
Bijgevoegde stelling bij 
Daelemans, W. (1987) Studies in Language Technology: An Object-Oriented Com-

puter Model of Morphophonological Aspects of Dutch. 

Excessive copying of descriptions in parsing with unification-based grammar formal-
isms can be prevented by using a system based on the propagation of cancellations in 
a self-updating dependency network. 



KATHOLIEKE UNIVERSITEIT LEUVEN 
DEPARTEMENT LINGUISTIEK 

S T U D I E S IN L A N G U A G E T E C H N O L O G Y 
An Object-Oriented Computer Model of 

Morphophonological Aspects 
of Dutch 

WALTER DAELEMANS 

Proefschrift aangeboden ter verkrijging 
van de graad van doctor in de Letteren 
en de Wijsbegeerte 
Promotor: Prof. Dr. F. G. Droste 
Co-promotor: Prof. Dr. G. A. M. Kempen 

Leuven, 3 april 1987 



SAMENVATTING 

Het menselijke taalgedrag kan worden opgevat als een op kennis gebaseerde 
probleemoplossende activiteit. Wanneer een mens de relatie legt tussen betekenis en 
klank en vice versa, dan voert hij een aantal, meestal onbewuste, redeneerprocessen 
op een aantal kennisbronnen uit. We kunnen deze vaardigheid simuleren (of imiteren) 
door computermodellen te bouwen waarbij de nodige kennis door datastructuren 
wordt gerepresenteerd, en processen door programma's die van deze datastructuren 
gebruik maken. Voordelen van deze aanpak zijn aan de ene kant consistentie en 
volledigheid (voor de theoretische taalkunde), en aan de andere kant nuttige 
applicaties (voor de toegepaste taalkunde). In deze dissertatie proberen we enkele 
aspecten van het menselijke taalgedrag op deze computationele manier te benaderen. 
We gaan uit van een kort overzicht van verschillende disciplines die op een of andere 
manier een relatie leggen tussen de studie van de taal en de computerwetenschap. We 
richten ons daarbij vooral op de doelstellingen en de methodologie van de 
taaltechnologie, het deel van de computerlinguistiek dat zich bezig houdt met 
toepassingen. We proberen aan te tonen dat het paradigma van het objectgericht 
programmeren uitstekend geschikt is om linguistische kennis en processen te 
representeren. Alle programmeerparadigma's zijn equivalent omdat de programma's 
die zij genereren uiteindelijk allemaal Turing-machine berekenbaar zijn, maar voor de 
programmeur (en dus ook voor de programmerende taalkundige) zijn ze 
verschillend omdat ze verschillende metaforen suggereren om het probleemdomein te 
conceptualiseren. In een objectgerichte programmeerstijl worden alle concepten, 
entiteiten en gebeurtenissen in een domein als computationele objecten voorgesteld. 
Alle kennis, zowel declaratief als procedureel wordt opgeslagen in het object waar ze 
betrekking op heeft, en is uitsluitend via dat object bereikbaar. We geven een aantal 
computationele en linguistische argumenten ten voordele van objectgericht 
programmeren, en stellen een geavanceerd objectgericht kennisrepresentatiesysteem 
voor. 



We passen de objectgerichte filosofie toe op enkele aspecten van de Nederlandse 
fonologie en morfologie. We hebben onze aandacht beperkt tot de synthese van 
werkwoordsvormen, de analyse van samenstellingen, de detectie van interne 
woordgrenzen en lettergreepgrenzen, en fonematiseringsalgoritmen. De nadruk in 
deze beschrijving ligt vooral op de interactie tussen morfologische, fonologische en 
lexicale representaties en op de mogelijkheid tot uitbreiding van de ontwikkelde 
kennisbank. We geven ook een aantal beschouwingen weer over het ontwerp van 
een lexicale databank voor taaltechnologische toepassingen. 

De resulterende morfo-fonologische kennisbank kan op veel manieren gebruikt 
worden in toepassingen. We bespreken het concept van een auteursomgeving 
waarmee we een verzameling interagerende programma's bedoelen die het leven van 
de gebruiker van tekstverwerkers aangenamer maken. Twee van de modules in zo'n 
auteursomgeving: automatische woordafbreking en automatische detectie en correctie 
van spel- en typefouten worden in detail behandeld. We stellen programma's voor die 
een oplossing bieden voor de problemen die voortkomen uit de manier waarop in het 
Nederlands samenstellingen worden gevormd. Wanneer onvolledigheden in de 
kennisbank een volledige oplossing voor sommige sub-problemen onmogelijk maken 
suggereren we heuristieken. Heuristieken worden trouwens ook gebruikt om de 
efficiëntie van de ontwikkelde programma's te verhogen. 
Een domein in de Kunstmatige Intelligentie dat vlug aan belang wint is het intelligent 
computergesteund onderwijs. Een intelligent systeem voor computergesteund 
onderwijs bevat naast kennis over de leerstof die moet worden onderwezen ook een 
model van de leerling, heuristieken voor de diagnose van de fouten van de leerling, 
een module die gemaakte fouten uitlegt, en educatieve strategieën. We hebben een 
prototype van zo een systeem gebouwd voor het aanleren van een bepaald aspect van 
de Nederlandse spelling (de spelling van de werkwoordsvormen). 
Systemen om regels te testen bieden een fundamenteel nieuwe manier om taalkunde te 
bedrijven. Ze versnellen de ontwikkeling van regelsystemen en theorieën en voorzien 
de taalkundige van krachtige methodes om complexe interacties en neveneffecten van 
regels te controleren. We beschrijven het prototype van een dergelijk systeem voor 
het testen van fonologische regels. We geven eveneens een voorbeeld van hoe de 
linguistische algoritmen die we hebben ontwikkeld toegepast kunnen worden in de 
lexicografie. We schetsen een experimentele omgeving waarin de lexicograaf op een 
gemakkelijke manier lexicale databanken kan creëren, uitbreiden en veranderen. We 



