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Summary

We propose a quantitative operationalisation of the
complexity of a writing system. This complexity,
also referred to as orthographic depth, plays a cru-
cial role in psycholinguistic modelling of reading
aloud (and learning to read aloud) in several lan-
guages. The complexity of a writing system is ex-
pressed by two measures, viz. that of the com-
plexity of letter—phoneme alignment and that of
the complexity of grapheme—phoneme correspon-
dences. We present the alignment problem and
the correspondence problem as tasks to three dif-
ferent data-oriented learning algorithms, and sub-
mit them to English, French and Dutch learning
and testing material. Generalisation performance
metrics are used to propose for each corpus a two-
dimensional writing system complexity value.

1. Introduction

Substantial differences exist between alphabetic,
syllabic, and logographic writing systems (also re-
ferred to as orthographies) with respect to their
relation between spelling and phonology. Within
psycholinguistics, a growing interest is seen in com-
paring reading processes across writing systems (cf.
Katz and Frost, 1992). Moreover, within the group
of alphabetic writing systems, distinct degrees in
the complexity of the mapping between orthogra-
phic and phonological representations have been
suggested. The descriptive notion of orthographic
depth is coined to characterise the degree of com-
plexity of this mapping (Liberman et al., 1980).
The orthographic depth of an alphabetic writing
system indicates the degree to which it deviates
from simple one-to-one letter—phoneme correspon-
dence. Writing systems with more complex letter—
phoneme relations are referred to as deeper or-
thographies. Examples of deep orthographies are

the Hebrew and English writing systems; Serbo-
Croatian and Italian are examples of shallow or-
thographies.

In more detail, orthographic depth can be con-
sidered as the composition of at least two sepa-
rate components. One of these relates to the com-
plexity of the relations between the elements at
the graphemic level (graphemes) to those at the
phonemic level (phonemes), the issue being how
to convert graphemic strings (words) to phonemic
strings. Note that our definition of grapheme is ‘a
letter or a cluster of letters that is realised in the
phonological transcription as a single phoneme’.
The other component relates to the diversity at the
graphemic level, and to the complexity of determin-
ing the graphemic elements of a word (graphemic
parsing), or, alternatively formulated, how to align
a phonemic transcription to its spelling counter-
part. There are differences among languages with
respect to the graphemes which are allowed and
which are used. These differences are governed by
language-specific graphotactic, syllabic and mor-
phological constraints (Klima, 1972; Liberman et

al., 1980; Scheerer, 1986).

A potential third component of orthographic
depth which we do not take into consideration in
the present work, is the assessment of the extent
to which the spelling of a word provides informa-
tion not included in the phonemic representation.
French has often been quoted as a prototypical ex-
ample of a language with a arbitrary and incon-
sistent spelling. This is due to the fact that in
many cases in French, a phoneme admits several
graphemic representations (for example, /dI/ is the
phonemic mapping of the graphemes <in>, <ein>>,
<ain>, <aint>, <ym>, <en>, and <ent>), mak-
ing it hard for the learner to derive the spelling
from the phonemic string by applying simple rules.
Note that this potential third component of ortho-
graphic depth is irrelevant in a framework in which
one is investigating the complexity of performing



the conversion from the spelling level to the pho-
nemic level. In this paper, we take the latter ap-
proach and disregard the complexity of converting
phonemic representations to spelling.

Based on the (disputed) view that reading aloud
involves two independent processes, viz. direct
word pronunciation using lexical retrieval, and rule-
based grapheme-to-phoneme conversion (i.e., the
dual-route model, Coltheart, 1978), cross-linguistic
experiments seem to indicate that the balance be-
tween these two processes varies as a function of the
orthographic depth of the language. More specif-
ically, several authors claim that in shallow or-
thographies, such as Serbo-Croatian, the analytic
rule-based route, operating on grapheme—phoneme
correspondences (GPCs), is used more intensively
than the lexical retrieval route (cf. Frost et al.,
1987). The rationale behind this claim is that using
the GPC-based route in a language with a shallow
orthography renders more reliable pronunciations
than using the rule-based route in the case of a
deep orthography, in which the general or default
GPCs of the language are in many cases overruled
by exceptions. In the latter case, the speaker has to
rely to a larger extent on knowledge of whole-word
pronunciations.

