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Abstract

We report on an implemented grapheme-to-phoneme conversion architecture.
Given a set of examples (spelling words with their associated phonetic represen-
tation) in a language, a grapheme-to-phoneme conversion system is automatically
produced for that language which takes as its input the spelling of words, and pro-
duces as its output the phonetic transcription according to the rules implicit in the
training data. This paper describes the architecture and focuses on our solution to
the alignment problem: given the spelling and the phonetic trancription of a word
(often differing in length), these two representations have to be aligned in such a
way that grapheme symbols or strings of grapheme symbols are consistently asso-
ciated with the same phonetic symbol. If this alignment has to be done by hand, it
is extremely labour-intensive.

1 Introduction

Grapheme-to-phoneme conversion is an essential module in any text-to-speech sys-
tem. Various language-specific sources of linguistic knowledge (at least morpho-
logical and phonotactic) are taken to be necessary for implementing this mapping
with reasonable accuracy. Accordingly, an expensive linguistic engineering phase
is involved in developing text-to-speech systems. In this paper we describe an im-
plemented grapheme-to-phoneme conversion architecture that allows data-oriented
induction of a grapheme-to-phoneme mapping on the basis of examples, thereby
eliminating this knowledge acquisition bottleneck.

Input to our system is a set of spelling words with their associated pronunciation
in a phonemic or phonetic alphabet (the training data). Spelling and pronunciation
do not have to be aligned. The phonetic transcription can be taken from machine-
readable or scanned dictionaries, or from automatic phoneme recognition. The
words may represent text in context (when effects transgressing word boundaries
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have to be modeled) or isolated words. Output of the system is a grapheme-to-
phoneme conversion system which takes as its input the spelling of words, and
produces as its output the phonetic or phonemic transcription according to the
rules implicit in the training data.

The architecture has a number of desirable properties:

1. It is data-oriented. The output system is constructed automatically from the
training data, thereby effectively removing knowledge acquisition bottlenecks.
Linguistic solutions to the problem need considerable handcrafting of phono-
logical and morphological datastructures, analysis and synthesis programs.

2. It is language-independent and reusable. Versions of the system for French,
Dutch and English have been automatically constructed using the same ar-
chitecture on different sets of training data. In linguistic approaches, the
handcrafting has to be redone for each new (sub)language.

3. It achieves a high accuracy. Output of the Dutch version has been exten-
sively compared to the results of a state-of-the-art ‘hand-crafted’, linguistic
system. The data-oriented solution proved to be significantly more accurate
in predicting phonetic transcriptions of previously unseen words. Output of
an American English system generated by the architecture and based on the
Nettalk data was more accurate than Nettalk, Memory-Based Reasoning, and
other inductive solutions to the problem (Daelemans & van den Bosch, 1993;
Van den Bosch & Daelemans, 1993).

2 Design of the System

The system consists of the following modules: (i) Automatic alignment: spelling
strings and phonetic strings have to be made of equal length in order to be pro-
cessed by the other modules. (ii) Automatic training set compression: part of the
training data is represented in a compact way using trie structures. (iii) Automatic
classifier construction: using the compacted training data and similarity-based rea-
soning techniques enriched with techniques from information theory, a classifier is
constructed that extrapolates from its memory structures to new, unseen input
spelling strings. Module (i) will be discussed extensively in the next section.

(ii) Automatic training set compression can be seen as optimized, gener-
alized lexical lookup. The training set is compressed into a grapheme-to-phoneme
conversion trie. The main strategy behind this compression is to dynamically de-
termine which left and right contexts must minimally be known to be able to map a
single grapheme to its corresponding phoneme with absolute certainty (in the train-
ing corpus). Generalisation is achieved because of the fact that unknown words
usually contain known substrings of graphemes. Finding a phonemic mapping of a
grapheme is done by a search through the trie taking into account a variable amount
of context. The order in which the context graphemes are added to the trie search is
not randomly determined, but is computed using the concept of Information Gain
(IG). This ordering method is used in a similar way in C4.5-learning (Quinlan,
1993). The main difference with C4.5-learning is the fact that our model computes
the expansion ordering only once for the complete trie, whereas in C4.5-learning the
ordering is computed at every node.



