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PREFACE

" In recent decades we have Seen an enormous rise of investigations
into the phencmenon of natural lahguage. Each time it was
shown that a certain aspect of this phenomenon was even more
complex than previously thought or that a new aspect should be
incorporated in the investigations. The present work has not
the ambition of adding new subject areas to the expanding
field of natural language study. We will not try to re-investigate
certain areas of knowledge of apply existing theoretical models
to unexplored language details. Instead we go back to the groundwork.
We want to present and try out a new approach towards the

investigation of language.

We consider it te be the task of linguistic theory to provide
answers for the following questions: What sort of phenomena are
used by natural languages to fulfll their task as a medium of
communication ? How ¢&o each of these phenomena occux in a
particular natural language ? What kind of systems are necessary
to produce and perceive the linguistic phenomena ? How dc these
systems cooperate to understand or produce natural language ?
How can we construct mechanisms that learn to cope with the

rheriomena found in natural languages ?

It is generally accepted that a grammar model constitutes the
description of knowledge about language which 1s used by the
speaker/hearer to produce/understand his language, the so called
competence. We will accept this assumption. Normally however this
viewpoint does not affect the theory of grammar itself. One
constructs a grammar theory and then just hopes without fufther
investigation that it represents the kind of knowledge necessary

for a perceptﬁal_model. For our own research we decided to work

the other way round. We tried to construct a perceptual model

and studied what the implicaticns are for the grammar theory itself.

By doing so, we found out that a fundamenﬁally different linguistic
theory is highly desirable. Not so much as regards the descriptive
claims being made but more as regards the formal structure of

the theory. The most important difference is that all knowledge
sources are brought together in modules or specialists which can

become active independently of each other.



In this work we present the basic principles of this new kind
of theory. To illustrate them on the basis of the wvast amount
of language phenomena known today is an impossible task in a
small amount of time. So we will pick out tweo basic aspects
of language: grammatical function and case, and show how the
theory formulates rules for them, and how the rules can

be used in an empirical description. At the same time we

wiil provide a perceptual model that 'cornsults' the knowledge
represented in the grammar, to analyze and produce natural

language, again basically concentrating on function and case.

Throughout the work, we try to satisfy strictly the requiremerits
of exactness characteristic of scientific investigations. All
models will be formally defined and for the perceptual models
we will even present computer programs with which experiments

can be performed to confirm the theories.

As a final remark we want to stress that the model to be
presented here 1s not the final version of our theory hor an
endpoint of our research. Cn the contrary, we feel a neéd for
constant self-criticism, continuous revision and certainly
further extensions (which may affect already existing parts
of the theory). It is therefore hetter to call this work a
.progress rather than a final report.

Nevertheless we think that the general direction of the research
is sufficiently clear and that the results so far obtained are

sufficiently strong to justify the presentation now.

There is a Zen proverb saying 'a finger is needed to point at the
moon but once the moon has been recognized we shouldn't bother
about the finger', In the same spirit we invite the reader

to concentrate on discovering the ideas contained in the work
and to forget about the deficiencies and errors which will
‘undoubtely be present in the current presentation.
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INTRODUCTION

In this thesis we present the first approach of a new
theory about the nature and mechanics of nétural languages.
This theory contains two parts:

(i) A description theory dealing with the problem how
knowledge about the language systematics can be formalized.
We will do this by introducing a set cf independently
consultable modules where each module explicates the relation
of a certain factor and the language phencmena used to signal
the factor. This explication is neutral in the sense that
there is no bias towards generation or analysis.

{iil) A process theory showing how the linguistic knowledge

is used to analyse or produce natural language.

As a whole the work is organized as follows. In a first

volume the reader will find a chapter on foundations and

a chapter on the description theory. The chapter on foundations
contains all terms, concepts and systems which form the
mathematical basis for the theories to be discussed later.

Also we will discuss some metatheoretical assumptions.

The chapter on the description theory deals with a

detailed and formal description of the modular grammar theory
which formg one of the main contributions of this work.

In a second volume the reader will find a chapter on the

process theory and on the implementation of this process theory

on a computer. As regards the process theory we will in particular
be engaged in a detailed presentation of a parsing system for
natural language on the basis of the modular linguistic theory

of chapter one. A system for language production also

based of this linguistic theory will be presented only on an
intuitive level. The chapter on the implementation contains a
detailed and fully explicit definition of a parsing system for

- natural language as described theoretically in the chapter preceeding
it.

The third volume is devoted to experiments and examples.

Here we will discuss numerous examples for different languages

and perform experiments with the system to illustrate the various
points of the theory.

The final volume contains the conclusions of our work, the

index and the bibliography.



On the whole this is a theoretical work which implies that

the empirical interpretation will be restricted to what

we need for the examples illustrating the theory. We will

even at different points give different grammars or present
facts which do not necessarily hold for the language in general.
We invite the reader to take the same free position as regards
empirical interpretation and we hope that our presentation

will stimulate him/her to use the formalism in a creative

way .

References to other work will be scarce. This is a consequence

of our method of absorbing scientific information by discussions,
lectures, personal communications, in other words by oral

rather than written communication. This happened especially

at the Summer $hool for Mathematical and computaticnal linguistics

in Pisa, at the Tutorial on Computational semantics in the

Institute for semantics and cognitive studies in Lugano , the Tutorial &n
Montague grammar in Amsterdam and at the variocus conferences

(especially the AI.conference in Edinburgh and the Computational
Linguistics Conference in Ottawa) and seminars which we were

able to attend due to generous support from our department.

We apclogize for all the errers either due to incompetent usage
of the English language or lack of care in the formal details.
We hope that they will form no fatal obstacle for understanding

our ideas.

We are well aware that the processing of such a large piece of
work as the present one is a hard and time/energy consuming job.
Let us hope that the ideas contained in the work will stimulate
the reader in his own research efforts and that he will gain

some new ideas for his own problems.

Antwerp, May, 1977



§ 0. FOUNDATIONS

In this chapfer we introduce & numben of auxifiany nofions grom
set theory and recunsive function theony that wilf be wsed fo
define the theory undern discussion in the othen chapferns. More 4n
particular we will degine sevenal representation comsfructs such
as atoms, n-tuples, strnings, sets, refations and Languages and
present a ghaphical foamat and an Amplementation representation
fon each of these. Also we wilf introduce the reader to the
intuitions behind the notion o4 computation and dedine scme
abstnact systems fon performing compuwtations,in particulan

finite state machines and recunsive thansition networks.

Another topic of this chpaten {5 a shont discussion on some
metatheoretical considerations. Hene we will discuss the
metatheoretical stauctune of Lthe theony, the Atatus especially
as negands  falsification and complefeness and the
experimental method.
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§ 0,3. METATHEORETICAL CONSIDERATIONS



representation theory

0.1. Introduction to the theory of representation

In this section, the type of objects used on all the various levels of
a linguistic theory are introduced and discussed. The study of these
objects goes under the heading of the theory of representation. This is
so because each dbject in the theory (e.g. a structural description)

" represents linguistic information. about another object on another
theoretical level to which it is related (e.g. a natural language
sentence). In general, let us call an object defined by a theory of
representation a representation construct. What sort of information is
represented in a construct will be discussed in folleowing sections. Here
we concentrate on the type of constructs used. The mathematical

foundations for the present investigation are provided by set theory.

A definition of representation constructs involves three aspects:

(i) A formal definition in which the logical or
set theoretic aspects of the representation construct become apparent,

we call such a representation the criginal or basic representation.

(ii) A formal definition of the graphical representation which is

used for didactic purpcse. It is obvious that there should be a
homcemorphical mapping between the criginal and the graphical

representation.

(i1i) (In computational linguistics)a formal definition of the

implementation representation, i.e. the way in which the representation

is physically stored in terms of machine manipulatable entities., It is
again obvious that we want an homomorphical correspondence between the
original and the implementation representation. Instead of remaining
close to the physical storage formats, we will present as implementation
representation a symbolic representation which can be processed by a

machine.

It turns out that we can distinguish a hierarchy of types of
representations. Within the hierarchy there are two levels: The first
level consists of essentially finite basic representation construcfs,
such as atoms, n-tuples and strings. The second level consists of
generalizations over these. basic representation construects in that now
sets of basic constructs are represented. In this way we generalize from
atoms to sets, from n-tuples to relations and functions and from strings
te languages. '

-0.1. -



Schematically:

type 1 type 2 type 3
level 1 atoms n-tuples strings
level 2 sets relaticns languages

In the following subsections, we will define for each type the
representation constructs on each level. Also we will give some comments
on the interaction of the various types of representation and their

!

respective power.

TYPE 1. .

Level 1: ATOMS

Definition
An atom is a finite sequence of characters considered to stand for a

nondivisible primitive representation construct.

Example
21, ATOM, NOUN are atoms

Definiltion

Two atoms are equal Lf they have the same outlook.

Definition

NIL is the 'null' atom

Definition
An occurrence of an atom is thé actual appearance of the sequence of

characters in space/time.

Comment: The same atom can occur at several distinct times/places and it
may be that this time/place relation is important. Note that the atom vs.
occurrence of atom distinction is equal to the type vs. token distinction

in linguistics.

Now we generalizé over atoms by considering collections of atoms.

- 0.2, -



sets

Definition

A set is a well-defined collection of atoms. If the atom a is an element
of the set S, thenwe say a€ S5, if it is not, we say that a¢ S.
A set is defined either by listing all. its members, separatéed by commas

and enclosed in brackets{} , or by specifying a characteristic property

which is true for all members in the set and false for those not in the

set. Let P(xX) be such a characteristic¢ preoperty, then the set ig defined
by 5 = {Xl P{x) , i.e. the set of x such that P(x) is true{}

Example

5 = {1,2,5} is a set . 2€ 5 is true.

g" = {X |K is an even number} is a set, 3 € 8" is true.
Definition

@ is the set containing no elements, the null set, or empty set. A finite
set is a set containing a finite number of elements. An infinite set
contains an infinite number of elements.

The number of elements in a set S 1s denoted as # 8.

Definition

A set A is equal to a set B, denoted as A = B, if and only if every

element. in A is also in B and vice-versa.

Example

s = {1,2,3} = {1 , 1, 2, 3} = {3,2@ = {3,3,2,2,1,1} , etc;

Note that neither the ordering nor the occurrence plays a role, Some

concepts as regards sets that we will need further on:

Definition

Let A and B be two sets then if x€ A implies that x< B, we say that A is
a subset of B, denoted as AC B. Furthermore is there is an x £ B which

is not in A, then A is a proper subset of B, denoted as A ¢ B.

Example
Let 2 = {1,2,3) anda 8= {2,3] then B gA. A Ch.
Definition

Operatlons over sets: Let A and B be two sets, then the union of A and B

denoted as A Y B contains those elements which belong to A or to B or to
both; the intersection of A and B, denoted as A N E, contains all elements
whilch belong to A and to B; the difference of A and B, denoted as A - B

is the set of elements which belong to A but not to B; finally, the
-comElement of A as regards the universe U, denoted as A', is the set of



sets

elements which belong to U but not to A'.
If A NnB =@, we say that A2 and B are disjeoint sets.

Example
Let A = {1,2,3) and B = {2,3,4] thenausm= {1,2,3,4}
ane= 2,3} ,a-8 = {1} and with v = {1,2,3,4}

A' = 4

A and B are not disjoint.

The only way of structuring that occurs with sets is by letting a set

be an element of another set.

Definition

A family of sets or a class of sets, is a set of which the members are

sets themselves.
The powerset of 5 denoted as E?(S) is the family of all subsets of the
set s: J(8) = {A]AC sy .

In general: # SP(S) = 2##3.

Example _
s = E$13 R {2,33 ' 5431 is a family of sets, Let S be ‘g,2,3£ then

Sy = e, 1Y, Yy, {33, 1,25, f2,3Y, 0,38 .{e,2,3 &)

S¢ far we discussed only the basic representation,. now we turn to the

other format: graphical representation.

Graphical representation

The graphical representation cf a set (known as Venn-diagrams) works as

follows: A set is represented by a circular plane area and the atoms in

the set are written within the area, with one dot for each atom.

Example |
Let § = {},2,3& then the graphical representation is:
Let § = ({1&, k2,3,4% ' R5Hh then the graphical representation is:

- 0.4, -



sets

Some diagrams for operations:

7 ’
o D g

AV B

Implementation representation

Atoms are usually stored in a coded form as strings of symbols. For
(finite} sets, cone normally uses list structures

to be discussed later. Infinite sets, which are recursively enumerable,
can ke represented by procedures that enumerate dll members of the set.

: \
Comments on the use of representation constructs of type 1.

ATOMS are used con every level of a linguistic theory where nondivisible
entities are needed. This happens in two cases: (a) to represent
theoretical entitieg, i.e. the terms of the theory, and (b) to represent

observational entities , i.e. the linguistic objects from where an

investigation starts. Depending on the level on which the observations
take place, words, morphemes, phonemes, characters, etc; are considered
to be atoms.

SETS are used to define the grouping of theoretical or observational
entities into various classes. However, to represent_in an interesting
way nontrivial linguistic insights, more complex representation
constructs will be needed. Nevertheless set theory forms the ultimate
basis for all structures that we will discuss, even the most complicated

ones.

Further references

There is a lot more to say about sets, but we will not.give any more
details, partly because we assume them well known, partly because all
details can be found in the mathematical literature about set theory.
The reader Interested in a more tutorial account is referred to
Lipschutz (1964). For a more linguistically oriented introduction, see
Wall (1972). An axiomatic treatment of set theory can e.g. be found in
Fraenkel, et. al. f1973).

- 0.5. -



n—tuples

TYPE 2

Suppose now that we take a number of atoms and arrange them in a linear
order. What we obtain then is an ordered pair, triple, quadruple, etc;

or in general an n-tuple, with n the number of atoms.

Definition
An n—tuEle‘(or array of length n) is an ordered sequence of n atoms.

Notation: Let Bys o veeod, {n » 0) be atoms, then we say that (al, .

is an n-tuple.

Definition

The zero-tuple is an n-tuple with no atoms.

Definition
Two n-tuples (al, - an) and ¢ biv oony bm) are equal if and only
if n = m and a; = bl’ sevy @p = bm.

Recall that for sets, an element could itself be a set; in the same
manner we now introduce n-tuples of which one of the atoms is itsgelf

an n—tuple;

Definition

An. m-dimensional array of length n is an m-tuple where each element is

an n-tuple.

Level 2: Relatlons and functlons

Now we will discuss several methods of defining sets of n~tuples, and
of defining various types of sets of n-tuples. This subject is '
treated in great detail by set theory. We will therefore 1ndlcate only
those aspects that are relevant for our purpose. Besides, we w1ll pay
great attention to graphs, being the graphical representation of
constructs on this level, and lists which form the hasis for the

implementation representation.

The most general definition of a set of n-tuples is by the so-called

Cartesian product:

Definition

Let 81 and 52 be two sets, then the Cartesian product (or product set)
of 81 and 52, denoted as 51 X 52, is the set of all pairs { x1,x2) with

- 0.6, -



relations

x1 €51 and x2 € 52. The Cartesian product is generalized over n sets

in the obvious way.

Example _
Let 51 = {1,3,2) and 52 = {2,3,4) then
st xs2= ha,2y, 4,3, a,6, @2, @, , 2,8,

(3,20, (3,3, (3,4))

The first more restricted notion is that of a relation.

Definition

A relation R from S1 to S2 is a subsget of S1 x 82,

D= ix1|x1€851 and (xi,x2) €RY is the domain, and
R = x2 { x2 €82 and (x1,x2? E?Ra is the range of the relation.
|
Example
For S1 and 82 from the previous example: R = {(1,2) , (1,4) , (2,3) ,
(2,4) j is a relation.
1,2 § is the domain and {2,4k the range.
Definition

A relation Rl <© 81 x §2 is equal to a relation R2 <€ S3 x 5S4 if and only
if 81 = 83, 52 = 54 and Rl = R2,

Definition
A relation R is empty if and only if R = ¢,

Definition

R'l = {(x,y) | v,x )ezRS is the inverse of R.

Definition

Types of relations. Let R be relations on a set S, then

R ig reflexive if (Vv x) ( {X,XxyeR)
R is symmetric if (¥ x) ( (xX,YYER -+ (V,X)ER)
R is transitive if (¥x) ({ (x,vy}ER and (y,z)ER) - (X,Z)}ER)

R is an equivalence yrelation if R isg reflexive, symmetric and transitive.
Convention: We often say that xRy if «(X,y>ER.

Definition

Operations on Relations. The k-fold product of a relation R (on a set S)

denoted as RE is defined as follows:
(i) (x,yrer iff «x,yreRr
(ii) (X,v)€E RY if there is a z in S such that (Xx,Z)c R and

i-1

(z,y)ER for i>/l.

-0.7. -



functions

In general, the transitive closure of a relation R on a set S, denoted

as R is defined iff ley for some i;’l, and the reflexive and

transitive closure is defined iff xRx and xR+y for all x;y in 5.

Example

The reflexive and transitive closure of a relation is of great importance

in defining languages in a formal way. We will see examples later on.
Further restrictions bring us to the notion of a function.

Definition

A function f of S1 inte S2 is a subset of S1 x S2 in which x1 € S1
appears in only one pair belonging to f, we say that f: 81 -+ S2 or
that £({xl) = %2 for x1 € 851 ard x2 €82

Example
For Sl and 82 from the previous example, we construct a function: f:
51 = s2, defined by the set: {(1,2) , (2,4)} .

Defintion
A function f1: S1 > S2 is equal to a function £2: §3 ~ g4 if and

only if, 51 = 83, S2 = 84, and for every element x1 € Sl,.f1 (x) =
fz(xll. : ‘ :

Some more definitions:

Definition:

A function f is partial if there is at least one a € 51 for which f:
S1 =+ 52 is undefined. If there is no such an a, £ is total.

If £: S1 = 52 is a function and for each x € 82 there is at most one

y € 81, such that f(y) = x, we say f is a one-to-one mapping.

If moreover f is a total function and £ is a one-to-one mapping, we say

that £ is a one-to-one correspondence.

Instead of defiring in more detail the wvarious types of functions and
relations, we now concentrate on the graphical representations of
relations in terms of graphs.

Graphs, and a particular sort of graphs namely trees, have an important

place in the theory of linguistic representations.

- 0.8, -



graphs

Graphical representation

Intuitive introduction:

Let R be a set of ordered pairs over a set V:
R = {(al, a2y, (a3, ad), (a3, a2), (a3, a5), (a5, al), (a2, a3y

Let us now associated with each atom in V a node, draw circles for each )

node and put the atom in it;

nt ) . n2 ns
%
nd

For ease of representaticon we will often omit nl, ..., n, and only

represent the c¢ircles with the atoms in them.

Now let us conhect two nodes ni,nj with a directed arc if and only if
the atoms ai,aj associated with ni,nj are in the set of ordered pairs.

For the above example this results in the following:_

Finally we asscciate labels with each arc denoting the relation, this

is useful e.g. if more than one relaticon is represented in the same graph:

- 0.9. -



graphs

Here is another example:
Let us consider the relation 'to the second power' (denoted as P2) for
the set of natural numbers from 1 to 4.

Let N = (1,2, ..., 16§ then P2 C N X N and

p2 = {¢1,10, <2,4), €3,9), (4,16)} because 1% = 1,2

The graph of this relation (which is by the way a function because each

. 4,32 = 9; etc.

atom on the left of the ordered pair occurs only once in such a position):

P2

(We leave out all irrelevant nodes for other natural numbers)
|
Now let us consider a second relation, e.g. 'two times'
(dencted as T2) for the same set W. T2 = {<l,2 Yo, (2,40, (8,67,
(4,8}
We represent T2 in the same graph and obtain:

The diagrams digcussed in the preﬁious paragraph are called

directed labelled graphs.

" Definition
A directed labelled graph (or DLG) is defined by a 6-tuple:
G = (V,A,,R,¢,¢{? and V is a finite set of nodes, A is a finite set

of arcs, L is a finite set of labels for the nodes, R is a finite set
of labels for the arcs, ¢ : VXV - A XRandy¢: Vv - L,

In language applications a directed labelled graph is normally called
|

a. network.

- 0.10. -



graphs
Some more concepts around grarhs that we will need furthér on:

Definition

If an arc leaves a node nl and enters another node nZ, we say that
nl is the parent of n2, and n2 is the successor of nl.
If a node has nc successors it is said to be terminal, else 1t 1is

nonterminal,

Definiticn

A subgraph of a graph is a subset cf the nodes in the graph, together

with the arcs between the nodes in the subset.

Definition

A seguence of arcs and nodes leaving from a given node A to a given

node B is called a path from A to B.

Example

graph 1

A suécessor of the node with label A is E. The node with label A is a

parent of the node with label E.

The node with label C is a terminal node.

The node with label E is a nonterminal ncde.

K

is a subgraph of graph 1

E—S%n Je1 Fap Gp1 is a path
Definition

We say that a path is a circuit if the same node cccurs more than

once in the path.

Example
The path given in the previous example is a circuit.
Convention: We say that a graph has circuits if it is possible to

construct circuits in the graph.

= 0.11,



tTaes

Now we discuss a graph of gréat importance in linguistic theory:

Definition
A tree is a graph with the following special properties:

{1} There is exactly one node in the tree which has no parents. This

node is the root or topnode of the tree.
(ii) There i1s a path from this root to any other node in the tree.
(iii) The tree has no circuits. S

(iv) There are no arcs in the tree which cross each other,

Example

Example of a tree:

Examples of graphs which are not trees

e e This examp'le violates property 1 because there

is no unique topnode, also it violates property 2.

This_example violates property 3, because che

cah construct a circuit where B occurs more
e e ] 0 than once. '

e o _ . This example viclates property 4.

Normally the circles are left out in a tree representation, and also
the labels on the arcs if only cne relation is represented.

If ‘the labels for the arcg are not left out, they are often called
selectors. -

S =0,12, -



trees

Example of a tree without circles and labhels:
A -
T\\\\ i
C D

Additional convention: terminal nodes in a tree are often called the

AN

E

leaves of the tree.

Now we discuss two kinds of extensions:

(a) an extension of trees in the sense that 'variable nodes' are
introduced which stand for whole trees

(b} an extension of graphs in the sense that relations are introduced

which are themselves complete graphs.

Extending tree representations

Now we define an extension of trees inisuch a way that we can represent
circuits in a tree and that we can somehow use the idea of

discdnnected graphs to obtain more economic representations. The
extension consists in the introduction of nodes which are given the
status of variables by the fact that they represent. the whole tree
depending from the node. We dencte a variable node by putting a bar

cn the label.

é'{}k:::;)
|

It should be clear that by this mechanism weé can repfesent a graph as

7
ﬁ

b
:D'ﬂ—n/
1r

a finite tree, where it would otherwise be impossible.

Another use of variable nodes lies in isolating a subtree which occurs
more than once in the representation construct. In this way we can
construct subtrees which would normally not be accepted because the

/N,

arcs crossing.

A
D/;*E//C } .,3/5<\
/N

- 0.13; -
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trees

Also we can use variable nodes to obtain a more economical representation:

B/ D/A \B B/A¥ B E/D\ ¥
c / \ E/ \F IIJ <~:\B
| /\

E F E - F

Note that we have qua representation a disconnected graph, but that
there is theoretically a connection due to the variable node D.

We conclude with a definition cof recursive trees.

Definition

A recursive tree i1s a collection of trees where some nodes, called the

variable nodes are used to denote the tree depending'from this node. A
variable node occukrs either on the top of the tree, in this case the
variable ncde is given the wvalue of the tree of which it is a topnode,
or as a terminal node in a tree, in this case it is to be replaced by
its value.

Remark:
. #
In a well-formed recursive tree, every variable node has no more than

one but at least cone depending tree,

To see clearly that recursive trees have the power of graphs,

we give a final example:
Example
XL X2 3
N / |
A/ B D x1 A
VAN | '
K2 ' E
L

X2 C

D
X1

W

- 0,14, -



trees

equivalent graph:

Extending graphs

There exist several.possibilities of extending networks or directed
labelled graphs. Only one extension will be of interest for our

purposes: recursive graphs or recursive networks.

We have geen that a graph is a representation construct representating
a complex of relations between several atoms., Suppose now that we
consider such a whole representation construct as one complex relation

which may act itself as a label on an arc in a graph.

We represent this by introducing variables for a whole graph (or
network) .

Definition

A recursive graph is a set of directed labelled graphs, with a labkel

for each graph. The label may act itself as the label of an arc in the

same or another graph,

Example
S:

Note that S occurs itself as label of the arc from 5/2 to 8/3.

Here is another example
S: @ Np "VP “@
NP: WW

VP:

v {73
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So far we discussed the basic representation of type 2 constructs and
their graphical representation. Now we turn to the third aspect: the
implementation representation. This implementation representation is

of great importance, we therefore introduce the subject in considerable
detail.

Implementation representation

introduction: list structures

Definition

A data structure is (i) a set of cells, which can contain a certain

datum and (ii) a relation among the cells: a way of organizing them.

Example

Some data structures are
a table:

or
a linear array

A Y

In these two data structures the location of the different cells of the
data structure is defined in an implicit way, namely on the basgis of
the horizontal or vertical order. We can retrieve a value in one of

the cells by addressing the position the cell takes in the data structure.

Suppose now that we make the structure explicit by drawing arrows if

two cells are linked with each other:

E.g.:
o 3 ~1F ]
b} .
T
T
Definition

A data structure where the relations between the cells are made explicit

by drawing arrows between them is a list structure.

- 0.16. -
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To locate a data cell in the structure, we have to 'walk through it',
until we come to the desired place.