Thus far, the notion of orthographic depth has
only informally been dealt with (e.g., Coltheart,
1978; Katz and Frost, 1992; Carello et al., 1992);
clearly, multi-lingual research could benefit from a
precise operationalisation. Carello et al. (1992)
tentatively claim that comparing rule-based GPC
systems of two languages may reveal differences
in orthographic depth: Serbo-Croatian is likely to
have a much smaller GPC set than, for exam-
ple, English. Coltheart et al. (1993) describe a
model in which a GPC set for English is learned
from examples by a learning algorithm. Auto-
matic, data-oriented learning algorithms seem to
provide an appropriate means for extracting sta-
tistical facts from language data related to ortho-
graphic depth, without incorporating any linguistic
bias in the form of language-specific constraints or
heuristics. Daelemans and Van den Bosch (1993)
demonstrate that the application of data-oriented
techniques to morpho-phonological domains, such
as grapheme-to-phoneme conversion, is language-
independent, and can be done for any language for
which a computer-readable corpus exists.

The data-oriented approach furthermore pre-
sents an interesting alternative to the traditional
linguistic approach to describing the corresponden-
ces between spelling and phonology. This tradi-
tional approach is based on detailed linguistic ex-
pert analyses of writing systems (e.g., Venezky,

1970, for English; Gak, 1976, for French). Apart
from the fact that an expert analysis is expensive,
and that expert knowledge of a writing system 1is
often hardly reusable for other writing systems,
traditional approaches take into account a num-
ber of very diverse sources of information. Tradi-
tional grapheme-to-phoneme conversion rules may
refer to, for example, morphological or etymological
knowledge. Our data-oriented approach presents
an alternative to this tradition by limiting the lev-
els at which it operates, to strictly the graphemic
and the phonemic level, and attempting to extract
as much knowledge from these two levels as possi-
ble. This approach offers a possible solution to the
‘knowledge acquisition bottleneck’ that any tradi-
tional linguistic expert analysis is confronted with.

In this paper, we investigate whether the ap-
plication of three different data-oriented learning
algorithms to three alphabetic writing systems,
viz. English, French and Dutch, reveals any differ-
ences in orthographic depth among these three lan-
guages. To this purpose, one algorithm is trained
on the domain of graphemic parsing (Section 3.1),
and the two remaining algorithms are trained on
grapheme-to-phoneme conversion (Sections 3.2 and

3.3).

2. Corpus Selection

We have extracted our training and testing mate-
rial from three computer-readable corpora of En-
glish, French and Dutch, all consisting of large lists
of word—transcription pairs (i.e., pairs of spelling
words and their phonemic transcriptions). In the
case of English, we used the NETtalk corpus of
American English, first used by Sejnowski and
Rosenberg (1987); the French material was ex-
tracted from the Brulez corpus (Content et al.,
1990); the Dutch material was extracted from a
large Dutch lexical data base. To ensure ex-
perimental validity, we obtained a close simila-
rity between these corpora by restricting their size
to about 20,000 word—transcription pairs for each
corpus. No information other than spelling and
phonemic transcription was used in the experi-
ments; other word-specific features, such as word
frequency, place of word stress, and syllable bound-
aries, were not included in the corpora.

Our general experimental method involved the
application of an automatic data-oriented learning
algorithm to a fixed amount of learning (training)
material, and the testing of the generalisation abil-
ity of the learned model using a fixed amount of
new testing material. To this purpose, the three
language corpora were split into training and test



sets which remained fixed throughout all experi-
ments. Each corpus was partitioned into a 1/13
test set (7.7% of the data set) and a 12/13 train-
ing set. This is an arbitrary partition. However, it
should be noted that the focus of our experiments
is on comparing performance results rather than on
optimizing performance.

