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ABSTRACT

In the traditional (knowledge-based) approach to the design
of grapheme-to-phoneme modules in text-to-speech systems,
it 1s claimed that various explicitly coded, language-specific,
linguistic knowledge sources are necessary for a good per-
formance. Due to knowledge acquisition bottlenecks, this
implies long development cycles. As an alternative, we
propose to use inductive methods from machine learning in
a simple combined Trie Search and Similarity-Based Rea-
soning approach and show that, for Dutch, its performance
is better than that of the knowledge-based approach and
backpropagation learning. Furthermore, we show that our
approach is reusable for any language for which a training
corpus ecists.

Keywords: grapheme-to-phoneme conversion, texi-to-
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INTRODUCTION

The larger part of research on grapheme-to-phoneme con-
version focuses on developing systems that implement var-
ious levels of language-specific linguistic knowledge. It
is generally assumed that this is essential to solving the
task. A clearly disadvantageous consequence of this strat-
egy is the fact that numerous knowledge acquisition bot-
tlenecks have to be passed during development. Further-
more, language-specificity of a grapheme-to-phoneme model
tends to be incompatible with reusability of the developed
implementation, i.e., for each language, a specific set of
rules and principles has to be found in order to success-
fully run the model. MITalk [1]is a classic example of such
a model for English; for Dutch, MoRPA-CUM-MORPHON
[6] can be considered state-of-the-art.

In this paper, we present a model the construction
of which is simple and does not involve linguistic engi-
neering, nor the inclusion of language-specific knowledge,
viz. a combination of Trie Search and Similarity-Based

Reasoning. These simple data-oriented machine learning
techniques are applied to corpora of word-pronunciation
pairs, of which the existence is the only prerequisite for
applying the model. After a description of the two ma-
chine learning techniques, we present performance results
of our model for English and for Dutch. For the latter lan-
guage, we compare our results with those of MORPA-CUM-
MoORPHON [6] on the same test material. Secondly, we
present a comparison of the performance of our model on
corpora of English, Dutch and French word-pronunciation
pairs.

TABTALK

Van den Bosch & Daelemans [2] present two machine
learning techniques, Instance-Based Learning [1] and Ta-
ble Lookup with defaults which they train on grapheme-
to-phoneme conversion. Both techniques take as their ba-
sis a large corpus of word-pronunciation pairs, store (parts
of) this corpus in a memory base and apply a certain re-
trieval mechanism in order to categorise unseen test cases
as correctly as possible. However, there are some essential
differences between the two approaches.

Table Lookup can be seen as optimized, generalised
lexical lookup. This approach has as its major disad-
vantage the fact that it only works for words that are
stored in the lexicon and not for new words. The Ta-
ble Lookup model solves this problem of lacking gener-
alisation power and efficiency by compressing it into a
grapheme-to-phoneme lookup table. The main strategy
behind this compression is to dynamically determine which
left and right contexts must be minimally known to be able
to map a single grapheme to its corresponding phoneme
with absolute certainty (in the training corpus). Generali-
sation is achieved because of the fact that unknown words
contain known substrings of graphemes, and by adding a
default table that predicts the most probable transcription
given an unknown string of graphemes.

In our present implementation of TABTALK, compres-
sion of a training corpus of word-pronunciation pairs is



taken one step further by compressing the lookup table
into a trie. Finding a phonemic mapping of a grapheme
is done by a search through the trie. An example of such
a search path is shown in Figure 1, in which the pronun-
ciation of the < @ > in < behave > is retrieved.

Figure 1. Retrieval of the pronunciation of < a > in
< behave > by trie search.

First, the node denoting the focus grapheme < a > is
accessed from the top node. The nodes in the layer below
the < @ >-node are all graphemes which occurred imme-
diately right adjacent to < a > in the training corpus. At
this point, the pronunciation of < a > is still ambiguous,
although the trie might contain information about what
would be the most probable pronunciation. With the ex-
tension < v >, the correct pronunciation /el/ is already
the most probable, but the word < have > causes the
pronunciation still to be uncertain. Trie search proceeds
by adding the grapheme immediately to the left of the
< a >, < h >, the grapheme two positions right from
< a >, < e >, and finally the < e > at two positions left
from < a >. At this bottom level, the pronunciation of
< a > in the context of < ehave > is unambiguously /el/.

