 Inflection operates under the influence of grammatical features such as number, person and

tense. Derivation covers wider shifts of meaning and may also involve a shift in grammatical

category, e.g., the English adjective computable is derived from the verb compute.
4 Our morphology abstracts from spelling adjustments, e.g. reduplication of the final

consonant in kopp. These adjustments are carried out by a separate spelling module which is

active on the same level as the phonological component.

9

(DEFOBJECT 0-MORPHEME
 MORPHEME
 (LEXICAL-REPRESENTATION " ")) ;space means empty

The first DEFOBJECT form defines an object word with aspects prefix, base, suffix and

lexical-representation. The second DEFOBJECT form defines the empty morpheme. Aspects

of type :IF-NEEDED contain functions that compute a value only when needed. For more

details on the syntax of CommonORBIT, we refer to De Smedt (1987). The lexical

representation of a morpheme is a string consisting of phonological segments5 and boundaries,

supplemented by diacritics (accent markers) for stress, etc. The lexical representation of a word

is computed as a list structure containing other lexical representations, i.e. those of its prefix,

base and suffix. Eventually, a phononogical string can be derived from such a list by removing

the brackets and concatenating the contained strings. This phonological string still abstracts

from regular phonological variation. The ultimate phonetic string is determined only after

general phonological rules (for instance, assimilation) have operated on it.

2 . 3 Objects as a uniform representation

Our work uniformly represents all linguistic categories, such as phonemes, morphemes, etc. as

structured objects. Several basic tenets of object-oriented programming are relevant to

linguistic representation. One of these is the principle of encapsulation, the localization of

structure and behavior in the object to which it conceptually belongs. An object can be seen as

a collection of properties and (potential) behaviors. Furthermore, the identity of an object is

important6. This identity can be used, for instance, to relate stems of complex word forms

such as inherit and heritage (see also Russell, Ballim, Carroll and Warwick-Armstrong,

1992, for a treatment of separable verbs along these lines).

This implies that in our approach to morphology, not strings are the basic units (as in two-

level morphology or generative phonology), but structured morphological objects. The

phonetic representation, which takes the form of a string, and the lexical representation, which

takes the form of a list, are only two of many attributes associated with word form instances.

Similarly, string concatenation is only one aspect of morphological processing, which involves

object creation and multiple inheritance of properties. This approach makes it easier and more

natural to handle discontinuous morphemes, morphological processes that have no effect on

word form (for example type conversion), and multi-word lexical entries (idioms).

5 For ease of reading, we will normally use spelling rather than pronunciation in this paper.

Nevertheless, the lexical representation contains in principle phonological rather than

orthographic units, because some morphological processes may depend on aspects of

pronunciation.
6 For a discussion of the importance of object identity in the representation of linguistic

knowledge, we refer to Van der Linden et al. (1988).

10

Our work follows De Smedt (1984), who accounts for some regularities and exceptions in

the inflectional morphology of Dutch verbs by employing default inheritance in a hierarchy7 as

depicted in Figure 3.

werken ...

bakken ...

zwemmen ...

past tense suffix: +te or +de (dep. on voicedness)
past-participle stem: past tense stem
past-participle prefix: ge+
past-participle suffix: +t or +d (dep. on voicedness)

past-participle suffix: +en or +n
 (dep. on consonantality)

past tense suffix: 0

WEAK VERB

MIXED VERB

STRONG VERB

Figure 3

A partial hierarchy of Dutch verbs (adapted from De Smedt, 1984)

The top node of this hierarchy, weak verb, is the most regular kind of verb and therefore is the

prototype object for all other verbs. Actually, this object inherits from an even more general

object, word, and so on. The inflectional behavior of the weak verb is represented in a number

of aspects which each compute a stem, prefix, and suffix for each of its inflections. All weak

verbs have the object weak verb as a prototype. For example, werken (to work) is an object

which inherits its inflectional behavior directly from weak verb. There is a specialization

representing a prototype, half-strong verb, which is partly regular but has an exceptional past

participle suffix. This contradicts the specific information associated with its weak verb

prototype for this particular form, which is thus overruled. Again, there are a number of verbs

which inherit their morphological behavior from half-strong verb, and so on. This

representation provides a non-redundant and generalization-capturing account of Dutch verb

inflections.

It is significant that the hierarchies in Figures 2 and 3 contain lexical items as well as

morphological categories. Thus, there is no strict separation between the lexicon and the body

of morphological knowledge. Instead, there is a smooth transition from the most general

categories to the most specific ones—individual words. This is a direct consequence of the

uniform representation of linguistic knowledge as objects. A uniform framework has the

advantage that it allows for the same general principles to be applied to a variety of knowledge

units (Jacobs, 1985).

7 This example is also discussed in Gazdar (1987).

11

3 MULTIPLE INHERITANCE AS COMPOSITION

Specialization is but one facet of the inheritance mechanism. The other is the definition of new

objects as a combination (or composition) of several prototypes. This presupposes the

handling of multiple inheritance. In this section, we will show how this mechanism can be

exploited in at least three ways.

3 . 1 Combined objects as mixins

One way to exploit combination is the creation of categories that combine information from

different knowledge sources. This will often amount to the addition of a few special features

to a more general category. For example, a nominative plural NP can be seen as an object that

inherits from nominative, plural, and NP. The prototype NP is the most substantial category,

whereas nominative and plural are secondary objects whose features are ‘added’; they are

sometimes called mixins. We will avoid the many thorny issues in multiple inheritance (see for

example Touretzky, Horty & Thomason, 1987), but we must nevertheless address the question

of how conflicts between contradicting knowledge in the composing objects can be resolved. It

is clear that mixins are usually meant to have priority over the defaults in the more general

categories. In the case of a nominative plural NP, the mixins nominative and plural have

priority over the prototype NP, which may be accusative and singular by default. We will call

the relative ordering of composing objects local or definitional precedence.

However, we must make sure that definitional precedence does not violate hierarchical

precedence. For example, suppose that rondrijden (to ride about, to tour), a Dutch compound

verb, inherits from both compound and verb. The prototypes compound and verb are defined

separately, so that the knowledge encapsulated in them can be reused for different

combinations, for example compound noun, compound adjective, etc. Suppose, furthermore,

that we specify that the knowledge in compound has definitional precedence over that in verb.