The training sets thus obtained consist of large
numbers of word—transcription pairs, such as in the
case of the English corpus, the pair <shoe> - /[u/.
To be able to convert the four-letter string <shoe>
to the two-phoneme transcription /fu/, a system
has to solve two subproblems: (i) that the string
<shoe> contains two graphemes, <sh> and <oe>,
and (i) that <sh> maps to /[/, and <oe> maps
to /u/ in this particular context. The knowledge
needed for (i) is part of knowing which letter clus-
ters can occur in a language; for (ii), it is needed to
know what the possible correspondences between
graphemes and phonemes within a language are.
These two subproblems of converting spelling to
pronunciation correspond to what was referred in
the first section as the two most important com-
ponents of orthographic depth, i.e., subproblem (i)
relates to complexity at the graphemic level, and
subproblem (ii) relates to the complexity of the re-
lation between the graphemic and the phonemic
level. Furthermore, (ii) subsumes having solved (i).

Our experiments focus on analysing the complex-
ity of (i) and (i) separately. We present the two
subproblems as tasks to three learning algorithms.
For task (i), we train a learning algorithm on the
spelling—transcription pairs of the three training
corpora. For task (ii), we simulate the situation
where (i) has already successfully been solved, and
train two different learning algorithms on convert-
ing graphemic words to their phonemic transcrip-
tion. In the case of English, these graphemic pars-
ings are available: in the NETtalk corpus, the pho-
nemic strings are supplied with phonemic nulls,
which are inserted at points where in the spelling
string a graphemic letter cluster occurs. For exam-
ple, the phonemic transcription of <shoe>, /fu/,
is aligned to fit the four-letter spelling word as /-
u-/. This null insertion serves to indicate that
the grapheme <sh> maps to the phoneme /[/,
and that the grapheme <oe> maps to the pho-
neme /u/. The leftmost letter of the grapheme is
consistently aligned with the phoneme; other let-
ters to the right are aligned with phonemic nulls.
The same kind of alignment was performed for the
Dutch and French corpora using pattern-matching
algorithms and hand-correction. Clearly, these al-
gorithms and corrections introduce linguistic know-
ledge in a supposedly language-independent frame-

work. A fully language-independent and linguis-
tic knowledge-independent system would perform
both (i) and (ii), using the graphemic analysis in
(i) as input to subsystem (ii). In fact, Daele-
mans and Van den Bosch (1994) demonstrate a
data-oriented, language-independent system which
successfully integrates two high-performance data-
oriented learning algorithms performing (i) and (ii)
in sequence. In this paper, we focus on a separate
analysis of the two subproblems.

3. Three Learning Algorithms

3.1. Grapheme—Phoneme Correspondences Eztrac-
tion

Graphemic parsing of a spelling word primarily im-
plies knowing the possible and typical graphemes
in a language. The Grapheme-Phoneme Corre-
spondences Extraction (henceforth GPCE) model
described here is trained to capture this know-
ledge by an automatic, data-oriented learning algo-
rithm. The GPCE model is not explicitly trained
to parse strings of spelling letters into graphemes.
The model assembles in its training phase a large
data base of hypothesised grapheme-phoneme cor-
respondences, by extracting them in an unintelli-
gent way from a training corpus of spelling word-
transcription pairs. In the testing phase, it uses
this data base to compute in an automatic, unbi-
ased way the probability of a proposed graphemic
parsing of a word.

The data-base-construction algorithm has no
knowledge of typical or linguistically appropriate
grapheme—phoneme mappings. Therefore some of
the hypothesised correspondences will be linguis-
tically inappropriate. To obtain the data base of
mappings, or rather Grapheme-Phoneme Corre-
spondence exemplars, the following three algorith-
mic steps are taken for all word—transcription pairs
in the training corpus.

