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with α ≥ 0
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Self-training setup

First step: labeling additional data

TRAIN EXTRA

Second step: labeling the test data

TRAIN TESTEXTRA

Sagae (2010) argues that self-training is only bene�cial if 
training and test data are su�ciently dissimilar. But how to 
identify situations for which self-training helps?

Research question

Observations

Performance of a part-of-speech experiment is inversely 
proportional to the dissimilarity of the corpora involved.

The various di�erences between corpora.

Self-training performance gain expressed as a di�erence.
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Use performance indicator δ based on the similarity score beween test 
and training corpus (d1) and test corpus and the unlabeled data (d3) to 
identify good self-training setups:

If δ is +1, gain is expected; if δ is -1 no gain is expected.

Proposal

δ = 

- 1d1

d3

- 1d1
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Similarity measure selection

Name r2

Rényi
Kullback - Leibler
Skew
sUWR
Jensen-Shannon
Overlap

0.083 - 0.987
0.986
0.224 - 0.985
0.874
0.863
0.051

Additional research question:
Is the correlation coe�cient between 
similarity and accuracy a good crite-
rion for selecting the best similarity 
measure? 

Observation: a higher correlation 
coe�cient ensures that the per-
formance indicator will be better, 
but the curve �attens once a cer-
tain r2 level is reached.

Most metrics reach the required 
correlation level, except overlap 
and some values of the para-
metrized similarity measures.

Name F-score

Rényi
Kullback - Leibler
Skew
sUWR
Jensen-Shannon
Baseline
Overlap

25.15   - 42.33*
40.79*
33.13* - 42.94*
38.04*
41.72*
25.61
22.09

Self-training gain prediction

Baseline: assume that all self-training 
setups lead to performance gain.

Using the performance indicator δ 
almost always helps to identify 
self-training gain.

Rényi and Skew divergence have a 
parameter α.
Observation: increasing the in�u-
ence of the test corpus in both simi-
larity measure leads to a decrease in 
performance.

* indicates when performance is signi�cantly 
(5%) better than baseline. Using approximate 
randomization testing.

Corpus and machine learner
Part-of-speech tagging experiments using the British National Corpus (2001).

Nine domains, each domain corpus limited to 1,500,000 tokens.

Nine domains, three domains needed per self-training experiment means
504 self-training experiments (74 with performance gain; 430 without).

The machine learner is MBT (Daelemans & van den Bosch, 2005) because of
its competitive performance and processing speed.  

Conclusions

- If self-training does not help. The failure may be attributed to the combination of corpora as 
  well as to the possibility that self-training does not help for the task

- Weakening the in�uence of the test corpus increases performance of parametrized similarity 
  measures 

- The value of r2 between similarity and accuracy can be used to select a suitable similarity 
  measure

- It is possible to identify self-training setups that will lead to performance gain
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