schenken ook aandacht aan de manieren waarop ons morfo-fonologisch model zou 
kunnen worden gebruikt als module in meer uitgebreide systemen. Een morfologische 
component is onontbeerlijk in systemen voor automatische vertaling en in 
dialoogsystemen als deel van de syntactische analyse- en syntheseprogramma's. Een 
fonologische module is essentieel in elk systeem dat taal wil verwerken met 
spraaksignalen als input of output. De transportabiliteit en de modulariteit van 
objectgericht geprogrammeerde systemen maakt hen uiterst geschikt voor integratie in 
grotere systemen. We bespreken meer bepaald de mogelijke rol van ons 
fonematiseringsalgoritme in een spraaksynthesesysteem. 



ABSTRACT 
This dissertation presents a computer model of aspects of Dutch morphology and 
phonology. After a concise introduction to language technology as a part of Artificial 
Intelligence, it is argued that the object-oriented programming paradigm is ideally 
suited to represent linguistic knowledge and processes. An object-oriented implemen-
tation of aspects of Dutch morphology (word form synthesis and recognition) and 
phonology (syllabification, phonemisation, phonological rules) is presented to support 
this opinion. It is shown how this morphophonological module can be used to pro-
vide a principled solution to some problems in word level language technology (not-
ably automatic hyphenation and spelling/typing error correction) for which only a 
defective solution can be given using traditional (engineering) approaches. The utility 
of the module in the development of other applications is discussed. Among those, 
prototypes of the following were implemented: an Intelligent Tutoring System for 
some aspects of Dutch spelling, an environment for the creation and testing of com-
plex systems of linguistic rules and a lexicographic tool for the creation, updating and 
extending of lexical databases. 



TABLE OF CONTENTS 

Preface 1 

PART I: METHODOLOGY 
Chapter 1 Language Technology 

1.1 The Artificial Intelligence Approach 7 
1.2 Applications 12 

1.2.1 An Overview of Application Types 14 
1.2.2 Linguistic Research Tools 15 

1.3 Conclusion 17 

Chapter 2 The Object-Oriented Programming Paradigm 

2.1 Principles of Object-Oriented Programming 18 
2.2 An Overview of Object-Oriented Systems 25 
2.3 Syntax and Semantics of the KRS Concept System 27 
2.4 Object-Oriented Computational Linguistics 31 

PART H: LINGUISTIC KNOWLEDGE REPRESENTATION AND PROCESSING 
Chapter 3 Aspects of Dutch Morphology 

3.1 Morphological Synthesis 37 
3.1.1 Objects in the Domain of Synthesis 38 
3.1.2 Regular Inflection 42 
3.1.3 The Spelling Filter 45 
3.1.4 Interaction with Phonology and Error Diagnosis 49 
3.1.5 Irregular Inflection 50 

3.2 Morphological Analysis 54 
3.2.1 The Storage versus Processing Controversy 55 
3.2.2 The Algorithm 57 

3.3 Organisation of a Lexical Database 64 
3.3.1 Design Choices and Problems 64 
3.3.2 A Flexible Dictionary System 69 



3.3.3 The Top-10,000 70 
3.3.4 Conclusion 72 

3.4 Related Research 73 
3.4.1 Finite State Morphology 73 
3.4.2 Oracle 75 
3.4.3 Lexicrunch 76 
3.4.4 Other Object-Oriented Approaches 77 
3.4.5 Psycholinguistic Research 78 
3.4.6 Conclusion 80 

Chapter 4 Aspects Of Dutch Phonology 

4.1 A Syllabification Algorithm 82 
4.1.1 The Syllable as a Phonological Unit 82 
4.1.2 A Computational Approach to Syllabification 85 

4.1.2.1 Monomorphematic Words 87 
4.1.2.2 Polymorphematic Words 93 
4.1.3 Implementation of the Algorithm 95 

4.2 A Phonemisation Algorithm 95 
4.2.1 Overview of the Algorithm 96 
4.2.2 Representation of Phonological Data 98 
4.2.3 Syllabification and Word Stress Assignment 103 
4.2.4 Processing Syllable Strings 106 
4.2.5 Transliteration Rules 108 
4.2.6 Phonological Rules 108 
4.2.7 Evaluation of the Program 110 