From the diagrams it could be seen that in an explicitly linked data
structure a cell contains two parts. These two parts are known as the
CAR and the CDR (pronouns 'cudder') of the cell:

LCI,\R CDR

: !
A CDR- or CAR-field contains either a data item or ancther pointer,

l.e. a link to another cell.
Compare:

1] 2]
; i '

Datumg are considered to be nondivisible entities, in other words they

are atoms. A list i1s a number of cells linked gnto each other by their

respective pointers,

Tl T

Note the slash at the end, it denotes the end of the list. Another
name for the slash is NIL, denoting that there is nothing in that part

E.g.:

of the cell. If a list contains no elements at all then it is also
represented as NIL. In this case NIL is called the null list, So, if
NIL is placed in a CAR- or CDR-field, then we may assume that a list
without any elements is attached to this field.

(Note that NIL = null list = null-atom)

Some more concepts:

Definition
A list structure where every cell ig linked only to its successcr is

a one way list.
A list structure where for each cell there is a link both to its

successor and its predecessor, is a two way list.

From now on we will only deal with one way lists.

- 0.17. -
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Example

. — —
a) one way list —_ s |

b) two way list '
G

]
.
|

Definition
If a list contains a pointer in one of its CAR-fields, then the list
starting from such a CAR-field is a sublist.

A list with sublists iz called a branched list, a list without sublists

is called a linear list.

Example

branched list:

:
N

linear list:

R Y o AP

The representation problem

To have a successful data structure it is not sufficient to have a
graphical representation. One must be able to write down the graphical
‘representation in a linear way, i.e. algebralcally. For tables and
vectors, we do this by naming the whole data structure with a symbol
(say X), and the different cells of the data structure are addressed
by subscripts, e.g. X{1,2} denotes the first cell of the second column
in a table called X.

For list structures the solution to the representation problem is not
S0 easy, simply because cells cannot be addressed by subscripts on the
basis of their location, i.e. by referring to lines and columns. The
problem is solved by the introduction of S-expressicons with two

particular formats: dot-notation and list-notation.

- 0,18, -
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dot-notation

The dot-notation of a list structure is a direct mirror of its graphical
representaticn, For each cell we introduce two brackets and one dot:

N

o RN

On the right side of the dot we write the CAR and on the left side the
CDR. If the CAR or CDR contains a pointer, then we replace this pointer
by the whole sublist depending from this pointer written in dot-notation.

Examples
A| B = (A . B
™ oL ——| 1| - » 8 » T | -

= (L . (T . (s . (T .NIL))))
..L'(T"'_—"’A FW
|
.7 a;f_»B E
l
C D = (((C.. D). {(B.E)) . (A .F}))

< 0.19. -
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The following strategy can be followed for the construction

of dot-notation from graphical structures:
(i) Consider a list to be linear and whenever a pointer

appears, introduce a variable name for the sublist depending

from this pointer,

{ii) Similarly construct for each sublist on the same
basis a linear list with variables when necessary.

(iii) Replace all variables by their respective dot-

representations.

Example:
> 1 o
] '—r—b B > F > G H
e
C | :
. AlB
with F1 = {A.B) , F2= ((A.B) .C)
F3=({¢{(A.B) .C} .D)
™M = (F3. (E ( F (G . H} )
Craphically we had the following sublists:
./‘_ ________________ e
e N
/ ) AN
{ I E > P N
i - \
\F4 // ““\ f !
\ 4 e !
) / T D S . G H
~ '
PSR I 1
!

\\‘\\ \‘_\ Fz\
R N 2 | /// oy
N i
~ N - y !
NEE R t
-~ - /¢
Rl y
B) .Cc) .D}) . (E (F . (G . H}))M

The final result is:

- 0.20. -
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Here is another example:

il

{ 0.

(a .

M} o)
M )
M)

(L4 in 13)
) « (D
}) . (D.

We have the feollowing sublists:
Ll = ( L2 (a . {15

L2 = (L3 . (D .TI})}

L3 = (L4 . (O . M) )

L4 = (B . O

15 = (G . R

Replacing all the variables yields:
L3=( (B . 0) {o.

2= (( (B . O}

L1 = ({C{B.O0C) { 0.
Graphically:

- 0.21. -
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(B .oy . (0.Mm)) . (D.I)) . (A.

(L5 in L1)

Although dot-notation is an immediate reflection of a graphical
structure, there is already one sort of list structures that
cannct be expressed namely a circular list.

A circular list is a list where a pointer in some field pbints

to a previous cell of the list.

Example:

b

] ]
\ |

AL . R7|
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Clearly a dot-notation of the graph would never come €0 an
end. The fact that circular lists cannot be expressed is however

seldom felt as a drawback, certainly not in linguistic practice.

" list-notaticn

Althbugh the dot-notation of lists 1g a véry nice way of writing
graphs into a linear format, it soon becomes extraordinary
complex when the list structures themselves grow. Therefore ancther
representation has been designed: list-notatiom. This goes
as follows

(1) A linear List is transferred by writing all the elements
of the :espective CAR~fields right after each other.

E.g.:
Loy~ T | s { 1 ™|t 7l
or
(L. (I . (5. (T.NILY ) ) (dot-notation)
or
(LIsT)y (list-notation)

(Note that nothiﬁg is pfovided:if there is an atcm in the CDR-field)
(ii) As fof dot?notation , @8 S0on as there appears a _

pointer to a sublist in one of the CAR-fields, construct the list- .

notation for this sublist and replace the pointer by this sublist.

Example:

dot-notation

((( (L .WNIL) . {T .NIL) } . (8 .NIL )} . (T . NIL )

- 0.23, -
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|
e -
N

in list-notation: ( ( ( (L} I ) 8 ) T)

The technigque for constructing dot-notation from graphical
structures can also be used here to construct list-notation
from graphical structures:

(i) Consider a list to be linear and whenever. a poinhter appears,
intrbduce'a variable name for the sublist depending from this
peinter,

(ii)_Similarly construct for each sﬁblist on the same basis
a linear list with variables when necessary. '

{iii) Replace all variablés by their respective list representations.

Example:

(1)

-0.24. -
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Let LO { AL1DE)
L1 ( B C)
then L1 in LO yields:

I

(A {(BC)}DE)

{ii) Given the following list (in dot-notation):

(¢ (A .NIL) . (B .NIL} ) . ((C

We have the feollowing steps:

L5 = (L1 L2 D)
Ll = ( L3 B)
12 = (C))
L3 = { 2)
Finally: 1.5 = ( ( { A ) B ) (C) D}

L5:

21/

Restricticns on list-notation:

. NIL )

(a) It is not possible to represent circular lists

(D

(b) Whenever an atom appears in a CDR-field we have to use

dot—nqtation.

- 0.25. -
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list-notation of trees

List structures are widely used in any sort of linguistic
applications. There are two reasons for this

(1) easy input/output of strings and easy processing
of alphanumeric dataj .

(2} (and this is even more important) easy representation

of structures.

The latter point will be i1llustrated more explicitly in this
section. We will discuss the standard means of representing
tree structures in terms of list structures. Thé reader should
not proceed without being thoroughly familiar with this.

The representation of linguistic information wiil depend

crucially on it.

A typical tree looks as follows:
5

N
| | VAN

sincerity may frighten \
the boy

An alternative linear representaticn of the same information is
the sc called labelled bracketing:

( ( ( SINCERITY).) ( (MAY)M)

N'NP AUX

{ ( FRIGHTEN)-V { THE)DT (BOY)N )NP)VP)S

- 0.26. -
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OR

{S(NP(N SINCERITY} ) ( AUX (M MAY) )

({ { FRIGHTEN) ( { THE) (

NP ‘DT BOY) ) ) )

VP v N

respectively called right labelled bracketing and left labelled

bratketing. Now, 1f we take the left labelled bracketing and write
all symbols on one line we obtain:

(S ( NP ( N SINCERITY) ) { RUX ( M MAY)) { VP (V FRIGHTEN)
(NEF { DT THE) (N BOY ))))

and this is nothing else but the list-notation of a list

structure, the graphical representation cf it being:

L=y [ R
(———J |
el ] ey ] {=]

SINCE| .
RITY ~

DT ———— THE /' N ’ ————"'!B.OY
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Because of the importance of the relation between trees in graphilcal
and list-notation we define explicitly the relationships between

the wo:

(i) Given a tree structure

with A,B1, ..., Bn nonterminal nodes, then the equivalent

list=notation is:
(A (Bl ...} (B2 ...} «.. ( Bn ... )}

(ii) Given a tree structure

/////A
A wen 8, with A a nonterminal nodé and
al, waa an atoms
then the equivalent list-notation is (A By e an)
Example:
S

/\\ ‘ (8 (NP ve. ) (AUX ... ) (VP ...} )

NP AUX VP )

X . VE (S (NP (N ... ) ) (AUX (M ... ) }

|
N{ \~7 /NP\ (VP(V...J-(NP(D'I‘.._.-)
Lo |

- 0.28. -
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finally:

| T

sincerity may . {S ( NP { N sincerity) { AUX ( M may))
(VP ( V may) ( NP { DT the) (N boy})})

v DT N
frighten the boy
reverse:
Given a list ( & a, a, .. an)

with Ayr wee gBy sublists or atoms, then
the eguivalent tree is
/A
aj a, I a,

Example:
Given (A (BC) D)} the equivalent tree is:

A

/

- 0.29, -
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Comment

We stress the importance of the relation between trees {= graphs)
and the eguivalent list-notations. Due to this importance

the author {(in coopreation with P. Reypens) took the pain of
constructing computer programs that given a list-notation

of a tree, automatically plots the graph structure of it.

The output has the following format:

=
v

SINCERITY :1: FB]I‘]HTEN‘lE BOY

= 0.30. -
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€omments on the use of representation constructs of type 2

N-TUPLES are used in the definition of formal systems.

All components of the system are given a namé and these
names are grouped in an n-tuple. The definition of a formal
grammar is an obvious example of this, see e.dg. also the

definition of a directed labelled graph, already given.

RELATIONS are used for two purposes: _

(a) The represéntation of linguristic information structures
which are produced'or Processed by the language systems,
exdamples are structural descriptions in the form of a tree
as result of asyntactic analysis, semantic structures, etc.

(b} The representation of linguistic data upon which the
lanquage systems operate. Examples are sermantic networks,

recursive transition networks, etc-

Further references

For the mathematical aspects of relations and functions, we
refer to the relevant mathematical literature about the subject.
A tutorial account is found in Lipschutz (19e4}. A more .
linguistically oriented introduction in Wall (1972). A nice
introduction to graphstructures can be found in Gavare (1972).
An introduction to list structures can be found in any textbook
on the programming language LISP. E.g. Weissman (1968). A formal
treatment of list structures is pmwsented in Guha and Yeh (1%76).
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TYPE 3

Level 1: Strings

Another representation construct that is of ¢onsiderab1e interest

in linguistics is the concept of a string.

Definition

A string is a finite sequence of occurrences of atoms.

Notation: Let al,a2,a3 ... be atoms, then alaZald ... is a string.
Definition

The null string, denoted as X , is a string without any

elements.
A useful operation is that of concatenation.
Definition

Let @ and # be strings with e = a; ... a, and £ = by ..

then the concatenation of ¢ and B ; denoted as af

P i | '
(ox a . B or eTf ) is a, e ab; ... bm'
Definition
A string @ is a substring of a string f , if B = 7yad
for ¥, 8 possibly empty strings.
|
Example

Let ab¢ be a strxing then {R , &8 , b, ¢, ab , bc , abc , aclﬁ
is the set of all substrings of abc.
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Definition

R . \ 3
The reversal of a string ¢ , denoted as © is a string in

. R
e J = a . e T = ..
reverse order, l.e. let a,a, an then ay a,a

Definition

The length of a string ¢ , denoted as ¢ | 1is the number of

atoms in & .

Note that n~tuples as elements of an n-tuple are in comparison
to substrings of a string what sets as elements of & set are
compared to subsets of a set. This is exactly the difference

between n-tuples and strings.

Level 2: Languadges

We now generalize over strings by considering ways of definings
sets of strings, called languages.

The most general way of dolng so, is by considerind a language to
be a subset of the set of al% strings over a given alphabet V.

Definition |
Let V be a finite set of atoms, called an alphabet, then V+ is
the set of all strings over V, and V* = V+UL13

The statement that a language L is a subset of the set of all
strings over its alphabet is a rather trivial statement. We want
to have ways to define more exactly what elements there are in

" the languace. As languages tend to be infinite, we should find

a finite representation of this infiniteness. The solutiecn to

this problem is a system called a formal grammar.
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Definition

A formal grammar is defined by a guadruple G ={(Vn, Vt, P, S ?

where Vn, Vt are finite , nonempty disjoint sets of nonterminals
and terminal symbols respectively, V = Vn U Vt

P L V¥ X V¥ is the set of rewriting rules. We
say that a -»§ if &a,fv e ¥

8§ €& Vn is the start symbol or initial symbol.

Definition

The derivation relation denhoted- as = holds between two

strings « if and only if a—f €%
*-> ig the reflexive and transitive closure over = .
Definition

A lahggage défined by a grammar G, denoted as L{(G) is defined
as the set {x L gh ¥, X th}

Conventions

As we will use formal grammars sometimes, it is important to
keep the following notaticonal conventions for productions

in mind:

1. Nonterminals will always be written between angular brackets{’
2. When two possibilities occur at the right of the arrow, we
write braces: {5

e.g. {a) -+ b

- 0.33. -
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3. When a substring on the right of the arrow is optional,
we Will write it between straight brackets:
e.q. @) - afb cjla

is a shorter version of

(a) - a'd

abecd
Example
et 6 =<ls) ,a, bl Ll - ab s sa by sy

be a grammar
Some derivations:
{8y = a{S b = aa{S)bb = aaabbkhb

(S) = a
The language generated is {anbn , no2 lk
It is well known that there exists a hierarchy of grammars

(the Chomsky hierarchy) which is defined on the basis of the
formal outloock of the rules:

Definition
type - form of rule
3 (regular) - (Sry>a  or (8 - a (5). for ae Vt, Sc Vn
2 (context-free) S o+ for Se Vn, weE {Vant)+

1 (context;sensitive) g-y f =..{AL“€(Vn U VtT b Y E(Vnp’th

0 (unrestricted) B>y for B 7€ (VnUVE)*

- 0.34. -
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It is equally well known that a different scort of power {i.e.

type of language) corresponds to each type of grammar and that
each type of language has certain distinct mathematical properties.
Details and other mathematical results can be found in any

textbook on formal language theory.

Contrary to what may be agssumed, we will NOT use formal

grammars of the kind just defined in the definition or recognition
of natural languages. The reason for this is that the formalism

is togsimple to account for the complexity of natural language,

We will however use formal grammari to define representation
languages on the various level of & linguistic theory, in
particular we will use type 2 grammars because the languages
generated by'these grammars are sufficiently complex but

at the same time not so complex that a recognition and processing

of expressions from the language becomes difficult.

Formal grammars as definition of representation langquages

Already right from the moment of conception of phrase structure
grammars, it was felt that they should not only be used for the
definition of linear languages but also for the definition of
structures, i.e. representation languagés_ The two usadges

are given different names: strong and weak generative capacity.
Definition

The weak generative capacity is the set of terminal strings

generated by the grammar. The strong generative capacity is

the set of structural descriptions assigned by the grammar to
these strings.

For completeness, we indicate here briefly the well known

method feor assigning structural descriptions to strings.
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Algorithm:

Let ¢ ={Vn, Vt, P,(8)) be a cf-grammar, then

(i) We introduce a node for(S) , the topnode
(ii}) Whenever we use the rule
with (a) € Vn and ¢ €

of the tree
{ A ) —»

¥ in a derivation
- + .

{Vn v vt) y ¥ = a, cieoag
r1}]” We introduce new nodes for each a., 1€ i

n in y and

connect these new nodes with a line from(A) to a;

Example
et ¢ = (& ,a,by [fs)mab (s —» a (s bY,(s)
be a cf-grammar : '

derivation tree

8y = a (8) b | {87

{87

PN

a (5> b

/N

a b

5

a alS)b b = aaabtdbh (5>

A

a’ {57 b

VN

- 0.36, -
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It should be clear that the relation between derivations and
trees is not a 1 - 1 mapping, because the information about the:

order of rule application is. lost in a tree renresentation

This method of defihition, which we will call derivationallwy

controlled tree construction, is widespread in linguistics,

It is actually the only method being used to define representation
languages. However there are some strong restrictiohs on its use.
Let us consider them briefly and after that try to find a new method

of defining representation languageSwith formal drammars.

The main 'bad' point about the derivationally controlled method
of tree construction is that 'open' situations are only allowed

to appear at the terminal nodes of the tree.

Suppose the following representation for a simple propositional
calculus expression:
AND

. ﬁ//\\\bR

P IMPLIES
] q

‘It is easy to seé that there corresponds nc straightforward
context-free grammar that would generate these structures.

The reason for this is that the oPeratoré form open classes, 1l.e.
¢lasses where there is more tﬁan one member but where all
members have the same possible position and function in the
éxpression. These operators oceur in the nonterminal part

of the tree and therefore we cannot generate them.
Bnother illustration of the restrictedness of the strong

generative capacity of cf-grammars is the representation of

coordination (see Lyoﬁs,1968,221):

= 0.37. -
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A structure as

R

N and N and N and N ..

where the number of (AND M) nodes is open, cannot be generated-
by a cf-grammar. The only way to bobtain a similar structure
is by the recursive rule:

N—> N [and ¥}

This however leads to

“which is not quite the représentation of coordination that
we wanted to have,
Again a cf-grammar cannot represent this kind of structures because

an open situation occurs in the nonterminal part of the structure.’

There is however anocther mean§ of defining representation construﬁts
by'fdrmal grammars: The method consists in (i) defining an
equivalent symbolic expression for each tree, (ii) defining a
grammar which generates such symbolicqgkpressions, (iii) converting
the generated expression into a tree. We call this method the
indirect tree construction method.
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AS symbolic equivalent of a tree Wérwill use the 1i$t—notation

{(already discussed), e.qg. giVen the tree:

N,
Df///ﬂ\\N V/// \\\\\\ NP
/N

DT N‘
the boy saw _ \
the .'glrl
we have
‘ (s (NP (DT  the) {N boy) )
{(vp (V saw) (NP ( DT the) (N girl))))

as list-notation (or left labelled bracketing)

Let us now define a grammar for the propositional calculus example.

(propos) '» ( (operator) - (propos) {propos) )
(operato;) - -AND,_OR, e
(P#Opos; *' Pr dr ;--.

{note that the b?&ckets éré terminal symbiols !1!)

" _Structure from the derivation:

- 0.39, -
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{propos;

//\-

( {é)perator? {proposy {propos) )

T

(oper? <propos} {proposy )

OR,V.. p /

( (operypropos} (propos? )

(structure 1) _ IMPLIES p g

the resulting terminal string: -

(A(ND p (OR p (IMPLIES p g }})

" if we consider this as a list we get the following treer

/\
/\

IMPLIES
_“(str.uctﬁre' 2)

" and this is exactly what we wanted to ha_l{;re.
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All the syntactic load in structure 1 is absént from structure 2
but we do have the structure on which the interpretaticn '
can work.

Now we discuss the grammar for the coordination example:

{nomen) » (N} {co-N's)

{(co-N's) d (M)

(co-N's) = (N} and (co-N's)
defivation
(nomen} = [ (N) and ‘co-N's))] = (¢ N) and  (N)and {(co-N's) )
= ( (N) and( N) and (N) and { N))

This final string represent the fcllowing structure:

N

i

: {N7 and {N} and {N/

. It is easy to see that we could have #s many N's as necessary
while preserving the structure in which the coordination should

be represented.

Summarizing, formal grammars can be used to define representation
languages in two ways (i) either directly by a straightforward
mapping from the derivation seguence toc a tree structure, (ii}
or indirectly by cohsidering the language generated by the
'grammar as symboli¢ linear representations of tree structures.
-The first method has the disddvantage that certain types of structures =
cannot be defined, The second method is unrestricted qua representational
 power.. It has the additional advantage that we can define a structure
- of the representation construct, outside the construct itself.

For tliese two reasons we will define representation languages

always by means of the second methed.
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Discussion

In the previous subsections we have presented several representaticon

constructs:

type 1:
level 1: atoms: the primitive objects of the representation
level 2: sets : an uncrdered collection of atoms.

type 2:

level 1: n-tuples and lists: an ordered collection of atoms
level 2: sets of n-tuples: relations, -functions, graphs and
trees '
type 3:
level 1: strings: ordered seguences of occurrences of atoms

level 2: languages: sets of strings.

It is obvicus that for each type, representation constructs

on level 1 are more powerful than those on level 2. The relation
between type 1 and type 2 is such that an n-tuple(hl,az,‘... roa
is per definitionem eguivalent with the set {4&15,{a1,a23, .
P | |

So we see that there is no theoretical difference between the
two. It is clear however that a Set representation of n-tuples

is more cumbersome and therefore inconvenient.

The relation between type 2 and type 3 is such that any n-tuple

a

can be considered to be a string {but not vice-versa !)

and similarly any set of n-tuples can be considered to be

a language. This is an interesting observation of which

we make extensive use in the indirect tree construction method

for defining representation languages.
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Comments on the use of representation constructs of type 3.

As we already said before formal dgrammars will be used to
define representation constructs on every level of the theory.
Noté that we will always use the indirect tree construction
method. )

The formal grammars of the type discussed in this section have
only a theoretical significance: they are a representation
construct representing classes of structures. How these

structures are computed and processed is ancother matter.

Further references

Since the formalization of p.s. grammars by Chomsky, the

concept of a grammar has been fully investigated mathematically.
Textbooks on the subject are Hopcroft and Ullman(1969} and
Salomaa (1973). For all details about the mathematical foundations
of formal grammars, the reader is invited to consult these

references.
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§ 0.2, Introduction to the theory of computation

As we assume no knowledge or experience with computers, we

start this section by giving a very broad and intuitive intreduc-
tion to the maln ideas behind the operation of machines that are
able to compute. We address ourselves to the question: how is it
possible to design machines that are capable of deoing symbolic
manipulations as required for linguistic tasks. After that we
define some basic concepts of computation theory such as
procedure, algorithm and the like. The first part can be skipped

by someone who knows about computer programming,
Intuitive introduction
(1) Coding and storing

The first principle that underlies the design and.operatiOn of

a éomputer is that of coding. It runs as follows. First define

different representations in such a way that information in one’

representational format can be translated intc another format while

the meaning (= interpretation) of the first is equal to that of

the second. Then define the reverse of this relation. E.g. we have

a message in natural landguage, we design'a code for each letter of

the alphabet and then we can translate each sentence in a code '

representation and back. Thus we can store any sort of information

we Want to.

Now suppose you can c0nstruét a machine that can perform on conmand

certain operations (however simple), i.e. that can change x into ¥y
_if you tell it to do so. Then you can considef the cbjects that

the machine is capable of changing as the 'zero-language' and design

a coding such that your information (in whatever representaticnal

format) is transformed into this zero-language and back. Doing so,

you can instruct the machine to manipulate information via the

coding.
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As an illustration consider a calculator; the operations that
" can actually be performed are very simple: chande of a state

from ocne to zero {(how this is realized does not concern us here).
As O and 1 are the objects that can be manipulated, we construct

a ¢ode with O and 1 for the information, which are normally numbers
for a calculator., The code is called the binary code. The actions

necessary to do a computation can be described as follows:

(a} Translate the input numbers in terms of O and. 1 and store
this information, ¥.e. change a piece in the machine in such a
way that it now reflects the codings . of the number,

(b} change the 0's and 1's in a particular way (= computation}

{c} and translate the result of the change back into the

'user's languadge' which is the decimal form.
{ii} Programming

We now have a way to represent the information inside the machihe
and a way to perform a simple operation cover that representation.
Now cdmes the second step. Suppose we c¢ode the 0peration that is
to be performed also. That means a particular way of carrying cut
changes is gilven a code (in 0's and 1's), and this code is also
translatable. Instead of pushing a particular button, say, for

a certain operation, one can make the machine react to that code.
Clearly what we have then is not only a way to represent the data
(that upon which the change is being made) but also a way to
represent the cperation ( a name for the change).

Given this idea we can even go further. As we can keep data in
some way stored in our machine, we can also store the names for the
operations that are to be performed. We need then a mechanism

'reading' operaticdn names and carrying them out after each other.
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This soon leads tc fascinating computer power because we can
construct operations that change the flow of carrving out
operations on the basis of a conditicn, e.g. given a list of
operations: cper 1, oper?2,oper 3,cper 4 we could let
operation}be such that it goes back to execute pperation 2
unless some condition is satigfied. '
E.g. operation 1l: store number O in register 17;
operation 2: add 1 to the contents of register 17;
operation 3: if the contents of register 17 are less
than 5 go back to operation 2, else proceed;

operation 4: stop.

What happens is that the machine will count until 5 and then
stop. It is important to note that one starts from the first
operation and takes each time the next one (this is known as
a sequential manner of executing operations), except when the

normal flow is changed due a control statement, such as operation 3.

A Sequencé of operations is called a program, the languace in
which the human instructor writes programs is called a

programming language and this is translated into a code the

machine can read (the machine or object language).

The task of the user shculd be clear now: he has to specify

all the actions that he wants the computer to perform, and the

way in which the actions are organized. In other words he has

to write a program. Then he gives this program to a coding

device which delivers a program in machine readable form. Thig
then is read and executed by a machine with (hopefully) the
required result. So, a prodgram can be considered as a sophisticated

way of pushincg buttons that lead to machine action.

