
Instructional Science 16i 319-336 (1987) 319
© Kluwer Academic Publishers, Dordrecht - Printed in the Netherlands

Artificial intelligence tools for grammar and spelling instruction

F I ENY PIJLS, WALTER DAELEMANS & GERARD K E M P E N
Department of Experimental Psychology, University of Nijmegen, Postbox 9104, 6500 HE Nijmegen,
The Netherlands
M-Lab, Free University of Brussels, Pleinlaan 2, 1050 Brussels, Belgium

Abstract. In The Netherlands, grammar teaching is an especially important subject in the curriculum
of children aged 10-15 for several reasons. However, in spite of all attention and time invested, the
results are poor. This article describes the problems and our attempt to overcome them by developing
an intelligent computational instructional envirormaent consisting of: a linguistic expert system, con-
taining a module representing grammar and spelling rules and a number of modules to manipulate
these rules; a didactic module; and a student interface with special facilities for grammar and spelling.
Three prototypes of the functionality are discussed: BOUWSTEEN and COGO, which are programs
for constructing and analyzing Dutch sentences; and TDTDT, a program for the conjugation of Dutch
verbs.

1 Grammar and spelling instruction: problems

In The Netherlands and in Flanders, grammar teaching is an especially important
subject in the curriculum of children aged 10-15. Three reasons are the following:

1 Grammatical knowledge is generally considered necessary to improve the qual-
ity of writing skills.

2 The orthography of Dutch depends to a considerable extent on grammatical
relationships within the sentence. In many cases the correct spelling of a word
cannot be derived from memorized word spellings or word-based phoneme-to-
grapheme rules. A typical example is provided by the Dutch homophonous
passive auxiliaries word and wordt. Choosing between them presupposes the
explicit application of subject-verb agreement rules.

3 In secondary schools at least three foreign languages are taught (French,
English and German). A fair amount of grammatical knowledge is needed here,
e.g. for determining case endings of German adjectives and nouns.

For these reasons, much attention and time is invested in grammar and spelling
teaching. Nevertheless, the results are poor. In our opinion this is caused by,
among other things,

the fact that grammar is presented as a set of rules for analysing rather than
generating sentences. This causes a low level of transfer from grammar instruc-
tion to writing skills. Many students are unable to apply the grammar and
spelling rules they have been taught, when composing an essay;

320

uninformative feedback. After making errors, students very often just write
down corrections given by the teacher, and do not attempt to find reasoned
solutions;

- dull and uninspiring exercises, which can be executed without much thinking
on applicable rules;

- lack of notational uniformity of current school grammars (e.g. several teachers
in one school using different or even conflicting notations);

- insufficient explicitness concerning the relations between grammatical func-
tions (e.g. subject, direct object, predicate) and grammatical categories (phrases,
constituents, parts of speech).

For a a detailed overview of the problems of grammar and spelling teaching in
Dutch, see Van Dort-Slijper (1984) and Assink (1983).

2 Grammar and spelling instruction: information technological tools

Several attempts have been made to solve these shortcomings of grammar and
spelling instruction by means of traditional Computer Aided Instruction. Although
some problems can be solved in this way (immediate, consistent, and informative
feedback is made possible, for instance), CAI cannot bring a complete solution.
(Kempen, Schotel and Pijls (!985) evaluate the literature on CAI programs for
grammar and spelling teaching in Dutch and other languages.) The major draw-
back of these programs is their lack of grammatical knowledge. This makes it
impossible to produce a sufficiently detailed diagnosis of the learner's problems,
and to come up with explanatory feedback upon errors made.

In a four-year research project which was started in September 1985, we are
attempting to overcome some of these limitations by developing an intelligent
computational instruction environment for grammar and spelling. It consists of
three main components:

1. A linguistic expert system, which is knowledgeable about the grammatical and
orthographic subject matters, that are taught to the students. Subcomponents
are, among other things, a sentence generator and a parser using a notation for
syntactic structures which comes close to notations that are in use in popular
school grammars but is sufficiently formalized. To this purpose we devised a
.simplified version of Kempen and Hoenkamp's (1987) Incremental Procedural
Grammar (IPG). This grammar is accompanied by a (two-dimensional) tree
notation for syntactic structures which is much more transparent than the one-
dimensional notations currently in use in Dutch school grammars.