4.3 Conclusion 112 

PART III: APPLICATIONS 
Chapter 5 Automatic Hyphenation in an Author Environment 

5.1 The Author Environment 115 
5.2 Automatic Hyphenation 117 

5.2.1 Background 118 
5.2.2 Adapting the Syllabification Algorithm 118 
5.2.3 Phonotactic Restrictions 120 



5.2.3.1 CHYP, a Cautious Hyphenation Program 122 
5.2.3.2 Optimising the Interaction with Analysis 127 
5.2.3.3 CHYP as an Autonomous System 128 

5.2.4 Other Approaches to Dutch Hyphenation 134 
5.2.4.1 Brandt Corstius 134 
5.2.4.2 Boot 135 

5.2.5 Some Residual Problems 139 
5.3 Conclusion 140 

Chapter 6 Automatic Detection and Correction of Errors 

6.1 Background 142 
6.2 Detection 144 

6.2.1 DSPELL: Verification with an Unlimited Vocabulary 146 
6.2.2 Evaluation of the Program 149 

6.3 Correction 152 
6.3.1 The Error Grammar Model 153 
6.3.2 The Similarity Measure Model 156 
6.3.3 The Phonemisation Model 158 
6.3.4 New Hardware 160 
6.3.5 A Note on the Correction of Spelling Errors in Compounds 161 
6.3.6 Performance 163 

6.4 Conclusion 164 

Chapter 7 Intelligent Tutoring Systems 

7.1 Introduction 166 
7.2 CAI versus ITS 167 
7.3 TDTDT: An ITS for Dutch Conjugation 168 

7.3.1 The Problem 168 
7.3.2 The Domain Expert 169 
7.3.3 Presentation of Domain Knowledge 169 
7.3.4 Testing and Diagnosis 171 
7.3.5 User Interface 174 

7.4 Conclusion 174 



Chapter 8 Miscellaneous Applications 

8.1 Rule Testing Devices 176 
8.1.1 Background 176 
8.1.2 GRAFON 177 

8.2 Automatic Dictionary Construction 181 
8.2.1 Background 181 
8.2.2 The Flexible Dictionary System 181 
8.2.3 Construction of a Rhyme Dictionary 184 
8.2.4 Related Research 185 
8.2.5 Conclusion 186 

8.3 More Applications 187 
8.4 Conclusion 190 

General Conclusion 191 
Appendices 194 
References 237 



PREFACE 

Language technology can be situated at the intersection of linguistics, psychology and 
computer science. It concerns itself with the development of computer programs 
which produce, understand and manipulate natural language. As a technology, it 
should produce artificial translators, artificial dialogue partners, artificial editors and 
artificial language teachers. As a science, it should provide an instrument to construct 
and evaluate linguistic and psycholinguistic theories about language structure and 
language use. Figure 1 shows the different modules which play a role in a natural 
language processing system. 

Input to a language processing system can be either spoken or written text. In 
the first case, acoustic signals must be transformed into a computer-readable 
representation. This process needs the concerted action of several linguistic com-
ponents (putting it in a single box as in the figure is a simplification). Input text is 
analysed at the word-level by a word parsing algorithm computing the internal struc-
ture of words, and at the sentence-level by a sentence parsing algorithm computing 
the syntactic structure of sentences. The semantic representation of an input text is 
computed using the syntactic and morphological representations, the lexical meaning 
of individual morphemes and additional information from domain knowledge and con-
textual knowledge. Advanced systems would also include a level of discourse 
analysis. In generating language from a semantic representation, syntactic and mor-
phological generation modules are used to produce written text. Additional intona-
tion, phonemisation (grapheme-to-phoneme transliteration), syllabification (computing 
syllable boundaries), and phonological rule components (summarised in a single box 
in the figure) are necessary to compute a phonetic representation detailed enough to 
be used by a speech synthesiser to produce natural-sounding speech. All analysis and 
generation components make extensive use of the lexical database containing the 
inventory of the morphemes of a language and their associated phonological, morpho-
logical, syntactic and semantic information. 