The rest of the story is one of ever growing complexity based

on these main principles. An important step was to let the computer
itself do the process ©of translating the program stated in some
pregramming language into a program stated in the machine code.
Such a process is also directed by a program and this program

is called the compiler or interpreter.

- 0.46, -



praogramming

Currently the result is (i) that any information whatscever

can be represented within the memory of a computer if properly
coded, (ii) that any process when sufficiently explicit (thét
is when every single step 1s made clear) can be programmed and

- executed.

These pOWerfui tools {powerful especially if one considers that
a very high degree of complexity is allowed) are the basic

means that are used in order to bring about the process of
language understanding and preoducing and they are regarded

to be sufficient for that purpose. Moreover signals from acoustic
and visual analysers can be proceSse&, again after properly being
coded, which makes spoken and written language analysis possible.
Alse signals can be issued from the comﬁuter to accoustic
synthezisers leading to speech synthesis. The normal means

for input/output are however type writing.
Having presented in an intuitive manner the basic¢c principles

of doing computations by wachines, we now turn to some

fundamental terms used to talk about computation.

Fundamental terms

Definition

A procedure is a finite sequence of instructions which can be
executed mechanically in a finite amount of time.
Normally a procedure takes some inpﬁt and returns some output

after executing the sequence of instructions.
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Example

Input: any natural number

Output: 0 if the number is divisible by 2, else 1.

Procedure: Let N be the input number
step 1: if N is 1 or C, output N and stop, else do step 2.
step 2: set M equal to N - 2, proceed with step 1,

Example of operation:
Let N be 7 then the result should be 1, which was the code for
nondivisible by 2.
step 1: as 7 # 1 or O, we do step 2
step 2: N becomes 5 and we do step 1 again
step 1 as 5 # 1 or O, we do step 2
step 2: N becomes 3 and we do step 1 again
step 1: as 3 # 1 or 0, we do step 2
step 2: N becomes 1 and we do step 1 again
step 1: N = 1, so the result is 1, and that is what we
expected.

Definition

Lk procedure 15 an algorithm if and only if for each input
only a finite amount of instructions are carried out.

This implies at least that somewhere there must be an
instruction saying 'halt' or 'stop® or 'end'. (In the
example this was the case in step 1). It alse implies
that this instruction must be reached in a finite amount of

time,
Example

The folloWing procedure is .not an algorithm

-Input: Any natural number
Cutput: 7
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Procedure:
step 1: whatever the input, do step 1 again ;
step 2: halt,

It is obvious that we will never reach step 2 and therefore

will never stop.

At first sight it seems silly to design machines that do
not necessarily stop. It was one of the great discoveries
of this century however, that there isla class of problems
for which there is no algorithm. The best thing we can do

in such a situation is toc use a procedure.

Obviously a procedure defines a function from its input
to its output.

Definition

The function defined by a proecure is a partial recursive
function. The function defined by an algorithm is a total

recursive function.

Important for our purposes is also the idea to relate the notion
of procedure and aigorithm,to sets and therefore to languages.
We do this by means of the notion of a characteristic'function:
given a set S, then when we apply this characteristic function
to all members of §, the function yieids true, and when to all
elements which are not a member of S, the function yields false.

This brings us to the following definition:

Definition

If the characteristic function of a set is necessarily a partial
recursive function, i.e. if there exists no algorithm for that

function, only a procedure, then the set is said. to be recursively

enumerable or undecidable.
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And if the characteristic function of a set is
‘a recurslive function, then the set is sald to be recursive

or decidable.

Because languages can be considered as infinite sets, we talk
about recursively enumerable or undecidable (and recursive

cr decidable languages) if there is not (or there is ) an
algorithm to decide for an arbitrary sentence whether it

is in the languacge or not.

Tn the theory of formal lanquages and abstract automata several
systems have been defined to represent procedures: Tiiring

machines, register machines, Chomsky phragse structure grammars,
Post systems, Markov algorithms and of course programming
languages. Nermally we use & natural language description of

a procedure and give formal definitions in a programming languade,
because then it can be demonstrated that the procedurés are
working by objective experimentation: we simply execute the
procedure by some machine, It has been shown that all these systems
are notational variants, i.e. the one has no more computational

power than the other,

In addition the so called Church-Tiring thesis is accepted

which states that any explicit process that is completely
understood, can be simulated on a Tiiring machine. In other
words, if you are able to explicate the working principles of
a process, then yvou will be able to express these principles
into a procedure. The problem is of course to discover the
working. princlpies.

The theory of formal languages not only provides us with a
way to write down procedures in an accurate way, in addition
a hilerarchy of notation systems has been discovered, which
provides a finerdigtinction than that between algorithms and
procedures,
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The best known example is the sc called Chomsky hierarchy
already discussed earlier, and the hilerarchy of abstract
automata equivalent to it:

type 3: finite state machines

type 2: pushdown automata

type 1: linear bounded autcmata

type 0: Tiring machines

An important result of studying sets in their relatijion to these
systems (via a characteristic function) is that type O systems
define recursively enumerable sets/languages whereas type 1-2-3

systems define recursive sets/languages.

We riow introduce members of the class of automata on two levels
of the hierarchy. The reason for picking out these systems and
no other ones (e.g. Markov algorithms) is that they have a
special place in the theory of natural landuade processes. 5o
e.g, we will introduce recursive transition networks on level 2
instead of pushdown automata because the former are used
substantially where the latter net at all. Much more detail

about automata theory can be found in the references.

(1) LEVEL 3
The least powerful automaton is a finite state automaton.
Definition

A finite state automaton FA is a 5-tuple =¢0Q,%,8 ,q0, F )
with

1. 9§ a finite nonempty set of states

2. T a finjite nonempty set of symbols

3. 8 Q xz—f'ia')is the transition function
4, g0 =0 1is the initial state

5. FC Q is the set of final states
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8 is represented graphically as follows, if gl €8(g2,a ) with
*
ql,q2€0Q and a € ¥ then

A complete graphical representation for S is called

a transition diagram.

Definition

Let @= {Q,2,8 ,q0,Fy be a finite automaton then a configuration

*
of ©4is apair (g, inQ x Z
The reduction relation denoted as ¢ — holds between two
configurations ¢ andf if & = {g,a¢) and F =ig',e? where

+*
a € X, 0€Z , 6 g, €0 andq' € d(g,)

*
Let |— denote the reflexive and transitive closure of F——~

Definiticon

»
The lgggg%gg defined by © denoted as L{ ©) = {U [¢ € 2" and
{qo, U)H_(qﬂ)j for some gqEF

Exampie

We construct an automaton for the sentences "the (very)n cold winter", -
with n 7/ C.

Let ® ={(0, £, &8, gO,F ) and
Q0 = {qO,ql,qZ,qBH R F = LqBB ' Z = {the,very,cold,winterl

the transition diagram:
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very

Examples of operation:

(i) "the cold winter"”

{q0, "the cold winter"}}— {ql,"cold winter™? ‘—— {g2,"winter" >
Hf—<q3,}5

(ii) "the very very cold winter"

qu, "the very very cold winter"? — {gl, "very verycoid winter">

— (q1, "very cold winter"? — {al, "cold winter"?y

+— g2, "winter™) +— 4g3 ,A)

(2)LEVEL 2

A second class of systems is more powerful in the sense that
they admit embedding. The ékample we will discuss on this level
is a system called recursive transition network automaton. It
came out of computational linguistiecs studies as a process

model for context-free grammars and as an alternative for
pushdown automata.

Although recursive transition nets are widely used (since + 1970)
they seem not yvet to have reached the texthooks on formal ianguage
theory. We introduce here a formalism for recursive transition
networks that is new by lack .of standard notations.
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Definition

A recursive transition network automaton 1is a 6-tuple
R ={Q, v,5 , @y F, Fc
with

1. Q0 a finite nonempty set of states

2. Vv a finite nonempty set of symbols Q 0 ¥V = ¢

3. 6 : 0x (VyQ) *AHY0) is the transition function
4. Onis the initial state

5, F T Q is the set of final states

6

. Fc © F 1is the set of completely final states.

3 is represented graphically just as for finite automata.

Note that the only differences between finite automata and
recursive transition nets so far ake that (i) we distinguish
a subset in the set of final states

and (ii) a 'condition' for a transition cannot
only be a symbol from the alphabet but a state as well. The

motivation for including the latter will become clear in next

definition.

Definition

et R = {Q, V, 83 ,49 , F, Fc’ be a recursive transition network,
N *

then & configuration f of R is a pair fv,¢? inQ =x Vv -

The reduction relation denoted as p— helds between two configurations

* +*
a and 8 if a= {gy , a¢) withg€@¢, v =¢ , a €V,08V
and
(i) TRANSITION e *—TR—B with

B =t(q'v,0 ) if g' € 8(q,a)
- (ii)} PUSH: =« Hﬁiﬁf—ﬁ with

B ={q'g"Y , av ) for q',g" €0 and g"€ 5(qg,q")
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e,
recursive transi#tbh nétworks

ABITD .t i .
(iii) PQPUP. kﬁﬁﬁﬁ? | with

b = y , a® if g €F
= ‘ V] u &
— tm Y foem Y teopor  amde—is
the reflexive and transitive closure of b—
Comment: In a configuration (o 7 ? ¥ is called a

pushdownstack because information is placed on top of i£ and

the latest added information is first consumed.
Definition

The language defined by R, denoted as L(R) =g?] oe y¥
. 4
and (g0 , Mk—{q,x > (for some q‘EFc)&

Example

Let us define a language for bracketed numerical expressicons

such as (1 +1)x(2+3)) or( ({1l+1)+1) +1)

R ={,Vv, &8, expr/1 ,F,Fc} with
Q.=[gxpr/l,expr/2,expr/3,expr/4,expr/S,expr/f,oper/l,oper/FS
v = E:2:3.---. ¥k, /0 ()Y F = {expr/f,oper/FY

. Fc =£Fxpr/fk

The transition diagram:

{ expr/1 oper/1 expr/1 P
+ E N |

- 0.55. -

3



recursive transition networks

Example of operation

Let = ({({L+2)+1}) +3)

(expr/1,"(((1 + 2} + 1) +3) "y Ffﬁf (expr/2," {(1+2)+1)+3"

Gﬁﬁif (expr/1 expr/3," ({1+2)+1)+3)}") liﬁr(expr/Z expr/3,"{1+2)+1}+3} ")

SUEH lexpr/1l expr/3 expr/3,"{(1+2)+1)+3)")

hﬁ? lexpr/2 expr/3 expr/3,"1+2)+1}+3)"}

‘+53§E4ex9r/1 expr/3 expr/3 expr/3 , "1 + 2) + 1) + 3)™M

hFE {expr/f expr/3 expr/3 expr/3 , " + 2) + 1) + 3)™

( L1 n
+—$6§G§ expr/3 expr/3 expr/3 +2)+1)+3)y "™

iR {oper/l expr/4 expr/3 expr/3 "+ 2)Y+ 1) 4+3)Y™

e (oper/F expr/4 expr/3 expr/3 "2y 41y +3 ) "™

boopgp (e¥pr/4 expr/3 expr/3 , "2 ) + 1) +3) ™

FereE (expr/1 expr/5 expr/3 expr/3 , " 2 ) + 1) * 3)
Fﬁﬁ— (expr/f e#pr/S expr/3 expr/3 , ") + 1)+ 331 M
Fﬁaﬁaﬁ- {expr/5 expr/3 expr/3 , "y s 1) +3) M

R (expr/f expr/3 expr/3, "+ 1) + 31 "

FsoeT {expr/3 expr/3 expr/3 , "+ 1) +3) "™

hﬁﬂﬁ? {oper/1l expr/4 expr/3 , "+ 1) +3) ™
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Gﬁf {oper/F expr/4 expr/3 , " 1) + 3) f)

Fﬁﬁ?ﬁﬁ {expr/4 expr/3 , "1 ) + 3 ) "

Fﬁﬁgﬁ_ {expr/1 expr/5 expr/3 , "1 ) 3 )"

hfﬁ_ <expr/f expr/5 expr/3 , " ) +3 ) "

TSI (expr/5 expr/3 , ") + 3™ FEE— ( expr/f expr/3, " + )" )
ForTT {expr/3, " +3 ) "} tboer ¢ oper/! expr/4, " + I
ﬁﬁf (oper/f expr/4, " 3 )™ Fﬁﬁ?ﬁ? { expr/4, ".3) "oy

ﬁﬁﬁﬁ? {expr/1l expr/5, " 3)" hﬁ? { expr/f expr/5, " )" )
ﬁ?ﬁﬂﬂ? {expr/5, ")" R (expr/f, n

Bn extension of recursive transition networks up to the level

of type 1 and even type O can be obtained by introducing (1)
arbitrary conditions for the transition to take place, (ii) registers
in which additional information can be stéred and (iii) actions

each time a transiticon is made to change the contents of these

registers.

This type of systems is called augmented transition networks and they
arewidely used for natural language processing because it is an
interesting and powerful process model for transformational grammars.
But for this very reason we will not be concernéd here any further with
this type of systems. It is shown elsewhere that by.superposing on
each other type 2 systems instead of integrating all the rules in

one system, the linguidtic facts for which vou need the augmentation

can be dealt with without incréasing the power of the grammar.
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Discussion

After some intuitive explanations about computation by machines,
we presented some relevant aspects of computation theory. Important
for our purpose here are the following points.

1. If we know explicitly how natural language processes work
we will be able to design a procedure defining this process according
to the Church-Tiring hypothesis.

2. Some care is necessary however. We must find not only a
characterization of the process in terms of a procedure but
one in terms of an algorithm. The reason i1s that with a procedure
it is not necessarily guaranteed that the preccess is finite.
In other words, suppose we construct a program for understanding
natural language, then if we give it a séntence, it would not
be guaranteed that the program will ever stop ! Clearly we do
not want that. It is counterintuitive in comparison to
human language use and it 1s impracticle.
The theory of computation warns us for this situation, a warning
which is not wholy unnecessary because transformational grammars

for example are type O systems.
Further references

There are a great number of works on the general theory of
computation and on the theory of abstract auvtomata available.
We mention especially Minsky(1967}, Arbib (1969) and Engeler
(1973) and the textbooks on formal languages already

referenced when introducing formal grammars.
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§ 0.3. Metatheoretical considerations

In this section we try to formulate an answer to the following
questions: (i) what is the metatheoretical structure of the
proposals to be presented in this work and (ii) what is the

scientific status of the components in the structure.

First we state briefly some assumptions underlying the present
discussion (1}. Arguments for these assuqtions can be found in

the works cited in the references at the end of this section.
Then we deal with the structure of the theory (2) and with the
status of each aspect in the structure (3). In a £inal subsection
we will discuss in some more detail the experimental method we

are going to follow (4).

(1} ASSUMPTIONS

1. There are empirical sciences where the theories have a relation
to some part of an observable reality, and non-empirical
scatences which do not have such a relation.

Linguistics is an empirical science.

2. For a theory to be considered a scientific theory, it is
necessary that the theory has at least the following properties:
(a) All aspects of it should be fully explicit (i.e. the
theory should be exact). A good test for this is to
construct computer programs based on the theory.
(b) The theory should be internally congistent. The construction
of computer programs is an egually wvalid test for this purpose:
(c) It should be possikle to faisify the theory, i.e. it must
be clear what claims are being made by the theory and how each
of these claims can be refuted.
(d) A theory dealing with everything all at once is outside
the scope of the presént knowledge. Tt follcows that the domain of the
theory is somehow restricted. It should be possible to see
the restrictions being made and it should be obvious in what

directions further developments may extend the domain.
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This list is not meant to be exhaustive. E.g. we did not
. go into the purely'demantic' properties of what it
means to be a theory (see Achenstein,1268, for such a
discussion).
In the following discussion aspects (¢) and (d) will be of

particular interest to us.

{2} Structure

We now start by presenting the 'normal' structure of a

linguistic theory. The structure has three compartments:

formal [ empiricall

theory [——p theory |s——| data

(i) The formal theory

A formal linguistic theory, often called a universal grammar
(although we are here only thinking about "formal universals"™)
is the definitioh of a language in which déscriptions of a
natural language can be expressed. An example of such a formal
theory is the transformational theory in which it is specified
e.g. that linguistic structures take the form of trees, that
rewrite rules are to be used as a means to define reqularities,
that a special sort of rewrite rules, namely transformaticn

rules, are a necessary component, etc,
(ii1) The empirical theory

The empirical theory is the actual description of the data in a
form specified by the formal theory. We often say that the
empirical theory is an interpretation of the formal theory.

An example of such an empirical theory would be a transformational

grammar for a particular language.
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(iii) The data

The third component of the structure consists ¢f the data for
which it all started.

Between each component there are certain well defined relation-
ships and it must be'possible to prove that the relationships
hold, otherwise the whole construct collapses. In particuiar:
(i) It mustbe possible to decide whether an arbitrary
empirical theory is a member of the class of possible empirical
theories characterized by the formal theory and
(ii).it must be possible to decide whether an arbitrary
sentence is a member of the class of sentences characterized
by the empirical theory. ' -

In an dptimal éituation, both decision processes should be
algorithms, although (from a purely theoretical point of view)
it is not such a great harm that there is no algeorithm and
that creative intellects are necessary to prove the relation

between the various levels.

For the transformational theory the relation between the formal

théo:y and the empirical theory is usually obvious, albeit that

this relation is seldom explicitly proved, The relation between

the émpirical theory and the data is taken care of by the derivation
relation inherent in generative grammars. By means of this derivation
relation it is possible to prove -exactly that a certain piece of data
falls indeed under the.empirical theory. On the other hand it is

known that there is no algorithm that glven an arbitrary piece

of data tells us whether it is defined by a particular transformétional
grammar or not.
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Having presented very britefly the commonly accepted
structure of a linguistic theory, and an example of it,
namely transformational grammar,we now turn to a meta-
theoretical investigation of the linguistic theory presented
in this work. The most important results of this investigation:
are:

{i) The relation between the 'grammar' and the 'data' can
nc longer be proven directly but we have other means available,
and

{ii) the formal completeness is no longer guaranteed.

The first thing of importance is that the straightforward

structure

al—

formal theory empirical theory %] data

T

Y

should be extended simply because thé subject matter of the
theory itself has been enlarged. We are dealing with a theory
about parsing, a theory about production and a theory about the
knowledge used in both: the grammar.

So as a first approach we get

formal theory ® ——{empitical theory [+ data
of parsing .| of parsing « [about parsing
i = i .
formal theory empirical theory - language
of grammar - of grammar 2 data
. ) |
formal theory empirical theory|g | data about
of producing of preoducing [———» preducing

But this is not gquite the scheme we want to have, simply because

that is not the way we proceed. In particular the parsing/producing
systems are in this work not studied as empirically observable

entities, therefore the structure of an empirical scierice does not

apply to these investigations. Note that there do exlt parsing

‘and producktion systems in reality: every human has one. S5till we

do not apply an empirical approach to them. This is a work of linguistics,
the conly empirical reality'weiare dealing with is language.
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Instead we have the following structure.

We construct a formal theory with two components:
(a) A formal theory of grammar defining ways to represent

linguistic knowledge, we call this the descfiption theory

(b} A theory of parsing which defines the set of parsing
processes for all sentences defined by a.possible grammar defined
by the description theory. That means the process that occurs if
a sentence defined by a possible grammar is analysed'into the
structures defined in the description theory. And a thecry of
proeducing which defines the set of production processes for all
sentences defined by a possible grammar defined by the description
theory, that means the process that occurs if a structure defined
in the description thecory is converted into a natural language
sentence based on a possible grammar.

We call the theory of parsing and producing the process theory.

There is a clear relation between the process theory and the
description theory in the sense that for each formal rule in

the description theory there is a predicate in the process theory
(as the reader will see). On the other hand the process theory
involves more than the description theory because knowledge

due to the process itself is available.

Now the next question is, what is the relation to the language
data themselves. It must be obvicus from the presentation that
due to its formal properties it is not possible to 'generate'

in some way language sentences on the basis of the. grammar

alone. The grammar tells us what factors are responsible for what
language phenomena but not what the.fnterrelatiocnships of the
phéncmera itself are, this is so because the grammar is organized
in a modular fashion. This brings us however in the unhappy positiocn
that the relation between the language data and the description
system cannot be proven. Fortunately we have a theory of parsing
and producing and by means of this theory we can indeed prdVide
khe necessary relation.
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How is this going. Consider a ianguage sentence and a

particular grammar which specifies all information for this
sentence in a format prescribed by the description theory.

How can we know that the grammar specifies indeed the information
for that sentence ? For this purpose we introduce the parser
which is actually a function taking as arcguments (1) the sentence
itself, and (ii} the grammar under discussion, and produces

as result the structure assigned by the grammar to the

sentence. If no structure is produced the language defined by

the grammar dces not include the sentence.

To éomplete the proof, we take the structure computed by the

parser and hand it over to the preducing system. This producing
syster is again a function taking as arguments (i) the structure
and (ii) the grammar under discussicn, and produces the natural

language sentence again.

We can summarize the results of the discussion in the
following diagram depicting the structure of the theories
presented here: '

formal theory e - formal theory
of the grammar » of the process
P - T =
J — ~
Ve AN
/ !
¥
empirical language
description : data

We come now to our second topic: the status of the components
in the structure., We first investigate the 'normal' type of

structure.

- 0.64, -



scientific status

(2) Status

Tet us investigate the question of falsification and incompleteness.

(i} Falsification

A formal linguistic theory of the 'normal’ type 1is
falsified if certain description modes which are defined in the
formal theory are superfluous for the formulation of empirical

theories.

An empirical linguistic theory is falsified if it defines
language phenomena which do not occcur.
It suffices to find such a phenomenon and the empirical

theory is falsified.
(i1} Incompleteness

A formal linguistic theory is incomplete iff certain systematic

aspects of a natural language cannot be expressed.

An empiricai theory is incomplete iff certain phenomena which

occur in the data are missing in the description.

It is of interest to note that

(1) A transformational theory is always complete because

the transformational grammars are type O systems and therefore

any computation process can be defined in terms of transformational
grammars (according to the Church-Tliring thesis)

(ii) The price to be paid for completéness is however that the formal
transformaticnal theory is much tooc broad. In this perspective the
attempts to restrict the power of transformational grammars becomg
extremely important,

(iii) We think it is fair to state that there is at the moment

nc complete empirical theory for any language based on a transformational

mode]l {and there 1s né such a theory -for any other model).
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(iv) On the other hand if the empirical theory defines

rhenomena which de not occur, this is mostly due to carelessness
of the grammar writer. Although it must be said thét
transformational grammar is not an easy of_perspicudus way

of representing systematic aspects.

We study now the conditions for falsification and incompleteness
for the theory under discussicn in this work.

(1) Falsification

The description theory is falsified if certain description

modes which are defined in the formal theory are superfluous

for the formulation of empirical theories.

The empirical description is faldified if it defines language

phenomena which do not occur.

The process theoxy is falsified if the rules expressed in
the description theory do not lead to the predicted results.
(ii) Completeness

The description theory is incomplete if there are phenomena
occurring in natural languages which cannct be expressed by

the formalism provided by the theory.

The empirical theory is incomplete if there are phencmena

which occur in the data but are missing in the descrintion.
The process theory is incomplete if there are rules in the

description theory for which the corresponding processes have
not been defined.
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Notes

(a) It is known that the formal description theory to
he presented here is incomplete (a proof of this incomplétehess
is provided in the text). Also it is known that no description

example to be given is complete, far from it.

(b) It will become obvious that it is trivial to prove that
the process theory is complete as regards the formal description

theory.

(c) As regards falsification, we claim that the formal
description theory so far will be hard to falsify. It
suffices to show that a certain aspect is superfluous
but we do not think that this is the case. It is rather
too weak than too powerful.

In this context we want to make the following remark. It is
highly probable that 1s 1is impossible to construct a

complete empirical interpretation of a language‘because of
the complexity_inVolved, What we need therefore is a learning
system that is able to extend. its knowledge on the basis of its
own observations. Although some work is going on in this

area {cf. Sikklossy (1972) ,Anderson (1975)) it is generally
‘accepted that we are not fet far enough to construct suéh
systems. Meanwhile our own attempts to write empirical
interpretations constitute a sort of learnlng process. Each
time we add new words or types of constructions we extend

or change the description of the language.

{d) We consider the process thecry strongly confirmed by

the computer programs we constructed for it and the experiments
being done: One could say that the theory of parsing and brodﬁcing
defines a way of experimentation by which an empirical‘déscription

theory can be tested. As we were able to construct computer
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programs for simulating the parsing and production processes

the experiments can be performed fully automatically and in

a completely objective way. MNotice that the highest standarés

of experimentation as regards exactness, repeatibility, etc.

are all met with. We think that the ability to perform experiments
is a very important aspect of our work. In next paragraphs we

provide some more detail about the way in which they are performed.
{4) The experimental method.

As we said the test whether a language sentence is properly
treated by the linguistic theory (in all its aspects) can be
performed by means of experiménts. Thée performance of experiments
is something unusual in linguistic thecries. We therefore study
the conditions under which we do these experiménté in some detail
now. At the same time this will enable us to reflect on the

nature of the linguistic argumentation being used.
The need for experiments

Whenever human beings'deal With complex problems they try to
develop means to contrel this complexity. In science this is

done by introducing machines that gather data automatically

or which perform the calculations involved in complex computations,
etc.