(a) For each word—transcription pair, generate
all possible parsings of the word in as much seg-
ments as there are phonemes (i.e., generate all pos-
sible letter clusters that can map onto one pho-
neme). For example, the French word <chat>
(cat), with pronunciation /fa/, is parsed in three
ways: <cha|t>, <chlat>, and <c|hat> (the ‘|’ in-
dicates the inserted parsing boundary between the
hypothesised graphemes). Note that the second
parsing, <ch|at>, is the linguistically appropriate
parsing, and that the other parsings involve hy-
pothesised graphemes that are linguistically inap-
propriate (i.e., <cha> and <hat>).



(b) For each of the generated parsings, map each
segment in that parsing to the corresponding pho-
neme. In the example of <chat>, this results in
6 GPC exemplars, two of which are appropriate
(marked *): <cha>-/[/, <ch>-/[/ (*¥), <e>-/]/,
<t>-/a/, <at>-/a/ (*), and <hat>-/a/.

(¢) Store each derived GPC exemplar in the GPC
base. Ifit is already stored, increase the occurrence
field of the GPC exemplar, and update the occur-
rence of the phonemic mapping (or create a new
phonemic mapping field if the phonemic mapping
was not encountered earlier). If it is not present
in the GPC base, create a new exemplar, and ini-
tialise its occurrence field.

After training, a memory base is available which
consists of a large number of hypothesised GPC ex-
emplars. The occurrence field of each of these GPC
exemplars simply expresses the absolute number of
occurrences of the GPC exemplar in the training
corpus. The magnitude of this number is relative
to two factors. The first factor is the size of the gra-
pheme: the major part of the graphemes hypothe-
sised during the generation of graphemic parsings
contains only one letter. In the three corpora un-
der consideration, the majority of the graphemes
is in fact formed by single-letter graphemes (many
words do not even contain any multiple-letter gra-
phemes). Consequently, multiple-letter graphemes
are generated less often. The second factor hav-
ing influence on the number of occurrences of a
certain GPC exemplar is the somewhat vague no-
tion of ‘typicality’ or linguistic appropriateness of
the grapheme. This can be illustrated by look-
ing at the occurrence counts of some hypothesised
three-letter graphemes in the French GPCE model.
The three-letter grapheme with the highest occur-
rence count is <ent> (viz. 31,682), which is indeed
very often realised in phonemic transcriptions as
the single phoneme /d!/. Other three-letter gra-
phemes with relatively high occurrence scores in-
clude <sse> (1,985), <nne> (1,686), and <que>
(1,377). On global inspection, it appears that hy-
pothesised graphemes with low occurrence scores
are often linguistically inappropriate. For example,
<int> is hypothesised 798 times, <thé> is hypoth-
esised 152 times, <apl> 3 times. The graphemes
<urv> and <lvé> are examples of highly inappro-
priate graphemes which are hypothesised only once
on the basis of the French corpus.

The GPCE algorithm described thus far has no
direct relation with the problem of graphemic pars-
ing of which we want to investigate the complexity
for the English, French and Dutch corpora. How-
ever, the noisy knowledge about the typicality of

graphemes present in the GPC base can be used to
estimate the most probable graphemic parsings for
new test words. To obtain these estimates, the fol-
lowing three-step algorithm is used: for each new
test word,

(a) generate all possible graphemic parsings. At
one extreme, a parse is generated which takes each
letter as a separate grapheme (e.g., in the case
of the English word <book>, <b|o|o|k>); at the
other extreme a, parse is generated which contains
only graphemes of maximal length (e.g., the com-
plete word <book>> as a single grapheme, since En-
glish graphemes can contain up to 4 letters, as in
the grapheme <ough>);

(b) for each graphemic parsing, search the GPC
exemplar base for all matching GPC exemplars.
Each parsing is given a score which is the sum of
the occurrences of its individual matching GPC ex-
emplars;

(¢) the parsing with the highest score is taken as
output.

Given the analysis already present in the pre-
pared corpus, it can be determined for each test
word if the graphemic parsing proposed by the
model is correct. This model feature is examined
in Section 4.1.