2. A didactic module including a subcomponent for diagnosing the learner's
knowledge, a bug catalogue (a list of frequent mistakes to guide the diagnosis

321

procedure), a tutoring module (knowledge about what knowledge to impart to a
particular learner and how to do it), and an exercise generator.

3. A student interface. An important component of this interface is TREE
DOCTOR (written by Desain, 1985), a powerful graphical tree editor. It can be
used not only for displaying IPG parse trees, but also for manipulating them in
various ways. TREE DOCTOR allows the student to modify syntactic trees
(e.g. deleting and adding branches and nodes, attaching branches to other
nodes, changing left-to-right order of nodes, etc.) according to the "direct
manipulation" style of user interfaces advocated by Shneiderman (1982). An
example of modifying an IPG parse tree is given in Figure 1. It shows a student
moving the attachment point from one node to another, thus correcting an unin-
tended parse tree of an ambiguous sentence. TREE DOCTOR also offers a
facility for "closing" trees, i.e. for hiding the details of a subtree into a triangle.
By asking TREE DOCTOR to display certain parts of a tree in a closed or open
manner, the teacher can "zoom in" onto those aspects of the tree that are most
relevant for a certain student or group of students.
Presently, the system is far from being fully implemented. However, we have

finished three prototypes embodying part of the functionality that we are aiming
at. One is BOUWSTEEN (building block), a program allowing students to com-
pose sentences out of parts of speech. BOUWSTEEN runs on an IBM-AT com-
puter. A second program, COGO (Schotel and Pijls, 1986), allows learners to
practice sentence analysis on sentences they have composed themselves. A third
prototype is TDTDT (TDTDT Diagnoses Trouble with DT; Daelemans, 1987), a
small teaching environment for the conjugation of Dutch verbs. Both COGO and
TDTDT run on a Symbolics Lisp Machine.

3 BOUWSTEEN

BOUWSTEEN (work by Huls) is meant to be the first step in the grammar curric-
ulum. It aims at making students aware of the constituent structure of sentences;
that is, of the fact that sentences can be put together by combining fixed word
groups in certain left-to-right sequences. Students thus can develop a notion of
word order constraints. In BOUWSTEEN this knowledge is taught in a com-
pletely different way from the traditional one. In traditional grammar instruction,
students usually learn to split up given sentences into parts, e.g. by putting bars
between constituents. In BOUWSTEEN they have to build sentences out of parts
of speech belonging to all the categories. The word groups are stored in a data-
base. A random selection from them is displayed in a menu on the screen. The
student may construct any sentence he or she likes by selecting (pressing cursor
keys) appropriate word groups in a correct order. He is allowed to use as many
constituents as he likes. The constituents chosen are displayed at the top window

322

ZIN

SUBJ DO
I I

I wwGz:pvl 4- NG NG

het kind WW koorts
I

heeft

Fig. la. The student clicks with the mouse on the finite verb. He wishes to move the verb into front
position in order to make an interrogative sentence.

SUBJ DO
I WWGZ:PVI 4 I I

[NG NG
WW ~
hee[ft het kind koorts

Fig. lb. The student moves the finite verb by dragging it across the screen (direct manipulation)

ZIN

WWGZ:PV SUBJ DO

I I I
WW NG NG

heefl het kind koorts

Fig.]c. The student leaves the verb approximately at the desired position.