It need not be said that natural language is an example of

an extremely complex problem .. The software needed to process

a spgken natural language sentence 1s comparable to that needed

to send a manned rocket to the moon ! )

Due to this complexity it is simply necessary to . use machines

which assist us in testing the theories.
" The preparation

In order to execute experiments, we use general purpose machines,
-i.e. computers, although it is perfectly possible to construct
linguistic systems directly in hardware. The main preparation
necessary is the construction of computer programs that reflect

in full detail the proposals made by the formal linguistic theories.
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At least the exactness and consistency redquirement should

be met with if these programs are to be successful.. The
construction of the programs reguires some technical knowledge
from the part of the experimenter, but every experimentation
inivolves a technological background and there is no reason

why it should not be part of the basic training of the lihguist.

Once the program is ready, the empirical theory to be tested

is prepared for cecnsultation by the program. Finally we give
_an input sentence and the result comes out, It need not be said

that the preparation of an experiment needs the utmost care

up to the finest detail.

The evaluation

Now comes the importdant part of the discussion here:the evaluation
of the outcome of an experiment. If the outcome is as was

expected (i.e. predicted) all components of the métathedretical
structure are confirmed. But 1If there is not outcome cr not

the ontcome we wanted to have, the fcllowing method of reasconing

comes into action:

{a) The preparation.
¥Pirgst we critically examine the way in which the experiment was
performed: Whether no errors occured in the construction of the
programs, whetheér the data were entered in the format of 7
the programs, etc. . )
The remedy to improve the preparation i1s simply to improve the
program or to Ilmprove its data.

(b) Empirical theory
If the performance of the experiment itself is allright, we
examine the empifical'description. Maybe Wrong facts were
included or inappropriate facts. Cne can (and we did) design
the experiments'in such a.way. that it becomes obvious in what
way the empirical theory is false or incomplete, The remedy
here is to extend the description or change it.
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(c) The formal descripticn theory
Suppose however that we try to deal with a certain fact and
we cannot express it in the format that is provided, then
it becomes necessary to extend the descripticn theory itself,
This is normally a far reaching activity. Not .only will it |
be necessary to extend the process theory, but moreover the
experimental setting itself will need a revision,

(This is not necessary if the empirical theory fails)

(d} The process theory
The process theory as such is constructed in direct relation
to the description theory and will therefore be reworked as .
scon as the description theory is reworked. Beéides these
considerations it may be that the bad outcome of an experiment
is due to a badly conceived process theory . _
In such a case wWwe work on the process theory and subseaquently
change the experimental setup itself,
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Discussion and further references

There is a growing literature about the metatheoretical
foundations of linguistics, especially in the German
language (see e.g., Wunderlich,1974, Van de Velde,1975}).

The reader is referred to these texts for a characterization
of linguistics as an empiriéal science and for the

deductive structure of generative theories.

For the problem of falsification as a .method of investigating
the scientific status of a théofy. see Popper (1974), The
problem of incompleteness 1s unfortunately not very much on

the foreground in the philosophy of science.

The use of computer simulation as a method for proving the
operational feasibility of a linguistic theory is not yet

very widespread in linguistics. Although a very fine

example exists for transformational grammars (Friedman,1968).
Normally work with computers is piaced in an 'applied linguistics'
corner, but we think this is an underestimation of the power .
obtained by having machines FO assist you in the testing

and development of linguistic theories, We feel that for

the heuristics involved in the present investigation, the

use of computers proved to be irreplacable.

See for the metatheoretical foundations of computer simulation

in general Harbordt (1972).
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§ 1. THE THEORY OF MODULAR GRAMMAR

In this chapter we {nthoduce a grammah theohy which wds designed
with the parsing and production problem in mind. This ghamman
theohy is a Linguistic theory in the usual sense: A formal modef
forn the representation of the systematics in fanguage.

_AR: the same time we will provide some examples of an empinieal
interpretation of this formal model fon some patural Languages.,
These examples are Lncorporated to LLLustrate the approach,
they are by no means meant fo ecoratitute a complete deschipition
of the natural Language beding discussed.

To make clear the distinction between the fonmal wodel and

the empinical interpretation of it, the header can heep in mind
that every statement with the Label definition is parnt of the thecny
and every statement with the Label example {8 part of the empinical
use of the theory. ALL the nest are intultive explanations.

Affen each subpant of the text we {insent discussions and funthen references

which bring oun ideas in the perspective of exdisting Linguistic theonies.
On the whofe the reader will 4ind this perspective more in accordance
with the European thadifions cof Language Atudy than with necent

Amesican approaches, except maybe fon the exactness Ln formalism we

are Atndving for., These discussions can be skipped at finst reading.
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1. 0. INTRODUCTION TO MODULAR GRAMMAR

The model we are introducing here will be called a
modular grammar because the major deviation from other
‘theoretical approaches is that instead of striving for an
integration of all linguistic knowledge into one compact
single system, we decompose the grammar in several
independent meodules. .

In a way you could say that any theory of language is
'modular' in the sense that various components (morphology
syntax, semantics) are distinguished and in each component
still further subcomponents (e.g. in transformational grammar
you cculd say that the lexicalisation transformations, the
varicus c¢ycles, the postcyclic transformations are each
different modules of the subcomponents, you could even say
that each transformation is in fact a module 6n its own !}.
But that is not the way in which we want to use the term
module.

In Webster's dictionary we find that module means
(a) 'any of a set of units (...) designed to
be arranged or joined in a variety of ways;
: {b) a detachable sectién, compartment, or unit
with a specific purpose or function, as in a space craft;
(¢) in electronics; a compact assémbly functioning
as a component of a larger unit.' _
" We, here enviSage‘especially meanings (a) and (b), for (a) in
particular that it is possible to arrange or join modidles in a
variety of ways (b} that each module has a specifié purpose

or function. When we say modular we mean that the various rules

of the grammar are seen. as independentiy consultable sources

of knowledge which can be joined in a parallel fashion with

~other modules to accomplish the task of producing or understanding

natural language.
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Now how do we get all those modules ? From observation

it is clear that natural languages use a number of devices

such as the ordering from left to right of the words, the use of
concord or agreement, the use of morphological affixes to

slgnal certain relationships,etc. In an intégrationistic grammar
all these phenomena are stated in the same type of rules, e.g.
rewrite rules, and each rule operates on the result of the
application of other rules. In other words the grammar rules
specify explicitly the interaction necessary to obtain the

whole language sentence,

It turns cut that there are some good reasons why it 1is

advisable not to proceed in this way. These reascns stem
from purely theoretical considerations (e.g. efficiency

of representation} and especlally from the problem of

designing a whole language system.

The alternative tc an integrationistic conception of arammar
which we will present here, is to see the grammar as a set
of specialists: One speclalist is competent in word order,
another one is competent in agreement rules, and he knows
exactly in what situations they are applicable and how

it should be done, another one 1ls competent in morphological
affixes for the signalling of case relations, etc;.

The specialists on their own cannot cause the analysis or
production of a natural language sentence, toc that purpose

processes outside the scope of the specialists are neeessary.

Let us call a specialist a MODULE. It is a bedy of knowledge
concerned with a specific aspect of language. As the grammar
consists of a set of modules, it follows that a linguistic

theory should investigate the knowledge cdntained in the mddules.
This investigation has three main aspects: first what kind of
knowledge is involved, secondé how should we represent this
knowledge and third how should we use the knowledge.

The third problem will be treated in next chapter when we come to
a discussion of the whéle language system in operation. In this

chapter we will further concentrate on the first two aspects.
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As regards the problem of how the knowledge should be represented,
‘we point out that on some occasions this representaticn

will be very straight forward, on other cnes we will have

to introduce guite complicated representation constructs

to realize our goals. In particular we anounce the introduction
of a new class of automata and a new representation construct

for feature complexes.

As regards the problem of what kind of knowledge is involved we
may already point out that there are two main things that will
be discussed in this context: First there is a situation in

the language sentence that is of interest, second (and even
more important)} there is a reason for the situation to be there.
Let us call the situation a language Ehenomenon and its

reason a factor. The factors themselves are anchored in the
higher level process of semantic structuring as we will see.
Examples of situations are word x comes before word y, word X
takes certain features of word y, etc. Examples of factors

are word x has a particular grammatical function as regards
word y, word x is stressed, word x fills a certain

cagse slot in the frame of word y, etc.

In each module one phenomenon and one factor are brought
together. During analysis the module will be asked what
factor is responsible for a particular phenomenon, during
synthesis the module will be asked what phenomenon should
be used to signal a certain factor. The bare information
i.e. the relation factor/phenomenon 1s stated in a rule
which forms the core of each module,

So we arrive at the following notion of grammar:
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Definition

'

A modular grammar is a set of modules where each module

contains a rule.
A rule is a function (in the mathematical sense}. The function
defines a relation between a lanquage phenomenon and the
factor (s} determining it. This implieg that the formal structure
of a rule r is

r(f) =p
with £ the factor and p the phenomenon.

In the following secticns we will make a start with
investigating what kind of modules are necessary to
represent the linguistic knowledge used by natural langueges.

In particular we will investigate two important'factors:

grammatical function and case. We know that there are ({(probably

many) other factors such as the type of speech act, the use

of coordination, varicus sorts of 'pragmatic' factors

le.g. stress on particular aspects of the utterance), but

one must start somewhere and it is impossible to cover evervthing
all at once in a short amount of time. Moreover grammatical
function and case appear tc be very basic factors in the
functioning of language and we think it is therefore

simply necessary to start with them.

The rest of the text contains two main parts. In the

first one we introduce the notion of grammaticai function

and the modules centered around grammatical function. Ih

the second one we introduce the notion of case and the modules
usineg case (and grammatical function). After that we will
discuss some other topics, such as the relation to semantic

structuring and some further problem areas.
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Discussion and further references

In this first part we presented the first central assumption

of our theory, namely that a linguistic description system
gshould be brganized in a modular fashion, rather than in an
integrated one. This first central assumption is at the same
time the first distinctive assumption., If we look at the

grammar constructs being used at the moment, we see that

they are all organized in an integrated_way. Indeed, one could say that
the idea to have such an integrated description system

has been growing gradually from the early traditions of
structuralism to culminate in the ccnception of a
transformational grammar (Van de Velde, personal cocmmunication).
On the whole the more traditiocnalistic a grammar the more it

is modularly organized ! (E.g. Zandvoort (1945) treats word
order, concord,_functional interrelationships, etc. in different
chapters of this grammar; ancther example of a grammar

with a modular flavour is Jespersen (1961))

Although the idea to have this modular organization of a grammar
is in direct opposition to the current trerdin 1inguiotics,

in other areas relevant to the subject of natural language,
modularity has already been recognized as being a ver; fruitful
approach towards the organizaticn of knowledge. We are

here thinking about studies in artificial intelligence.

Here modules are called demons (Charniak,1972), specialists

or molecules (Rieger, 1975). Each time referring to a body

of knowledge needed to perform a certain cognitive task

{e.g. inference making) . The necessity of having modular

whole systems has become especially cbvious when trying to
degign speech understanding systems which must be able tec

cope with unclear data (see Reddy(1973) for a discussion of the
problem and Bruce and Nash-Webbker (1976) for an example of

a speech understanding system) .

Although the idea of modularity is obwviocusly present in
artificial intelligence, it has never been applied tec the
design of grammars itself. An augmented transition network

e.g. (cf. Woods, 1972) is a typical integrated svstem,
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1.1 GRAMMATICAL FUNCTION

In the introduction to this section, we mentioned that we

will be investigating two factors: grammatical function and
case. In thls subsection we present some modules concerned

with grammatical function. First we introduce the concept itself

in some detail.

1.1.0. Introduction to grammatical function

Definition

Let ug consider a finite nonempty set of words W of a language,
then the functional relations over W denoted as FR is a

relation in the set theoretic sense FR C W x W

If {(wl,w2 ) € FR, then we say that a grammatical relaticn
holds from wl to w2

We can furthermore distinguish subsets in FR where each subset

defines a particular sort of grammatical relation.

If a particular grammatical relation, say F € FR ,holds

from wl to w2 then we say that wl has the grammatical function F

as regards w2; w2 is called thehhead and wl the subordinate
of the relationpair (wl,w2

If (wl,w2> € FR then we say that wl has the grammatical function
NIL as regards w2, i.e. NIL is the empty grammatical function

If a word w occurs as the subordinate of at least one F C FR
then we say that F is a possible grammatical function of W.
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Example

Let adjunct be a grammatical function then in "young boy"

a grammatical relation holds from "young" to "boy". We say
that "young" is the subordinate and "boy" ththead, and that
"yound" has the function adjunct as regards "boy".

Adjunct is a possible grammatical functien of "young®.

Additional conventions

1. It is well known that one single form of a word may

have different functions and meanings. This is a serious

prpbiem in the design of natural language processing systems

and we will see what we can do about it.

Theoretically we will consider such a word form as heing

more than one word form: for each function or meaning then

we could say that we are dealing with another wofd. This greatly
simplifies our definitions.

2. Although the relatiocnal character is lost, we will often
say that a word wl is an F if there is a word w2 and wl
has the grammatical function F as regards w2. This is in

accordance with existing habits.

We now bring the notion of grammatical function in relation to

a sequence of words.

Definition
Let Wy .. W, be a sequence of words, then the functional
structure for Wi e wn is defined as follows:

- if n =1 the functional structure of the sequence is the
possible grammatical function of the only word cccurring in
that sequence; .

~ if n is greater than 1 the functional structure is the set

of all pairs (Wk’wk+1) such that
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(1) a grammatical relation holds from W, to Vieryd
(ii) except for one Wy each wy 1 < i é n is the subordinate

of at least one but no more than one relation pair where the

head of this relation pair is w, 1<{k £ n and i# k.

In other words each word in the sequence has at least one but

no more than one grammatical function as regards another word

of the sequence; ]
(iii)a path in a functional structure is a sequence of relation

pairs where the head of one relation pair 1s the subecrdinate

in the next relation palr in the sequence. A path 1s

a circuit if the same relation pair occurs more than cnce

in at least one path in the functional structure. There

should never be circuits in a functional structure.

The word Wj which is not occurring as the subordinate of any
relation pair is called the top of the functional structure.
The top has of course a possible grammatical function.

Example

For "the edited translation of a text", the functional
structure contains the following relations:
"the" has the function determiner as regards "translation”
"edlited" has the function adjunct as regards "translation"
"translation" has the poséible function object
"of" has the function casesign as regards "text"
o

a" has the function determiner as regards "text"
"translation™ is the top of the structure.

We are now faced with the task of defining a graphical
repreésentation construct for functional structures. The
maln requirement of this representation is that it should
reflect the functional relations for a sentence in an

explicit and perspicuous way.

--1.8. -
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The solution we will adopt here goes as follows:

Use the standard mathematical way of drawing graphs for
relations, The graph thus obtained is the representation we
are looking for. More explicitly:

Convention:

If wl has the grammatical function F as regards w2, then
we draw a node for wl and w2 labeled with wl and w2 respectively.

Then we draw a directed line from wl to w2 and label the

line with F:

But 1f w has ohly a possible grammatical function F we draw
a node labe¥d w and draw a line from it with label F

Example

For "the edited translation of a text":
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To simplify the representation we car turn those graphs
into trees by the following convention:

If F w2
<::>/,-—“i(::> then ‘
F
wl
and
F
if then T
wl
Example
For "the edited translation of a text":
object
TRANSTATION
adjunct determ cbject
EDITED THE TEXT
casesign determ
OF A

It is important to kéep the unsimplified graph representation

in mind when studying functional structures,

- 1.10. -
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Two gquestions can be asked in connection to these functional

structures:

{1} Will the conventicn of turning graphs into trees always work ?
(The question raises because a graph is a more powerful represen-—
tation construct than a tree.)

Then answer is yes. The proof follows from the definition of
functional structures.

B tree has the following properties (i) there is one topnode,

(ii) this topnode is reachakle form all other nodes, and (iii}
there are no circuits.

Condition (i) is always satisfied because there is one L which
is not the subordinate of any relation pair.

Condition (ii) is always safisfied because each word is connec-
ted to the graph via another word. Condition (iii)was

a condition of functional structures per definitionem.

(2) Is it possible to construct a generative grammar which
derives a functional structure just as a phrase structure grammar
grammar derives constituent structure trees 7

{The question is important because it influences our choice

of grammar type)

The answer is no. The proof follows from the method of
constructing trees on the basis of the derivation relation as
defined in formal language theory for phrase structure grammars.
A consequence of this definition is that a node can only occur

as dominating another one if its label occurs on the left of
.a rule. But this implies that the label is a nonterminal.

Because the words of the sentence which are terminal symbols
occur higher up in the tree, they should be nonterminals.

But in a generative grammar the set of terminals and nonterminals

form disjoint sets hence it is not possible to do it.
(Notice however that it is possible indirectly by means of

the indirect tree construction method defined earlier

for generative grammars)

- 1.11. ~
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We now have a definition of the concept of grammatical function
and a definition of functional structure§ to represent

the grammatical relations holding in a certain sequence of
words. We c¢lose this introduction to grammatical functions

by discussing a typology for functions and by introducing

the concept of an inference tree.

Typology

One of the maih results of our investigations is that it
is possible to distinguish between3lclasses of functions
and to translate this distinction into the formal thecry
itself. The gquestion is first on what grouhd such as
typology should be built.

As we sald in the introduction to this chapter knowledge
about a specific aspect of language as corntained in a rule
involves two things: a factor and a phenomenon. The factor
here under discussion is grammatical funection. Recall

that a f£actor has relevance for the process of semantic
interpretation. It follows that a typology of functions can
be based on the differences as regards semantic functiconing.
But due to the second aspect in a rule, the way in which
the ' language phenemena are approached is an equally wvwalid
approach. It turns out that the typology we will be ﬁroposing
is based on both grounds. First the semantic side.

We will see later in more detail that the functional structure
of the input sentence is some sort of control structufe :

for the creation of semantic representations: with each function
a particular tree building action is associated and what the
arguments of this action are is determined by the funcitional

relations in the sentence.

The fundamental entities of a semantic structure are the predicates
(which may be tonsidered as bundles of properties or pelations).
Each of the predicates has a certaln role in the communication,
some introduce entities, others modify other predicates, gualify

an already introduced entity, etc. Now let us associate with

each of these reles a certain grammatical function.

- 1l.12. -
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Seen from this perspective it turns out that there are two
main types of functions: objects (leading to predicates which
introduce entities) and adjuncts (leading to predicates ‘
modifying other predicates gqualifying another entity).

A third class comes in for words which carry no predicates

‘themselves but act as additional instruments to signal

_certain aspects., These are the functionwords.
So we obtain three basic classeés:
Definition

Let F be the set of all grammatical functions, then F-obj,
F-adju,F-functw is the set of grammatical functions of the

type object, adjunct and functionword respectively,

Comments:

(i) Objects:

Objects are words which denote an entity or a class of entities,
that means they will lead to a semantic structure which
represents an entity or a class of entities. An 6bject

stands in a dependency relation to either other objects

fas in the father of John) or adjuncts (as in translated

from a text ). '
Traditional grammars further distinguish subject, direct

object, indirect object, prepositional object and other

sorts of objects. ;

We will not make that distinction because the particular relation
of one object to its 'head' is better explicated in terms of

case relations as we will show later.

(ii) Adjuncts

Adjuncts are words which 'amplify' or. 'modify' an object or
ancther adijunct, that means they will lead to a semantic

structure attached to an cbject or another adjunct in which

- 1.13. -
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new information is introduced. This happens e.g. by
rélating the object which is modified to another object,
Traditional grammars distinguish saveral types of

: adjuncts: predicators (or verbs), attributive adjuncts,

predicative adjuncts, adverbial adjuncts, etc.
(iii) Functionwords

Functionwords are words not introducing any.semantid

. predicates in'the:sentence, they only add features and
modifications to the words which act as heads of the
function words. '

Examples are determiners, casesigns, particles, a.o..

The tybolqu discussed above on semantic grounds will find
a further foundation in the differences in behaviour which
exist bn a mere surface level, especially between objects
on the one hand and adjuncts/funcfiohwords oﬁ the other.
In parﬁicular we will center the inforﬁation on surface
phenomena for objects with the head of the relation pair
and.for adjuncte and functionwords with £he subordinate

of the relatichpair. It will become cbvious very soon what
we mean by this and why we do it.

Functional inference tree

Qf equal importance in the whole theory is the idea that
you may organise the set of functions into groups which
show a particular behaviour as regards a ceftain phénomenon
We do this to capture certain regularities in the rules of .
the grammar which are otherwise treated by using nonterminals °
(which we will not use at all}. It is e.g. necessary to make
within the general claés of objects a distinction between
pronominal objects.and ncminal objects, simply because words
having these funetions may vary considerably in their

behaviour. But nevertheless we must keep the possibility to
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consider the c¢lass as a whole.

We solve this representational problem as follows: We define
a hierarchy of functions which is represented in a '
tree. The tree will be called the functional

_inference tree (later on we will have inference trees for

other theoretical objects). We w111 use our standard method
of representing trees in list notation.

The idea is that given a (possibly sub)tree

(& IR an) with . ayreee

a property which is defined for node A also holde for

pag subtrees or functicn:

‘every node in a ..,ah.

11

E.g. an adverbial adjunct may link with practically every
other adjunct, so we define a tree for all adjuncts:

adjunet

auf”ﬂ;e;;j:igi?iiizerb %;;;T;g;ﬂ\gab.adj Tha

For another purpose it may be necessary to address onIY-r

the verbs, then we make a subtree:

adjunc;

verbs \
nonfinfEG;/;;;%;ijlfintverb aux

att adj adv.adj e

It may be necessary to Stlll make a further subdiv151on, ‘a. g
in order to address only the auxiliaries:

adjunct _
. verbs //////// \\\\\\\\\\\ ‘ _ :
nonfin. verb auxil att. adj adv.adj ...
_ verb ////\\\\\ o ‘_-
‘ nonfinyaux B o

etc:;
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Discussion and fiurther references

Already in traditional grammars the words of the language

where classified according to their part of speech or syntactic
category: noun, pronoun, adjective, verb, adverb, preposition,

conjunction, interjection, etc.

In traditional gramars this classification was meant as

an indication of the semantic function these words had in

the communication, their 'mode of signifying' (Lyons, 1968,272)
E.g. nouns are words naming entities, adjectives are words

qualifying a noun by amplifying its meaning, etc.

In structural grammars the part of speebh specification

was more considered to be an indication of what structural
properties the word having that part of speech could have,

E.g. nouns are words showing a particular sort of behaviour

on the morphological level, they occur only in certain combinations
with other parts of speech, etc. Various methods were designed

to classify the words via {structural) tests inte distinct

classes where each class was labeld with a particular

category (or subcategory).

The two roles which are assigned to parts of speech by
traditional grammarians and structural linguists respectively
will in our grammar be related to grammatical functions

(or functional categories) as they were called in traditionil
grammars) .

The reason for doing so are as follows:

(i) To indicate the function of a word in the communication
more precise characterizations are needed than the eight_or'
ten parts of speech that were used in traditional grammars.

This is so because {a) one single function (e.g. complement)

can be realized by more than one part of speech (for complement:
noun, pronoun, adjective, verb, adverb, ete.)and

(b) one single part of speech {e.g. adjective) can have many
different functions (for adjective:attributive adjuanct,
predicative adjunct, complement, etc:).
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{ii) On the other hand many of the structural properties
of a word are not determined by the part of speech it belongs
to but by the grammatical function. We will see many examples
of this in the sequel.

The step to make grammatical functlons instead of categories
or consituents the basis of the grammar is a very important

one. And although phrase structure trees (and grammars) are

a very powerful mechanism for dealing with a parts-of-speech
analysis, they fail completely as regards the treatment

of grammatical functions.

Because the grammatical functions are in a transformaticnal
grammar not represented explicitly in the deep structure, all
surface phenomena which we will show to depend on grammatical
functions and which are to be realized by transformations

in such a grammar cannot in a clear way be related to

these functions. Especially if the surface phenomena relate
to so called 'derived' grammatical functions, such as
attributive adjuncts which are obtained only after the -
application of a whole series of transformations. If the
grammatical functions are represented by relations between
dominance relations (as is normally assumed) the transformations
will need extensive tree processing as a condition for their
application.

The move towards deeper structures by the generative
semanticists has nothing changed that would affect the
criticism presented here. On the contrary, the fact that
semantic structures are further away from the functional
level results in even more obscurity as regards the role
of grammatical functions and their effect on the surface
structure. '

The typology introduced above is strongly related to
traditional ideas. E.g. the distinction of a special class

of words not functioning in the semantic structure as
predicate (the functionwords) is close to that of'introducing
a class of words having -only grammatical significance or

structural meaning vs. words which have not only a grammatical
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but also a lexical effect (Lyons,1968,435).

The 1dea of using a functional inference tree proved

to be very powerful. Notice that in an integrationistic
grammar these generalizations are to be expressed in

the same sort of rules as those where the linguistic
phenomena themselves are regulated, In contrast we
declare the grouping of functions as a global phenomenon

of the grammar.
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Now we start introducing the rules themselves. This

iz done in a series of subsections each of which contains
three parts (i) a theoretical introduction of the

rule , (ii) an empirical example and (iii) discussicns
-and further references.

Much more examples will be presented in.the section on
experimental results (Chapter 3).

1.1.1. The relations envirocnment

The first phenomenon we will discuss is this: The occurrence
of a functional relation presupposes the occurrence of .other
functional relations,

This takes two forms: Given a functional relation F between
words wl and w2, i.e. wl is the subordinate and w2 the head,
then .