3.2. Deciston Tree Learning and Search

Our first model which we trained on the task of
converting graphemes to phonemes is the Decision
Tree model. In this model two algorithms are com-
bined. The first, Decision Tree Learning (also re-
ferred to as Trie Compression) is used to construct
a decision tree on the basis of a training corpus of
grapheme-phoneme correspondence examples (the
training material). The second algorithm, Decision
Tree Search, is used to retrieve information from
the decision tree in order to find the appropriate
phonemic mapping to (possibly unseen) graphemic
input strings. Detailed descriptions of both algo-
rithms can be found in Daelemans and Van den
Bosch (1993) and Van den Bosch and Daelemans
(to appear).

The Decision Tree model converts words to their
phonemic transcription in a letter-oriented way.
For each letter in a spelling word, the model at-
tempts to find the most appropriate phonemic
mapping, given the current letter context. To this
purpose, the Decision Tree Learning algorithm au-
tomatically constructs a decision tree containing
letter—phoneme correspondence chunks, which are
in fact context-sensitive rewrite rules with no limit
on the size of the context. These letter—phoneme



correspondences are automatically extracted from
the training corpus (consisting of aligned word-
transcription pairs), and are stored as paths in the
decision tree. Each letter—phoneme correspondence
chunk that is stored consists of a focus letter, a
number of left and right context letters and an as-
sociated phonemic mapping (i.e., the phoneme or
phonemic null to which the focus letter maps). The
stored context may vary from being empty to con-
taining whole words: the criterion for storing a cer-
tain context is that it is exactly the minimal con-
text in which the letter—phoneme mapping is un-
ambiguous. An empty context occurs when deal-
ing with, for example, the French letter <¢>, which
unambiguously maps to /s/, regardless of the con-
text. In the decision tree, this knowledge is stored
as a single-node path, with an end node high up
in the tree. When a large context is needed, it is
stored as a longer path down the decision tree. For
example, the phonemic mapping /9U/ to the first
<o> in <photograph> involves a right context of
8 characters (i.e., practically the whole word) to
disambiguate it from the phonemic mapping /o/
to the first <o> of <photography>. The more
irregular a letter—phoneme correspondence is, the
deeper the mapping is stored in the decision tree.

When a letter—phoneme correspondence chunk is
extracted from the training corpus to be inserted in
the decision tree, it is converted into the format of
a decision tree path by placing the context letters
in a fixed order, which reflects their relative impor-
tance. This ordering follows from computing the
average Information Gain for each of the context
positions (for a more detailed description of the
computation and application of Information Gain,
a concept from Information Theory, see Quinlan,
1986; Daelemans and Van den Bosch, 1992; and
Van den Bosch and Daelemans, to appear). The
Information Gain of a context position can be seen
as its average relative importance in disambiguat-
ing between the different phonemic mappings of
the focus letter, and can be computed automati-
cally. When the Information Gain of different con-
text positions is computed for the three languages,
it appears that the relative importance of different
context positions is generally the same for the three
languages. The results indicate that, on the aver-
age, the closer a context letter is to the focus let-
ter, the more important it is in the disambiguation
between different phonemic mappings of the focus
letter. Furthermore, right context appears to be
slightly more important than left context. In Fig-
ure 1, the Information Gain values of context let-
ters (up to a context width of 5 left characters and
5 right characters) are shown graphically, combin-

ing the results computed for the three languages.
From Figure 1, it can be seen that the same fixed
importance ordering of context letters can be used
for the three languages.

information gain
3,5

2,5

— French

-~ Dutch

English

0,5

[

0 —
T5 T4 T3 T2 T4 T T+l T+2 T+3 T+4 T+5

feature position

Figure 1. Information Gain values of different con-
text letter positions, ranging from § positions to the
left of the focus letter (T—5), to § positions to the
right of the focus letter (T+5), computed for the
three corpora.

The purpose of using the ordering derived from
computing the Information Gain values of context
features, is that it minimises the average depth in
the decision tree at which an unambiguous map-
ping is stored. The first context positions in-
vestigated by the retrieval algorithm for finding
a matching path are the context letters that are
known to be the most important ones (on the av-
erage). Thus, the size of the decision tree as well
as the effort needed to retrieve information in the
tree is minimised.