ZIN

S U B - - D O

I I I
NG WW NG

het kind heeft koorts

Fig. ld. TREE DOCTOR computes the final shape of the tree, with all nodes correctly aligned.

e
~

t-
r

1

e~

,.<
 g. 0 e~

de
 d

om
m

e j
on

ge
n

zi
et

de
 s

ch
oe

n
w

is
t

bi
j d

e
bu

sh
al

te

da
ad

w
er

ke
lij

k

de
do

m
m

ej
on

ge
n

/

de
 m

ed
ed

el
in

g
~

zi
el

ge
w

ee
st

in

 d
e

kl
a~

vo

lle
di

g

be
t v

oo
rb

ee
ld

: D
ru

k
op

 F
1

vo
lg

en
de

 z
in

: D
ru

k
op

 F
2

zi
n

1.
1

b
O

©

tJ

co
 P, fo

de
 d

om
m

e j
on

ge
n

zi
et

 b
ij

de
 b

us
ha

lte

D
e

do
m

m
e j

on
ge

n
zi

et
 d

e
m

ed
ed

el
in

g
bi

j d
e

bu
sh

al
te

.
Z

ie
t d

e
do

m
m

e j
on

ge
n

de
 m

ed
ed

el
in

g
bi

j d
e

bu
sh

al
te

?
B

ij
de

 b
us

ha
lte

 z
ie

t d
e

do
m

m
e

jo
ng

en
 d

e
m

ed
ed

el
in

g.

de
 d

om
m

e
jo

ng
en

de
 m

ed
ed

el
in

g

zi
et

L

__
~

bi
j

de
 b

us
ha

lt
e

he
t v

oo
rb

ee
ld

:
D

ru
k

op
 F

1
vo

lg
en

de
 z

in
:

D
ru

k
op

 F
2

zi
n

1.
4

b
.)

325

of the screen (Figure 2). The sentence is analyzed by the IPG parser (written by
Konst, 1986) in just a few seconds. If the sentence is grammatically correct, a sec-
ond screen appears. In the menu displayed on this screen, the student only finds
the constituents used in the sentence he put together (Figure 3). With these, he has
to build as many additional sentences as possible. The IPG parser checks whether
(1) all constituents are used in each new sentence, (2) the sentence is grammati-
caUy correct, and (3) the sentence is different from the former one(s). Whenever
the student wishes to work with a new set of constituents, because he dislikes the
set given (on screen 1) or he has made enough variations (on screen 2), he can ask
for another menu. Whenever a student makes an ungrammatical sentence on
screen 1 or screen 2, this is signalled by the parser. Then, the ungrammaticality is
explained to the student at an appropriate level.

BOUWSTEEN also contains a pop-up menu, which gives the student the possi-
bility of asking for examples and explanation. When the student stops a
BOUWSTEEN session, he can get a summary of the subject matter taught. For
example, it is explained that the word groups are called zinsdelen ("sentence
parts"), and he is shown a rudimentary tree structure in which the hierarchical
relationship between a zin (sentence) and zinsdelen (constituents) is visualized
(Figure 4).

Further extensions of this tree structure will be worked out in future grammar
instruction programs. The closed subtrees of Figure 4 will be opened, so that their
internal smacture will be visualized. In this way, the student is gradually familiar-
ized with all grammatical categories and functions in their mutual dependencies.
Finally, students will be able to work with complete tree structures of the kind
used in the COGO program (section 4).

ZIN

zinsdeel zinsdeel zinsdeel zinsdeel

De domme jongen ziet de mededeling bij de
The s tupid boy sees the announcement at the busstop

Fig. 4. BOUWSTEEN : A rudimentary tree structure visualizing the hierarchical relationship between
zin (sentence) and zinsdelen (constituents)

326

The described method for grammar instruction is a constructive one: the stu-
dents build and rebuild their own sentences. This contrasts with the usual analytic

method, where students only have to label constituents of given sentences. A user
test with twenty-six students aged 12 has shown that half an hour of training with
a preliminary BOUWSTEEN prototype brought about results comparable to a
fully developed analytically-oriented grammar instruction program, which cov-
ered roughly the same subject matter. We hypothesize that optimal results will be
obtained in combinations of constructive and analytic grammar teaching strate-
gies. An example of such a program is COGO.