{1) the occurrence of the relation F presupposes that w2
has a particular function F', in other words a certain head
is regquired;

{(i1) the occurrence of the functional relation F presupposes
that wl is the head of another functional relation F', in
other words a certain suwbordinate is required.

Let us discuss each of these aspects in some detail

'1.1,1.1. Determination of the head

(i).theory

The first struétural property of importance 1s given

a word wl and a word w2, for wl to have a particular grammatical

function F as regards w2, w2 should have a particular

possible function F',
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For example take "the translated play", "play" can function
as an object (drama for the stage)or as,amongst other things,
predicator or verb. A possible function of "translated"

is attributive adjunct, but obvicusly for "translated”

to be attributive adjunct as regards "play", "play" should
itself function as an object.

We express thils by saying that a property of a word having
the function attributive adjunct is that its head is always
a word having the function object or shorter the

function of the head of an attributive édjunct is an object.

Here is another example: "he translates plays", "plays" is
an object of "translates" but this is so only because the
head of "plays", i.e. "translates" takes objects.

We express this by saying that a property of the word
having the function verb is that it may take objects.

Notice our difference in talking about the two examples.

In the first case (and in general for adjuncts and functionwords)
we introduce the specification of the head as a property of

the subordinate (i.e. attributive adjunct} and in the second
case {(in general for objects) we introduce the specification

as a property of the head !

This is at first sight a remarkable attitude, but it will
crop up again and again: information about functionwords
and adjuncts is to be centered around the subordinate,

information about objects around the head.

Having specified what kind of information we have in mind,

we proceed by formulating the rule in which this information

is presented. This turns out to be easy. We introduce two linguistic
functions: function-of-head (for adjuncts and functionwords)

which relates a function {(the subordinate is having) to
a function {the head is supposed to have) and taking-objects

{for all functions) which relates a truth-value to a function ;
to signal whether it takes objects or not.
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Definition

function-of-head: F -+ F is a partial function defined
(¥ ) (f € F-adju U F-functw) such that for wl, w2 words
of the language, if wl has the function f as regards w2,

w2 should have the grammatical function f£' = function-of-head(f)

£' may be a feature complex of functions (we will later
explain what a feature complex is).

Definition
taking-objects: F *iTRUE, FALSE} is a function defined

as follows:
let £ € F, then

-

TRUE if a word having the function
f may be the head of a relation

pair with the function object.
taking-objects (f) =

FALSE otherwise
L
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(ii) example

Let

and

us take the sentence
" a very urdgent letter was sent to John"

specify the function-of-head/taking-cbjects information.

We introduce the following grammatical functions:

determiner (for "a"

adverbial adjuncts (for "very")
attributive. adjunct (for "urgent")
nominal object (for "letter" and "John")
finite auxiliary { for "was")

nonfinite verb (for "sent")

casesign (for "to")

Next we specify the information:

and

for

function-cf-head (determiner) = nom.object

function-of-head {(adverbial adjunct) = attributive adjunct

function-of-head (finite auxiliary) = nominal object

function-of-head (casesign) = nominal object

taking-cbjects (nonfinite verb) = true

all other functions (in this sentence at least )

taking-obijects is false.

The

following structure holds then for the seéntence as a wholes

nominal chiject

LETTER
—
finite auxiliary
determiner \
attributive adjunct WAS
P\ URGENT ‘
/ nonfinite verb
adverbial adjunct SENT
VERY nomiTa; object
JOHN .
T0 _— case — :
sign
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(i1i) discussion and further references

The fact that other functional relations play an

important role in the determination of the grammatical

relation of one word has sihce long been recognized (think

e.g. about the structuralistic notion of syntactic

valence) . Notice however that normally these functional

restrictions are expressed in categorial terms, and in

particular by means of the notion of phrase structure,
constituent structure, or related concepts . In such

a categorial context, the knowledge captured by the

function-of-head and taking-objects rules, is formalized

by placing the element in a whole pattern {(such as
in phrase structure grammars) or by a more explicit

indication (such as in categorial grammars).

Our appreoach differs in two ways from the currently

accepted one. First of all we express this information

in terms ¢©f functions. The reason is that the éame category

(e.g. adjective) may function differently (att.ad], complement,etc.)
in different environments. Second we do not include any
information about order in the given rules. This is in accordance
with our principle of a modular grammar. Notice that this

may already lead to a more economical grammar: if the

same function occurs in different orders, then this rule

needs to be specified only once, in an integrated grammar

we would need to specify the relaticonal environment for

every order anew. Ancther element of economy is that we

do not need nonterminals. This reduces the number of

theoretical terms being used.

Finally notice that in an integrationistic grammar it is impossible
to formalize the difference in behaviour between adjuncts/function-
words and objects. Although this difference was felt in

traditional grammars, think e.g. about the status of the

terms transitive/intransitive, which refers exclusively to

objects allowed or not allowed for a certain verb.
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1.1.1.2. Determination of the subordinates

ﬁext we come to something like the.reverse of the previous
rule. Not only the function of the head plays a role but

the function of the subordinate may equally well be of
importance. This phenomenon cerresponds toc the noticn of
endocentric vs. exocentric constructions known from structural
linguistics. '

Take e.g. "the man in the café&". Let us say that "in" has the
grammatical function relationword as regards "man". But
obviously we can say that if and only if there is a word with
the grammatical function object as regards "in". -So "in"
needs the subordinate to have the function relationword.
Similar cases are e.g. "he knocks the door down", where

"knocks" needs "down" to become a transitive verb.

Having discussed the phenomenon we now turn to a
discussion of a representation for the relation hetween the

phenomenon and the factor function.

A possible solution for the representation problem goes as
follows: We organize a grammatical rule that -changes the function
of the head of a grammatical relation as scon as the subordinate,
of the functional relation is present. E.g. we let 'from' have
the function 'preliminary relationword' and change this into
rélationword if an object is there. Only then 'from' can

start functioning as a relationword. Although this looks as
being a nice solution {(and it is the one used by categorial
grammars e.g.}) and although it works in this case, the need

for another approach soon becomes obvious.

The point is that the not being active of a certain word heclds
up the whole analysis and this leads to dead situations during
parsing. Consider e.g. the example of "he knocks the door down".
Here "down" has to jump over "the door" to make contact with
"knocks" and only then "the door" can be linked. But this
jumping over is something we will not allow in the parsing
process, and we have good reasons for that. So the analysis

" blocks: "the door" waits for "down" and "down" waits for
"the door".
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The other approach (which will be followed here) consists
in associating with each function a state. If a functicn
needs a certain subordinate we associate with it the

state non-final. As soon as the required subordinate comes
in, we change the state associated with the function

to final. Obviously to be effective there should be a
final state associated with each function at the end of
the analysis.

We will define formal systems which are able to perform

this sort of actions in the following section (1.1.2.2.) where
we come to a discussion of corder. The systems are

called ccmpletion networks and a generalization over them

completion automata.
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1.1.2. Order

The next phenomencn is the use of order. Just as for the
relations environment discussed in the prévious subsection,
we see again two types of rules: .
(1) The first having to do with the order of the subordinate
of the relaticon vs. its head,

{ii} the second having to do with the internal order of the
subordinate of the same head.

1.1.2.1, Order of subordinate and head

The first phenomenon we investigate in relation to order is
the following: Given a word wl and a word w2, for wl to have
a particular grammatical function £ as regards w2, wl should be

in a certain position as regards w2,

There are three possibilities:
(1) either wl comes BEFORE w2
(ii) or wl comes AFTER w2
(iii) or it is UNDETermiried whether wl comes before or after w2.

Again we introduce a grammatical rule in the form of a function
this time called position which relates a grammatical function
to one of the indicators BEFORE,AFTER, UNDET .

Definition

Let position: F - LBEFORE,AFTER, UNDET} defined for
(VE) (E€E F-adj Y F=functw) be a function such that if wl has.
the function £ as regards w2, then if

BEFORE wl should come before w2
AFTER wl should come after w2

UNDET wl may come either before or

position (f) =

after w2.
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With the difference in behaviour in mind between
'adjuncts/functionwords and objects, we investigate whether
objects can be dealt with by this function position.

But again it turns out that the position of objects is

more easily determined by its headword whereas the

position of adjuncts/functionwords is determined by

the subordinate itself. Even more it is logically impossible
to use the same function position because the position

of the objécts changes depending on the function of -their
head.

We call the lingulstic function that relates a grammatical
function to a position of its objects the object-position

rule. Obviocusly it is only defined for those £ € F such that
taking-objects{f) = TRUE. We use again the indicators

BEFCORE, AFTER, UNDET meaning the objects come before their
head, after their head or it is undetermined whether they

come before or after it.
Definition

Let object-position : F - {BEFORE, AFTER, UNDET) be a
partial function such that if wl has the function object

as regards w2 and w2 has the function f then if
BEFORE wl comes before w2

object-position(f) = AFTER wl comes after w2,

UNDET wl may come either before
or after w2.
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(ii) Example

Let us take the same example sentence "a very urgent letter
was sent to John” and specify the information for the

rules position and object-position:

position (determiner )} = before
position (adverbial adjunct}= before
position (finite auxiliary) = after
position (casesign) = before
taking-objects (nonfinite verb) = after

(iii) Discussion and further references

The fact that order is an important phenomenon has since long
been recognized. In a categorial or constituent structure
treatment, one would use phrase structure grammars, categorial
grammars 0or equivalent systems to treat this order. In such
systems this is done by giving a pattern in which the order
relation is implicitly stated. E.g. if we say 8 — NP VP then
this rule contains implicitly the information that the VP

constituent comes after the NP

One of the important consequences of making abstraction of the

phenomenon of order as we did, is that this order can be contreclled

completely as an independent variable. We will see later an
exiting experiment where we reverse the indicators before and
after (i.e. consider as before{coming after’and as after‘coming
before) and where after that a sentence can be processed by the
parsing system in right to left order !

The object-position rule is equivalent to the well known
typology VS0O,S0V,etc. although this may not seem to be so.
First of all we have generalized over all predicates taking
arguments (and not just the verb - subject — object relation).
Second we consider the verb syntactically as the adjunct of one
particular object, traditionally called the subject. The other
_objects are then all depending on the verb (cf. the example}.
Oﬁly then it 18 possible to apply the given formalism with only

three theoretical terms: before, after, undet.
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1.1.2.2., Internal order of subordinates

Now we come to the second usage of the phenomenon of
order: the situation where the occurrence of one
particular subordinate restricts the possibility that

other subordinates may occur.

Take e.g. "translated the text". We know that translate cannot
be att. adjunct here because its head (text) is although an
object, linked with another word (the). This "the" has

changed the structural properties of the object "text"

to such an extent that it is no longer a valid head of

an att.adjunct.

There are essentially two situations where the restriction of
the internal order of the subordinates may occurs; :
(1) among adjuncts and functionwords (cf. the example)
(ii) amony objects (consider "he gives me a book” and not
"he gives a book me") '
The first type will be discussed in this section, the second
type will be treated lateér because the other factor namely '
case: plays a very important félé in it.
Having discussed the phenomeﬁon we envisage for this module,
we will now present a formal system in which these facts
can be stated. This turns out to be a nontrivial task and

we will introduce a new system called a completioh automaton.

The system is constructed in the tradition of automata theory
but differs from already existing models in several respects.
An. essential part of the system (as for all automata)

are the transition networks. Such transition hetworks will

be called syntactic networks in the present context. But

we will see later on that for the internal order of objects
cne can use the same formal system. Then we ﬁill‘qall o

the networks semantic networks.
The intuitive ideas behind the use of the . networks are

that with a particular piece of input (e.g. a particular
grammatical function in a structure) we associate a state.
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When nothing is linked with the input piece the initial
state is associated and whenever we make a link a new
state (or more than one new states} are asscciated.

In order to be a subordinate of a given word it is

not sufficient then that this word has a particular
grammatical function {as specified by the linguistic
function function-of-head) or that it takes objécts

(as. specified by the linguistic function taking-objects)

and that the right order (as specified by position or
object-position) is present, in addition a particular

state should be associated with the head before the linking
takes place.

Example: Given the function determ, att.adjunct and nom.obj
then with nom.obj we associate the initial state OBJ/1.

If the att.adj comes in we go from OBJ/1 to the state
OBJ/2, if the determiner comes in we go from OBJ/1 to
OBJ/3 or from OBJ/2 to OBJ/3.

Schematically:

Now consider as lnput "the translated text". Text starts
with state OBJ/1;
with "translated" as att.,adju we go to OBJ/2
with "the" as determ we go to OBJ/3 .
Now eonsider as input "translated the text". Text starts again
with state 0BJ/1
with "the" as determ we go to OBJ/3
and with "translated as att.adj we can go nowhere !

Notice that (in contrast to finite state automata and recursive
transition networks) the network is written from the point of
view of the head of the relation: Notice also that {again in
contrast to existing automata) the position is considered to
be not a part of the automaton, i.e. we only formalize relative
order restrictions, not absolute order. The absolute order is

of course captured by the previously discussed rules,
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We now introduce the formal systems,

(1) COMPLETION NETWORKS

Definition

A completion network (CN) is defined by a'quintuple

CN =(Vn, Q, F, g0, v ?» with
(i) Vv a finite nonempty set of elements, the alphabet

{(ii) Q0 a finite set of states

(iii) F € Q the set of final states

(iv) g0 € Q the initial state

(v) v+ Q@ x V *5?Q) the transition function

We define a graphical representation of a completion network
as follows:

if gt € v¥{g2, a) with gl,q2 €0 and a €V
then

if g2 € F then we write
if:gl is the initial state then

Example

is the graphical representation of a CN =((a,b5 ,{gl,qB,FINJ, ql, v ?
with r{a,ql) = {FINH, y {(gl1,b} = {qBB and v (g3,a) = {FINS
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Thére are a number of tasks that you can perform with

a network. Two tasks Will be of particular interest here:
(i) the recognition of elements defined by the net and
(ii) the ordering of elements of the alphabet into the
format prescribed by the network. These two tasks both
fall back on the "neutral" representation of the

transition function as defined in the previous definition.
-i- the recognition task

The problem is given a string p€ V*, decide whether it
contains the right element on the right place according
to a given network. '

We solve this problem by the introduction cf information tuples
called configurations and a relation over them, the

reduction relation.

Definition

Let o« be a configuration with ¢ = {(p, g and p€ V* and
q € Q. .

The initial configuration for a string p€ v*x , called
in(p ) is & ={(p,q0 ' with 90 the initial state

The final configuration for a string r " called fin{ p }
is . ¢ = (& , qy } with qy € F.

Definition

We define the reduction relation denoted as —— as follows

Let «o,B be two configurations a = { p, qrwith

p = a,a a , nr1 then

1%2 -+ 819

I._

R (right going reduction)

iff 8

¢',aY and p'=a, ... a a, sq'erlg,a;)
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— (left going reduction)
L

ifE 8 =p',q' )

| — 1
and p' =aa, ... a, _; , q €7vig,a)
—_ = i U pﬁ— and po_. denotes the reflexive

and transitive c¢losure of +—

Definition

We define the left going reduction language of a CN C

as LRL (C) ={plin{p) &~ fin( )} , the right going
reduction language of a CN C as RRL(C) =Lp]in(p)F§— fin(p)ﬁ
and the redustion language of a CN € as RLI(C) =

lp 1 1np) +— fin(p )

Example

Given the CN

b
RO
O )
then RRL is a’"tly n> o
Example of operation
Let p = aaab , then(aaab,qO)ﬁ; (aab,qgl Yg- (ab,g®
k?f {b,qgl} hﬁ— (?\,q2 ) .
2n+1

LRL is ba

n 2}0 5.

nyo and RL is ia,b in [b‘ﬁ 1 and |al= 2n+1,

—-ii- The reordering of elements

. The second problem is given an uncrdered series of input symbols
compute as output one (or more) ordered sequences of this
same input symbols. We will organize such a 'transduction'

process as follows. First we distinguish an input vector in
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which we find all symbols that are to be transmitted

and the number of times that they will occur. Next we

have a so called output string, i.e. the result of the

process. Because of the nondeterministic property of completion
automata it may be that more than one possible result is
obtained. Hence we organize the process in terms of transduction.
configurations containing an input vector and an output string.
Then we define the transduction relation (formally represented

as - ) which transforms one configuration into another one.
Here are the definitions:

First an auxiliary definition

Pefinition

Let V be an alphabet then an input vector I over V

for a CN C is a set of pairs 1 = 1(a,n)aEV, nEN}(

We say that a € V is in an input vector I iff n > 0O for
{a,n) e T

An empty input vector is denoted as @.

Definition

Let « be a transduction configuration in CN when

a = (al,az,aj3 }  with a; an input wvector, a, € 0 and
a; € v the cutput string. '
Definition

The transduction relation denoted as == is defined

as follows:

Let @« , f be two configurations a =I,q,p) and
f =(I,q',p") with I =(a;,n), ... ,(a,n) x 1
and p= b1 P bj jZIO;
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";T‘ {left going transduction)
holds iff 1. a; is in I
2., I' = (al,nf, . (ai,ni-D, - ,(ak,nﬁ
3. g’ € vig,ay)
' =
4. p aib1 v bj
-1;— {(right going transduction)
holds 1iff 1. ay is in T
2, I' = (al,nl), e (ai,ni—lh . e ,(ak,nﬁ
3. g'€r (g,ay)
4, p' = b1 e bj a;
- —Er— U 1;;. and 2

denotes the reflexive and transitive closure of =
Definition

We define the left going transduction language of a
CN C as LTL(C) = | (I, q0,0) —= (@,af,) , df €F)
The rightgoing transduction lanquage of a CN C as '
RTL (C) ={.(I,q0, Ay = (g, gf,,? , gf€eF } and
the transduction language of a CN C as TL {C) =

{ ¢1, qo,0) —=— (@, gf,p) , gf €F §

)

It may be that ﬁe vector contains elements outside V or

that a final state is reached with the input vector not

being empty. In such a case the remaining input vector

is called the rest. We will see that in practical applications

this usage of the transduction relation is of interest.

Example
—xampee . )
Given C @ @ @
a
then RTL(C) = fazn“b ny 0y , LTL (C) = )Lbazn+l ny oY
and TL(C) = [pi e contains #b =4 and 4a = 20t ny 0.}
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Example of operétion

((b,13¢a,3), qy ,M7

{b,1),(a,2), ql, &

({b,1) ,{a,1, dgr 2a )

e S

R R

{({b,1? ,{a,@d}, gl , aaa ! ({b,@Xa,l), g3 , aab ?}

. w5
{({b,1} ,{a,@ ) g3 , aaab )

(= valid end configuration}

So far we have presented the formal basis of completion
networks. Let us before turning to the completion automata
themselves discuss briefly the weak generative capacity of
the present system. We do this only for the reduction

languages because of the following theorem: .
THEOREM 1

Let T be a completion network then LRL(T) = LTL (T) ,
RRL(T) = RTL (T) and RL{T) = TL (T)

Proof
This follows immediately from the definitions.

In order to study the weak generative capacity we need

the following auxiliary definitions:

Definition

Let CN denote the class of all completion networks then
oé?ﬁ denotes the class of left reduction

LRL ' RRL '~ L
languages, right reduction languages and reduction languages

respectively.
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THEQREM 2
A )
RRL REG
Proof

The proof follows immediately from the definitions.

Lemma 1 agghL _ﬁzi’

““REG

Proof

Let CN ={(V,Q0, ¥, g0, F} then we define the eguivalent
A Gu=v',Q's vy qO',F"

where
(i) v =y'
(11) 0 = 2' U [q0']
(iii) gO'
(iv) F'= {qo\
(v) Let ¥y(g,a) = {ql, ey qna N 1 S < A € @, a €v
~ then
viaga = el oo v e ={dd

and if q;,1i{n , & F , 1y'g0',a) ={qj

The rest of the procof follows by induction on the number-af
steps in the application of the reduction relation.

Lemma 2 CZ§;G Qaéi’

LRL

Proof

Similar to lemma 2

THEOREM 3 ,Zf: = ‘Zf;EG

LRL

Proof

Thié‘result follows immediately from lemma 1 and lemma 2.
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Now we study what happens if no strict order has been
implied. '

THEOREM 4 £, -c; cF L ana L are

CN CN REG
incomparable but not disjoint.

Proof (due to D. Vermeir)

A o
(1) 11 = {ak{bg E%EG N Ay (see fig. 1)
This follows immediately from the property
(PROP 1) that if L € CN

mir(w) € L, where mir is the mirror imaage.

then w € L implies

Obviously the property holds.

(2) L2 =_{a,b‘}*eo£ ﬁa‘%N

REG

Obvious.

{3) L3 is the language accepted by the following compleétion

network:
Here the following holds:
(i) ¥Yw €13 : ~#ﬁ(w) = ﬂ%(w)
(i) ¥ ne N, v = a"b" € L3
(iii) Now recall the pumping
lemma for regular languages: (¥ L) "fPfEG (:"Jn)N
(x =y,2 ¥, €L, [z] { ntl implies that Jz': z = z1 z' z2

and ylzlz‘m22y2 £ L , YmEN )
Applying (iii) to words vn( n large enough} yields words vﬁ
with ﬂta(v') > 'ﬁ%(v') and thus b.v' ¢ L3,consequently
L3 & c .
On the other harnd L3 is generated by the feollowing cofg G =
<LA,B_3,{a,b‘J ,fLA ~b B, Bb; B>adha, Ay ,B) thus
L3 € 75w

(4) 14 ={anbnu1243 % T because of property 1

(5) The fact that, S gﬁfé% follows immediately from the obviously

equivalent grammar representation (as a matter of fact N o8 LIN).

This ends the proof.
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Comments:

In this section we defined a representational device called
a completion network and two usages of the device: the rec-

cognition and reorganization of a seguence of symbols.

2. Completion autcomata as generalized completion networks.

The earliest attempts to generalize oveqkransition networks
up to the level of type 2 systems is a recursive transition
network (the formal basis of augmented transition networks).
The idea is here to introduce as condition for a transition
a whole network. By means of a pushdown store, you then
store the currenkstate before starting with the new embedded
network and when a string has been recognized by this network

you popup again and proceed with this earlier state.

We will now follow a quite different course of action.
Instead of 'calling' the network of the embedding via another
higher level network, we associate the transition networks
(as defined before) with elements of the string itself !

An element is then allowed to be a condition of

a ktransition iff it is in a final state.

Let us formalize all this in a set of new definitions.

We call the system a completion automaton.
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Definition

A completion automaton (CA) is defined by a quadruple:
&A. =«(v, 0, RS, F, INIT, v } with
(i) Vv a finite nonempty set, the alphabet

(ii) Q a finite nonempty set of states QnNnv=g
(iii) RS a set of reading states, RS ¢C Q

(iv) F a set of final states, F C RS

(v) INIT: V = Q a partial function called the initial .

state assignment function

(vi) v: Q X Vv *5%Q) the transition function

¥ can be represented graphically as follows,
if g1 € y(g2,a) with gql,gq2 € Q and a € V then

Let ¢ be a configuration in' @ when e =0

Definition

ce. B
1
with 8, =(a;,q) for 1 {i{ n , a; €V and 9 €0

Let ays---rdy € v for n 2*], then the initial configuration
for a string p =a; ... a  denoted as in(p) =
ta,,qp ... (a ,a) such that INIT (a;) = q;, lei{:n

If INIT (ai)is undefined , qj = FIN

A final configuration for a string p =a

1 ++- @ denoted

as fin( p) = ¢ a4 /9 ) 1 i K n, qj € F.

nf

Definition

We define the reduction relation for a CA Ci. denoted as
— as follows:
Let

Yla.,gdta,

a = { a11q1)... (aj_l,qj_1 5795 j+1'qj+l) e (an,qn)

1 g3l

- 1.40. -



nrder

then
(1) — holds if
L
1. qy; € RS U{FIN_lI
2. A = : .
ql v (a]_lqu) .
3. & = (al,ql) “ew (a]_zrqj_zxajlqj )

(ii) F5~ holds if

1. a5y € RS U {FINB
2. ql € 1
al € vlag,,.9y)
3. # =(a1,q1)...(aj_l,qj_f(aj’qf(aj+2,qj+£

(an,qn)

We call  bg— the left going reduction relation and ﬁ;*

the right going reduction relation.

_ = e Y b and 3} is the

reflexive and transitive closure of |— .
Definition

The reduction lanquage of a CA denoted as L(CA) =

{plin(p ) +X. finfp )} , the left-going reduction language

LRL (CA) = {ﬂin( p)r%r fin( p)} , and the right-going reduction

language RRL (CA) = [pl in{ p ) F%T fin( p )

Let CA denote the class of completion automata then

= {RL(& ),8 e CA?jU QL&L(& ), 8.€ CAB U {K‘?\_L(&J,&é CA&
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Example

Let O =(V, Q, gF , gqF , INIT,3) with V = a,b]}
o =lal,q3} , INIT (b) = @1
and '

5

Then the left -going language of C\ is a™® n )/ 1
example of operation:
T = aaabbb
in(q) - (a,FIN)(a,FiNXa,FIN‘)(b,q1>(b,q1} (b,q1% _'
— <(a,FIN) {(a,FIN} &, qF % (b,qldib,qly
— Qa,FIN)(a,FIN}(pr>(b,ql)
— (&, FINYGb,ary {b,q1¥
— (a,FIN)(b,q3>
— {b,aF>
= fin( ¢ ).
An@ the right-going language is pla® nz,l
Example of operation:

J” = bbbaaa
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init{ &) = (b,ql)(b,q1}<b,q1>(a,FIN)(a,FINKa,FIN.\»
— (b,gD (b,ql)(b,qf}(a,FIN}(%,FIN)
Y ®,q1y {b,q3)>@,FIN)(a,FIN)
— (b, qly(b,gqF>(a,FIN >
v— ¢b,q3y{a,FIN

*—{b,qF> = fin (0°)

The detailed study of the formal properties of completion
automata would lead us too far from the main subject of

this works. We will present here a summary of the results,
proofs and detailed discussion can be found in the references

at the end of this section.