In this dissertation, I will be concerned only with those modules which are 
shaded in Figure 1: the linguistic levels at and beneath the word level. The text is 
divided into three parts and eight chapters. Part I is devoted to methodological 



considerations. In Chapter 1, a concise introduction to the field of language technol-
ogy is given. It is argued that language technology should adopt the methodological 
principles of computational linguistics proper, and not content itself with pure 
engineering, as is often the case. Solutions to problems should be theoretically 
motivated. This point of view was not dictated by a love of theoretical purity, but 
by a cool observation of the failure of an engineering approach. Chapter 2 describes 
the object-oriented programming paradigm and its benefits for programming in gen-
eral and for programming linguistic knowledge and processes in particular. The 



central claim in this chapter is that, although all programming paradigms are ulti-
mately equal in terms of Turing computability, they are very different in their ade-
quacy as notations for describing information and action in a particular domain. Part 
II is a description of our morphophonological module for Dutch. Different 
knowledge sources and processes in this domain are described in an object-oriented 
way. Algorithms to compute internal morphological boundaries, inflected forms of 
verbs, syllable boundaries, and a phoneme representation of spelling are described in 
Chapters 3 and 4. Part III describes a number of applications of the model in Part II: 
Automatic hyphenation, automatic spelling and typing error detection and correction, 
intelligent computer-assisted instruction, lexicographic tools, text-to-speech systems, 
linguistic rule-testing devices etc. 

The sequence in which the chapters of this dissertation are ordered is slightly 
misleading. It may suggest to the reader that I started from some methodological 
premises, selected a domain, constructed a computational model to account for some 
phenomena in this domain, and finally developed applications to investigate the use-
fulness of the model. In fact, the reported research started from two practical prob-
lems in the framework of word processing: automatic spelling error detection and 
automatic hyphenation for Dutch. It soon became clear that the solutions provided in 
the literature were adequate for English, but not for Dutch, due to the peculiar com-
pounding behaviour of Dutch morphemes. This led to the insight that a principled 
solution to the hyphenation and detection problem would involve a level of morpho-
logical analysis. However, the slowness of existing morphological analysis programs 
made them useless in practical word processing applications. One solution was to 
place part of the burden of analysis on the lexical database, which should contain 
wordforms, and not only morphemes. We could suffice then with a fast wordform 
parser to analyse compounds, provided we developed a morphological synthesis pro-
gram to construct and update the wordform dictionary automatically. From these con-
siderations, the usefulness of a modular, portable and complete model of at least 
parts of Dutch morphology became obvious. Interaction between morphology and 
phonology introduced new problems and new requirements for the model, for 
instance the fact that it should include a phonological level as well. After implement-
ing this level, more applications (such as grapheme-to-phoneme transliteration) 
became feasible, and so on. A lot of work remains to be done to obtain a complete 
model of all aspects of Dutch morphology and phonology, but we believe that the 
approach taken here, and the programs developed, make completion of such a model 
a matter of time rather than of invention. 



Implementation Note. Development of the programs began early 1984. Various ver-
sions exist, written in different languages and dialects (Franz Lisp, ZetaLisp, NIL 
Lisp, Orbit, Flavors and KRS) and running on different machines (Vax, Sun and 
Symbolics Lisp Machine). I am presently working on the integration of all relevant 
software into a single package written in Common Lisp and KRS and running on a 
Symbolics Lisp Machine. Source code listings are available for research purposes 
upon request. 

Production Note. The text was produced using the UNIX Troff formatting system. 
The more elaborated pictures were drawn using the Symbolics Lisp Machine picture 
editor. 

Acknowledgements. This work was financially supported by the EC under ESPRIT 
project OS-82 in which I participated both in Nijmegen and Brussels, and by a 
research grant from the Flemish Directorate for International Cultural Co-operation. 

First, I would like to thank my thesis supervisors, Prof. F.G. Droste and Prof. 
G. Kempen for giving me the opportunity to write this dissertation, and for their 
inspiring comments on my work. At the Katholieke Universiteit Leuven, Prof. 
Droste awoke a deep interest in me for theoretical linguistics. His clear view on the 
subject and his enthusiasm have always been an important incentive for me to go on. 
Prof. Franz Loosen of the psychology department of the Katholieke Universiteit Leu-
ven broadened my horizon to psycholinguistics and artificial intelligence, an evolution 
which I have never regretted. His encouragement has meant a lot to me. He also 
introduced me to Prof. Gerard Kempen of the psychological laboratory of the Katho-
lieke Universiteit Nijmegen, under whose supervision I started working on the com-
puter programs which finally led to this dissertation. I owe a lot to his incessant wil-
lingness to help me and to share his unparallelled knowledge of language technology. 
At the Artificial Intelligence Laboratory of the Vrije Universiteit Brussel, I finished 
this dissertation. I am very grateful to Prof. Luc Steels for allowing me to complete 
my work in peace in an intellectually stimulating environment. 

I am pleased to acknowledge the detailed, precise and useful critiques on the 
text which I received from the following people: Flip Droste, Gerard Kempen, Luc 
Steels, Carel Van Wijk, Koen De Smedt, Ronnie Geluykens, Viviane Jonckers and 
Marina Geerts. I have also profited from discussions on the subject with former and 
present colleagues, especially Henk Schotel, Dik Bakker and Bernard Manderick. 
Thanks are due to Eric 'Wyb' Wybouw for sharing his wizzardly knowledge about 



Lisp, Unix and Troff. I am grateful to my parents for their past financial and their 
continuous moral support. Finally, I would like to thank my wife, Marina, for her 
patience, her encouragement and her love. This dissertation is dedicated to her. 