Any knowledge in compound will precede that in verb. In principle, we could implement this

as a depth-first search in the hierarchy (from left to right in Figure 4).

rondrijden

compound

word

verb

Figure 4

Multiple inheritance with a common prototype

When combining knowledge from different sources, it cannot be excluded that the different

sources share a common prototype, for instance, the object word in Figure 4. A depth-first

search in the hierarchy will respect the priority of compound over verb, but will not do justice

12

to the specialization relations. The common prototype must not be considered before more

specialized objects in the hierarchy. This can be formulated as the following principle, which

has also been advocated by Ducournau and Habib (1987):

Specialization vs. Multiplicity:

Inheritance must follow the specialization partial order; therefore, in any case the
specialization relation excels the local (definitional) precedence of prototypes.

Following this principle, both compound and verb will have precedence over word in the

example of Figure 4.

3 . 2 Multiple inheritance as biased semi-compositionality

Seen from a different perspective, the combined operation of the principles of definitional

precedence and specialization yields a kind of ‘biased’ semi-compositionality that is common in

descriptions of natural language phenomena. One prototype usually plays the role of head

while the others play the role of modifiers with different priority. Furthermore, the information

which is compositionally inherited from the prototypes can be overruled by locally specified

information to express subgeneralizations and exceptions.

The use of composition as consisting of a head and modifiers can be exemplified by the

semi-compositional nature of compounds such as blackboard. This compound could be

defined as inheriting from board and black (in that definitional precedence order), biasing the

composition of information toward inheritance of syntactic and morphological features from

board. In other words, blackboard is first and foremost a noun like board, and inherits

additional knowledge from the adjective black. However, the combination is not only biased,

but also only semi-compositional, because in this case, semantic information inherited from the

semantic representations of the parts may be overruled (blackboards may be green by default).

3 . 3 New categories as mules

A third use of composition creates new objects whose behavior is ‘in between’ that of two or

more others. Think of such a new object as a mule which is the young of a donkey and a

horse. We will give a more elaborate example in the domain of the morphology of verbs, in

order to show this use of multiple inheritance. In Dutch, there are in fact more kinds of strong

and half-strong verbs than those dealt with in section 2.3. Some half-strong verbs are different

in that they have a vowel change in the past participle; this kind will be called half-strong verb

2. A third kind is partially weak and partially strong, but in exactly the opposite way: they have

a strong past tense (with vowel change), but a weak past participle; let us call this kind half-

strong verb 3. The new hierarchy is depicted in Figure 5.

13

WEAK VERB
(past tense suffix +de/te,
 past part. prefix ge+,
 past part. suffix +d/t)
werk, werk+te, ge+werk+t

HALF-STRONG VERB 1
(past part. suffix +n/en)
bak, bak+te, ge+bak+en

HALF-STRONG VERB 2
(past part. stem +Vowel Change)
wreek, wreek+te, ge+wrook+en

HALF-STRONG VERB 3
(past tense suffix +0,
past tense stem +Vowel Change)
vraag, vroeg, ge+vraag+d

Figure 5

Objects for Dutch half-strong verbs

The strong verbs in Dutch can also be divided into two kinds, one which exhibits a vowel

change in the past participle and one which does not. This offers the opportunity to use

multiple inheritance for object composition, because the behavior of the strong verbs can be

found distributed among the various half-strong verbs of Figure 5. The resulting

representation, shown in Figure 6, is especially powerful because the definitions for the strong

verbs consist only of the combination of the objects they inherit from, without any additionally

specified knowledge. The multiple inheritance principle (specialization vs. multiplicity) makes

sure that more specialized prototypes have priority over more general ones. Thus, for example,

strong verb 1 inherits from both half-strong verb 1 and from half-strong verb 3 before the more

general knowledge in weak verb is considered. Thus, the defaults in weak verb are effectively

blocked. In this hierarchy, there is no conflict between branches because the main classes of

half-strong verbs are opposite and thus complementary; they each provide differing specific

information which does not contradict each other. However, the principle of specialization vs.

multiplicity is crucial.

14

WEAK VERB
(past tense suffix +de/te,
 past part. prefix ge+,
 past part. suffix +d/t)
werk, werk+te, ge+werk+t

HALF-STRONG VERB 1
(past part. suffix +n/en)
bak, bak+te, ge+bak+en

HALF-STRONG VERB 2
(past part. stem +Vowel Change)
wreek, wreek+te, ge+wrook+en

STRONG VERB 2
zwijg, zweeg, ge+zweeg+en

STRONG VERB 1
loop, liep, ge+loop+en

HALF-STRONG VERB 3
(past tense suffix +0,
past tense stem +Vowel Change)
vraag, vroeg, ge+vraag+d

Figure 6

Revised hierarchy of Dutch verbs

4 STRUCTURED INHERITANCE

In this section, we want to devote special attention to the application of structured inheritance in

morphology, because this inheritance mechanism, though very powerful, has received little

attention in the computational linguistics literature. This is also true for the more general OOP

community: CommonORBIT and KL-ONE are among the very few object-oriented languages

that incorporate this mechanism.

4 . 1 Structured inheritance as an automatic mechanism

Structured inheritance is a mechanism in frame-based and object-oriented representation which

models a slot after one higher in the hierarchy. When an object (or frame) inherits from another

one, the fillers of its aspects (or slots) will automatically inherit from corresponding fillers in

the higher level object. Structured inheritance is central in the frame-based language KL-ONE

(Brachman & Schmolze, 1985) and in CommonORBIT.