As regards the weak generative capacity we obtained a

very interesting result . The weak generative capacity of completion
automata is similar but not identical to completion networks,

more in particular we have the following situation with

unrestricted order:

The rightfgoing reduction languages are equivalent with the
context-free languages (compare this with completion networks)
and the same result holds for the left-going reduction languages.
The strong restrictedness is a véry strong theoretical result

especially from a linguistic point of view.
As regards the closure under AFL=-operations we discovered

that completion automata behave very awkward (no closure under

union, etc;).

Finally we mention that the transduction relation can be defined

just as for completion networks.
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Discussion and further references

We have published guite a number of papers which show

the evolution in our thinking about completion automata
of which the latest stage has been presented here.

See Steels(1975a),Steels(1975b),Steels and Vermeir (1976a)
Steels(1976a),5teels {1976b),Steels and Vermeir (1977}.

The formal difference with recursive transition networks

lies in the point that networks are associated with

elements of the input directly, rather than called via higher
level networks. By this method we could (i} remove the concept
of . nonterminal¥ from the automata, (il) remove the necessity
of having an independent memory, namely a pushdownstore.
Although it may be difficult to see this at the moment, the
advantages both for efficiency and power of the use of

the presentation are enormous. Especiaily because (i) irrelevant
parts of the network are not to be brought into the memory

of the parser, (ii) due to the 'call by input' strategy
unfruitful paths are cut out not by processing until they

are dead but by the fact that they are simplv not called.
Moreover we will see later that it provides for the first
time the Possibility of formalizing so called 'semantic

parsing’.

The theorﬁ of completion automaté of which only a little
part has been shown (there are e.g. related completion
grammarg) - is the first sort of results that can be obtained
by applyiﬁg the modular viewpeoint to automata theory itself.
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1.1.3. Concozrd

In natural languages it is common to associate.cértain
features with the words of the language, These features
which may show up by morphological affixes are used for
various purposes in the language. One is the indication
of functional relations {by the presenge/absence of
relationships betweéen the features) or of case

(by the use of so called case indicators).

The following points will interest us (i) how can.we
represent such syntactic feature complexes, {ii) how can

we perform operations with such features, in particular

the comparing of two complexes, and (iii) where are they used
and for what purpose. The last question will only _
partially be considered, namely for functional relations
where the subordinate is an adjunct or functionword. In such
a situation the phenomenon of concord (or agreement) may
occur: the features associated with the subordinate match
with the features associated with the head. The other part
(which we will be considering later) is that where the
functional relation object holds (notice again the dichotomy
between objects and adjuncts/functionwords). In such a
situation the phenomenon of government occurs: the case
relation prescribes the presence of certain syntactic features.
This aspect is treated later when we have introducedthe
factor case.

Our first job now is the definition of a representation

construct for features. This turned out to be very difficult

but we feel to have found a powerful solution. For its introduction
we invite the reader now to a short excursion in another area

of mathematical linguistics : representation theory.
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(i) Theory

Introduction to feature complexes

First we will analyse the requirements of a nontrivial
representation of features (partl) then we will define
the notion of a feature complex (part2} and some
cperations -over feature complexes (part 3). Finally
we will discuss the possibility of using an inference

tree for cross reference (part 4).
part 1 : reguirements

Consider the German (definite) article system which
expresses information about (i) number (singular vs, plural)
{il) case (nomin, accus, dative, genitive), (iii) gender
(male, female, neuter). '
"Instead of having 3 x 4 x 2 = 24 wordforms corresponding
to each combination of features there are only & forms:
der, dem, des, den, die, das. .
Obviously one form has to have more than one function. In
particular the following diagram represents the distribution

of features over words,

singular : male female neuter
NOM der ~die das
GEN des der des
DAT dem der dem
ACC den die das

plural :
NOM die die die
GEN der : der der
DAT den den - den
ACC die die die

Such diagrams, well known from school grammars illustrate

the point that complex features for one unit do not consist

of only one sequence of features but of a set of sequences

of features., However the diagrams aré inadequate for certain
purposes, because they are constructed so as to reflect the
assocdiation between a seqguence of features and a word but

NOT to reflect what feature seguence is associated with What
word. To know this we have to search through the whole diagram

~ or we need an additicnal diagram as follows:
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CASE GENDER NUMBER
der nom male. sing
der gen female ~ sing
der dat female sing
der geﬁ male plural
der gen female plureal
der gen' neuter plural

etc;

From this we conclude that it must be possible to

associate with one unit {(e.g. der) a set of seguences of

features (reqguirement 1). We can represent this set by
listing all the members(as is done in the above diagram)
but obivously it would be stronger to have a more
compact representation for one set, in which such
generalizations as "all plural genitives have der" cah

‘be expressed (requirement 2). Note that such a compact
representation would allow us to carry ambiguities around
until they are resolved, something which we feel to be
very important, especially for an analysis prodéedure.

In an opefational system it must be possible to do something
with complex features. The most common operation ié

that two complexes of features are matched, e.g.:' the feature
complex of a determiner is matched with that of a nomen.

Or the feature complex of an object is mathed ‘with a feature
complex representing the selection restrictions in the

case slot. There is one important aspect about this matching,’
namely relevance: only those feature are considered which
are relevant for a particular matching process.

By relevance we mean that only a subsequence (maybe evén
only one element of a feature sequence) is checked and the
rest 1s not important in the final decision. E.g. given the
requirement that feature complex 1 contains feature A

and feature complex 2 cohtains A and B, then feature complex
1 matches with feature complex 2 because A2 is in A and B,
but nbt the reverse, B is not in the feature complexl.

We will need a special kind of relevance logic for this

(requirement 3.
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Another useful operation is the combination of two
feature complexes to form a new one. This happens e.g. if
a new semantic unit is formed which has the preperties of
.its components. In other words the operation of combining
two feature complexes must be available (requirement 4).

Needless to say that to design a representation c¢onstruct
that meets requirement (1-4) is a nontrivial‘task.'In this
work we will propose a possible solution. '

Intuitively the representation construct constiﬁutes a
tree where the nonterminal nodes contain directions
{AND, OR, XOR (= exclusive OR), NOT) and the terminals
the features themselves.

Example (for der)

N\

AND

AN .

SING XOR PLURAL GENITIVE

/N

AAN

NOM MALE FEMALE

N

DATIVE GENITIVE

The idea is that to find whether the unit to which.the tree
corresponds contains the features being looked for, one walks
through it and performs matches with the terminal nodes. on
"the other hand, when you want to know what sequence of features
is associated with the unit, you compute the extension of. the

tree, i.e. the set of sets of features that corresponds to it.
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Intuitively AND means both sides are members of a
sequence, OR means both sides are members but one may
be not, XOR means only one side constltutes the members
of a sequence, NOT means that the depending sequence is

not in the feature sequence.

Before we now turn to a more exact account of the formalism
it must be noted that we will use again our standard
convention for representing trees in a linear expression

by means of the list-notation introduced earlier.

So, for the example tree of DER we get

(XOR{AND SING (XOR (AND NOM MALE)
(AND FEMALE (XOR DATIVE GEN))))

(AND PLURAL GENITIVE) )

part 2: Definitions
(a) Syntactic definitions
We define the formal outlook of a feature complex (for short FC)

by a context-free grammar which generates the linear representation
of an FC,

Definition
Let FCG ={(Vn, Vt, P, ( FC Pbe a context-free p.s. grammar
with '

vn = h(Fc)H) |

vt = {(,),AND,0R,NOT,x0R} U FS where FS denotes

the set of features
P contains the following productions:
1. (FC )} - A A € FS
2. {FC)? > (AND (FC{ FC) )
3. (FC) =~ (OR (FCY( FC) )
4. {FC) -+ (XOR (FC)»{( FC? )
5. {FC?» - (NOT (FC) )

{Note that the brackets are terminal symbols !)
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The set of feature complexes as a whole is then L(FCG).

Example

Let FS = {SING, NOM, MALE, PLURAL, DAT, GEN, FEME
then ' .
(AND (XOR (NOT NOM) MALE } GEN} & L(FCG)
. Proof: ' '
{FCr=s (AND <{FC) <{FC> ) —> (AND (XOR < E‘C}(FC))(FC) )

= (AND (XOR (NOT <FC) )(FC) )<{FCY ) ==

(AND (XOR ( NOT NOM ) MALE } GEN )

which is egual to the following tree:

AND

N

XOR . GEN
NOT MALE

NCM

The main 'trick' now is to define an extensional AND
truthlogical semantics for the expressiors. The extensional
interpretation yields the set of sequences of features which
are expressed in a compact feature complex (cf, requirement 1
& 2) . On the other hand the truthlegical interpretation for
the same expressions yields a truthvalue, using the

'relevance' idea (cf. requirement 3).

{b) Semantics
-i- extensicnal

Feature complexes are the representation of sets of sets

of features. Each FC represents therefofe the complete charac-
terization of a possible feature combination. Let us define
this set interpretation of an FC, denoted as ext (FC) as
follows:

- 1.50.



fegtures

Definition

1. ext 1a) = Jal} witha e Fs

2, ext({AND X Y ) } with X,Y¥ € LI(FCG)
= f(X' U Y') with X' € ext§ X ) , Y'E ext( ¥ )

3. ext((OR X Y) ) with X,¥ € L{FCG)
=ext { (AND XY ) )

4, ext 4 (XOR X Y ) ) with X,Y € L(FCG)
=ext § X )} U ext § Y )

5. ext ( ( NOT X} } for X € L{FCG)
=g

Example

Let FC = (BAND ( XOR .A B ) { XORC D) } .

The tree on the right contains for each node the semantic
interpretation of the corresponding node in the tree on the
left '

AND a,cy , {a,n} ,. s,cy , 8,04}
_ 5 sl o)
xOR XOR ay , {sYh iy, [ol} |

NN NN

s SR S P ST et ot
ext ¢ FC ) ={{A,ch NS S - CL B Y

Note:

Perhaps a more exact account of ext { (OR X Y }) would be

ext ((XCR (AND X Y ) ( XOR (AND X ( NOT Y ) ) ( AND ( NOT X ) Y }) }
In the application however the simplification as introduced

in the main definition never lead to any problems.
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- ii - truthlogical
Definition

The domain of an FC is a set of sets

Definition

Let X € L{FCG) and D a domain, then we define the truth-value
of an FC as regards a domain D, denoted as eval ( X, D )
.as follows:

Pirst we define eval' ( X, dD )for an arbitrary dD €D

1. eval' ( X, dD } for X € FS

TRUE if X € dD

FALSE otherwise
2. eval' ( Z, dD ) for 2 = (AND X Y ) and X, Y € L(FCG)
TRUE if eval' (X, d;) and eval'(Y,d;) is true
i FALSE otherwise
3. eval' ( &, dD ) for 2 = (OR XY ) and X, ¥ € L(FCG)
TRUE if eval' (X, dap) or éﬂ'( ¥,d, ) is
— true or hoth '
FALSE otherwise
4. eval' (%, dy ) for z = (XOR XY ) and X, Y € L(FCG)

TRUE if eval' (X, d) or eval'( Y, d,)is
= true but not both

FALSE otherwise
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5. eval' ( Z, dy ) for % = (NOT X) and X € L{FCG)
FALSE if eval'(x, dD) is true
TRUE otherwise

Now we generalize over eval' as follows:
eval( X, D ) for X € L{FCG)

TRUE if eval' (X, dD) is true for at
least one dD €D

FALSE otherwise

Example

Let b = {{A}Y ana FC = (ORA (NOT A )) then
eval (FC,D} = TRUE

Proof:
Let d, € D be (), eval'(a, {a}) = TRUE and eval'( (NOT m),{a])
- FALSE, so eval' ( (ORA ( NOT & )), |A} ) = TRUE.
So eval (Fc ,[aY)) is true
Example
et b = [@,cy,fan} ,[Bc) [8,0Y5 ana
FC = (AND ( XORA B ) ( XORC D ) } then eval { FC , D )
is true.
Proof:
Let dy € D be {A, cl
then (i) eval'( A, {A,c} ) = true and (ii) eval' ( B,{a,c})
= false. So (iii) eval'( ( XOR A B ), {a,C}) = true (from (i) and
(ii) ).
Moreover (iv) eval'( C,Eg, ¢y ) = true and (v) E!El'(D ,{A, CE)
= false.
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So (v) eval' (( XOR € D) , Ia,c}) = true (from iv and v)

and therefore eval'( (AND (XOR A B ) (XORCD )} ) , !A,Cg) = true
{(from iii and wv}.

This ends the proof.

To illustrate the relation between the truthlogical and

gset theoretical interpretation of FC's a small table illustrating
some sample relationships in detail is presented.

In the table: eval[ Y, ext(x]) with ¥ on the lines and

X on the cclumns.

A (AND A B )} _{OR A B ) (NOT A ) {XOR A B}
A T T T F T
(AND A B F T T F F
(OR A B) T T T F T
(NOT A } F F F T T
{XOR A B) T F F F T

part 3: operations
-i- Matching

Feature complexes are used in linguistic systems in the

context of tests investigating whether two feature combinations
match. For this purpose FC's as formalized in previous sections
are particularly useful, because now we can define exactly

what nontrivial matching is about.
Definition
Let FCl, FC2 be two feature complexes then we say that

FCl1l matches with FC2 if and only if eval(FCl, ext[Fczn is

true.
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Note that according to the definitions the functions pick

out those features of FC2 which are relevant as regards

FCl and not vice-versa. E.g. if the adjective agrees only

in gender, say, with the noun, then whatever other information
may be contained in the FC associated with the noun, only

that feature will determine the truth value.

Note also that we can compare complexes of features with

each other and in both directions.

In some cases it may be important to remember for what

subsets of the domain the two feature complexes match.

E.g. if the determiner matches with the noun, then a verk

later on should match with the same subsets as was the case

for the determiner. We call the sets for which a match resulted

in true the -satisfied domain. |

Definition

Given two feature complexes FCl and FC2 then the satisfied
domain is
{d | d@ ¢ ext(FC2) and eval' ( FCl, 4 ) is true
- ii- Combination
We finally discuss the noticon of combination
Definition
If PCl and FC2 are feature complexes and Gl = ext ( FCl ) and

G2 = ext { FC2 ) then the extensional combination of FC1 and
FC2 denoted as comb,(FC1,FC2) = {Y Uz l Y& Gl 72 & G2.3
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Inference trees

So far cross classification was formalized as a lccal
process: As soon as certain features appear we make
inference by considering only that part of the tree
further on that contains the features already present.
This works out very well for such application§ as concord
where cross classification is typically leoccal. But in
other situations (e.g. semantic feature matching) it may
be of interest tohave a global cross classification, in
other words if, say +HUMAN, is present in a feature complex
that we can match this with +ANIMATE, without the need to
say in each feature complex (AND HUMAN ANIMATE) .

We therefore introduce an additional toecl in the representation
language of feature complexes, namely global inference
rules which are applied embedded in the calculus itself,

First we define a representation for the inference rules
, the se called inference tree, then we define how

it can be applied Quring the . matching of feature complexes.
(i) Inference trees

Definition !
|
|

An inference tree is a tree in the usual sense with features

on the nodes.

Example:
ENTITY
,iSQMMON = COMMON
+ CQUNT - COUNT + ANIMATE = ANIMATE

+ ANIMATE =ANTMATE +HUMAN ~HUMAN

/ \ + ABSTRACT
~ ABSTRACT

+ HUMAN = HUMAN

N /
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Definition

The list representation.of an inference tree is the

standard list representation of a tree as defined earlier.
(ii) Evaluation

The only thing we have to redefine as regards the given
defintion of eval in the feature complex calculus is

the truthlogical interpretation.

Recall that

eval' ( X, dD) for X € FS

TRUE if X € dD

FALSE otherwise

Now we extend this as follows
Definition
The father of a node X, denotes as father(x}) is the node
immediately dominating a node X.
The fathers of X denoted as fathers (X)

= [Y | Y = father(x) or ¥ = father(x'),x'€ fathers(Y)}
Definition

eval' (X, d, } for X € FS8

D
TRUE if X €4 or { ix)d (X € fathers (X))
D

FALSE otherwise

The rest of the definitions remains the same.
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The use of syntactic fedtures

We now have a way to represent and compare feature complexes
with each other. Let us now discuss their role in language.
It turns out that the discussion can best be split up in
three parts according to the major classes of functions:
object, adjuncts and functionwords.

{i) Objects

With each object a particular feature cdmplex ls associated
right from the start. This feature complex contains at least
all the possible feature constellations as regards gender,
number and case,. '_

Th ambiguity present in the feature complex of the cbject
is during analysis restricted ar extended.

(i) restricted by all subordinates for which the concord
rule applies (each subordinate defines a subset of the feature
sets of the object) and by the surface case signal tests
(see later) which further restrict the case indicators in the
feature complexes:;

(ii) extended by means of a rule (to be defined soon) by
which features of a word are attached to the feature complex
of the object. E.g. a2 case sign sends some signal to the feature
complex of its head. The indefininte article may send the
feature 'undefinite' to the feature complex of the cbject,

etc.

(ii} Functionwords

The task of restricting or ekxtending the feature complex of
objects seems to be the maln task of words having the functicn
functionword. Indeed it can be gaid that it is their only
purpose of being there.

{(iii)} Adjuncts

A more complicated situation occurs with the adjuncts. They

"seem to have the behaviour of both objects and functionwords

as regards features. On the one hand adjuncts restrict the feature
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complex of their heads, e.g. the verb 'sleeps' in

'the sheep sleeps' restricts the ambiguity of 'sheep'

{sing or plural} to only singular.

But on the other hand verbs e.g., have a feature complex on
their own which contains such things as future, perfective

or other modification items.

The latter feature complex is also subject to restrictions and
extensions, either by other adjuncts or by functionwords.

It follows that

(i) with objects we asscciate in the lexicon one feature
complex subject

(ii) with functionwords we associate in the lexicon one
feature complex that is itself not subject to change during
analysis but which itself evokes the change;

{iii) with adjuncts we associate in the lexicon two feature
complexes:

-a- one used to restrictthe feature complex of others (we
call this the external feature complex),

-b- one that is associated with the adjunct itself (we
call this the internal feature complex}and objects have
only an internal syntactic feature complex according to this

terminology) .

We need some additional rules to cover the use of syntactic
features as described above. First a rule saying whether there
is concord or not. '

" Definition

Let concord: F +{TRUE, FALSE& be a function such that

TRUE if the feature of the
word having the function should
match with the features associated
with the :head

concord (f) =

FALSE otherwise

the function is defined (¥ £) (£ € F-adju V F-functw)}
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Second a rule telling whether synt. features are sent
through

Definition

Let send-through : F - {TRUE, FALSEY be a function such
that

TRUE implies that features of the
subordinate are to be attached
to the internal feature

send-through{£f) =
complex of the head

FALSE implies no action
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(ii) Example

To see the functioning of feature complexes in the language
system, consider the following example from German {(all
feature complexes are dw®, to K. Lambrechts):

(Er setzte sich) neben ein fremdes Fralilein"
We start with "Fraiilein" having the feature complex:

AND

/\

NEUTER

XOR XOR

/\

WEAK STRONG

/\

SING PLURAL XOR

NOM / \\\
DAT ACC

AND

[N

PLURAL GEN

with extension:

((NEUTER STRONG SING NOM) (NEUTER WEAK SING NOM)
(NEUTER STRONG SING ACC) (NEUTER WEAK SING ACC)
(NEUTER STRONG SING DAT) (NEUTER WEAK SING DAT)
(NEUTER STRONG PLURAL ACC) (NEUTER WEAK PLURAL ACC}
(NEUTER STRONG PLURAL DAT} (NEUTER WEAK PLURAL DAT)}
{NEUTER STRONG PLURAL GEN) (NEUTER WEAK PLURAL GEN))

80 14 possibilities.
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Then "fremdes" comes in with feature complex:

AND

STRONG AND

SINé// \\\;‘R
AN

AND AND
NEUTER  NOT //\\\\
| GEN  MALE
DAT

This feature complex matches with that of the following

subsets of the domain:

( (NEUTER STRONG SING NOM)
(NEUTER STRONG SING ACC))

So we are left with 2 possibilities then the word "ein"

comes in with features:

AND\\\\\
STRONG AND
SING XOR
AND AND
MALE NOM NEUTER XOR
NOM ACC

"ein" matches with the same subsets of the domain, so it does

not help us any further.
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Finally we have "neben" with features:

XCOR

\

ACC OAT

and we are left with only one satisfied subset:

( (NEUTER STRONG SING ACC))

This reduction from 14 to 1 possible feature sequence is
typical for the functioning of the feature matches and it
is extraordinary that for such a complex feature system as
used 1n German - the efficiency for removal of ambiguity
is almost 100 %. Notice that we worked from right to left
here. It is possible to go from left to right also,
although then the processing becomes more complex.
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(iii) Discussion and further references

The concord phenomenon has since long been recognized
as heing an essential feature of language functioning.
In some languages {(e.g. German and Latini it plays a
much more important role than in others (e.g. English).
That may be the reason why in most linguistic theories
from Anglo-American origin concord is treated rather
badly (consider e.g. T.G.). '

The representation construct we have introduced here is
we believe the first nontrivial approach towards the
problem of feature representation within a formal
framework. We are currrently using this calculus not
only for syntactic feature matches but at several

other places in the theory and more in particular

at every point where a complex specification is given.

The feature complex calculus was applied to concord
within the German nominal group. Results appear

in Lambrechts and Steels (1977). Some more examples
will be given later.

The idea of - cross classification is already present in
existing grammars,especially for the cross classification of
semantic featUres or selection restrictions (the tree is

a translation of the tree in Chomsky,1965,83).

According to the general spirit of integrative grammars

such a cross c¢lassification was incorporated in the

grammar itself by means of rewriting rules ! Obﬁiously

it 18 more powerful to let the cross classification’

be active over the whole langquage, after all that is

what cross classificaticn is about.
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SUMMARY OF SECTION 1.1,

In this first subsection we presented the first pieces
of a modular grammar. In particular some rules having

to do with function.

We have first of all defined the notion of function and

a representation construct for functional relations in

the sentence (1.1.0} . Then we introduced some modules

related to the functional environment of a particular

function (1.1.1.) . In particular how the function of the subordi-
nate may be determined by the occurrence of a

functional relation of the head (1.1.1.1) and how the

function of the subordinéte may be determined by the

occurrence of other functional relations for the

same head (1.1.1.2).

The second phenomencon was that of order (1.1.2.). First
we investigated how the order of a subordinate is
determined as regards its head (1.1.2.1.}), and second
how the subordinates themselves may have an internal
order (1.1.2.2.}.

The third phenomenon we have investigated is that of
syntactic feature concord (1.1.3.).

In the following sections we go on with the presentation

of more rules. But now a second factor comes in, namely

"case. In a first subsection we introduce this new factor.
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1.2. CASE

1.2.0. Introduction to case

Although the theory of cases will here be introduced in
connection to the words of the language themselves, it

should be noted that there is a 'semantic counter?art'

to the terms and concepts. This counterpart will be

presented later on.
Definition

Let us consider a finite nonempty set of words W over a

language, then the case relaticns over W, denoted as CR,

is a relation in the set theoretic sense s CR C W x W.

If (wl,w2 } €CR then we say that a case relation holds

between wl and w2.

We furthermore distinguish subsets in CR, where each subset
defines a particular case relation. If a particular

case relation say C C CR holds between wl and w2, then we

say that wl has the case C as regards w2 or that wl is a C

of w2. wl is called the (slot)filler and w2 the frame
carrier of the relation pair (wl,w2 )

Ifiwl,w2 »€ CR then we say that the empty case, denoted
as NIL holds between wl and w2.

Example

In "{the) boy sings" a case relation holds between "boy"

and "sings". This particular case relation is often called

the AGENT case., We say that "boy" is the slot filler and
"sings™ the frame carrier and that "boy has the case AGENT

as regards "sings" or simply that "boy"' is the agent of "sings".

(Comment: compare these definitions with those of the notion

of grammatical function.}
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We now bring the notion of case in relation to a sequence

of words:

Definition

Let LATRER L be a sequence of words then the case structure
of Wy oees Wg is defined as follows:

if n = 1 then the case structure is empty
if n is greater than 1 the case structure is the set

of all pairs (w } such that a case relation holds from

k" k+1
W,

kB0 Yg4r1e
(Note the lack of any further restrictions compared to

the functional structure defined earlier)

Example

Given the sentence "John consulted the edited translation”,
then
the case relation AGENT holds between "John" and "consulted"
the case relation SOURCE holds between "translation" and "consulted"

the case relation SOURCE holds between "edited" and "translation™.

Now we define a graph representation for case structures

following the standard mathematical conventions.

Convention

If a case relation C holds between wl and w2 we draw a node
for wl and w2, if such nodes did not yet exist, and label

it with wl and w2 respectively. Then we draw a directed line
between the nodes and label the line with C:
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Example

For "John consulted the edited translation™:

TRANSLATION

The reader may recall that we introduced a simplification

in terms of trees of the graph structure representing
functional structures. This simplification is now impossible
because the conditions that guaranteed the possibility

of performing the simplification are no longer fulfilled. .
In particular there is not necessarily a unique topnode

ag is illustrated in the example. However it is pcossible

to apply the following operation on the graph which yields

a tree structure, albeit that it does not reflect the

graph structure anymore.
Convention

A subtree is constructed by group ing all pairs (aj, bi)
1 i é n with aj the top and bi all the branches such that

(aj (case; by} ... (case bn))-

1 n
All subtrees are then grouped under one top with label

case structure.

