
UWashington-NegationSharedTask-pres.pdf

UWashington: Negation Resolution
using Machine Learning Methods

James Paul White
Masters Student in Computational Linguistics

University of Washington
jimwhite@uw.edu

*SEM 2012 Shared Task

•  Resolving the Scope of Negation

•  Open Track
•  Initially investigated an approach using the semantic

representation produced by the
LinGO English Resource Grammar (ERG)

•  Interesting but not practical in time available

•  Closed Track
•  Decided on a simple approach applying

easy-to-use machine learning methods

Outline

•  Architecture

•  Cue Detector

•  MALLET SimpleTagger

•  Data Processing

•  Computed Features for CRF Sequence Tagger

•  Errors

•  Results

•  Improvement?

Architecture

T
ra

in
in

g
D

at
a

Cue Detector

Scope Tagger

Event Tagger

Test Data

System Output

Affix Roots are Events

Cue Detector

•  Four Types of Negation Cue
•  Word : RB/not, DT/no, IN/without
•  Affix : VBN/uncurtained, JJ/colourless, NN/carelessness
•  Multiple Contiguous Words : RB/rather IN/than
•  Multiple Discontiguous (“Gappy”) Words :

 DT/neither … CC/nor

•  Two Pass Learning of Regular Expression Patterns
•  First Pass : Add a matching pattern for every gold cue

Patterns include POS tag in addition to word string
•  Second Pass : Accumulate positive/negative match scores

Pattern type-specific rules condition if/when they will match

Oops

•  Cue detector could learn negative contextual rules to
override matches for idioms not labeled as cues
•  (be|have) no doubt

•  none the (less|worse)

•  That is not implemented, but two hand-written rules
to filter those two patterns were inadvertently used in
the system

MALLET SimpleTagger

•  Andrew McCallum. 2002. MALLET: A Machine
Learning for Language Toolkit.
http://mallet.cs.umass.edu

•  Java, Open Source Software (Common Public License)

•  Input format one line per token delimited by blank
•  Each line is list a of features present followed by label

•  Output format is same
•  Each line is the tagger’s output label

•  The cc.mallet.fst.SimpleTagger class
provides default settings for parameters

Computed Features for
CRF Sequence Tagger

•  Wisteria Lane, Chapter 01, Sentence 3
(S
 (NP
 (token PRP He He in_scope))
 (VP
 (token VBD made make in_scope)
 (NP
 (token wisteria01/3/0/2 DT no no cue=no in_scope)
 (token wisteria01/3/0/3 NN remark remark in_scope)))

•  For each token (He in this example):
•  Relation between cue and token

non-terminal node label plus relative position of child subtrees :
S_X-1

•  Path (non-terminal node labels) from cue up to lowest common
parent : NP_VP

•  Path from lowest common parent down to token : NP
•  Whether the token is an embedded child of parent

 (syntax fragment == “*”) : in=false

Data Processing
CoNLL
wisteria01 3 0 He He PRP (S(S(NP*) _ He _
wisteria01 3 1 made make VBD (VP* _ made made
wisteria01 3 2 no no DT (NP* no _ _
wisteria01 3 3 remark remark NN *))) _ remark remark

S-expression
(S
 (NP
 (token wisteria01/3/0/0 PRP He He _ + - 0))
 (VP
 (token wisteria01/3/0/1 VBD made make _ + + 1)
 (NP
 (token wisteria01/3/0/2 DT no no no - - 2)
 (token wisteria01/3/0/3 NN remark remark _ + + 3))))

MALLET SimpleTagger
cpr_S_X-1 up_NP_VP down_NP dist=-2 cue_word_no cue_lemma_no cue_pos_DT in=false pos_PRP
 word_he lemma_he +

cpr_VP_X-1 up_NP down_ dist=-1 cue_word_no cue_lemma_no cue_pos_DT in=false pos_VBD
 word_made lemma_make +

cpr_NP_H0 up_ down_ dist=0 cue_word_no cue_lemma_no cue_pos_DT in=false is_cue pos_DT
 word_no lemma_no !

cpr_NP_H1 up_ down_ dist=1 cue_word_no cue_lemma_no cue_pos_DT in=false pos_NN
 word_remark lemma_remark +

Errors

•  A clear systematic error occurs with affix cues
because their roots are unconditionally output as an
event

•  Negated event tagging is weak
•  There are relatively few negated events because of the

requirement for factuality

•  This is a data-driven approach and more data might
help

Results

 Gold System TP FP FN Precision (%) Recall (%) F1 (%)
Cues 264 285 243 33 21 88.04 92.05 90.00
Scopes (no cue match) 249 270 158 33 89 82.90 64.26 72.40
Scope tokens (no cue match) 1805 1816 1512 304 293 83.26 83.77 83.51
Negated (no cue match) 173 154 83 60 80 58.04 50.92 54.25
Full negation 264 285 94 33 170 74.02 35.61 48.09
Cues B 264 285 243 33 21 85.26 92.05 88.52
Scopes B (no cue match) 249 270 158 33 89 59.26 64.26 61.66
Negated B (no cue match) 173 154 83 60 80 53.9 50.92 52.37
Full negation B 264 285 94 33 170 32.98 35.61 34.24

Alternate run without idiom filter and without allowing a suffix after an affix cue:

264 284 98 35 171 73.68 34.94 47.4

Improvement?

•  Use CRF sequence tagger for affix cues

•  Learn more complex cue patterns so that exceptional
negative cases can be rejected

•  Include some feature(s) to provide context to lowest
common syntax node for scope tagging

Thank You

•  Organizers
•  Roser Morante & Eduardo Blanco

•  Reviewers

•  Emily Bender

•  Groovy
•  http://groovy.codehaus.org/

•  Source Code
•  https://github.com/jimwhite/SEMST2012

__MACOSX/._UWashington-NegationSharedTask-pres.pdf