Let us first consider a simple example in a non-linguistic domain. Suppose we want to

express the knowledge that the mother of a person is normally a woman who is (at least by

default) not a virgin. We could represent this by creating an object for the concept person and

defining a mother aspect which is filled by an object representing the prototypical mother, i.e. a

15

‘non-virgin woman’. The relations allowing inheritance are graphically represented by means

of arrows in Figure 7. Notice that there is a stacking of defaults, one in woman and one in the

mother of person. The corresponding code in the object-oriented language CommonORBIT is

as follows (where each expression is followed by the result of its evaluation):

(DEFOBJECT PERSON
 "The mother of a person is, by default, a woman who is,
 by default, not a virgin."
 (MOTHER (A WOMAN
 (VIRGIN? NIL))))
#<object PERSON>

(DEFOBJECT WOMAN
 "A woman is a person of the female sex."
 PERSON
 (SEX 'FEMALE))
#<object WOMAN>

#<the MOTHER of PERSON>PERSON

WOMAN

mother : virgin? : nil

sex : female

Figure 7

Structured inheritance: a non-linguistic example

Structured inheritance is a way of using this representation to infer some property of a

specific mother. When we ask for the mother of a specific person, say Olivia, we obtain an

object which inherits from the prototypical mother of person. Figure 8 graphically illustrates

this inference, which is triggered by the following CommonORBIT code:

(DEFOBJECT OLIVIA WOMAN)
#<object OLIVIA>

(MOTHER 'OLIVIA)
#<the MOTHER of OLIVIA>

(SEX (MOTHER 'OLIVIA))
FEMALE

(VIRGIN? (MOTHER 'OLIVIA))
NIL

16

#<the MOTHER of OLIVIA>OLIVIA

#<the MOTHER of PERSON>PERSON

WOMAN

mother :

mother :

virgin? : nil

sex : female

structured inheritance

Figure 8

Structured inheritance at work

The identity of the newly made object is important. For each object which inherits from

person, a new mother object is created, such that every person object is provided with its own

unique mother8.

Summing up, structured inheritance has been described as the ability to “… preserve a

complex set of relations between description parts as one moves down the specialization

hierarchy” (Brachman & Schmolze, 1985:177). In systems providing structured inheritance,

the inheritance mechanism is not limited to simply sharing or copying a value, but it models an

object and the network of all its associated objects after one higher up in the hierarchy, thereby

potentially eliminating considerable redundancy. Since structured inheritance is transitive,

knowledge from various levels can be combined. Finally, since defaults are handled as in

ordinary inheritance, it remains perfectly possible to represent exceptions. For example, it is

straightforward to represent an object with a virgin mother in CommonORBIT as follows:

(DEFOBJECT JESUS PERSON
 ((MOTHER VIRGIN?) T)
#<object JESUS>

4 . 2 Derivation rules as generic functions

To see how structured inheritance works in the linguistic domain, we first explain how

morphological rules are represented. The basis of the morphology model is formed by objects

representing morphosyntactic categories, that is, categories such as noun, adjective, verb, etc.

8 One may put the question, how we can represent the fact that for example two sisters have

the same mother. Again, this can be achieved by structured inheritance, in combination with the

overruling of a default, to define a sister as a woman with the same mother, as shown in the

following code:

(DEFOBJECT PERSON
 (SISTER :IF-NEEDED (SELF)
 (A WOMAN (MOTHER :OBJECT (MOTHER SELF)))))

17

which have a syntactic role and a morphological behavior. As is usually done in computational

linguistics, the category label is represented as a feature. For example, an adjective (ADJ) is a

word with a category feature which has value adj. This prototype adjective is defined in

CommonORBIT as follows:

(DEFOBJECT ADJ
 WORD
 (CATEGORY 'ADJ))
#<object ADJ>

Word formation is characterized as the computation of a derived form (inflection,

derivation)9 from a base form. Each base form belongs to one or more classes, each

corresponding to part of the domain of a derivation rule. The rule itself is represented as a

generic function whose behavior depends on the class of the objects in its domain. Hence, the

conditional part of a rule can be distributed over a number of categories.

Morphological rules are attached to the objects in their domain, i.e. they are defined as

procedural aspects (or methods) of objects representing morphological categories. By way of

example, the rule generating a derivation with the suffix +ig (‘ish’), for example groen+ig

(‘greenish’) is attached to a category representing the domain of this rule:

(DEFOBJECT ADJ-WITH-IG
 ADJ
 (IG (AN ADJ
 (BASE :IF-NEEDED (SELF)
 (BASE (WHERE SELF = IG))
 (SUFFIX (AN IG-SUFFIX)))))
#<object ADJ-WITH-IG>

(DEFOBJECT IG-SUFFIX
 MORPHEME
 (LEXICAL-REPRESENTATION "+IG"))
#<object IG-SUFFIX>

This DEFOBJECT form is read as follows. Adj-with-ig is a category designating the

prototypical adjective which has a (possible) derived form with +ig, stored as the value of an

aspect ig. If one wishes to use a type theory terminology, ig can be interpreted as a function

applying to objects of type adj-with-ig, with a return value of type adj. The derived form, i.e.

the return value of the ig function, is an adjective with a base and a suffix. The base of the

derived form is the same as the base of the object of which the derived form is derived (where

self = ig). The suffix of the derived form is always an ig-suffix, i.e. a morpheme with the

lexical representation +IG.

Other, more specific objects may inherit from the prototype adj-with-ig to access its method

to perform the derivation. Each individual adjective inheriting from the prototype will have its

own derived form. The set of objects inheriting from the prototype can thus be viewed as the

domain of the rule.

9 From the purely morphological point of view, we do not make a principled distinction

between derivation and inflection, calling both processes by the name of derivation instead.

18

Again, following De Smedt (1984), these morphological classes are placed in a hierarchy,

where new classes are formed by means of specialization and combination. The leaves of this

hierarchy are the base words, i.e. the lexicon. For example, the Dutch adjective groen (‘green’)

is in the domain of the ig-derivation. It is represented as an object which inherits from the

category adj-with-ig; in addition it has a phonologically specified base:

(DEFOBJECT GROEN
 ADJ-WITH-IG
 (BASE (A MORPHEME
 (LEXICAL-REPRESENTATION "#Grun"))))
#<object GROEN>

This object will be dynamically modeled upon adj-with-ig by means of structured inheritance,

and so the filler of the ig aspect will inherit from that in the prototype adj-with-ig, so that groen

will have its own derived form with +ig. Since it was specified in the prototype that the base of

the derived form is same as the base of the form of which it was derived, we have sufficient

knowledge to establish that the derived form for this particular adjective is groen+ig (or

#Grun+IG, phonologically). This adjective is created only when the generic function ig is

applied to the object groen, as shown below.