Example

For "John consulted the edited translation™:

case-structure

CONSULT EDIT

agent source source
JOHN TRANSLATION TRANSLATION
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Now we introduce a number of additicnal concepts related
to these case relations by making gradually further

abstraction of the surface account given above,
(1) Predicates

If we investigate in more detail the case relations that

hold in the language, certain regularities can be dis-

covVered in that a number of words all have the same particular
cases. To capture- this regularity we introduce abstract

predicates which are directly related to the words themselves.

The idea is that the case relations of a language are not
expressed in the grammar in terms of the actual words but
rather in terms of the predicates associated with these werds.
We will see later that these predicates play a very important

role in the semantic processing.

In order to enable us to speak about the predicates of a
word w, we define a functicon assigning a predicate to a word

(and one word may have different predicates).
Definition

Let W bet the set of words and P the set of predicates, then
predicate: W - SRP) is & function.

We say then that the case relation {(wl,p) " wl € W and

P € P holds if (wl,w2) € CR and predicate(w2) = p.

(2) Argument slots
In order to specify in the grammar what particular case

relations holds, we intrcduce an auxiliary notion, that of

an argument slot., We denote an argument slot by the

sign L_Ji where i is an index.

Just as the notion of predicate, the concept ¢f an argument
slot can only be understood in a semantic context (cf. supra),
nevertheless we introduce it here making abstraction of these

deeper motivations.
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An argument slot is simply an 'open place' that can
be filled (under certain conditions). For the moment we
say that words fill this open place.

Definition

Let AS be the set of argument slots, then we say that

a potential case relaticn @—Ji,p ) holds iff

{ 3wl) { ﬂw2) ( (wl,w2> & CR and predicate (w2) = p)
where p € P and wl,w2 € W.

in addition we introduce a label function that assigns a

case label to each member of a particular case relation:
Definition

Let label: AS x P -~ L with L the set of labels
be defined as follows label (L_Ji, p) = C iff
{L1.,p* holds with LJ, € As and p € P.

We have now made abstraction of both members of a case
relation. Now comes the next step: to make abstraction of

the case structures.
{3) Case frames

The regularity mentioned before was such that the

same set of cases occurred for a number of words in

the language. It fcllows that we need a way to state
explicitly what cases occur with what predicates. We call

such a statement a case frame.
Definition

A case frame {p, L_Jl, e g L_Jn )is an n-tuple
1 £ i é n where p € P and(L_Ji, pYy 1is a potential.

case relation
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Convention

Let (p, t-,, «.. L—’n ) be a case frame then we
normally write

(p label1 e 1abe1n} for label ( ﬂJi,p Yy = labe}i
Graphically:

Example

Let (ACT agent time instrument place ...) be a case frame

then we represent this graphically as

aow

ingtrument

On the relation between grammatical functions and cases

If we compare the functional relation that holds between

two words and then Parallel to it the case relation we
discover that there are two situations: _

(1) The grammatical function between filler and frame

carrier is one between subordinate and head. This is the

best known =ituation and it is often the only one take into
account. '

Examples are "he gives a book to Jchn", "a bodkﬁ and "to John"
both fill a slot in the case frame of "9tves" and are
functionally both subordinates of "gives" .
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(ii) The grammatical relation between filler and

frame carrier is one between head and subordinate.

80, the exact reverse ! An example is "the translated text"
where "text" fills a slot in the frame of "translate",

~although "translate" is a subordinate of"text".

This second sort has been considered in the past as

less fundamental than the first one,'some_theories
(particularly in a transformational context) express

all case relations as relations of the first sort, where
transformations are applied to bring the second sort in
the format of the first . We do not see any reason for
that. Both sorts are equally valid, although the strategies
to parse the first sort are quite different from those of

the second one.

On the relation between case structures and surface phenomena

In the next paragraphs we study the surface phenomena which
the language producer is using to signal the presence of
certain functional relations and certain case relations.
These surface phenomena are:

(i} Each potential case relation implies the occurrence
df certain semantic properties for the candidate filling the
slot; )

(ii) each potential case relation implies the occurrence of
certain syntactic sigmls (case signs, morphological éffixeﬁ
word order) for the candidate £illing the slot. o

Before we can discuss in detail how these two phenomena are
determined we have to introduce the two facters which play
a role in that. These two factors are '

(i) the communicative function of the predicate,

(ii) the viewpoint by which the case frame is related

to the rest of the semantic information.
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(a) The communicative function of the predicate

In a communication situation a predicate can be used

for various purposes: it can be used to introduce an entity
or a class of entities to the listener, to modify or
amplify other predicates, to give more information about
an already introduced entity, etc. As should be clear

from the previous sections,in cur linguistic theory
communicative functions are studied under the heading

of grammatical functions.

We have indicated that with each of these grammatical functioﬁs
there corresponds a number of surface phenomena. This section
is a continuation of this discussion but the notion of case

is now a supplementary factor.

Recall that there are three main classes: objects, @adjuncts and
functionwords. As functionwords are words nnt introducing

per definitionem any new semantic predicates they can be left out
of the present discussion.

(b) The viewpoint of the predicate

The second factor is the viewpeint of the predicate (in

some earlier publications we have called this the informative
function of the predicate). The viewpoint of a predicate

is the way in which the predicate is related to the rest

of the information. This differs slightly from one function

to another.

(i) When the functicn of the predicate is the introduction of
entities (i.e. the predicate has the function object) then the
viewpoint is the case relation that holds between the entity
that is being introduced and the predicate.
E.g. take the case frame of TRANSLATE with cases self, agent,
source, result, then the viewpeoint is

self in "the translating of a text"

agent in "the translator of a text"

result in “the translation of a text".
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Notice that each time the same predicate‘is used,

namely translate and each time the same function: object,
but the viewpoint has changed. .

Note that there is not necessarily a language word for
‘each possible viewpoint in a case frame (e.g. there is

no single English word introducing the source of translate}.

Here is another example: take the case frame of TRAVEL
with cases self, agent, destination, then the viewpoint is
self in "the travelling of John" and "to travel is great fun"

agent in"the traveller arrived earlier".

(ii) When the function of the predicate is to provide

more information about an already introduced object or
predicate, then the viewpoint is the case slot that is
filled by the object or predicate in the case frame of
the predicate.

Take first the case where a predicate provides more informaticn
about an already introduced entity, i.e. the predicate has
the function cf a gualifying adjunct, e.g.

(a) the translated text

(b) he translates the text

(¢) the text translated by him...
The viewpoint of translate in (a) is result (or source ! there
is ambiguity here) because the entity introduced by “"text"
£fills the result case of translate. The viewpoint of
translate in (b) is agent because the entity introduced
by "he"™ fills the agent slot. The viewpoint is again the
result (or source) case in (¢) because the object
introduced by "text" fills the result slot of the frame
associated with translate.

Now take the other situation, a predicate provides mre
information about another predicate, i.e. the predicate

has the function of a modifying adjunct, then the viewpoint
is the case slot filled by the predicate of the head.

-1.74., -



case

Consider the abstract case frame for SLOW with cases
self and patient and for WRITE with cases self, agent
and result then in
"slowly written text"
the predicate of WRITE (i.e. the activity of writing itself)
fills the patient slot in the case frame of slowly.

In other words the viewpoint of slowly is patient.

From the discussion it should be clear that although the

notion of viewpoint differs slightly from one functiontype

of the words to the other, a viewpoint of a word is always one of
the cases of the case frame associated with the predicate of

the word. The viewpoint indicates the relation by which the

rest of the information is linked to the predicate having

the viewpoint and this relation is always a case relation,

i,e. a predicate-argument slot relation.

In conclusicn, we introduce a rule to relate a viewpoint to

a word.
Definition

Let W be the set of words and L the set of case labels, then
viewpointy W ~» L is a function relating a viewpoint to a word.

For the same predicate and the same function surface case
signals (in particular affixes ) are
often used to indicate a difference in viewpoint.
Consider:
"translator" , predic: translate, viewpont: agent
"translation", predic: translate, viewPoint:résult
and
"the translated text", predic: translate, viewpoint:source or result,
"the translating Interpreter”, predic: translate,. viewpoint: agent.
The active-passive distinction is another example where the

viewpoint is changing but the predicate remains the same.
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Important remark

Jugt as there is.for all predicates a literal and a
nonliteral usage,a viewpoint can be used both literally
and nonliterally. When you say"the author" then you
introduce an entity by saying that it is the agent of

a write act,‘but not necessarily literally at the moment
of speaking. In general the viewpocint of an object is more
often nonliteral than literal. What interests us are the

syntactic repercussions of the viewpoint, literal or not.

Notice that this situation often happens in the grammar.
Consider e.g. the gender distinction male/female/neuter,
as used in Dutch, German, French,etc. Although there
may be a relation between the natural sex, more often
this relation is no longer to be taken literally.

On the relation between case frames and semantic processing

As a final part in this introduction to case, we make the

link to the semantic interpretation process.

One of the main goals of a natural language communication is
the exchange of information. To make this process operational
one needs therefore a way to store information. This store

is called a data base, a universe of discourse; a memory
structure (such as a semantic network e.g.). The notion of

case plays an important role in its constiruction.

TLet us describe wvery roughly how such a memory structure may

be organized. Note that we will only deal with information from
episodic memory, i.e. the properties of the objects in a particular
universe of discourse or the factual knowledge rather than the
communication of purely semantic knowledge which is still andther
problem.
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A universe of discourse consists of a set of objects and
particular properties (possibly relations) of the objects.

Let us assign to each object a unique node and label it for
ease of reference. Besides object nodes we must have a

way of representing the properties., For this purpose we
introduce other nodes and call them property nocdes. We label
these nodes with a signal indicating what property is
contained in the node. The object nodes are brought in contact
with the concept nodes by connecting them by lines. As a
particular object node has a particular relation to a property,
we will label these lines also., The labels are called the

case indicators. Finally we bring properties in contact with
other properties by connecting their respective nodes by lines
and labelling them also.

Example 1

Let P1, P2 and P3 be labels for properties, 01, 02, 03 labels
for object nodes and Al, A2, A3, A4 the case indicators,then

we can construct the following memory structure:

Example 2

Using English like words for the labels of properties

one can construct the following example:

soUurce

INTENSE

agen
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Note

{a) Although we use natural language words as labels
for the properties, they should in no way be considered
as such. Rather one should consider them as expressions
in some coneptual language, €.d. as used in conceptual

dependency graphs (Schank,1975).

(b} Do not take these memory structures as a representation
of the content of a sentence . (In most linguistic

systems there is no difference between the memory
representation and the representation used to specify

what meaning will be conveyed in a particular sentence,

a viewpoint which we strongly object}.

The extraction of information is guided by various processes,
in particular coghitive or other psychological machinery
(starting with a stimulus to communicate) pragmatic

knowledge such as to whom the message is being addressed,

what the speaker is supposed to know about the subject

matter, etc.. As a consequence the extraction process can only
be made operational by embedding it in another task environment
such as a question/answering system, where there is a

need to communicate particular information.

Roughly such an extraction process might go as follows:

"Let us say something about the object node 02, first we

decide how to introduce 02, let us do that by means of its
proper name, then we decide about the basic topic to be
discussed in ¢onnection with 02: WRITE. With WRITE several
other case slots are connected, we decide to realize the
result case. Alsc we realize the concept PAST. Now we have

to choose a way of introducing 03. For this purpose we

pick out one of the properties attached to 03 namely

TRANSLATE. With 'translate' another case slot is being
associated in which the object 04 is located. To introduce

04 we use the concept LOVE. With LOVE we realize the patient
case which yields 0l. To realize 01 we use its proper name
which is Marilyn. The sentence resulting from the whole process
might be the feollowing one:'John wrote a text which was translated
by someone who loves Marilyn'.
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Resulting from other extraction processes many other
sentences are possible for the same piece of information,
e.g.:

'John wrote about Marilyn'

"The translator of a text written by John loves Marilyn'

'The author of a text about Marilyn is called Jchn’

'Marilyn is being loved by someone', etc;

The association of a case frame with a concept consists of
matching processes between a sequence of properties in the
memory and a series of properties associated with a predicate.
Also the different case relations that occur in the memory

are matched against the case relations found in the case

frames and the wvarious objects depending on these case relatiocns
are associated to their corresponding argement places or case

slots in the case frame.

The latter process can be compared to the process of lambda
conversion (as it is used in Church's lambda calculus, Church,1941}
and in the programming language LISP. Also here one starts

from 'abstracted' forms or frames containing a function name

and various slots for arguments (the bound variables). The

bound variables are then brought into contact with the actual
arguments by pairing the values of the actual arguments to the

bound variables on the association list.

Moreover the analysis process might also be regarded as such

a conversion process, so, we obtain a two-way conver fibility

of the deep case frames, one way from the memory and another way
from the language input. Other tasks such as inference making
need the same sort of process, i.e. the information has also

to be bound to the abstract case frames in order for

these systems to become active. Seen in this way the

case frames are really the 'filter' through which all

activities pass: '
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input

SEMANTIC |
FRAMES

conversion conversion

senten

ce

store production

conkgrsion akstraction

inference

and other
cognitive

Another way to express what happens when the case
frames are related to factual knowledge is to consider
~the memory structures as instantiations of the concepts
in the abstract case frames and the main task is then
to find frames such that particular infermation can be
regarded as an instantiation.

Schematically:

factual'knowledge frames

4instaﬁiiation
of
_instafitiation
- of

value slot

e —-—-- ———for
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Although there is a lot more to say about semantic
networks and case frames we trust that the reader has at
least scme idea now about the way in which we see the

further usage of case frames and the interrelations with
semantic interpretation.
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Discussion and further references

Although the noticn of case is very old (See Lyons
1968, 289 ff for its use in Latin and Greek grammar
theories) its reintroduction into modern grammar thecries

is normally credited to Fillmore (1968).

Our own view on case has been more influenced by its
use in artificial intelligence { cf. Wilks (1977),
Simmons (1973),Bruce(1975)) or cognitive psychology
(see e.g. Norman and Rummelhart (1975}). The memory
model introduced in the text is strongly related to.
the LNR memory structure (ibid.).

Eguivalents to the notion of a case frame as used here
is that of case paradigm (Celce Muria, 1972) of formula
and paraplate (Wilks; ibid.} and of units in the KRL
representation language (Bobrow and Winograd, 1977).

As far as we know the notion of viewpoint as used here
is new. (Do not confuse this with the notion of perspective
(Fillmore,1977), or topic/focus )

The idea that there are a fixed number of {(universal)

cases has been proposed by variocus authors (Fillmore,

1968, see Samlowski(1975) however for an evolution of the
cases, Schank(1975}). We do not follow it here.

It will become obvious in the applications later on that we
take a very free position as regards the substantial claims
‘about case. '
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Now we start with a discussion of the rules which use

as factors function and case.

1.2.1. Semantic features

We mentioned already that with each slot in a case
frame certain semantic properties are associated that
the entity which is going to fili the slot is supposed
to have. There are two problems in this context:
{i) how do we represent and compare semantic features;
(ii) how do we know what features become active in

a certain matching process.

The first question is quickly resolved. We will use

the same representation construct as for syntactic
features: a feature complex. The matching process

is equal as the one for syntactic features and we refer
to the formal definition already given.‘ Moreover an
inference tree for semantic features can be introduced
and used during matching. '

The second question is more difficult. It will be treated
in two parts: (i) first we define a formalism tb assoclate
semantic features with a certain case slot, and (ii) then
we discuss how we can find the semantic feature complexes

relevant to a certain match process.

We relate the features to a case slot by a -rule

called value restriction assignment.
pefinition

‘Let 8F be the set of semantic feature complexes then

value-restriction: AS X P - SF is a function.

We now update our definition cof a case frame, such that
semantic features can be specified in the same formalism.
as we earlier defined '

This is done by presenting a generative grammar defining
abstract case frames. Abstract'case frames are case frames -

to which the value restriction has been added.
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Convention
Let G =<kﬁb5tract—case—frame> ;{predicate) {sem.feat. complex?}
(case-lisﬁ),(case—label?} , Vt, <(abstract-case-frame) , P %
be a context-free grammar with
P :
{abstract-case-framey» — ((predicate (ase-listy )
{case~list? —w {caselabely {sem.feat.complex }
(case—labeldy — = .... the case labels
(sem, feat.complexy —=» ... the sem.feature complexes
{predicate? —= .... . the predicates.
Example
(WRITE (SELF act) (AGENT pérson) (RESULT text) )} is
an abstract case frame.
We will graphically represent abstract case frames as
case frames to which the sem.features have been added:
act person
RESULT
text
" Remarks:
No claim is here made about there being a universal and

definite 1ist of semantic features, nor do we make & claim
about a definite and universal list of cases. This all

depends on the interpretation of the formal theory. For the.
same reason no claim is made about the depth or conceptualness

of the predicatés and whether there should be a limited number of
them. ' - '
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The semantic features test.

Now we investigate in detail how this information about
semantic properties can be used in the language system.
The following points are relevant in this respect:

{i) How do we know the semantic features that are to
be satisfied, and

{ii) how do we know the semantic features associated with
the slot filler.

{a} Situation 1: the slot filller is the head and the frame

carrier the subordinate.

Example 1 : "the edited translation", where translation fills
a slot in the case frame of "edited™, and "edited" is thé
adjunct of "translation". ' '

Example 2: "The slowly written text", where wfitten fills

a slot in the case frame of "slowly” and "slowly" is an
adjunct of written.

Quéstion 1: How do we know the features to be satisfied ?

Answer: By means of the viewpoint of the case frame carrier.

Recall that for adjuncts the viewpdint denotes the case slot
that is to be filled by the entity about which the predicate
provides more information, it fellows that this entity must
have the features associated with this viewpoint.

E.g. Given the frame: (EDPIT {(SELF act) (SOURCE text) ... )

and the words ‘the edited translation", then with the viewpoint
source, for edited, the semantic features to beg satisfied are
'text'.

Question 2: How do we know the features to be associated with
the slotfiller ?

Answer:by means of the viewpoint of the slotfiller or by
means of the SELF case.
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Recall the distinction we made between modifiers and qualifiers.
A modifier 'modifies' the predicate, used for whatever purpose,
itself. Whereas a qualifier provides more information about

the entity denoted by a predicate.

Notice that adjuncts which are the subordinate of other

adjuncts always modify the latter.

So, if the slot filler is itself an adjuncf, things are
éasy, the semantic features of the slot filler are those
which are associated with the self-case in the case frame of
the predicate. ' '

Consider: "slowly written ...", “slowlj"'modifies the activity

of writing itself. We.éould_call the viewpeoint of slowly patiént,'
then the features of the self-case of write must match with the
,featufes of the patient case of slowly.

1f the slotfiller itself is an object, we have to take
the modifier/qualifier distinction into account:

(a) Qualifying adjuncts

In this situation the adjunct provides more information about’
the entity introduced by the object. Bus as we specified
already, the entity denoted by the predicate of the object
fills the case called the viewpoint ! Hence the éemantic
features of the slot filler are the semantic features

associated with the viewpoint of this slot filler.

E.g. "edited translation” with (TRANSLATE (self act) (result text)...)
and viewpoint of translate result, then the semantic features
‘of the slotfiller are text.

() Modifying adjuncts. _ _
But if the adjunct modifies the predicate used to introduce
the entity, then cbviously the self case again leads us

to the semantic feature éomplex of the slot filler just

as for adjuncts.
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Consider e.g. "slow writer", where "slow" can be meodifying
as well as qualifying (his writing goes slowly - he is

a writer and he is slow). If modifying the activity of
writing is the argument filling the patient slot of slowly
if qualifying the person itself is the argument filling
the patient case of slowly.

{2) Situation 2: The slot filler is the subordinate and

the frame carrier is the head.

Example: "He translated a text", where text is functionally
an object of translated and at the same time it fills a
slot in the frame of translate.

Question 1: How do we know the features to be satisfied ?

Now the answer is not so straightforward; the 1aﬁguage under-
stander has to find out himself what case the slot filler is
filling. He does this largely on the basis of surface
phenomena to be discussed in next section. For the time

being let us assume that we know what case the object is
filling, then it is obvious that the semantic features to

be satisfied are those that are assigned to this case.
Question 2: How do we know the features of the slot fillef ?

No complication arises here. We compute the semantic features
of the cbject via the viewpoint of the object and the features
that are assigned to. this viewpoint in the case frame of

the predicdate associated with the object.
Pinal remark:

Note that the semantic features of a word are NOT stored
directly with the words of a lanquage in the lexicon

{as is usually the case) but compﬁted in an active way
from the case frames. The advantage of this method should
be obvious.
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Discussion and further references

In the first generation of recent linguistic theories

and AI systems which made use of semantic fea .tures the

role of these features was located after syntactic processing,
i.e. right before the process of semantic interpretation

(and some even thought that this was the semantic interpretation
process itself (Katz, 1973)).

In the second generation of systems (so called semantics directed
parsers) semantic features are applied immediately in

connection to the input itself (cf.Wilks(1977) ,Riesbeck(1275})

We believe to have made some improvements about how that
should be done. The main improvement is the notion of viewpoint
which enables us to treat several generalizations not
captured by semantics directed systems, such as the usage

of the same frame for different surface frames (active/
passive, nominalization, adjective forms). In the syntax
based systems this generalization is obtained by transforming
all these surface forms into one format that can then be
matched with one single deep pattern.

We do not need to do that because we actively compute the
features from the same abstract case frame without changing

the structures of the representation.

A second improvement is the usage of a global inference
tree over the whole system and of feature complexes instead

of simple features.
Just as Wilks (1277) we would like to allow case frames

as value restriction and we will build this into the system

as soon as possible.
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1.2.2. Qrder

It was mentioned in a previous paragraph that it is
necessary for the language user to find out exactly what
case a slot filler fills on the basis of surface case signals
if the slot filler is the subordinate of the frame carrier:
These slignals are:

(1) a priori restriction

(ii} order

{(iii) surface case affixes and prepositions.

We will introduce a new representation construct called

a surface case frame or semantic network in which information
about (i) , (ii) and (iii) can be expressed. It will turn

out that viewpoint and function are the major -decision factors.
in the process of computing the surface casge frame of a given

abstract case frame.
(1) A priori restriction

No£ neeessarily every case slot that occurs in the case
frame is a candidate for being filled in a given situation.
In particular there will never be an object filling the
case of the viewpoint of the predicate. But other cases may
be misging as well,

Consider:

"The hammer broke the window" (the agent case is missing).
This restriction is functicn and viewpoint dependent because
if we take the same function but change the viewpoint -
from instrument to patient we can express the agent case:

"The window was broken by John".

We conclude that the first thing which is to be specified in

a surface case frame is what cases are allowed.
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(2) Order

Although the order of the cases in an abstract case frame
is considered to be irrelevant, the order in a surface
case frame is indeed relevant.
Consider e.qg.

"He gives John the book"
and not

" He gives the book John".

Note that this is a similar situation to one already
discussed, namely the phenomenon that the occurrence of

one subordinate may restrict the linking of other subordinates.
Here the occurrence of one case influences the structural
property of the predicate to such an extent that only

certaln other cases are allowed or conversely that other

cases should occur.

Let us now decide on a representation. construct expressing
order and a priori restriction. Let us use for this purpose
completion automata already introduced earlier.

Although we will now use the system in a different context,

the formal concept remains the same.

Recall that a completion automaton is a 5-tuple
ch = {V, Q, A, &, F? with Vv the alphabet, Q a set of
states, A the initial state assignment function, S_ the

transition function and F the set of final states.

In this application we interpret the alphabet not as
grammatical functions (as done earlier) but as cases.
Initially when no cases have been processed, the initial
state (defined by the initial state assignment function)
will be associated with the predicate. Whenever we fill a
new case slot, a new state (or more than one new states) is
associated with the predicate. If we want to see whether an
object fills a slot in the frame, it will not be sufficient
to check whether the semantic features match, in addition
the appropriate state should be associéted at that moment with
the word. Moreover at the end, i.e. when no more objects

occur, there should be a final state linked with the predicate,
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Examples

abstract frame:

(GIVE. {self act) (agent person) (patient thing) {addressee person)
Some surface case frames : (we underline the final states)

with viewpoint agent and function adjunct:

Hadressed

E.G.: "He gives John the book

addressee patient

I |

give/l — ' g give/2 " smgive/4

Note that for "he gives John" with John the addressee,
no final state is reached.

E.g. : "He gives the book to John"

I

patient addressee

give/l ——— g give/3 —— _  p-give/4

Note that "He gives the book" would equally well be accepted.
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With viewpoint addressee and with function adjunct:

patient 4 ) agent
E.g.: "John was giwven a book (by Peter) "
patient agent

|

give/l —— @ give/2 —  wqgive/3

With viewpoint patient and with function édjunct:

agent .

E.g.: A book was given to John (by Peter)"

addressee

addressee agent

give/l — s give/2 —  _pgive/3
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1.2.3. Government

The next phenomenon in relation to case is that of
surface case signals.
A surface case signal is a syntactic feature that is
associated with an object which is a candidate for filling
a slot in the frame.
There are 2 types of si als:
- featurefwhich are associated already via morphological
processes to the object, e.g. genitive, objective, dative, etc;
- prepositions which are subordinates of the object with
the function case sign. We can treat the latter as being
equal to the former by means of the earlier introduced
send-through rule: the preposition sends a signal, usually
we will take for this the name of the preposition itself,
to the feature complex of its head. In other languégeé
the preposition can he saild to 'cut out' a subset éf.the
feature compiex of the object. In any case the surface
case signalsiare syntactic features and they are resident
in the syntactic feature complex of the object; indeed they
should be because the case features may play a role in the

concord phenomenon.