PART I 
METHODOLOGY 

Human verbal behaviour can be viewed as a knowledge-based problem-solving 
activity. In mapping sound to meaning and vice versa, a person applies (unconscious) 
reasoning processes to a variety of knowledge sources (collections of highly struc-
tured information). This capacity can be simulated (or imitated) by constructing com-
puter models in which knowledge is represented by data structures, and processes by 
programs driven by these data. Advantages of this approach are consistency and com-
pleteness of description for theoretical linguistics, and useful applications for applied 
linguistics. Different disciplines relating language studies and computer science will be 
reviewed in Chapter 1, and the goals and methodology of language technology in 
particular will be studied. 

In Chapter 2, it will be argued that the object-oriented programming paradigm is 
ideally suited to represent linguistic knowledge and processes. All programming 
paradigms may be equivalent in that the programs they generate are ultimately 
Turing-machine equivalent, but to the programmer they are different in the metaphors 
they provide to conceptualise the problem domain. When using an object-oriented 
programming style, concepts, entities and events in the problem domain are 
represented as computational objects. All knowledge, procedural as well as declara-
tive, is stored in and accessible through the object. The computer appears to the pro-
grammer as a set of autonomous processors which can be addressed independently. 
A number of computational and linguistic arguments in favour of object-oriented pro-
gramming will be provided, and an advanced object-oriented knowledge representa-
tion system will be described. 



CHAPTER 1 

Language Technology 

Several disciplines attempt to establish a relationship between natural language study 
and computer science. This general effort has become known under the name natural 
language processing. We will not be concerned here with the classification and count-
ing of large quantities of linguistic data (statistical or quantitative linguistics), nor 
with the theory of formal languages and automata (mathematical or algebraic linguis-
tics). The remaining disciplines are captured under the name computational linguis-
tics. Computational linguistics, especially when dealing with the development of prac-
tical applications, is called language technology. 

In the following section, we will describe the Artificial Intelligence approach to 
computational linguistics (section 1.1). Characteristic of this approach is that it inter-
prets the study of language as part of cognitive science. Viewed from this perspec-
tive, computational linguistics includes computational psycholinguistics (the testing and 
implementation of psychological models of language processing), which we conse-
quently do not grant the status of an autonomous discipline. In section 1.2, it will be 
argued that language technology needs no separate methodology in which the metho-
dological constraints of theoretical computational linguistics are relaxed. This separate 
methodology is present explicitly or implicitly, however, in a lot of work in language 
technology. 

1.1 The Artificial Intelligence Approach 
The first twenty obvious ideas about how 
intelligence might work are too simple or 
wrong. 
David Marr 



In our opinion, the most fruitful approach to natural language processing is the one 
adopted in Artificial Intelligence research. AI can be defined as the science and tech-
nology of knowledge (see e.g. Steels, 1985). Knowledge is defined as information 
representing collections of highly structured objects (Kempen, 1983). More detailed 
definitions of AI can be found in any textbook on the subject (e.g. Winston, 1984; 
Charniak and McDermott, 1985). 

In an AI-perspective, language is viewed as a knowledge-based process (e.g. 
Winograd, 1983); a cognitive ability which allows people to apply (unconscious) rea-
soning processes to stored linguistic, world and situational knowledge. This cognitive 
system is described in a computer model in which knowledge is represented by data 
structures, and mental processes are represented by programs using or manipulating 
these data structures. As regards knowledge representation and manipulation, no a 
priori distinction is made between the linguistic and other cognitive systems. This 
position is not necessarily conflicting with some form of the autonomy or modularity 
thesis (e.g. Fodor, 1983) which views language as a computational cognitive module 
exhibiting only constrained information exchanges with other modules. We can envi-
sion an autonomous module making use of general knowledge representation, prob-
lem solving and learning techniques, yet at the same time having its own structure 
and interacting in restricted ways with other modules. 

The AI-approach makes use of a predominant axiom (or metaphor) from cogni-
tive science: the mind as an information processing system. This metaphor states that 
human and machine intelligence can be described at an appropriate level of abstrac-
tion as the result of symbol-manipulating processes; i.e. both people and (intelligent) 
machines are instances of the same informavore species (Miller, 1984). Cognitive 
science is a multidisciplinary science bringing together psychology, philosophy, 
linguistics, neuroscience, educational science and artificial intelligence in an effort to 
build programs or programmable theories which simulate or describe a cognitive 
behaviour, taking into account empirical phenomena (see e.g. Adriaens, 1986 for a 
linguistic theory developed within this framework). 

The basic relationships between cognitive system, computer model, algorithm 
and computational theory are sketched in Figure 1. The levels and interrelations were 
inspired by Marr (1977, 1982) and Kempen (1983). 