(LEXICAL-REPRESENTATION (IG 'GROEN))
(" " "#Grun" "+IG")

4 . 3 The range of one rule as the domain of another rule

Structured inheritance is especially useful when we want to specify that an object in the range of

a rule is in the domain of another rule. For example, from groen+ig a comparative groen+ig+er

(‘greenisher’) can be derived. Other possible orders of recursive word formation may be

ungrammatical and must be ruled out (for example *groen+er+ig). Using the functional

metaphor, it makes sense to represent the result of the ig-derivation as an object which is in the

domain of the comparative rule. This is schematically represented in Figure 9.

groen
green

groen+ig
greenish

(groen+ig)+er
greenisher

domain of ig-derivation range of ig-derivation =
domain of comparative derivation

Figure 9

Words in the domains of rules

This knowledge can be represented in an object-oriented way as the constellation of objects in

Figure 10, where gray dots represent objects automatically created by means of structured

inheritance. Left to right order does not play a role in this figure.

19

ig : an ADJ-with-COMP

ADJ-with-COMP comp : an ADJ

ADJ

ig : comp :

ADJ-with-IG

GROEN

comp :

(groen+ig) ((groen+ig)+er)

Figure 10

Structured inheritance creates derived forms and constrains them

The definition of adj-with-ig is thus adapted so that it constrains the result of the ig-derivation

so that it is an adjective which may form a comparative:

(DEFOBJECT ADJ-WITH-IG
 ADJ
 (IG (AN ADJ-WITH-COMP ;may form comparative
 (BASE :IF-NEEDED (SELF)
 (BASE (WHERE SELF = IG))
 (SUFFIX (AN IG-SUFFIX)))))
#<object ADJ-WITH-IG>

The form groen+ig+er is then created by a double derivation, i.e. an application of the generic

function comparative to the result of the ig-derivation:

(IG 'GROEN)
#<an ADJ-WITH-COMP>

(LEXICAL-REPRESENTATION (COMPARATIVE (IG 'GROEN))
(" " (" " "#Grun" "+IG") "+@r")

4 . 4 Valency reduction as a hierarchical phenomenon

The objects in the range of a derivation tend to have a smaller morphological valency than those

in its domain, that is, their capacity to derive other word forms is more limited. This

phenomenon is known as valency reduction. For example, groen can have both a derivation

with +ig, i.e. groen+ig, and a comparative with +er, i.e. groen+er, while the ig-form itself

cannot undergo another derivation with +ig, i.e. *groen+ig+ig. Nor is it possible to reverse the

order of the suffixes, i.e. *groen+er+ig. Thus the base form groen has the highest valency,

whereas its derived forms have ever diminishing valency. This instance of valency reduction is

depicted in Figure 11.

20

ADJ-with-IG ig : an ADJ-with-COMP

ADJ-with-COMP comp : an ADJ

ADJ

GROEN
…

Figure 11

Valency reduction and the inheritance hierarchy

The highest object in the hierarchy has the lowest valency. Higher valency objects are formed

by specializations which successively place the category in yet another rule domain. The base

forms have the highest valency. Structured inheritance assigns a lower valency to their derived

forms. At the same time, the organization of the hierarchy is one of the factors which account

for the left-to-right order in which the morphemes occur in the derived forms.

Summing up, we have presented a minimally redundant way to organize a lexicon in a

hierarchical way such that we account for the ordering constraints on suffixes. We have

presented a classification of words in terms of the domains of the rules to which they belong.

This rule-oriented organization is not the same kind of hierarchy as the morpheme-oriented

organization which was presented in sections 2.3 and 3.3. A lexical object can conceivably be

linked to both hierarchies.

4 . 5 Competing productive derivations and exceptions

Dutch has several possible suffixes for the formation of plural nouns. In addition to some non-

productive paradigms, there are two competing productive paradigms, one with the suffix +n or

+en and one with +s. Both have an open domain, where the domain of +s is marked by a

number of conditions, and +n/en applies otherwise. The domains are therefore not represented

by separate classes, but by a condition, here summarized as the predicate conditions-for-s: The

CommonORBIT definition for a noun (N) which allows plural formation is the following:

(DEFOBJECT N-WITH-PLURAL
 N
 (PLURAL (A N
 (BASE :IF-NEEDED (SELF)
 (BASE (WHERE SELF = PLURAL));same as singular
 (SUFFIX :IF-NEEDED (SELF)
 (COND ((CONDITIONS-FOR-S SELF)
 (AN S-MORPHEME))
 (T (AN EN-MORPHEME)))))))

21

Since structured inheritance is a form of default inheritance, exceptions specified in the lexicon

will override the inherited information. For example, the Dutch noun zee (‘sea’) would

normally get a plural with +s, but this must be overruled, because its plural is zeeën. This

exception can be specified in a straightforward way, as shown in the following

CommonORBIT code and depicted in Figure 12.

(DEFOBJECT ZEE
 N-WITH-PLURAL
 (BASE (A MORPHEME
 (LEXICAL-REPRESENTATION "#ze")))
 ((PLURAL SUFFIX) (AN EN-MORPHEME)))
#<object ZEE>

(DEFOBJECT EN-MORPHEME
 MORPHEME
 (LEXICAL-REPRESENTATION "+@n"))
#<object EN-MORPHEME>

ZEE

N-with-PLURAL

N

plural : suffix : +en

plural : suffix : <rule>a N

(zee+en)

Figure 12

A default suffix predicted by structured inheritance is overruled

Similarly, the base of a plural noun form is generally equal to that of the singular, but there are

some exceptions like stad/sted+en (‘city/cities’, with a kind of umlauting similar to German

Stadt/Städte). We define the object stad so that the base of the plural is a morpheme with lexical

representation "sted". The exceptional nature of this lexical entry is depicted in Figure 13,

where it can be seen that the default base of the plural noun is overridden.