(iii) Automatic classifier construction is achieved by combining the trie
compression with a form of similarity-based reasoning (based on the k-nearest neigh-
bour decision rule, see e.g. Devijver & Kittler, 1982). During training, a memory
base is incrementally built consisting of exemplars, which in the case of grapheme-to-
phoneme mappings consist principally of a strings of graphemes (one focus grapheme
surrounded by context graphemes) with the associated phonemes and their distri-
bution (as there may be more phonemic mappings to one graphemic string). During
testing, a test pattern (a graphemic string) is matched against all exemplars. If the
test pattern is in memory, the category with the highest frequency associated with
it is used as output. If it is not in memory, all memory items are sorted according
to the similarity of their pattern to the test pattern. The (most frequent) phonemic
mapping of the highest ranking exemplar is then predicted as the category of the
test pattern. Daelemans & Van den Bosch (1992) extended the basic IBL algorithm
by introducing Information Gain as a means to assigning different weights to dif-
ferent grapheme positions when computing the similarity between training and test
patterns (instead of using a distance metric based on overlap of patterns).

The Trie Search algorithm is combined with the Information Gain-aided k-nn
technique in the following way: Trie Search succeeds only when a completely match-
ing path can be found up to the node where the phonemic mapping becomes unam-
biguous. New, unseen test words may very well contain graphemic substrings that
are not present in the training data. In those cases, Trie Search will fail somewhere
halfway. In our architecture, information-gain extended k-nn is used on a memory
base of exemplars when Trie Search fails.

Components (ii) and (iii) of the system, as well as its evaluation in comparison
to linguistic, knowledge-based solutions and to connectionist and alternative data-
oriented solutions have been reported in detail previously in Van den Bosch and
Daelemans (1993) and Daelemans and Van den Bosch (1993). In this paper we will
focus on our as yet undocumented solution to the alignment problem implemented
in module (i).

3 Automatic Alignment

The alignment algorithm operates on any data set of words associated with their
transcriptions. The algorithm attempts to equal the length of a word’s spelling
string with its transcription. This is done by adding null phonemes to the tran-
scriptions. Instead of just concatenating the required number of nulls at the end of
the transcription, nulls have to be inserted in the transcription at those points in
the word where a letter cluster maps to one phoneme. The word ‘shoe’-/Su/, for ex-
ample, contains two letter clusters, ‘sh’ and ‘oe’; both mapping to one phoneme. A
possible alignment that would be at least intuitively correct would then be the tran-
scription /S - u -/. The transcription /S u - -/ on the other hand would definitely
not be intuitively correct. The first part of the algorithm automatically captures
these typical letter-phoneme associations in an association matrix. Each spelling
string is aligned to the left with its (possibly shorter) transcription. For each let-
ter, the score of the phoneme that occurs at the same position in the transcription
is incremented; furthermore, if a spelling string is longer than its transcription,
phonemes which precede the letter position are counted as possibly associated with



the target letter as well. In the example of ‘shoe’, for each letter, three phonemes
receive a score increase (underscores indicate word boundaries and do not count as
phonemes):

letter | focus-2 focus-1 focus
s _ _ S
h _ S u
o} S u _
e u _ _

Although a lot of noise is added to the association matrix by including associa-
tions that are less probable, the use of this association window ensures that the most
probable associated phoneme is always captured in this window. The score of the
phonemes is not increased equally for all positions: in the present implementation,
the focus phoneme receives a score increase of 8; the phonemes to the left receive
a score increase of 4, 2, and 1 respectively; phonemes situated further in the string
do not receive any score. Other values for these weights result in slightly (but not
significantly) worse results. When all words are processed this way, the scores in
the association matrix are converted into probabilities.

The second part of the alignment algorithm generates for each pair of un-
aligned spelling and phoneme strings all possible (combinations of) insertions of
null phonemes in the transcription. For each hypothesized string, a total association
probability is computed by multiplying the scores of all individual letter-phoneme
association scores between the letter string and the hypothesized phonemic string.
The hypothesis with the highest total association probability is then taken as output
of the algorithm.

The resulting alignment is not always identical to the intuitive alignment applied
by human coders. To test its efficacy, we compared classification accuracy of the
complete system when using a hand-aligned training set as opposed to the automat-
ically aligned training set. The results indicate that there is no significant difference
in classification accuracy: the alignments result in systems that are equally accurate.
The resulting trie is on average about 3% larger with the automatically generated
alignment, however.
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