Effectively, the decision tree is a compressed
word—transcription corpus from which the correct
pronunciation for any word in the training set can
be retrieved. Retrieval takes place by finding for
each letter in its specific context a matching path
in the tree leading to its phonemic mapping. How-
ever, this does not succeed for any test word which
contains substrings not encountered in the training
corpus. When a Decision Tree Search is applied
with such a letter string as input, the retrieval al-
gorithm will not be able to find an exactly match-
ing path, and consequently will not retrieve un-
ambiguous phonemic information. The model at-
tempts to solve this ambiguity by storing at ev-
ery tree node information about the most probable
phonemic mapping at that node. When Decision
Tree Search fails at some node at a certain depth in
the tree, the extra probabilistic information at that
node enables the Decision Tree Search algorithm to



suggest a ‘best guess’, a property of the model es-
sential for optimal generalisation performance (see,
e.g., Van den Bosch and Daelemans, 1993, for an
evaluation of this aspect of the model).

For each of the three language corpora, the
amount of compression compared to the original
training material as well as the generalisation per-
formance scores on test material will be examined
more closely in Section 4.2.

3.3. Simalarity-Based Reasoning

The Similarity-Based Reasoning (SBR) model at-
tempts, just as the Decision Tree model, to
store letter-to-phoneme correspondence knowledge
in such a way that it can be successfully used to
retrieve the phonemic transcription of new, previ-
ously unencountered test words.

During training of the SBR model, a memory
base is constructed comnsisting of letter-to-phoneme
instances, called ezemplars. For this construction,
each word in the training corpus is converted into a
number of letter-string patterns. Each pattern con-
sists of a focus letter surrounded by a fixed number
of left and right context letters, together with the
corresponding phoneme of the (aligned) phonemic
transcription. For our three SBR models, we set
the number of left and right context letters at 5.
As an example, Table 1 lists the 5 patterns that
are constructed when processing the word <shoes>
(aligned transcription /[-u-z/).

left context focus right context pho-
5 4 3 2 1 T 1 2 3 4 5 | neme
- - - s h o e s - J‘
- _ s h o e s - -
- - - s h o e s - - - u
- - s h o e s - - - -
- s h o e s - - - - z

Table 1. Ezample conversion of the word <shoes>
- /[uz/ into § fired-width patterns as used by the
SBR model. The focus letter is in position T.

Patterns are stored as exemplars in the memory
base. Whenever a letter-string pattern has already
been stored in the memory base, the occurrence
count of the phonemic mapping of the stored exem-
plar is increased; a new phonemic mapping field is
added to the exemplar if the phonemic mapping of
the new letter-string pattern was not encountered
earlier.

To retrieve the phonemic transcription of a test
word, it is converted into the same fixed-length
letter-string patterns. Each of these patterns is
matched against all memory exemplars. If the test

pattern matches an exemplar, the phonemic cat-
egory with the highest frequency associated with
the exemplar is retrieved. If it is not in memory,
all memory items are sorted according to the si-
milarity of their pattern to the test pattern. The
similarity metric counts the number of identical let-
ters in identical positions in the test pattern and
all exemplars; a co-occurring letter is counted by
the value of the Information Gain of the context
position it is in. Thus, the similarity matcher of
the SBR model prefers exemplars that match in
the middle, i.e., around the focus letter, over ex-
emplars that match on the left-hand or right-hand
side of the pattern. The (most frequent) phonemic
mapping of the highest ranking exemplar is then
predicted as the category of the test pattern. The
performance results of the SBR model on test ma-
terial are investigated in Section 4.3.

4. Results

4.1. Grapheme—Phoneme Correspondences Extrac-
tion

The GPC memory-base-construction algorithm has
been applied to training sets of French, English
and Dutch which are a subset of the original
training set. Each training set contained 5,000
words. These smaller sets were chosen, because
pilot experiments showed a performance conver-
gence at data-set sizes above approximately 1,000
words. After construction, the full test corpus
was processed through the GPC test algorithm.
From the resulting best-guessed graphemic anal-
yses and phonemic mappings, performance scores
were computed expressing the percentage of correct
graphemic analyses of words. Table 2 lists these fig-
ures for the three languages.