(DEFOBJECT STAD
 N-WITH-PLURAL
 (BASE (A MORPHEME
 (LEXICAL-REPRESENTATION "#stAd")))
 ((PLURAL BASE) (A MORPHEME
 (LEXICAL-REPRESENTATION "sted"))))
#<object STAD>

22

STAD

N-with-PLURAL

N

plural :

base : base of singular

base : sted

plural : a N suffix : <condition>

(sted+en)

Figure 13

A default base predicted by structured inheritance is overruled

In a final and more intricate example, infixes are added by overriding a simple base with a

structured one. Whereas the default suffix for female counterparts of person names is +e, the

female counterparts of verbal derivations ending on +er are derived by infixation, for example

werk+st+er (‘female worker’) from werk+er (‘worker’), derived from the verb (V) werk

(‘work’). By giving the former the structure ((werk+st)+er), we reinterpret the infixation as a

suffixing operation on the base. To this end, we define both the base and the suffix of the

derived form as exceptions to the defaults, as shown in Figure 14.

N-with-FEM —

V-with-ER er : a N-with-FEM —

fem : a N-w.-PL. —

suffix : suffix of <-
base : a N — base : base of <-

suffix : +st

fem : a N-w.-PL. —

suffix : +e

WERK base : werk
er: — fem:

base : base of <-
suffix : +er

(werk+er) ((werk+st)+er)

Figure 14

Infixing as the overruling of a default base with a structured base

In the schematic representation of Figure 14, the symbol ‘<-’ denotes a pointer to the object to

the left of the current one, i.e. the object in which the current object is an aspect filler. Using

such paths of pointers, it can be seen that the base of the fem of the er of werk has the same

base as werk itself.

23

5 FEATURE STRUCTURES AND INHERITANCE

We will now turn our attention to the representation of the grammatical knowledge needed for

the construction of a syntactic representation of a sentence. Of the list of useful functions of

inheritance which was presented in 1.2, constraint checking seems to be lacking. This is of

course one of the main functions of unification in unification based formalisms (UBFs) (see

Shieber, 1986 for an introduction to the literature on UBFs). However, it is possible to obtain

the same functionality by letting multiple inheritance notify failure when contradicting

information is inherited from different sources (multiple monotonic inheritance). This approach

cannot be combined with default reasoning, however (unless when using two different

inheritance mechanisms). Another approach to unification consist of the definition of a unify

method that destructively merges objects to be unified.

5 . 1 Feature structures as objects

It is not difficult to see the analogy between UBFs and object-oriented formalisms. Feature

structures can be represented as structured objects, and features as aspects (or slots). The

following shows a CommonORBIT object definition and an equivalent bracketed representation

of a feature structure for an instance of a noun phrase (NP):

(A FEATURE-STRUCTURE
 (CATEGORY 'NP)
 (PLURAL '-)
 (NOMINATIVE '+))

 



 

category = NP

plural = -
nominative = +

Atomic feature values are objects without aspects, as well as other atoms such as symbols,

strings and numbers. Recursive structures are represented by letting an aspect have a complex

object as its value10. The following is an example:

(A FEATURE-STRUCTURE
 (CATEGORY 'NP)
 (PLURAL '-)
 (NOMINATIVE '+)
 (HEAD
 (A ZEE)))))) 





 


category = NP

plural = -
nominative = +

head =
 


 
category = N

base = []lexical-rep = ze

This example shows that objects can be referred to in the place of a full feature structure

specification. In this case, an object which inherits from the noun zee (see Section 4.5) is

created as a filler of the aspect head. Clearly, objects such as NP can be defined to function as

10 Paths in recursive feature structures are a series of pointers from one object to another.

Features in a path can be accessed by function application, for example:

(LEXICAL-REP (BASE (HEAD FS)))

Reentrancy (or feature sharing) is usually represented in UBFs by means of special labels; in

object-oriented formalisms it is simply token identity.

24

templates for other ones. New objects that inherit from them can then easily be created. Using

mixins as abbreviations makes the representation even more concise. For example, the

definition of a mixin singular allows the feature structure above to be rewritten as follows;

Figure 15 shows the part of the hierarchy which is involved here.

(A SINGULAR NOMINATIVE NP
 (HEAD (A ZEE)))
#<a client of SINGULAR, NOMINATIVE and NP>

FEATURE-STRUCTURE

PHRASE

NP
category = NP

NOMINATIVE
nominative = +

SINGULAR
plural = -

#<a client of SINGULAR, NOMINATIVE and NP>

SYNTACTIC-CATEGORY

WORD

Figure 15

Example hierarchy of objects as feature structures

The necessity of being able to work with types, templates and any form of inheritance (if

only to reduce redundancy) in UBFs has become increasingly clear. This has given rise to a

number of monotonic or non-monotonic extensions or complementations of UBFs. Examples

are templates and overwriting in PATR-II (Shieber, 1986:57-60), Kaplan’s priority union

(1987:180), Shieber’s add conservatively (Shieber, 1986b), the use of datatyping and sorts in

Unification Categorial Grammar (UCG, Moens et al., 1989), sortal restrictions in the Core

Language Engine (CLE, Alshawi et al. 1989), feature structure and slot-filler typing in HPSG

(Pollard and Sag, 1987), default reasoning in DATR (Evans and Gazdar, 1989), default

unification (Bouma, 1992), and monotonic multiple inheritance in Typed Feature Structures

(TFS, Zajac, 1992). Since default inheritance is already incorporated in most object-oriented

languages, we take the reverse approach and represent features structures as objects, which

allows them to use all the default reasoning machinery of existing object-oriented formalisms.

5 . 2 Segment Grammar

As a more concrete example of how inheritance can profitably be used in a UBF, we now

briefly discuss an object-oriented representation of Segment Grammar (SG), a unification-

25

based formalism especially suited to incremental syntactic processing. Originally proposed by

Kempen (1987), it has been further worked out and implemented by De Smedt & Kempen

(1991) for the incremental generation system IPF. The basic units of SG are syntactic

segments which represent individual syntactic relations between two categories. The top node

of a segment in the context of a syntactic tree is called the root and the bottom node the foot.

Typical examples are NP-head-N, representing the relation between an a noun phrase (the root)

and its head noun (the foot), and S-subject-NP, representing the subject relation between an a

sentence and a noun phrase.