4 COGO

COGO, which has been developed as a stimulating training environment for
syntactic structure analysis, can be used for three different didactic purposes. It
enables students to

inspect the structure of newly constructed sentences displayed in a graphical
tree notation;

present themselves with practice trials on labeling the syntactic functions,
constituents and word categories in sentences which they construct out of a
vocabulary of words displayed on the screen;

explore the morpho-syntactic properties of words and word classes.

A session in COGO runs as follows. At the beginning, the student finds the
screen divided into non-overlapping windows (Figure 5).

Every window contains a number of words belonging to one word class.
Homographs belonging to different word classes may be inserted in different win-
dows. In the wide horizontal rectangle in the middle of the screen, the student can
"write" a new sentence. To do this he moves the mouse to the words he needs for
the sentence he has in mind. When clicking on the left button of the mouse, the
selected word appears in the rectangle to the right of any words selected earlier. If
he needs a word that is not displayed in any window, he can type this new word

into the empty rectangle at the top the screen. Then the system requests him to
define the syntactic properties of the word (which are needed by the parser) via a
sequence of menus. After this, the new word appears in the appropriate window,
and the student can use it in his sentence. Clicking on the period or the question
mark signals the IPG parser (the same one as used in BOUWSTEEN) to start ana-
lysing the sentence. After just a few seconds the syntactic tree - in IPG terms,
with explicit alternation of categories and functions - becomes visible on the
screen.

The student can initiate a grammatical labeling exercise by asking COGO to
hide certain node labels, i.e. to replace them by question marks in the displayed

g~

o o 9

N
ie

uw
 w

oo
rd

L

ex
ic

on
 Il

b
di

sk

V
ra

ag
te

ke
ns

ST

O
PP

E
N

•
da

t
he

m
 h

ij
ik

 j
ij

w
ij

vo
om

aa
m

w
oo

rd
en

(B
ij

le
 n

ie
nw

e w
oo

rd
 E

E
R

ST
 o

p
di

t w
in

do
w

 cl
ic

ke
n)

d
at

vo
eg

w
oo

rd
en

H
E

N
K

 S
C

H
O

IE
L

L

E
O

 K
O

N
ST

K

O
E

N
 D

E
 S

M
E

D
T

FI

E
N

Y
 P

IJ
L

S
C

op
yr

ig
ht

ga
at

 g
ee

f
ge

ef
t

ge
ga

ap
t

ge
ge

ve
n

ge
ko

ch
t

ge
lo

of
 g

ev
en

 h
eb

 h
eb

b
en

 h
ee

ft

ko
op

t
ro

ep
en

w
er

kw
oo

rd
en

I

IK
 G

E
L

O
O

F
 D

A
T

 J
A

N
 E

E
N

 C
O

M
P

U
T

E
R

Z

in
 (w

or
dt

 o
pg

eb
ou

w
d

do
or

 o
p

w
oo

rd
en

 te
 c

lic
ke

n'
,

d
e

ee
n

n

a
o

p

v
o

o
r

ti
jd

en
s

i~

lid
w

.
vo

or
ze

ts
el

s

I
?

er
g

gi
st

er
en

 g
ra

ag
 g

ro
ot

gr

ot
e

hi
er

 k
le

in
 k

le
in

e
b

lo
em

en
 b

ro
m

m
e

r
co

m
p

u
te

r
ja

n
 j

o
n

g
en

bi
jv

. n
m

w
. e

n
bi

jw
oo

rd
en

ze

lf
st

an
di

ge
 na

am
w

oo
rd

en

L
ex

ic
on

 F
ra

m
e

30

t.z
o

tO

--
O

3 2 8

z

|

. , ~ t~ , ~ . e ' ,

0 o

O

Z

o o

"0

Z e~

~' - - . 4

o

~0

Fig. 6. Tree structure with question marks (some already replaced) and a menu for syntactical
functions

329

tree. The student decides which type(s) of labels he wants to hide, e.g. all labels,
just word class labels, or syntactic function labels at the clause or word group lev-
els. In Figure 6 the student has asked COGO to hide syntactic functions and word
classes. After clicking on a question mark, a menu pops up displaying a small list
of labels. The labels listed depend on the place of the question mark in the tree.