% correctly
corpus | aligned words

English 24.5
French 12.9
Dutch 21.3

Table 2. Percentage of correctly aligned test words
obtained with the three GPCE models after memory
base construction, trained on 5000-word partitions
of the original training sets and tested on the full
test sets.

Obviously, the performance scores listed in Table
2 are not high. This is due to the fact that the
GPCE model is mainly concerned with finding reg-
ular graphemes rather than exceptions. The model



generally favours graphemic alignments consisting
only of single letter-to-phoneme mappings, since
one-letter graphemes are hypothesised far more of-
ten that multi-letter graphemes. Apart from this
observation, it can be seen that there are apparent
differences between the three corpora. In the case
of the English corpus, alignment is relatively less
complex than in the cases of the Dutch and French
corpora. In terms of correctly aligned test words,
the French model clearly renders the least accurate
results. In other words, the GPCE model trained
on the French material shows worse generalisation
capabilities than the models trained on Dutch and
English, while being trained on an identical amount
of training material. From these results, it can be
concluded that graphemic parsing is more complex
in French than in Dutch or English.

4.2. Decision Tree Learning and Search

The application of Decision Tree Learning to
the three training corpora resulted in three deci-
sion trees of very different size. Since Decision
Tree Learning is based on removing redundancy
from a corpus by compressing the information on
grapheme-phoneme correspondences in the form of
paths in a decision tree, higher compression indi-
cates that the corpus contains more regularity. In
terms of compression of memory usage, the French
model was compressed by a factor of 90.8%, the
Dutch model by 87.4%, and the English model by
70.9%. The English material appears to contain
less redundancy, and thus can be regarded as more
irregular than the French and Dutch data. The
performance on the test words provides more clues
concerning differences between English on the one
hand and French and Dutch on the other. Table
3 lists the generalisation performance of the three
models on the test material.

% correct | % correct
language words mappings
English 54.3 91.0
French 89.1 98.3
Dutch 81.4 97.6

Table 3. Generalisation performance on test mate-
rial of the three Decision Tree models. Scores are
listed on correctly transcribed words and correctly
transcribed letter—phoneme mappings.

The best performance scores, in terms of correctly
transcribed letters and whole words, are obtained
with the French Decision Tree model. In terms of
correctly transliterated words, the Dutch Decision

Tree model scores somewhat lower, but in terms of
correctly converted phonemes (the most unbiased
measure), the scores are roughly similar. The En-
glish model scores notably worse than the French
and Dutch model on both words and phonemes.

Figure 2 presents another view on the differences
between the three automatically constructed deci-
sion trees. In this Figure, bars indicate the number
of stored paths that end at a certain context width.
The labels on the x-axis indicate this context. For
example, the largest white bar in the front row, la-
belled ‘1-1-2’, indicates that, in the French model,
most letter—phoneme correspondence chunks use a
context of one left context letter, and two right con-
text letters.

x 1000 patterns
12
10
M English
8
[ butch
6 [JFrench
4 Y am—
Pa—
2 =l
@ fa

0-1-0 0-1-1 1-1-1 1-1-2 21-2 2-1-3 3-1-3 3-1-4 4-1-4 4-1-5 5:1-5

lookup tables

Figure 2. Numbers of end nodes, represented by
bars, ordered by their positions in the tree (i.e.,
path lengths, indicated by a context width indica-
tors denoting <number of left context characters>
—1— <number of right contezt characters>), for
the Decision Tree models trained on the English,
Dutch and French corpora.