Syntactic segments join together by means of a variant of the unification operation described

above to form larger structures. The recursive11 unification operation succeeds if the values of

all these features in both objects match in one of the following ways: (1) If the values are both

objects, then the objects are unified; the unification (if successful) becomes the new feature

value; (2) otherwise, the disjunctive values are interpreted as sets and their intersection is

computed; the intersection (if not empty) becomes the new feature value. If unification

succeeds, then the two objects are merged into one, and the new feature values are stored into

this one object, as well as all other information which was present in both objects.

SG has been implemented in CommonORBIT by uniformly representing all important

grammar units—syntactic segments, syntactic categories (phrases, words) and syntactic

features—as structured objects. Inheritance allows the grammar to be extended easily by

creating segments as specializations or combinations of other ones. The specialization

hierarchy of segments exploits multiple inheritance. For example, knowledge common to both

segments S-subject-S and S-subject-NP is stored in a general segment S-subject-*. Likewise,

knowledge common to all subordinate clauses is stored in *-*-S. By way of example, part of

the segment hierarchy of a Dutch grammar is shown in Figure 16.

S-subject-*

S-subject-NP S-subject-S

--S

segment

Figure 16

Part of the hierarchy of syntactic segments

11 The full recursive power of unification in CommonORBIT is not strictly necessary in

Segment Grammar, because grammatical relations, which require the recursion, are not

represented in the same way as grammatical features, which are not recursive.

26

The structured inheritance mechanism in CommonORBIT establishes relations allowing

inheritance between the root of a segment and that in its prototype, and likewise between the

foot of a segment and that of its prototype. For example, consider the segment representing a

NP with the head noun water. This segment—a lexical segment because it contains a word—

inherits from NP-head-N. Consequently, relations for structured inheritance (see Section 4) are

automatically established, as depicted in Figure 17. The noun water inherits from the N at the

root of the NP-head-N segment. It thus obtains knowledge about the typical surface positions

of a head noun (not explicitly shown in the example).

NP-head-WATER

SEGMENT

NP-head-N

root : a category foot : a category

root : an NP foot : an N

root : an NP foot : WATER

—with default behavior
of segment foot

—with default features
and word order of head
nouns

structured inheritance

structured inheritance

Figure 17

Structured inheritance in syntactic segments

Summing up, structured inheritance is a suitable mechanism for the representation of SG,

which is a lexicalized grammar in the sense that the lexicon and the grammar are integrated. A

full description of how this grammar is used in a sentence generation task falls outside the

scope of this paper. For more details, the reader is referred to De Smedt and Kempen (1991).

6 MULTI-ATTRIBUTES

As a final illustration of the use of object-oriented languages in natural language processing, we

discuss an extension of the object-oriented mechanisms that we have used so far. In

unification-based approaches, knowledge is retrieved from feature structures by a process akin

to function application. Applying the name of an attribute to a feature structure returns the value

for that attribute in that feature structure12. In the previous section, we have pointed out the

similarity of this to the object-oriented approach (instance variables are encapsulated within a

12 We must add a note here about the functional nature of feature structures. Feature

structures are usually seen as functions which map features onto values; in fact, they are

sometimes called functional structures for this reason. In a sense, an object-oriented

representation in CommonORBIT does the reverse in the sense that features are generic functions

which map feature structures onto values. Some object-oriented languages (e.g. FLAVORS:

Weinreb & Moon, 1980) do actually implement objects as functions.

27

single object). However, multiple default inheritance can be generalized in a way that is

impossible to achieve in a unification-based approach. We introduce multi-attributes, inspired

by multimethods in CLOS (Keene, 1989), as a means to associate attributes with combinations

of objects. This provides us with an extremely powerful, minimally redundant, and

notationally adequate way to describe linguistic generalizations in cases where many prototypes

interact to determine a linguistic decision.

Consider as an example German weak adjectives. The choice of the suffix is determined by

case, number and gender. The data in Table 1 are taken from Zwicky (1985). There are two

possible suffixes: +en and +e. The suffix +en is the default. Direct (accusative or

nominative) singular weak adjectives get +e, and an exception to this is constituted by the

accusative masculine singular form, which gets +en. We have a situation here where the choice

of the suffix cannot be predicted from any one of the morphological prototypes representing

adjective classes, syntactic features, or suffixes, but only from the cooccurrence of a number of

them.

Table 1

German weak adjective endings

SING PLUR

MASC NEUT FEM MASC NEUT FEM

DIRECT NOM +e +e +e +en +en +en

ACC +en +e +e +en +en +en

OBLIQUE GEN +en +en +en +en +en +en

DAT +en +en +en +en +en +en

The only possible way to describe this with the type of inheritance discussed so far, would

be either to use conditional statements in the method for the suffix, or to create ad hoc

prototypes direct-singular as a subtype of weak-adjective, and accusative-masculine as a

subtype of direct-singular. But flexibility increases considerably when multi-attributes can be

associated with aggregates of prototypes. The following code (using the syntax of CLOS

multi-methods) shows how the assignments would have to be formulated, and two tests for the

weak adjective breit.

(DEFMETHOD SUFFIX ((ADJ WEAK) CASE NUMBER GENDER)
 '+EN)

(DEFMETHOD SUFFIX ((ADJ WEAK)(CASE DIRECT)(NUMBER SING) GENDER)
 '+E)

(DEFMETHOD SUFFIX ((ADJ WEAK)(CASE ACC) NUMBER (GENDER MASC))
 '+EN)

(SUFFIX BREIT NOM SING MASC)
+E

28

(SUFFIX BREIT GEN PLUR MASC)
+EN

With three assignments, we have described all the relevant data (involving 24 possible

combinations of feature values for each weak adjective) without the creation of any spurious

prototypes. The power of multi-attributes derives from the flexibility they provide in accessing

arbitrary regions in a multi-dimensional space formed by different feature hierarchies, while at

the same time allowing default reasoning. They also allow the use of several independent

hierarchies where otherwise one deep and tangled hierarchy would have to be used.

Another example of the expressive power of multi-attributes is the description of German

separable verbs. In Russell et al. (1992), a default inheritance treatment of this phenomenon is

presented. We will adopt most of the prototypes and general organization used there, and

restrict ourselves to demonstrating how multi-attributes can be used to improve notational

adequacy.