There are four different menus: syntactical functions at the clause level, word
groups (phrases), functions at the word group level, and word classes. The student
can select a label by moving the mouse. Short definitions of the selected label
appear at the bottom of the screen. When the student has indicated his choice by
pushing the appropriate mouse button, COGO compares the selected label with
the label computed for that node by the parser. In case of a correct choice, the
question mark is replaced by the selected label. If not, an error message appears
on the screen. In its present form, COGO cannot yet give any further feedback.
After the student has thus removed all question marks, or if he likes to stop with a
particular sentence, he can click on the word "AF!" (=done!). The tree then disap-
pears and the lexicon windows are displayed again. In case of ambiguity, COGO
displays more than one tree, and the student can select the tree that he considers
appropriate. We have used COGO in an informal evaluation study. We observed
that students aged 14-15 found the graphical IPG notation very easy to use, and
that they were motivated by the opportunity of devising their own sentences.

5 TDTDT

A third domain of application of our intelligent teaching environment is a proble-
matic aspect of Dutch spelling: the conjugation of verbs. We designed a complete
representation of the morpho-syntactic rules which make up the domain of knowl-
edge, and developed modules enabling students to practice their domain knowl-
edge, for automatically diagnosing the errors students make, and an interactive
user interface.

Dutch spelling is guided by two main principles: the phonological principle
(write a word as it is pronounced in standard Dutch) and the morphological princi-
ple (spell related forms the same way). Unfortunately for learners of Dutch, these
principles are partially conflicting. Especially in the case of some verbal inflec-
tional endings, a lot of confusion arises (Table 1). Generally, errors involve an
improper application of the phonological principle instead of the morphological
principle in the spelling of verbal inflectional endings. E.g. learners are often at a
loss whether a conjugational ending sounding l ike/ t / is written <dt>, <d> or <t>.
The correct solution involves the application of a number of syntactic, morpho-
logical, phonological and spelling rules.

330

Phonological Lexical Spelling Gloss Principle
Transcription Representation

1 /bleif/ blijv blijf I stay Phon

2 flat/ laad laad I load Morph

3 /lat/ laad+t laadt he loads Morph

4 /lad@/ laad#de laadde I loaded Morph

5 /g@leit/ ge#1eid+d geleid lead Phon+Morph

Table. 1. Phonological transcription, lexical representation, spelling, gloss and governing principle in
a few conjugations

The domain expert of TDTDT contains the necessary linguistic knowledge,
implemented as a system of concepts in the KRS knowledge representation sys-
tem (Steels, 1986), to conjugate any Dutch verb. To these linguistic concepts,
explanatory information was attached, and a rule-history was added to concepts
representing computed verb forms. A rule-history lists the different decisions
taken and rules applied to produce a particular word form, and is used in
diagnosis.

The domain knowledge is presented according to the algorithmic-rule method
(Assink, 1983), a recent development in spelling teaching. In this method, an eas-
ily manipulatable algorithm is devised, pictured on a card, which allows quick and
easy decisions on the spelling of verb forms. First, the learner is introduced to a
number of concepts playing a role in the solution of the problem and featuring on
the card (tense, finiteness, person, number etc.). In the following stage, these con-
cepts are related to spelling rules by means of the algorithmic decision scheme on
the card. Exercises are made with the help of the card until the algorithm is inter-
nalised and the card becomes superfluous.

We have automated the second part of this teaching method (practicing the
algorithmic decision scheme). We assume that learners working with our system
have received classroom teaching about the different linguistic concepts used in
the algorithm. For each specific conjugation problem, a decision tree is pictured
on the screen. The solution of a specific conjugation problem is represented as a
walk through the decision tree (Figure 7).