The order in which the context graphemes are added
to the trie search is not randomly determined, but is com-
puted using the concept of Information Gain (IG). This
ordering method is used in a similar way in ID3-learning
[7]. The main difference with ID3-learning is the fact that
our model computes the expansion ordering only once for
the complete trie, whereas in ID3-learning the ordering
is computed at every node. IG of context graphemes is
computed by regarding the training set as an informa-
tion source capable of generating with a certain proba-
bility a number of messages (phonemes) given a string of
graphemes. The information entropy of such an informa-
tion source can be compared in turn for each position in
the grapheme string to the average information entropy of
the information source when the value of the grapheme at
that position is known. The difference is the IG value for

that position, and can be interpreted as being the relative
tmportance of that position in the context. During trie
search, the most important context graphemes are taken
first for expansion deeper into the trie, since the context
grapheme with the highest IG value is most likely to dis-
ambiguate the pronunciation of the grapheme. Figure 2
displays a typical IG value contour, the most important
grapheme naturally being the focus grapheme, with de-
creasing IG values for the graphemes further to the left
and right, and right context being slightly more impor-
tant than its equivalent left context. The data in Figure 2
are the IG values for the complete English CELEX corpus
described in the next section.

Information gain
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Figure 2. IG wvalues for ten graphemes surrounding
the focus grapheme, computed for the complete English
CELEX corpus.

IBL [1] is a framework and methodology for incre-
mental supervised machine learning. Algorithms devel-
oped within this framework are inspired by statistical pat-
tern recognition, especially the rich research tradition on
the nearest-neighbour decision rule (see e.g. Devijver &
Kittler [5] for an overview) and can be categorised in
the class of Similarity-Based Reasoning (SBR) techniques.
During training, a memory base is incrementally built
consisting of ezemplars, which in the case of grapheme-
to-phoneme mappings consist principally of a string of
graphemes (one focus grapheme surrounded by context
graphemes), and the associated phonemes and their dis-
tribution (as there may be more phonemic mappings to
one graphemic string). During testing, a test pattern (a
graphemic string) is matched against all exemplars. If the
test pattern is in memory, the category with the high-
est frequency associated with it is used. If it is not in
memory, all memory items are sorted according to the
similarity of their pattern to the test pattern. The (most
frequent) phonemic mapping of the highest ranking exem-
plar is then predicted as the category of the test pattern.
Daelemans & Van den Bosch [4] extended the basic IBL
algorithm by introducing Information Gain as a means to
assigning different weights to different grapheme positions
when computing the similarity between training and test
patterns (instead of Euclidean distance).



In the experiments discussed below, we combine the
Trie Search algorithm with the IG-aided SBR techniques
from IBL. Trie Search succeeds only when a completely
matching path can be found up to the node where the
phonemic mapping becomes unambiguous. New, unseen
test words may very well contain graphemic strings that
are not present in the training data. In those cases, Trie
Search will fail somewhere halfway. We already suggested
that the trie might contain at any node the most probable
phonemic mapping at that point (or at a fixed contextual
width), so that it will still produce a ‘best guess’ when
failing. In an earlier version of our system, we used a
separate default table to produce this guess.

The model presented below uses IG-aided SBR on a
memory base of exemplars when Trie Search fails. Al-
though this method introduces the relatively costly tech-
nique of similarity-based matching, it can be expected
to be superior in terms of generalisation performance on
new test material to the method of making default ‘best
guesses’. This hypothesis is tested in the following section.

APPLICATIONS

Experiments were run on two large corpora of word-
pronunciation pairs, viz. an English corpus of 56,590
wordforms with their pronunciations, extracted from the
CELEX English wordform data base, and a Dutch corpus
of 70,000 words with their pronunciations.

In order to automatically construct the trie and the
memory base, the phonemic data in the corpus had to be
aligned to the graphemic data. The Trie Search algorithm
as well as the SBR algorithm presuppose a one-to-one re-
lation between graphemes and phonemes, whereas both in
English and in Dutch, there are many cases where a cluster
of graphemes maps to one phoneme (especially graphemic
vowel combinations). In those cases, the first grapheme
of that cluster is mapped to the phoneme, and the other
graphemes are mapped to phonemic nulls.