German separable verbs are a subtype of prefixed compound verbs in which the prefix is a

bound morpheme both when the verb is untensed and when it is the head of a verb-final clause.

This situation is marked by a feature INV = no . In the solution of Russell et al., this is

described by associating three variant sets of feature equations with the class separable

corresponding with the situations where the verb is untensed, tensed and INV = no, and tensed

and INV = yes. In the latter case, the prefix of the verb is empty (i.e. a null morpheme). In

Figure 18, a hierarchy is shown which is similar to the one in Russell et al., but with two small

independent hierarchies for tensedness and inversion.

VERB

PREFIXED

SEPARABLE

VER WEG LAUFEN

VERLAUFEN WEGLAUFEN

prefixform = 'ver' prefixform = 'weg'

INV

INVERSION NO-INVERSION

INF

INFINITIVE NO-INFINITIVE

Figure 18

Hierarchies for German separable verbs

The influence of syntactic context on the separateness of the prefix from the verb can now be

easily described using the following rules, again using the syntax of CLOS.

(DEFMETHOD PREFIX (VERB INV FIN)
 (A 0-MORPHEME))

29

(DEFMETHOD PREFIX ((VERB PREFIXED-VERB) INV FIN)
 (PREFIXFORM SELF))

(DEFMETHOD PREFIX ((VERB SEPARABLE-VERB) (INV INVERSION)
 (FIN INFINITIVE))
 (A 0-MORPHEME))

The first multi-attribute definition states that all verbs whatever their syntactic context lack a

prefix. The second default states that prefixed verbs have as prefix the prefix-form of their

prefix, again whatever the syntactic context. Finally, the third multi-attribute states that

separable prefixed verbs when they are tensed and at the same time occur as head of a non-

verb-final clause have no prefix (i.e. the prefix is a null morpheme).

7 CONCLUDING REMARKS

We have shown that natural language is a knowledge domain which benefits from the use of

object-oriented techniques. We have demonstrated how different forms of inheritance can be

applied for different purposes. We have treated the use of inheritance not only for

specialization, but also for combination of defaults by means of multiple inheritance, and we

have shown how structured inheritance can predict the behavior of new objects which are

created by other objects. The resulting elimination of redundancy should not merely be seen as

a way to save memory resources, but more importantly as the basis for abstraction in linguistic

theory. Our examples have shown how traditional linguistic notions, such as exceptions and

blocking, can be transparently modeled by means of hierarchical reasoning with defaults. All

of this can be programmed in existing object-oriented languages.

Several similar approaches to achieve generalizations can be found in the literature. For a

general overview of the use of inheritance in natural language processing, we refer the reader to

Daelemans, De Smedt and Gazdar (1992). Most of this research, however, is devoted to

formal aspects of inheritance and to special-purpose inheritance formalisms. In contrast, we

have given several illustrations of representations in existing object-oriented languages which

are not specially meant for representing linguistic knowledge, but which nevertheless provided

suitable and powerful mechanisms. This illustrations have served to substantiate our point that

the creation of special linguistic formalisms with similar capacities is unneccessary and

wasteful. Furthermore, it is almost implicit in the use of a domain-independent representation

that linguistic and non-linguistic knowledge share a common basis for their representation.

Indeed, this uniformity of representation makes it possible to bring out and exploit

commonalities in different cognitive domains. We see no reason why the operation of default

inheritance in a linguistic domain would be different from that in other cognitive domains.

Nevertheless, some general problems with an object-oriented approach remain. One

problem—in fact shared by all symbolic approaches to natural language processing—is that

there are many alternative ways in which a domain can be modeled. The designer has to make

explicit choices about which object types, attributes, and taxonomies to choose. Furthermore,

once designed, models are fairly inflexible and rigid because they make domain commitments

30

that are hard to change. One of the main concerns for future research in inheritance-based

natural language processing (as well as all other inheritance-based reasoning) should therefore

be the development of techniques for automatically acquiring and adapting specialization

hierarchies.

A second area for future research is the extension of object-oriented formalisms with notions

from other network-based paradigms, such as connectionist models. For example, object-

oriented formalisms could be extended by associating activation levels with objects. These

activation levels could be used to dynamically determine the precedence of prototypes for

multiple inheritance. This is useful to model contextual influences on word sense

disambiguation, and misclassification (for example overgeneralization) in morphology.

Attributes could be given an activation level as well, which makes a dynamic definition of

object equality possible. Activation of a particular object or attribute may be the result of

contextual bias, it may be relative to frequency, or to any other notion of salience.

Incorporating the notion of activation into an object-oriented model supports hybrid symbolic-

associative models, combining the strengths of both approaches.

REFERENCES

Alshawi, H., Carter, D., Van Eijck, J., Moore, R., Moran, D., Pereira, F., Pulman, S. & Smith, A.

(1989). Final report: Core language engine (Technical report, Project no. 2989).

Cambridge, MA: SRI.

Bobrow, R.J. & Webber, B.L. (1980). Knowledge Representation for Syntactic/Semantic

Processing. In Proceedings of the First Annual National Conference on Artificial

Intelligence, 316-323. Stanford, CA: Stanford University.

Bouma, G. (1992). Feature structures and nonmonotonicity. Computational Linguistics, 18,

183-203.

Brachman, R.J. & Schmolze, J.G. (1985). An overview of the KL-ONE knowledge representation

system. Cognitive Science, 9, 171-216.

Brewka, G. (1989). Nonmonotonic logics—a brief overview. AI Communications 2, 88-97.

Daelemans, W. (1987). Studies in language technology: An object-oriented model of

morphophonological aspects of Dutch. Ph.D. dissertation, University of Leuven,

Department of Linguistics.

Daelemans, W. (1988). A model of Dutch morphophonology and its applications. A I

Communications, 1(2), 18-25.

Daelemans, W. (1990). Inheritance in Object-Oriented Natural Language Processing. In W.

Daelemans & G. Gazdar (Eds.), Proceedings of the First Workshop on Inheritance in

Natural Language Processing, Tilburg, 16-18 August 1990 (pp. 30-38). Tilburg:

University of Tilburg, Institute for Language Technology and Artificial Intelligence.