Each node represents a question (e.g. 'Is it an action in the past?') to which the
learner answers by clicking on a menu item. If a wrong choice is made this is
explained to the learner. Teaching material (exercises) can be generated by both
the system and the learner. In the former case, either by using the on-line lexical
database to select random verbs or by selecting verbs from a "difficult cases" list

.'q

I
VE

RB
=F

IN
IT

E?

I
DE

CI
SI

ON
S

II

.o
/

~.
..
.o
~_
_~
o?
~

A
.o
f\
 o

vo
.T
°.
° l.
,,.
t,-
.o-

/
'"
-"
/ .

,.
~.
t
I'
''
O'
''
M'
O"

M
O

R
PH

O
L

O
G

IC
A

L
 A

N
D

 S
PE

L
L

IN
G

 R
U

L
E

S

ta
~

332

explicitly programmed by the teacher. In the latter case, the learner has a free
choice of the verb he wants to exercise. The infinitive (dictionary citation form) of
the verb is entered, and the system computes all its conjugated forms. Next, a
heuristic (based on a comparison of the phonological and the spelling representa-
tions of the verb form) is used to select those verb forms which are likely to cause
mistakes. These forms are "computed" by the learner with the help of the decision
tree as described above. Corrective feedback is provided whenever a wrong deci-
sion is taken.

After some time, the learner should be able to solve conjugation problems
without the help of the decision tree. At this point, exercises are presented without
explicit algorithmic support, and the input by the learner is compared to the forms
computed by the system itself. Again, exercises may be provided either by the
system or by the learner. Whenever the learner makes a mistake (i.e. the form
input by the learner and the form computed by the system do not coincide), sev-
eral things may happen. As a first possibility, the particular exercise may be
repeated, this time with the decision tree. This should remind the learner of the
decisions to be taken in deriving a correct answer, and may provide additional
explanation if at some node in the decision tree an incorrect course is taken.
However, a more challenging option is to activate at this point a diagnosis system
which looks for the "bug" responsible for the mistake in the learner's internalised
knowledge. Detailed diagnosis of problems is essential to be able to provide rele-
vant additional explanation and practising material (Breuker and Cerri, 1982). We
have developed an experimental version of such a diagnostic procedure which we
will describe shortly.

A correct solution to a spelling problem can be represented as a sequence of
correct decisions forming the conditions of a number of morphological and
spelling rules. E.g. a correct computation of the second person singular of redden
(to save) involves the following decisions and rules: finite=yes, past=no, singu-
lar=-yes, first-person=no, second-person=yes, inversion=no, stem-computation--
rule (results in the form redd), morphological structure-building rule for second
person singular (results in redd+t), consonant-degemination spelling rule (results
in red+t), result is redt. This sequence fills the rule-history slot of the redt verb
form after computation of this form by the domain expert.

Rules can be uniformly represented as consisting of a number of conditions and
a number of actions, performed if the conditions apply in a particular context. The
source of mistakes can now exhaustively be characterised as follows:

At the macro-level: the omission or insertion of rules or the muddling up of the
correct sequence of the rules.

At the micro-level: the omission of conditions or actions, the insertion of con-
ditions or actions or the muddling up of the correct application order of condi-
tions or actions. In our case, conditions are either decisions in the decision tree
or conditions based on the form of the verb to be conjugated.

333

It will be clear from this that if we want to check all possible sources of an
error, a combinatorial explosion of alternative possibilities results, even for rela-
tively simple forms. Furthermore, the insertion of extraneous rules, conditions or
actions is open-ended, and therefore unpredictable. This proves that an approach
involving exhaustive diagnosis (like BUGGY for arithmetic; Brown and Burton,
1978) cannot be transported to more complex domains.

A solution to this problem commonly adopted is the compilation of a bug
catalogue (e.g. Anderson and Reiser, 1985), based on an empirical study of the
errors learners make, and on the relation of the results of this study to the different
rules used by the domain expert. By means of the information thus acquired, it is
possible to construct heuristic rules which guide the diagnosis process. However,
compiling such a list is a time-consuming activity, and we believe that it can be
automated to a large extent through progressive refinement of heuristic diagnosis
rules acquired through interaction with learners.