In Van den Bosch & Daelemans [2], we showed that
both the lookup table (augmented with a default table
containing the most frequently occurring phonemic map-
ping) and the IBL technique (augmented with IG weigh-
ing) performed better in terms of generalisation perfor-
mance than the connectionist NetTalk architecture [8] ap-
plied to Dutch data. Testing on data proposed by Nunn
& Van Heuven [6], we also investigated how the perfor-
mance results of the simple Table Lookup model would
relate to the results of the knowledge-based MoRPA-CUM-
MORPHON system reported in [6]. The test data consisted
of 1,971 words from newspaper text, compounds, neolo-
gisms and low-frequency words. Results show that the
Table Lookup model scores significantly higher.

Model Generalisation Accuracy
on Words

Table Lookup 89.5

MORPA-CUM-MORPHON 85.3

We designed the second experiment to determine whether

Trie Search (being equivalent to Table Lookup, but with
more compression of the stored data) could further be op-
timized, as sketched in the previous section. To this pur-
pose, we experimented with three versions of Trie Search:

1. Trie Search combined with default tables of fixed
contextual width (equivalent to the Table Lookup
model described in Experiment 1),

2. Trie Search combined with information on each node
on the most probable phonemic mapping at that
point in the trie, and

3. Trie Search combined with SBR.

We designed a 10-fold CV experiment series on a sub-
set of the English CELEX-corpus consisting of 10,000 words.
In each of the partitions, 10% of the subset was used as
training data, and tests were done on the other 90%.
The results show a clear advantage of the defaults-on-
nodes variant over the fixed default tables variant; op-
timal results, however, are obtained with the Trie Search
+ SBR combination. All pairwise comparisons between
model scores on both words and phonemes are significant

(p < .001).

Model Generalisation Accuracy
on Words | on Phonemes
Trie + fixed defaults 20.1 82.0
Trie + defaults on nodes 24.4 83.5
Trie + SBR 28.2 84.4

We designed a second 10-fold CV series of experiments
focusing on the Trie Search + SBR model, based on the
complete English CELEX-corpus. In each of the parti-
tions, 90% of the corpus was used as training data, and
10% as test data. Averaged over the 10 experiments, the
model was able to convert 97.4% of all phonemes (includ-
ing phonemic nulls) correctly (83.7% on words).

REUSABILITY

We have already demonstrated the application of the
Table Lookup / Trie Search technique on two large corpora
of Dutch and English, proving language-independency and
reusability of the technique. A direct comparison between
the two models in terms of generalisation performance is
not appropriate given the inherent differences in corpus
size, however. When corpus sizes are comparable, ap-
plication of the technique renders models of which the
differences can reveal interesting differences between the
languages of the two corpora.



We applied the Table Lookup approach to corpora of
equal size (20,000 words) of English (the NetTalk corpus
as used in [8]), French (a subset of the Brulex data base [3])
and Dutch (a subset of the corpus used in Experiment 1).
After construction, the English table contains 35,000 pat-
terns, the Dutch 27,000 and the French 18,000, reflecting
differences in deepness of orthography between the three
languages. Performance accuracy on a test set (7.5% of
the data set), with the inclusion of fixed-length default ta-
bles, is 90.1% for the English model, 97.0% for the Dutch
model and 98.2% for the French model. In Figure 3, bars
indicate the number of patterns that disambiguate be-
tween mappings at a certain context width (e.g. 1-1-2:
1 left context grapheme, 2 right context graphemes).

x 1000 patterns

[ ] English
[ putch
6| [JFrench

01:0 011 1-1-1 1-1-2 2-1-2 21-3 3-1.3 314 4-14 415 515

lookup tables

Figure 3. Table magnitudes of subtables of English,
Dutch and French models.

CONCLUSION

In this paper we have shown that, at least for one lin-
guistic task, there is an alternative to incorporating exten-
sive linguistic knowledge into a linguistic problem solving
system. We have shown that for Dutch, TABTALK per-
forms better than both the connectionist backpropaga-
tion approach and a state-of-the-art, linguistically sophis-
ticated, knowledge-based system, and that the approach
is easily reusable for any language for which a corpus of
word-pronunciation pairs exists.
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