A computer model is a program running on some machine and exhibiting the 
same behaviour as the human cognitive system described by it. If this is the case, 



we say the model is extensionally adequate. Computer model and biological system 
together form the implementational level; the level in which an abstract cognitive sys-
tem is physically realised. The concept of a model always implies a hypothetical iso-
morphic (or homomorphic) relation between simulated system and simulating system. 
It is theoretically possible to posit this relation at the level of hardware: between cen-
tral nervous system and computer architecture, respectively. Recent efforts at connectionist models of cognition (e.g. Ballard, 1986) may be an example of this, 
although some workers in this field locate their research at the algorithmic level 
which we will outline shortly (e.g. Rumelhart and McClelland, 1986). But most 
often, the isomorphic relation is postulated at the level of computational theory. 

At that level we are concerned with an abstract and formal analysis of the prob-
lem (e.g. transforming sound into meaning in the case of language), and with the 



computational functions necessary to solve it. According to Marr, Chomsky's com-
petence theory is a computational theory in this sense. The computational level consti-
tutes a tertium comparationis between human cognitive system and computer model. 
The computer model is intensionally adequate if it implements an internally coherent 
and complete theory at the computational level. 

The algorithmic level is concerned with how the computational theory can be 
implemented. At this level, representations and processes transforming representa-
tions are basic building blocks. Efficiency considerations (in both processing time and 
storage requirements) and psychological data are especially relevant here. Perfor-
mance theories are usually algorithmic in nature. 

According to Marr (1977), AI-research should proceed in a three-step top-down 
manner. First, an interesting information processing problem is isolated. Next, a 
computational theory is developed describing and explaining the properties of the 
problem, and its basis in the physical world. Finally, algorithms are devised which 
implement a solution to the information processing problem in a computer model. 
This approach was applied by his group to low-level vision. Nevertheless, he also 
noted that there may be information processing problems for which no theory of 
computation could (yet) be developed. Hence his methodological preference for low-level vision problems like stereo-vision, as opposed to e.g. object-recognition. He 
suggested that most work in the field of AI has tended to be concerned with perfor-
mance and with the construction of algorithms rather than with the development of 
computational theories1. In his view, however, information processing problems are 
more important than implementation mechanisms, and the theory of computation 
should precede the construction of algorithms. 

We do not share this view. Language processing may be a problem for which 
no computational theory exists yet, as it lacks a clear basis in physiology and psycho-
physics. But this need not keep us from trying to construct one. We can use the 
evaluation measures2 of linguistics and the experimental data of psychology to 

1 Marr (1977) gives a 'sociological' reason for this: external pressures for early results 
made researchers jump from the problem to an algorithm implementing the solution without 
an intermediate stage of theorising. Chomsky (1983) has added a 'psychoanalytic' interpreta-
tion: many researchers do not want to get into areas where there may be far-reaching and 
abstract principles (computational theory of intelligence) because they would like to believe 
that explanations are close to the surface. 

2 Evaluation measures are used to make a choice between different linguistic theories. 
They are based on such (vague) criteria as simplicity, adequacy, significance, learnability etc. 



constrain our computer model. We can even use computational criteria like efficiency, 
speed, resource usage, etc., to restrict the model. This means that we see the algo-
rithmic level as an equally useful inspiration to computer model building as the com-
putational theory level. We will argue in Chapter 2 that some notations and formal-
isms (algorithmic level entities) are better suited to represent concepts in a problem 
domain than others, and that they may even have a definite influence on the charac-
teristics of the theory developed. We will therefore regard the computational and the 
algorithmic levels as one level (the computational level) in the remainder of this 
dissertation. 

At this (generalised) computational level, it is possible to theorise about language 
processing in the abstract (cp. Thompson, 1983, theory of linguistic computation). 
Moreover, design restrictions such as modularity can be postulated at this level. 
Modularity is a concept which is interpreted somewhat differently in various scientific 
disciplines. In computer science, a computer program is called modular if chunks of 
computer program can be added, modified or deleted, independently of the remainder 
of the database. A modular system or program is easier to understand and to main-
tain. In linguistics, modular theories are used to dissect a complex process into a 
system of simpler processes (e.g. the modularity of formal grammar in recent 
accounts of transformational generative grammar; Chomsky 1981). A complex system 
can be better understood as a set of modules interacting in clearly defined ways. 
Modularity has also proved to be a psychologically relevant property of low-level 
vision (e.g. Marr, 1982), and has been claimed for other cognitive systems as well 
(we have already mentioned Fodor, 1983). Thus, we can distinguish two aspects of 
modularity in computational theory: as a methodological principle to gain insight 
(even at the loss of efficiency or plausibility), and as a design property of biological 
cognitive systems. This constitutes a double incentive to develop computational 
theories and models which are modular. 

The lack of a physical basis for the devising of representations and processes 
implies that we cannot be sure that the representations hypothesised are 'real' (i.e. 
that human beings possess and use them). But at least we have the advantage of 
extensional and intensional validity. 

(Chomsky, 1965; Botha, 1978). 