4.3. Similarity-Based Reasoning

As described earlier, the SBR memory base is con-
structed for each corpus by converting all word-
transcription pairs into fixed-length letter-string
patterns, which were then stored as exemplars in
the memory base. Since there were not many du-
plicate 5-1-5 patterns in any of the three corpora,
large memory bases resulted. For example, in the
case of English, out of the 135,406 5-1-5 patterns,
120,062 exemplars were stored (11.3% compres-
sion). For Dutch, compression was 12.0% (156,449
exemplars stored), and for French 17.8% (129,054
exemplars stored), indicating that the French cor-
pus contains more partly similar words than the



other two corpora.

Table 4 displays the generalisation accuracy on
test words and phonemes for the three models. The
results show high scores for Dutch and French,
and a significantly lower score for English, espe-
cially when expressed in the percentage of correctly
transliterated words. The performance results are
highly similar to those obtained with the Decision
Tree Search models.

% correct | % correct
language words mappings
English 54.1 91.0
French 89.0 98.3
Dutch 82.5 97.8

Table 4. Generalisation performance on test mate-
rial of the three Similarity-Based Reasoning mod-
els. Scores are listed on correctly transcribed words
and correctly transcribed letter—phoneme mappings.

5. Conclusions

The application of three data-oriented machine-
learning techniques on three grapheme-to-phoneme
corpora has revealed differences between the ortho-
graphic complexity within these corpora. In line
with the propositions of Klima (1972) and Liber-
man et al. (1980), we propose that the complexity
of a writing system (its orthographic depth) can
be seen as the composition of two components, viz.
the complexity of graphemic parsing and the com-
plexity of grapheme-to-phoneme conversion. Al-
though they are not totally independent, they can
be regarded as the two most distinct components,
or, geometrically speaking, dimensions in the space
describing the complexity of a writing system.

We argued earlier that the first dimension of
orthographic depth, the complexity of graphemic
analysis (i.e., the problem of aligning phonemic
strings to letter strings), is embedded in the GPC
base of the GPCE model, and is reversely ex-
pressed in the generalisation performance score of
the model when applied to unseen test words. Ta-
ble 2 displays the difference obtained between the
GPCE models of the three language corpora. We
propose to take the reverse of these performance
scores, i.e. the percentage of incorrectly aligned
words, as the measure of the complexity of dimen-
sion (i) of orthographic depth, under the assump-
tion that the lower the performance, the higher the
complexity. It should be stressed again that the
absolute magnitude of the measures is not impor-
tant here: the key importance lies in the relative

differences between the three language corpora.
The complexity of converting strings of gra-
phemes to strings of phonemes is, amongst other
measurable model features such as Decision Tree
Learning compression factors, decision tree sizes,
and SBR memory base compression factors, most
prominently expressed in the generalisation accu-
racy on the transliteration of letters to phonemes
in test words. Furthermore, the generalisation per-
formance scores of the Decision Tree models and
the SBR models are highly similar (see Tables 3
and 4). We propose to take the reverse of these
generalisation performance scores as the measure
of the complexity of going from the level of gra-
phemes to the level of phonemes, i.e., dimension
(ii) of orthographic depth: the lower the general-
isation performance score, the more complex the
problem. Again, here only the relative differences
between the three languages matter. The two di-
mensions and the three points marking the three
corpora are displayed graphically in Figure 3, con-
stituting a ‘map’ in which the relative distance of
the three corpora within the two-dimensional or-
thographic depth space is clearly expressed.

> 9
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- x French
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?
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80
T 7] x Dutch
7 x English
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.\
6 B & & 8 Ho

— > G-P complexity

Figure 3. Graphical display of the two-dimensional
orthographic depth space, with ‘z’s marking the
three corpora.

Our data-oriented, generic, two-dimensional classi-
fication of the complexity of grapheme-to-phoneme
conversion can be used as a platform for determin-
ing an unbiased grounding of orthographic depth
for any corpus in any language. The only restric-
tion the corpus must adhere to at this point is the
approximate number of words. A number of ap-
proximately 20,000 words, we would like to argue,
is sufficiently large to capture practically all occur-
ring graphemes and letter—phoneme mappings of a
language, i.e., it is enough to ensure that the learn-
ing algorithms are confronted with every regularity



and irregularity of the writing system under con-
sideration.
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