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Introduction

Patterns of distributional co-occurrences are informative 
about lexical categories [Redington & al, 1998] but some 
more than others. What distributional properties of a 
context make it more useful?

Words can be syntactically categorized using the contexts 
in which they occur [Harris, 1954] but some more easily 

than others. What distributional properties of a word 
makes it easier to categorize?
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Distributional bootstrapping – What have we done?

Got evidence it works
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Since Cartwright & Brent [1997] and Redington & al [1998], 
we know there is information in distributional co-
occurrences that supports learning of lexical categories.

Behavioral experiments have confirmed that children are 
sensitive to this information and use it to group words 

along syntactic dimensions [Frost & al, 2016; Mintz & al, 
2014; Reeder & al, 2013; van Heugten & Johnson, 2010; 

Zhang & al, 2014] 



Distributional bootstrapping – What have we done?

Contrasted contexts

Giovanni Cassani (CLiPS)  - 10/02/2017 Leuven

§ Frequent Frames: you_X_the
[Mintz, 2003]

§ Flexible Frames: you_X + X_the
[St. Clair & al, 2010]

§ Bigrams vs trigrams: you_X vs you_X_the
[Monaghan & al, 2004]

§ Utterance boundaries: the_X vs the_X_#end
[Freudenthal & al, 2008]



Distributional bootstrapping – What have we done?

Evaluated learning mechanisms
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§ Incremental Bayesian clustering [Parisien, 2008]
§ Incremental Entropy-based clustering [Chrupała & 

Alishahi, 2010]
§ MOSAIC [Freudenthal & al, 2016]

The evaluation concerns whether good categories are 
learned and whether learning follows aspects of the 

developmental pattern.
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Distributional bootstrapping – What do we miss?

A concept of usefulness

Not all contexts are equally informative:
§ What does it mean for a context to be useful? 
§ How can a child determine this? 
§ Using what information?

Models work on too many starting assumptions that are 
not yet well motivated and grounded in experimental 

evidence.
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Distributional bootstrapping – What do we miss?

A concept of easiness

Not all words are equally important: children are better at 
categorizing certain words than others.

§ What causes certain words to be categorized better? 
§ Are words that are easier to categorize using 

distributional information also the words that children 
categorize better?
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Distributional bootstrapping – What do we miss?

Many potential predictors

While definitely important, frequency is not enough in 
accounting for lexical category acquisition [Matthews & 
Bannard, 2010].

Diversity, predictability, and entropy are pieces of 
distributional information that children can track and  
might contribute to explain usefulness and easiness.
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Computational simulation

Experimental setting

§ Unsupervised PoS tagging experiment (5 tags)
§ Transcribed English Child-directed speech 
§ Bigrams and trigrams (with utterance boundaries) as 

contexts [b_X;  X_c;  a_b_X;  b_X_c;  X_c_d]
§ Exemplar-based clustering (TiMBL: IB1, cosine, 1 NN, no 

feature weighting)
§ Incremental training (40 to 70% of the input corpus)
§ Mixed-effects models
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Computational simulation

Predictors and outcomes
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§ Context type (left, right, non-adj)
§ # constituents (bigrams vs trigrams)

§ Token frequency 
§ Diversity
§ Average conditional probability
§ Entropy (normalized)
§ Time

q Gain ratio 
(contexts)

q Hits (words)



Computational simulation

Operationalization

First, we ran the clustering experiment, finding the nearest 
neighbor in the training set for target words in the test set. 
Categorization accuracy was used as a dependent 
variable to assess easiness.

Then, we computed Gain Ratio from co-occurrence 
statistics in the training. GR values were used as 

dependent variables to assess usefulness.
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Results – Easy words

Main 
effects
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Results – Useful contexts

Main
effects



Results – Useful contexts

Interac
tions



Results – Useful contexts

Time-frequency interaction
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Results – Useful contexts

Time-probability interaction
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Results – Useful contexts

Time-entropy interaction
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Results – Useful contexts

Time-diversity interaction
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Conclusion

Systematicity > frequency

Useful contexts need to be highly systematic, and the 
more so with more exposure to the input: 
> occur frequently
> with many different words 
> occur a comparable amount of time with all the words 

they co-occur with
> but be hard to predict given the words they occur with

it_X_#end;  X_the;  you_X;  …
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Conclusion

Beware of the noise

Words are easier to categorize when highly specific: 
> occur with fewer contexts
> have low entropy distributions over contexts
> are hard to predict given the contexts in which they 

occur (cf. positive effect of diversity of usefulness)

apple;  forget;  table;  door;  …
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Conclusion

Complementarity

Words that make good contexts are harder to categorize, 
while poor contexts consist of words that are categorized 
more effectively ó Children categorize content words 
better and earlier, and use function words to do this.

A full distributional learning account can effectively 
explain lexical category acquisition
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Thank you!



Questions?
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