Notice that the relation between psychology and linguistics on the one hand, and 
the computational model on the other hand is not one of uni-directional influence. 
Just as psychological (e.g. Johnson-Laird, 1980) and linguistic theories provide a 
source of inspiration for the development of a computer model does the latter have a 
beneficial effect on the former as well. A computer model can bring more insight 
into the representations and processes used by people when communicating. It has 
even been claimed that much psychological research has been guided by AI research 
rather than vice versa (e.g. Winograd, 1980). Computer models can also be used as 
a tool in linguistic research. In section 1.2.2 we will return to the advantages for 
linguistics, Finally, the preoccupation with knowledge representation and processing 
in AI has led to new programming languages and computing paradigms (Prolog, 
object-oriented programming) in mainstream computer science. 

Computational linguistics in the Dutch language area is divided between two 
unreconcilable interpretations of the discipline. The cognitive artificial intelligence 
approach has been adopted by a.o. Hoenkamp (1983, 1985), Kempen (1983), and 
Adriaens (1986). Other workers in the field of computational linguistics interpret 
natural language processing as the construction of algorithmic models of linguistic 
grammars and theories. This means that they see computational linguistics as a tool 
in the development of descriptive theories of language (a.o. Van Bakel, 1983; Brandt 
Corstius, 1974) and not as an effort to construct cognitive theories of verbal 
behaviour. Opposition to the AI-approach is often quite strong (e.g. Brandt Corstius, 
1981). 

1.2 Applications 
The linguist should be grateful that even if he 
is not interested in 'practical' results, the 
requirements, say, of computer programming 
may be a healthy incentive for explicit and 
rigorous formulation. 
G.C. Lepschy. 

Language technology (linguistic engineering) can be defined as the part of computa-
tional linguistics which concerns itself with the development of (commercial) applica-
tions. Examples are advanced word processors, natural language interfaces to data-
bases, automatic translation systems, etc. 



The linguistic and psychological relevance of these applications is often small, as 
they are mostly developed by programmers whose main concern is short-term compu-
tational efficiency. They try to combine the highest possible accuracy with the 
highest possible processing speed and the smallest possible storage prerequisites. 
Their systems contain ad hoc rules and feature a predominant use of heuristics3 

instead of algorithms. This need not be a bad thing, since commercial applications 
should be efficient rather than theoretically adequate. It could be argued that in 
language technology, intensional validity or an isomorphic relation with human infor-
mation processing are no prerequisites for the model as long as it is extensionally 
valid (i.e. if the program exhibits the desired behaviour). 

However, we believe that this engineering approach often leads to systems 
which cannot properly do what they are supposed to do. The 'highest possible accu-
racy' (e.g. 75% sentences correctly translated, 95% correct hyphenations) may often 
be increased even further if the desired behaviour is viewed from the perspective of a 
computational theory (cp. Droste, 1969). One of the central claims in this disserta-
tion is that algorithms and heuristics used in language technology should also be 
based on a computational theory which is founded in linguistics and psychology.4 An 
important shortcoming of most technological approaches to language processing is 
their complete lack of theoretical foundation, resulting in inaccurate systems. 

We will exemplify the unfruitfulness of the latter approach in Chapter 5, where 
we will show the inadequacy of a heuristic approach to hyphenation (Boot, 1984), 
and suggest an alternative approach, based on a computational theory of 
syllabification outlined in Chapter 4. 

Boot adheres to what he calls a (result-oriented) expert system approach to com-
putational linguistics. He interprets expert systems as systems of heuristic rules solv-
ing some specific problem, and claims that it is not necessary to have complete 
knowledge about human language competence in order to build natural language 

3 Heuristics are implemented as algorithms as well. However, the meaning we assign here 
to heuristics is the one traditionally used in AI: heuristics are informal judgemental rules 
drawing on regularity and continuity in the domain modeled (cf. Lenat, 1982). The 
knowledge they embody is therefore incomplete. An algorithm on the other hand embodies 
complete knowledge about how a problem is to be solved in principle. The algorithm may be 
deficient, but that is an entirely different matter. 

4 The call for a theory of translation in machine translation research (E.g. Van Eynde, 
1985) may be a manifestation of the same concern. 



processing systems. In our radically different view, a computational model, based on 
a computational theory and easily adaptable to different applications, is theoretically 
as well as practically superior to an approach in which each application has its own, 
independent, ad hoc 'expert system'5. Language technology in our opinion is the con-
struction of computational models incorporating computational theories (as in AI), and 
the study of how these can be efficiently exploited in applications. Apart from the 
fact that applications are useful in their own right, they can also function as a test 
case for computational theories, suggesting extensions or modifications. 

1.2.1 An Overview of Application Types 
Five main branches of language technological applications may be distinguished: 
(i) The computer as a dialogue partner. Natural Language front ends (accepting 

spoken or written language) make data processing systems more user-friendly 
and easy to use. The slogan here is let the computer speak our language instead 
of vice versa. Natural language interfaces have been or are being developed to 
databases (question answering systems) and expert systems (explanation 
modules). A 'talking computer' fits more naturally into people's lives and lowers 
the threshold to computer use. This is demonstrated in Figure 2 (adapted from 
Zoeppritz, 1983), which contrasts a database request in SQL (a database query 
language) with its natural language counterpart. 

select all x member 

from emp x 
where x.member not in 

(select unique y.member 

from emp 
where y.city='antwerp') Which members do not live in Antwerp? 