Heuristics always treat a number of potentially relevant aspects of the problem
(in this case diagnosis) as irrelevant. This can be justified if the number of things
that actually go wrong in practice is considerably smaller than the number of
things that can go wrong in principle. We believe this to be the case in the diagno-
sis of mistakes by learners in general and in the conjugation of verbs in particular.

We start from the rule history computed by the system. As a first hypothesis,
the system assumes that the mistake is due to a wrong decision somewhere. All
decisions in the list are negated in turn, and the effect of this on the computation
of the verb form is considered. Those decisions, which - when negated - result in
the same mistake as was made by the learner, may possibly have caused the mis-
take. Note that the computation of the effect of the negation of a decision often
involves the postulating of other decisions. E.g. negating past=no generates some
new decisions such as weak=yes (or no). The system assumes the correct deci-
sions to be taken. If several possible causes remain, the system tries to choose one
by asking additional questions (E.g. 'Is it a weak verb?') or by generating addi-
tional exercises. These additional questions and exercises are by no means unnat-
ural to the learner because they take the same form as the "normal" questions and
exercises while interacting with the system.

The number of possibilities can then be constrained by computing the intersec-
tion (if the answer was again wrong) or the difference (if the answer was correct)
of the relevant lists of decisions. If no hypotheses remain, i.e. all decisions taken
by the learner are considered correct, the bug must be due to a mis-application of
one of the rules. Roughly the same method can then be used to identify the rule in
question. From such a diagnostic interaction, a heuristic rule is derived. I.e. the
association of a symptom (the wrong answer) with a diagnosis (a wrong decision
or wrongly applied rule). Symptoms should be expressed at a suitable level of
abstraction: it would not be very useful to have a specific verb as symptom.
Rather the symptom is expressed in terms of the category of the verb (regular,

334

semi-irregular or irregular classes) and the ending of the stem. In additional inter-
actions with the same learner, already existing heuristic rules are gradually
refined.

Our approach to rule-refinement is based on the approach to learning in second-
generation expert systems (Steels, 1985; Steels and Van de Velde, 1985). Second-
generation expert systems consist of a heuristic rule system (much the same as
traditional expert systems) called the surface model, and an additional deep model
which provides an understanding of the complete search space over which the
heuristics operate. A second-generation expert system can fall back on deep
reasoning when its heuristic rules fail. The most important advantage of this archi-
tecture lies in the fact that it allows automatic learning of new heuristic rules.
Rule learning happens by refinement (non-monotonically): a new heuristic rule is
abstracted (in our case from an interaction with the learner), and is integrated into
the already existing rule-base. This integration does not make the previous rules
superfluous, but may restrict their application. Two options are open in the use of
heuristic rules: either a new rule base is constructed for each learner, or the same
is used for all learners. In the latter case, the identity of the learner may be added
to the list of symptoms.

An important facet in the development of ICAI systems is the user interface.
The program should be easy to work with for children, and attractive enough to
motivate the learner to work with it. In TDTDT, the decision tree is built up in
interaction with the learner. At each node, a question is asked, and the answer
(mostly yes or no) is given by clicking with the mouse on a menu of options. If
the answer is correct, a branch and new node are drawn, and a new question is
asked. If the answer is wrong, the learner is told so, and some explanation is
given.

In an exercise (the computation of the correct form of a verb), the infinitive of
a verb is presented in a syntactic context. The generating of these contexts is still
a problem. Only limited information about the case frame associated with the verb
is available from the lexical database, and no semantic information at all.
Contexts are therefore very simple and canned phrases designed to be applicable
to (almost) all verbs. The problem can be partly overcome by providing a more
detailed and natural context and letting the learner choose an applicable verb him-
self (this limits his free choice, but not to a point where only one or a few possi-
bilities are left open). An alternative solution would be to explicitly ask for a
specific form (e.g. 'What is the inflected past participle of the verb werken (to
work)?'). In the latter case, a lot of the decisions that must be taken in the real-life
computation of verb forms are given in the question, which diminishes the func-
tionality of the tutoring environment considerably.