Daelemans, W., De Smedt, K. & Gazdar, G. (1992). Inheritance in natural language processing.

Computational Linguistics, 18, 205-218.

31

De Smedt, K. (1984). Using object-oriented knowledge-representation techniques in

morphology and syntax programming. In T. O'Shea (Ed.), Proceedings of the 6th

European Conference on Artificial Intelligence (pp. 181-184). Amsterdam: Elsevier.

De Smedt, K. (1987). Object-oriented programming in Flavors and CommonORBIT. In R.

Hawley (Ed.), Artificial Intelligence programming environments (pp. 157-176).

Chichester: Ellis Horwood.

De Smedt, K. (1989). Object-oriented knowledge representation in CommonORBIT (Internal

Report 89-NICI-01). Nijmegen: University of Nijmegen, Nijmegen Institute for Cognition

research and Information technology (NICI).

De Smedt, K. & De Graaf, J. (1990). Structured inheritance in frame-based representation of

linguistic categories. In W. Daelemans & G. Gazdar (Eds.), Proceedings of the First

Workshop on Inheritance in Natural Language Processing, Tilburg, 16-18 August 1990

(pp. 39-47). Tilburg: University of Tilburg, Institute for Language Technology and

Artificial Intelligence.

De Smedt, K. & Kempen, G. (1991). Segment Grammar: A formalism for incremental sentence

generation. In C. L. Paris, W. R. Swartout & W. C. Mann (Eds.), Natural language

generation in artificial intelligence and computational linguistics (pp. 329-349).

Dordrecht: Kluwer Academic Publishers.

Ducournau, R. & Habib, M. (1987). On some algorithms for multiple inheritance in object-

oriented programming. In Proceedings of ECOOP'78 (Bigre+Globule 54) (pp. 291-300).

Paris: AFCET.

Evans, R. & G. Gazdar. (1989). The semantics of DATR. In Proceedings of the EACL,

Manchester. Morristown, NJ: ACL.

Fikes, R. & Kehler, T. (1985). The role of frame-based representation in reasoning.

Communications of the ACM , 28, 904-920.

Flickinger, D. (1987). Lexical Rules in the Hierarchical Lexicon. Ph.D. dissertation. Stanford

University, Department of Linguistics.

Frazer, N.M. & Hudson, R.A. (1992). Inheritance in Word Grammar. Computational

Linguistics, 18, 133-158.

Gazdar, G. (1987). Linguistic applications of default inheritance mechanisms. In P. Whitelock,

M. Wood, H. Somers, R. Johnson & P. Bennett (Eds.), Linguistic Theory and Computer

Applications (pp. 37-67). London: Academic Press.

Hudson, R. (1984). Word Grammar. Oxford: Basil Blackwell.

Jacobs, P.S. (1985). A knowledge-based approach to language production. Ph..D. dissertation,

University of California, Berkeley.

Kaplan, R. (1987) Three seductions of computational psycholinguistics. In P. Whitelock, M.

Wood, H. Somers, R. Johnson & P. Bennett (Eds.), Linguistic Theory and Computer

Applications (pp. 149-188). London: Academic Press.

Keene, S. (1989). Object-oriented programming in Common Lisp Reading, MA: Addison-

Wesley.

32

Kempen, G. (1987). A framework for incremental syntactic tree formation. Proceedings of the

10th IJCAI (pp, 655-660). Los Altos: Morgan Kaufmann.

Lieberman, H. (1986). Using prototypical objects to represent shared behavior in object-oriented

systems. (Proceedings of the First ACM Conference on Object-Oriented Programming

Systems, Languages, and Applications). SigPlan Notices, 21, 214-223.

Moens, M., Calder, J., Klein, E., Reape, M. & Zeevat, H. (1989). Expressing generalizations in

unification-based grammar formalisms. Proceedings of the 4th European ACL

Conference, (pp. 174-181). Morristown, NJ: ACL.

Pereira, F. & Shieber, S. (1984). The semantics of grammar formalisms seen as computer

languages. Proceedings of the 10th Coling (pp. 123-129). Morristown, NJ: ACL.

Pollard, C. & Sag, I. (1987). Information-based syntax and semantics. Volume 1: Fundamentals

(CSLI Lecture Notes 13). Stanford, CA: CSLI.

Russell, G., Ballim, A., Carroll, J. & Warwick-Armstrong, S. (1992). A practical approach to

multiple default inheritance for unification-based lexicons. Computational Linguistics, 18,

311-337.

Steels, L. (1978). Frame-based knowledge representation (Working Paper 170). Cambridge,

MA: MIT AI Laboratory.

Shieber, S.M. (1986). An introduction to unification-based approaches to grammar (CSLI

Lecture Notes 4). Chicago: University of Chicago Press.

Shieber, S. M. (1986b). A simple reconstruction of GPSG. Proceedings of COLING 1986 (pp.

211-215). Bonn, Germany.

Touretzky, D.S., Horty, J.F. & Thomason, R.H. (1987). A clash of intuitions: The current state of

nonmonotonic multiple inheritance systems. Proceedings of the 10th IJCAI (pp. 476-

482). Los Altos: Morgan Kaufmann.

Van der Linden, E., Brinkkemper, S., De Smedt, K., Van Boven, P. & Van der Linden, M. (1989).

The representation of lexical objects. In T. Magay & J. Zigány (Eds.), Proceedings of the

EURALEX Third International Congress. Budapest: Akadémiai Kiaido. (Also published

as Internal Report 88-ITI-B-33. Delft: TNO).

Van Marcke, K. (1987). KRS: An object-oriented representation language. Revue d'Intelligence

Artificielle, 1(4).

Weinreb, D. and Moon, D. (1980). Flavors: message passing in the Lisp Machine (Memo AIM-

602). Cambridge, MA: MIT.

Wirth, N. (1971). Program development by stepwise refinement. Communications of the ACM,

14, 221-227.

Zajac, R. (1992). Inheritance and constraint-based grammar formalisms. Computational

Linguistics, 18, 159-182.

Zwicky, A. (1985). How to describe inflection. In Proceedings of the Berkeley Linguistic

Society.