Again the question raises whether there is only one type

of syntactic feature complex for each slot of the frame or
whether there are more, and so, depending on what.factors.
The:answer is that there are more and in particular that
‘there is a feature complex for each case depending on

the viewpoint AND on the function AND on the path in the
case network associated with the predicate. Sco the condition
of a transition in the surface case networks introduced

earlier is not a case but a feature complex.
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In the case network it is indicated what particular case
signal should be present. So in the analysis process we

will compute (on the basis of the viewpoint and the function)
what the surface case_frame is of a given predicate. Then we
will try to make transiticns for the objects on.thé basis

of the surface case sighals. If a transition can be made

we know immmediately what case this iject is filling

(and we can start computing the semantic features).

We can use the matching process defined earlier to see whether
the signals are present in the extension of the feature complex
of the object. Note again the importance of the relevance '

logic underlying the matching process.

Some examples:

viewpoint: agent

function: object

(AND OF COBJECTIVE) (AND TO OBJECTIVE)

example: the giver of a book (to John)

viewpoint: agent

function: adjunct

[addressee]
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One may wonder that such a detailed information will soon

lead to extraordinary databases all filled with surface

case networks. But this need not be so, if we assume that

there is a limited, finite number of 'conceptual' predicates

and that many different words which have the same implications

as regards case frames (that means the same surface case signals,
the same order restrictions AND the same value restriction
determining the semantic features) then we need only one abstract

and surface case frame for a whole class of words.

Discussion and further references

Several investigators currently working on semantics directed
parsers are trying to apply some sort of network formalism _
to regulate the order(Wilks, personal communication). It turns
out that the completion automata introduced earlier for order
restrictions of subordinates constitute a very interesting and
powerful solution. Mainly for the following reasons:

(i) A completion network is called by an input element Whereas
in normal network systems you go from the network tec the input.
via 'nonterminals' which call each other.

(ii) In a compietion automaton the networks are 'local'
in the sense that each network takes care of its relevant
surroundings without bothering about other networks running
parallel to it. _

{iii) The condition for a transition has nothing to do
with categorial information but wilth surface case signal tests.

(iv) In fact the networks here are transducers because they

process a sequence and yield as output the cases.
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Another major improvement is the following that

instead of transforming
‘we compute actively the
case frame on the basis
In this way we are able

format directly.

the surface_structure representations
surface consequences of a given

of viewpoint and function.

to relate case frames to the surface
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SUMMARY AND EXTENSIONS

In the preceding paragraphas we have introduced a

modular grammar as a formalism to expvess linguistic
knowledge. The most peculiar feature of this grammar is the
modularity of the description: each phenomenon is investidated
on its own and is assigned a special rule and it is not at all
clear (i.e. determined by the grammar) how the rules interact

to produce or analyse a complete natural language sentence.

This is in contrast to most available models where all the
phenomena are incorporated in an integrated description. The
reader will have noticed that this attitude change is leading

to a fundamental re-thinking of the properties of natural_language.

We have investigated two impertant factors: grammatical function
and case. In relation to these factors we dealt with the following
phenomena :

{i) The relations environment

We have seen two situations where a certain grammatical relation

can only occur i1f other gnammatical relations are present:

1.1. The first situation is that the head of a relation should

itself have a certain relation for the relation to hold

The two rules introduced in this context are:
FUNCTION -OF-HEAD specifying explicitly for adjuncts and
functionwords what the function of their head should be
TAKING-OBJECTS specifying whether a certain word with a certain
function may have a word with the function object as its subordinate.

1.2. The second situation is that the subordinate should itself

be the head of another relation. This is regulated by the

syntactic networks (cf. 1infra).

(ii) The ordering

The next phenomenon is the role of order made possible hy
the time dimension of language. There are two aspects here:

" ordering of the head and the subordinate and internal ordering

of the subordinates of the same haad.
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2.1, Ordering of head and subordinate
Again we needed two rules: one for adjuncts and functicenwords
and one for objects: '

POSITION specifies where a word having the function adjunct

or functionword stands as regards its head;

OBJECT-POSITION specifies where the objects of a given
word come.

2.2. Internal order of the subordinates
Again we need two rules one for adjuncts and functionwords
and one for objects:

SYNTACTIC NETWORKS associates with each function a transition
network of a completion automaton, where each subordinate will
induce a transition in the network and thus restrict the
possible subordinates left.

CASE NETWORKS: assoclates with each function for each
viewpoint of a predicate a transition network. Each case induces

a transition in the network and thus restricts the cases left.

{iii) Features
We introduced a representation construct for representing
complexes of features that showed to be of great use in the
-language system. It can be used as well for processing syntactic
as semantic features.
3.1, Synta ctic features
Syntactic features are associated directly with the natural
language word or result from the SEND-THROUGH operation which
dynamically changes the feature complex of a head.
The following rules make use of them:
CONCORD specifies whether the features of a subordinate
should match with those of the head of a relation
GOVERNMENT:to make a transition in a case network a
sequence of features should match with those of an object
ready to fill the case slot.
3.2. Semantic features
Semantic features result from active computation on the basis
of case networks. Th .r use is based on the assumption that to
fill a slot in a case frame, a value restirction must be

satisfied. Two rules are necessary here:
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SEM~FEAT-ADJUNCTS; specifies whether the head should
f111 a case slot in the frame of the subordinate and
so if this is by a modifying, or gualifying relations.
SEM-FEAT-OBJECTS: specifies that the object filling
the slot should satisfy the value restriction of the case.

EXTENSIONS

It is obvious that the list of rules given here is far

from complete and more research is needed before all

linguistic phenomena will be covered. We will now very

briefly indicate in what directions the current research

is going. This will give the reader an idea about the extendibility

of modular grammars:
(i) The problem of sentence structure

At the moment the grammar itself does not deal explicitly

with the structure of a whole sentence.

What is clearly needed here is some superimposed control
structure for sentences which evolves in parallel with the

rest,

In order to represent sentence structures such that £hey can he
consulted easily during parsing and producing we are thinking
about a new set of networks, this time called sentence networks.
The sentence hetworks come inteo action right f£rom the beginning
of the input - , and the condition for a transition is the
presence of a particular function. The idea is that when going
through a sentence you also go through a network and when a
certain path has been successful, a certain type of

sentence (affirmative, imperative, question,etc;) is recognized,
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Similarly for language production, you organize
the elements of the sentence in the format of such
a path.

(ii) Interconnection of sentences

This brings us to a second problem namely intersentential
relationships realized by relative pronouns or conjunction
words. Tt seems that such words depart from the axiom of
functional structures that one word can be the subordinate

in only one other structure, because they play a role in

both sentences. Thus in the sentence 'he left when she

came in', 'when' would be the subordinate of a relation to
‘come' but also of a relation to 'left'. The implications

of this viewpoint should be seriocusly considered. In particular
it would no longer be possible to conéider functional structures
as trees and some other aspects (especially for the parsing
process) should be reworked.

(1ii) Coordination

Another aspect on which we are working at the moment is coordination.
It is hoped that due to (i) the fact that our representation level
is that of functions and (ii) the modular character of the grammar,

a powerful start position for the investigation and processing

of coordination will be found. Rather than introducing

extra extensions of the existing grammar rules, we are looking

foy some general principles that underly coordination.

There are still other factors and syntactic phenomena that will
deserve attention. The point is however that a mecdular grammar
is per definitionem extendible with whatever sort of rules that

may turn out to be necessary.
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1.3, The structure of the lexicon

When discussing the rules of the grammar it could be

noticed that for several rules we need information that

is uniquely associated with the words of the language. In this
section we investigate what information exactly is to be
associaﬁed with the words. This asscciation is considered

to be an explicit assignment, i.e. wo do not deal with '
morphological processes that would enable us.to economise

on the explicit information.

Because the same word form can have many different functions
or meanings, it should be logically peossible to assign more

than one information sequence to the same word.
(i} function.

The first item in an information sequence is a subfunction.
If there is more than one subfunction and the rest of the
information is exactly the same, we will allow there to be

a list of possible functions instead of Jjust one.
(ii) predicate

The second item is the name of the predicate denoted by
the word. This predicate should be seen as 'conceptual’
as possible, because it will be the key to the abstract

case frame relevant for the word.
(iii) subpredicate (or concrete predicate)

In addition to the predicate we assign a subpredicate
which can restrict the general concept stated in the
predicate to a narrower application. We need this sub-
predicate because otherwise semantic information is lost.
At this meoment the subpredicate is optional. We therefore
often define it to be NIL,

- 1,101, ~



lexicon

{(iv) viewpoint

The next item is the viewpoint of the predicate in the
case frame associated with the predicate. From the
discussion of the grammaticél rules which inveolve the
notion of case, it must be clear that there is a viewpoint
for each word except for those having as subfunction some

kind of functionword {(but these words have no predicate either).
(v) syntactic features

In contrast to the semantic features which are computed

from the case frames, the syntactic features are immediately
assigned to each word for obvious reasons. As we

explained earlier, for adjuncts there may be two _

feature complexes: the external and internal feature complex.
These two feature complexes are then brought together in

a list and thus associated with the word.

(vi} send-through feature
Finally we need a specification of what kind of feature

complex is sent to the head if indicated so'by the
'send-through'rule.

This brings us to six information items in a sequence.
We summarize this in the fellowing definition.
Definition

lexicon: W = (I} is a function relating words with

sets of information seguences where an information seguence
1 ={(al,a2,a3,a4,a5,a6> with

al a function or a list of functions
az2 a predicate

a3 a subpredicate

ad a viewpoint

as a syntactic feature complex

a6  the send-through feature.
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Example

for 'father':

{ {nom:object fam.relation male-parent self (AND MALE STNG) NIL))
Ii Il Il

" I
function predicate subpredic. viewp. synt,feat . send-through
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1.4. SEMANTIC STRUCTURING

Although our investigations have not yet reached the

level of semantics as such we will deal in this section

with some topics situated on the borderline between syntax
and semantics. In particular we will present a representation
construct that should serve as the basis for semantié
interpretation. Later we will show how this construct can

be computed from a natural language sentence and how it

can be translated back into natural language.

Many important and interesting problems will remain outside

the scope of the present discussion., What we present here

is again the essential ground work: How function ahd case

relate to the structures we will present. First we introduce

cur viewpoint on Semantics which will of course be relevant

before we start with the treatment of the representation constructs

themselves.

1.4.1, Introduction to semantics

The whole area of semantics is somewhat unclear at the moment and
it is is therefore not wholly unnecessary to formulate an

overview of the field as we see it.
(a) The representational viewpoint.

The first "school" of thinking about semantics assumes that the
final result of a semantic investigation should be the definition
of semantic structures in which the meaning of a piece of language
is represented in a nonambiguous and fully explicit way. The

task of a semantic theory consists then in the definition of

a formal language in which semantic structures can be specified.
To be meaningful it should also be made explicit how the formal
language relates to natural language sentences. Moreover the
formal language itself should be defined completely: not only

the syntax of the expressions but also the (so called formql)
semantics, that is how the semantic structures themselves are

to be interpreted.
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Let us call this conception of semantics representational
semantics. It has been the main interest of linguists (cf.
generative semantics) and logicians (cf. predicate calculus
modal logic, etc.).Formal semantics is the specialty of
logiéians and Frege's method of interpretétion is an obviaus

example of their results.

One could say that the intuitive basis for representational
semantics is the idea that a meaning structure is the end-
product of language understanding, cf. Searle (1976,49):

'understanding a sentence is knowing its meaning'.
(b) The procedural wviewpoint

The second more recent "school" of thinking about semantics
claims -that the final result of a semantic investigation
should be the execution of processes. This is based on the
idea that meaning is not a representational structure but

a process (that uses representational structures as
byproduct}. The basic processes during interpretation are
about the storing and retrieval of facts, the planning and
execution of ¢ommands, problem solving in order to resolve

inferential problems or answer input guestions, etc.

Let us call this kind of semantics procedural semantics

It is the specialty of the computational linguists. Just as

for syntax computational linguists started with applying
existing linguistic models before they turned to a development
of their own syntactic thedries, the first attempts within
procedural semantics consisted in the application of (basically
logical) theories of representationdl semantics. It seems that at
the moment important developments‘are goiﬁg on in the procedural
semantics world. For one think the theory of programming
language semantics is currently reaching a state where

important results are coming out, for another thing, it

becomes more and more clear that fundamental problems of
semantics will only find a satiéfactory solution within

a '"process' environment.
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Thus e.g. the formal semantics methods used in logic (i.e.
hierarachical control structure from bottom to top) are being
replaced by more flexible control structures, where results of
the evaluation of a part are spread over the other parts

of the structure. Thus also another conception of the
representation of the language input itself emerges: instead

of being the representation of the meaning the representations
are now sSeen as the control structure of the process of semantic

evaluation.

This final point will be of particular importance for the

rest of our investigation. The structures we are proposing are

seen as useful information for the semantic evaluation but they

are by no means the only information necessary (think about
episodic information resulting i{rom previous text or world
knowledge}. Moreover the actual meaning of the wofds, which is

a program stating how the evaluation goes, is called on the

basis of the information structure rather than that the information

structure itself contains already the meénings.

It was not the aim of this thesis to put forward results on
the level of semantics. Tt will thereforé not be possible to
discuss these controversial issues in any level of detail.
What we will do here is define structures which contain
every information that the grammar can offer to the semantic

evaluation process.

We call such structures SR-constructs and the whole set of
possible structures, or the language of SR-constructs, the
SR-language or SRL. -

Although we will give a provisional formal semantics for SRL
(provisional because it still follows Frege's method of
interpretation) . the issue of effective interprefation will
not be dealt with here (although work in this connection is
already going on at the moment in our computational linguistics
laboratory, in particular work about memory representations.)

Let us now give a definition of SRL.
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1.4.2. The definition of SRL

The semantic representatlion language We will define in
this section consists of (recursive) trees. It is tailored
to logical representation languages such as the predicate
calculus or extensions of it. The use of trees instead of
linear symbolic expressions is justified by the internal
complexity of the constructs which are easier processed
" by humans as well as computers if the internal structure
is apparent from the formal outlook. For didactic purposes,
we gradually introduce the components of the structures
until we have the full power of the language. For the
definition of the syntax of SRL we will use a context-free
grammar. A complete definitidn of the language is given at
the end of this section. '

(1) Predicates and their arguments.

Let us call the objects in the semantic representation
language semantic representation constructs or briefly
SR-constructs.

-

The first notion of importance is that of a variable familiar
from logic or mathematics. In this context a variable will
mean two things: (a) on the level of syntax of SRL the
variable will be the topnode of an SR-construct such that

it can serve in ancother (or the same)tree to call the SR-
construct again (in other words we allow recursive trees).
(b) on the level of a semantic interpretation, a variable is
a place address which recejves the values of evaluating {i.e.
interpreting} the SR-construct.

The second notion of importance is that of a predicate.

A predicate 1s the name of a function or a relation in the
logical sense. Predicates can after interpretation have

as value an entity, a class of entities, a list of entities,

a truthvalue, etc.
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We formalize this in the following rules (the nonterminal
(pred—constr7 is an auxiliary symbol that will simplify the
grammar as will become obvious soon.)

1, { SR-construct ) - { {var » { pred-constr ) )
2. {var) - X1,¥2,%X3 ... names of wvariables

3.{ pred-construct } - (PRED (pred !} )

4. {(pred ) —» AND, FATHER, ..., names of predicates.

-ii-

Some predicates may take arguments in the usual leogical
sense. If this is the case we add them to the SR-construct
with an explicit label for the argument slot and a variable
referring to another SR-construct in which the semantics of
the variable are specified. The label for the argument slot
ig in linguistic theory called *he case label. It denctes the
particular relation of an argument to its predicate., In order

to incorporate arguments we extend the grammar as follows:
Rule 3 becomes

2. ({pred-construct )>(PRED {pred ' )
EARGS { { case-label) {wvar )+ ﬂ
and

5. {case-label ) - agent,patient, ... case labels

Example:

1. <{SR-construct? 1.2,3,4,5,5,2,2

(X1 (PRED GREATERTHAN)
(ARGS (ARGl X2}
(ARG2 X3) ) )

or as a tree (according to our standard conventions):
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X1
pred args
GREATERTHAN ARG1 ARG2
X2 X3

{SR~construct’} 1'2'3’4'5'5'2'%’§

(X2 {(PRED  SUM)
(ARGS (ARGl X4)
(ARG2 X5) ) )

or as a tree

X2
I
| 1
pred args
‘ |
1
sUM ARG1 ARG2
X4 X5
etc;
2.

(5R-construct 1'2'3'4'5'%:>

(X1 (PRED NOVEL)
(ARGS (AGENT X2)})

or
ﬁl
r
pred arrs
NOLEL AGENT

X2
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and
(Sr—construct) 1'2’3'%:$
(X2 (PRED JAMES-JOYCE) )
or
X2
I
PRED
JAMES-JOYCE
Semantics

The semantic rule associated with the syntax so far is

called predicate application, it can be stated as follows:

The value of the variable on top of the construct is obtained
by first evaluating the variables of the arguments and by then

applying the predicate to these resulting values.

Example

For example 2 to know the value of X1, we first evaluate X2. This
yields us a pointer to the entity named James-Joyce, then we
apply this result to the predicate NOVEL and obtain a pointer

{or a set) to the entities defined as the novels of Joyce.

{2) Elaborating the basic structure
(a) Viewpoint

It should be well known by now that the notion of viewpoint

is a fundamental aspect of our thinking about language. It is

a way to treat many of the relationships between surface case
frames of the same abstract case frame and an alternative to the
transformational treatment. Due to its importance we will there-

fore incorporate viewpoints in the semantic structures themselves.
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If the structure is introducing an entity, the viewpoint
will indicate what case slot the entity is filling in the
case frame of the predicate, i.e. in what way the entity is
related to the information contained in the predicate. If
the structiure is introduéihg more information about an
already introduced entity, the viewpoint will indicate the
relation to the rest of the information in particular via

which concepts the predicate is brought into the expression.

To incorporate this aspect in the grammar, we chandge rule
3. as follows:

3. {(pred-constr) -—» (PRED (Caselabél) <pred> )
BARGS ( £caselabeld <var)> ) * )]
(b) Concrete predicate

It may be of interest to divide the predicate itself into two
parts: the abstrac£ predicate, which is the call name of the
abstract case .frame used to externalize the predicate, and the
concrete predicate, which is the call name of the semantic
procedures of the predicate, i.e. a pointer to the “"meaning®
of the predicate. Because we are not yet involved in

effective interpretation, this concrete predicate is sometimes NIL.
This yields another extension of the grammar for rule 3:

3. ¢pred-constr S ~>»(PRED <viewpoint> (pred> J(pred> )

EARGS { <case-label> {var> ) * ﬂ

The just.mentioned extensions have no implications directly

for the formal semantics rule stated before , but the following
extension has, although we do not see very clear in the situation
at the moment.
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{(c) Determinators

There are many problems'of semantic representation having

to do with effects on the usual evaluation processes caused

by determiners and related words: Are the predicates to be
interpreted extensional (i.e. with reference to the universe

of discourse) or intensional ? Should the number of entities

be further restricted bo an arbitrary element of the set defined
by the predicate, only one of them, to the whole class
collectively or individually, etc. This kind of determination

is a well known problem area of semantics and the reader

should not expect us to find sclutions here. Instead we put

all determinators in a sort of garbage can and hang it under

the label DETERMINATION. By doing so we can go on with our _
investigations without needing to resolve all the problems involved :
For the same reason we will be silent about the formal semantics
of determination. Let us just assume thét it involves

indicators which play a role in the evaluation. It is hoped

that later developments will bring more clarity in

the issue.

We extend the grammar then as follows:
rule 3 becomes:
3. /pred -construct)—»(PRED <J(viewpointd {pred> Epred>j )
((DETERMINATION <features' )]
E ARGS <caselabel) <yar> )+ ﬂ

6. (featured —» distrib, ... features

(In practice we will allow feature complexes instead of
simple features).

(3) Combination of predicates

It is possible to relate in two important ways one predicate
to a particular SR-construct: '

(a) Qualifying: The predicate may introduce a new property
of the entity introduced by the main predicate in the construct.
E.g. in the sentence 'he had a French gardner', we introduce
an entity by the predicate 'gardner' and then we relate this
entry with the property 'beihg from France'. In a predicate

calculus notation one combines the two predicates via a conjunction;

- 1,113, =



semantic structuring

e.g. given Pl and P2 then it is said that P1l(x) A P2(x).

{b) Modifying: Second it is possible to modify the
other predicate itself (without direct consideration of
the entity). E.g. in "the early riser woke up late",
"early" modifies the "rising” and is not gilven as a
property of the entity introduced by the predicate riser.
In a predicate calculus notation one represents this as
composition of predicates: Given predicates P1 and P2, then
in P2(P1 {(x)), P2 'modifies' P1.

Now if we want to incorporate the distinction in the semantic
structures, we will need two different rules, one _
incorporating qualifiers and one incorporating modifiers.

But there is a small prohlem here. Sometimes the syntactic
information alone 1s not enough to make the distinction
properly. Hence we add a third type of structure where it

is undetermined.

We will attach gualifiers in an SR-construct by hanging each
of them on the top level variable with the label qualifier.
A gualifier can be another pred-construct. E.g. for the
phrase 'a novel by James Joyce translated by Francois Turlot'

we have
X1
- I
| | - |
PﬁED ARGS QUALIF
[ J ' I |
result write fiction agent PRED ARGS
l | +
X2 source MTRANS what
translate I
X1
X2 X3
pred ' pred
[ | | |
person name J.Joyce person name F.Turlot
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(Notice how the label at the top of the SR-construct is
used to introduce the entity in the frame of the qualifier}.

Now for modifiers, we incorporate them in an SR-construct
directly under the predicate node and the viewpoint here
will have as slot filler the predicate itself.

Example: "early riser"

X1

|

PRED

agent become awake MODIFIER

PRED
|

r
lcoate locitime e;rly

i.e. the'becoming awake' f£ills the slot 'locate' in the

predicate loc% time (= locate in time).

Finally if it is undetermined whether a predicate is modifying
or gualifying, we will hang the structure under the topnode
of the SR-construct with the label UNDET.

We extend rule 3 of the grammar to deal with all these aspects
as follows: -
3. ({pred-construct) — (PRED (viewp) (pred) B@red)}
[(MODTIHER ('pred—construct>)+ )
[(DETERMINATION (feature> )]
{(arcs { (case-label} ¢vary) 1))
FQUALIF (pred~construct )*J
EUNDET {pred—construct'> } +J

Semantics

The semantic rule associated with the extensions jjust provided
goes asg follows:

To evaluate a predicate with a modifier node, first evaluate
the arguments of the topnode and the arguments of the modifier
then apply the result to the combination of the modifying and
the mainh prediecate.
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To evaluate a qualifier, evaluate the predicate construct

hanging under the gualifier node.

Complete syntax of SRL

1. (SR-construct) -s= { {var)(pred-construct) )

2. {var? —> X1,X2, ... names of variables

3. {pred-construct)> — (PRED <{viewp> (pred) (pred>

EMODIFIER (pred-construct’ )+.J)

((DETERMINATION (featurey")]
{(ARGS ({case-label) {var> )1 )]}
EQUALIF {pred-constr? )+]
GﬁNDET <pred—constr} )+]

4. (pred ) —»AND, FATHER, ... names of predicates
5. (case-label® —» agent, patient, ... caselabel
6. {feature) —» distri, ... features

On the relation between SRL and natural language

In next chapter we discuss a system that will enable us to
relate natural language sentences to SR-constructs. We here
discuss very briefly the principles on which this relation will
be based.

In the foregoing we discussed two important factors of
language: function and case. When introducing the notion of
factor we mentioned that a factor has a double role, on the

one hand it induces a number of surface phenomena; on the other
hand it has an imﬁct on the semantic processes. This impact is
such that with each grammatical function there corresponds a
particular process of structure building. It follows that the
linguistic knowledge necessary to construct structures from
functions is essentially procedural knowledge. We will see

clearcut examples of this in next chapter.

The second basis for the construction process is the application
of a number of so called 'optimalization rules', i.e. rules
which expand the bare structures by decomposing the predicates

by spreading local information over the whole structure, etc.
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E.g. For 'French wine', 'French' will be decocmposed in

a predicate (e.g.'out-of') and an entity node intreducing
'France'. Or for 'he hammered nails into wood' we expand
'hammer' with a caseslot for the instrument and a new

entity node introducing the entity 'hammer’.
Again more information about this will be provided in

the next chapter when we come to a detailed discussion
of the parsing process. ‘ :
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Discussion and further references

There is an enormous literature with examples and
discussions of semantic representation languages and it
would lead us too far to review it here.

The procedural viewpoint is as the moment not yet very
widespread in linguistics. The term procédural semantics
is due to Woods (1965). A very strong example is provided
by Winograd (1972). For an example of the approach
followed in the theory of programming language semantics,
the formal basis for the procedural viewpoint, see Milney
and Strachey (1976). Y
A typical semantic representation language from a procedural
viewpoint was designed by the Philips research team

(see Landsbergen (1976) and Scha{1%76)). For further
references about the process of constructing semantic
structures see the notes after its detailed discussion in
next chapter.
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