335

6 Conclusion

Intell igent teaching environments like BOUWSTEEN, COGO and TDTDT may

become important steps in the liberation of class teaching from the less interesting

aspects of the subject matter and in the adaptation of the instruction to the needs

and pace of individual learners. We have shown that such systems can be devel-

oped even for subject matters traditionally considered "complex". It should be

emphasized that the described instructional tools rely on sophisticated hardware

and software resources (with the possible exception of BOUWSTEEN, which

runs on an IBM-AT with 3 MByte of internal memory), presently out of reach for

most schools. However, we are confident that the evolution of the microcomputer

market will make possible the implementat ion of similar programs on cheaper

systems.

Notes

This is a slightly adapted and extended version of an article which has appeared in the Nederlands
Tijdschrift voor de Psychologie en haar Grensgebieden, Volume 42. An earlier version of this paper
was presented at the European Seminar on ITS, Tubingen, Germany, October 25-31, 1987.

References

Anderson, J. and Reiser, B. (1985). The LISP TUTOR. Byte, 10, 4, 1985.
Assink, E.M.H. (1983). Leerprocessen bij bet spellen: aanzet voor de verbetering van de werkwoords-

didaktiek. Dissertation University of Utrecht.
Breuker, J. and Cerri, S. (1982). A new generation of teaching machines: intelligent and rather-

intelligent computer assisted instruction discussed and exemplified. In E. van Hees and A.
Dirkzwager (eds.), Onderwijs en de nieuwe media. Lisse: Swets and Zeitlinger.

Brown, J.S. and Burton, R.R. (1978). Diagnostic models for procedural bugs in basic mathematical
skills. Cognitive Science, 2, 155-192.

Daelemans, W. (1987). Studies in Language Technology. An Object-Oriented Computer Model of
Morphophonological Aspects of Dutch. Dissertation, University of Leuven.

Desain, P. (1985). TREE DOCTOR, a software package for graphical manipulation and animation of
tree structures. In Proceedings of the Symposium on Man-Machine Interaction, Amsterdam,
December 1985.

Huls, C. (1988). Bouwstenen voor computerondersteund constructief grammatica-onderwijs. Master's
thesis, University of Nijmegen.

Kempen, G., Schotel, H. and Pijls, F. (1985). Taaltechnologie en Taalonderwijs. In J. Heene and Tj.
Plomp (eds.), Onderwijs en Informatietechnologie. Den Haag: SVO.

Kempen, G., Anbeek, G., Desain, P., Konst, L. and De Smedt, K. (1987). Author Environments: fifth
generation text processors. In Esprit "86, Proceedings of the ESPRIT 1986 Conference.
Amsterdam: North-Holland.

Kempen, G. and Hoenkamp, E. (1987). An Incremental Procedural Grammar for sentence formulation.
Cognitive Science, 12,201-258.

Konst, L. (1986). A syntactic parser based on filtering. Paper, University of Nijmegen.

336

Schotel, H. and Pijls, F. (1986). Een prototype van grammatica-onderwijs op een LISP-machine.
Informat&, 28-1, 48--50.

Shneiderman, B. (1982). The future of interactive systems and the emergence of direct manipulation.
Behavior and Information Technology, 1, 237-256.

Steels, L. (1985). Second-generation Expert Systems. In Future Generation Computer Systems.
Amsterdam: North-Holland Pub.

Steels, L. (1986). Tutorial on the KRS concept system. Paper, AI-Lab, Free University Brussels.
Steels, L. and Van der Velde, J. (1985). Learning in Second-Generation Expert Systems. In J. Kowalik

(Ed.), Knowledge-Based Problem Solving. N.J.: Prentice-Hall Inc.
Van Dort-Slijper, M. K. (1984). Grammatica in het baslsonderwijs. Leiden: Martinus Nijhoff.