Figure 2. A database request in SQL as opposed to natural language. 

(ii) The computer as a translator. After a rude awakening from the dream of unres-
tricted full-automatic translation in the late sixties, more reasonable efforts at 
restricted computer-aided translation are being conducted, especially in Japan 
(Fifth Generation Computers program), and Europe (EC-Eurotra, Siemens-

5 The structure of the expert system may not be ad hoc, but the rules used are. 



Metal, BSO, Philips-Rosetta ...). 
(iii) The computer as a teacher. An effective system for Computer Assisted Instruc-

tion will have to contain some kind of natural language interface to respond sen-
sibly to the input from the user (cp. i). Furthermore, in CAI systems for the 
subject domain of first or foreign language learning, the system should have 
enough linguistic and meta-linguistic knowledge to correct the answers of the 
student, and to diagnose and explain his or her errors. 

(iv) The computer as an author and editor. Intelligent word processors (author sys-
tems, author environments) will differ from present-day text editors by the inclu-
sion of linguistic knowledge. This knowledge may be applied in functions like 
spelling and style checking and advice, on-line dictionaries, and in various addi-
tional text preparation aids. 

(v) The computer as a linguistic research assistant. Rule testing devices can be built 
to test the adequacy of existing linguistic theories or to help in the construction 
of such theories. As we see this as one of the most important contributions of 
language technology, we will go into it in somewhat more detail in the next sec-
tion. 

Many of these applications will be treated more extensively in the remainder of 
this dissertation: rule testing devices in the next section and in Chapter 8, CAI in 
Chapter 7, intelligent word processing in Chapters 5 and 6, and speech interfaces in 
Chapter 8. 

1.2.2. Linguistic Research Tools 
An important achievement of language technology is the development of programs to 
test the adequacy of existing linguistic theories. During the design and the implemen-
tation of the program, inconsistencies, shortcomings, redundancies and vagueness 
(intensional inadequacy) inevitably come to light. An analysis of the nature of these 
shortcomings (they may be reparable or not) may lead to a modification of the origi-
nal theory, or even to its rejection. Furthermore, once a theory has been imple-
mented, it can be quickly and easily tested on a large corpus of 'real-life' natural 
language data as opposed to the selected example sentences common in theoretical 
linguistics. 

The amount of work done in this direction is not very large, although its 
beneficial influence has often been attested (a.o. Brandt Corstius, 1978 6 ; Van Bakel, 



1983, Hoenkamp, 1985). Computer programs have been used to evaluate transfor-
mational grammars (Friedman, 1971), Montague grammar (Janssen, 1976) and Dik's 
functional grammar (Kwee, 1986). 

If computer models can be used profitably to test existing linguistic theories, 
they can also be used to develop new linguistic theories (e.g. Gazdar, 1985; Thomp-
son, 1983). Computer models have a distinct heuristic function, i.e. they can suggest 
ideas to the researcher through trial and error (Kempen, 1983), and they can help in 
overcoming the complexity barrier resulting from the application of large sets of 
interacting rules. Functional Unification Grammar (Kay, 1985) and GPSG (Gazdar, 
1983) are examples of theories whose development was guided to a large extent by 
computer modeling. In Chapter 7, a tool for phonological research will be presented 
which illustrates the advantages of a computational model for linguistic research. 

The use of computer programs in the testing and development of linguistic 
theories leads to a reflection on the relation between program and theory. Although 
programs may be developed which implement theories, the two should not be 
equated. Theories are sets of propositions while programs are sets of instructions (cf. 
Kempen, 1983). We interpret programs as notations for theories, much like the rule 
formalism in generative linguistics. We can prove that a program is a correct nota-
tion for a theory (if it comes up to the specifications of the theory when it is run), 
but this does not prove that the theory is correct. A program becomes a theory only 
when it is assigned an interpretation. E.g., we can construct a program which defines 
a set of linguistic rules. The program obtains a theoretical status only when 
(psycho-)linguistic relevance is claimed for these rules. Similarly, a program can use 
a number of levels of representation, but only when these are interpreted in some 
linguistic or psychological sense, they have theoretical status. 

In a sense, there is no difference between using a paper-and-pencil notation to 
formulate a theory or using a computer program. However, programs have some 
unique properties: (1) they are formal and explicit to the extreme, (2) they are exe-
cutable; i.e. they can give a physical interpretation to the concepts of a theory (it is 
precisely this property which makes them ideally suited to test the coherence of 
theories), and (3) they can be put to practical use, which gives them an economical 

6 Brandt Corstius even devoted one of his three laws of computational linguistics to it: 
Every linguistic description, however exact, but not a program itself, turns out to contain an 
error if one tries to make a program of it (translation, WD). 


