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*SEM 2012 Shared Task 


•  Resolving the Scope of  Negation 


•  Open Track 
•  Initially investigated an approach using the semantic 


representation produced by the  
LinGO English Resource Grammar (ERG) 


•  Interesting but not practical in time available 


•  Closed Track 
•  Decided on a simple approach applying  


easy-to-use machine learning methods 







Outline 


•  Architecture 


•  Cue Detector 


•  MALLET SimpleTagger 


•  Data Processing 


•  Computed Features for CRF Sequence Tagger 


•  Errors 


•  Results 


•  Improvement? 
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System Output 


Affix Roots are Events 







Cue Detector 


•  Four Types of  Negation Cue 
•  Word : RB/not, DT/no, IN/without 
•  Affix : VBN/uncurtained, JJ/colourless, NN/carelessness 
•  Multiple Contiguous Words : RB/rather IN/than 
•  Multiple Discontiguous (“Gappy”) Words :  


 DT/neither … CC/nor 


•  Two Pass Learning of  Regular Expression Patterns 
•  First Pass : Add a matching pattern for every gold cue  


Patterns include POS tag in addition to word string 
•  Second Pass : Accumulate positive/negative match scores 


Pattern type-specific rules condition if/when they will match 







Oops 


•  Cue detector could learn negative contextual rules to 
override matches for idioms not labeled as cues 
•  (be|have) no doubt 


•  none the (less|worse) 


•  That is not implemented, but two hand-written rules 
to filter those two patterns were inadvertently used in 
the system 







MALLET SimpleTagger 


•  Andrew McCallum.  2002.  MALLET: A Machine 
Learning for Language Toolkit. 
http://mallet.cs.umass.edu 


•  Java, Open Source Software (Common Public License) 


•  Input format one line per token delimited by blank 
•  Each line is list a of  features present followed by label 


•  Output format is same 
•  Each line is the tagger’s output label 


•  The cc.mallet.fst.SimpleTagger class  
provides default settings for parameters 







Computed Features for  
CRF Sequence Tagger 


•  Wisteria Lane, Chapter 01, Sentence 3 
(S  
  (NP   
     (token PRP He He in_scope)) 
  (VP   
     (token VBD made make in_scope)  
     (NP  
        (token wisteria01/3/0/2 DT no no cue=no in_scope)   
        (token wisteria01/3/0/3 NN remark remark in_scope))) 


•  For each token (He in this example): 
•  Relation between cue and token 


non-terminal node label plus relative position of  child subtrees :  
S_X-1 


•  Path (non-terminal node labels) from cue up to lowest common 
parent : NP_VP 


•  Path from lowest common parent down to token : NP 
•  Whether the token is an embedded child of  parent 


 (syntax fragment == “*”) : in=false 







Data Processing 
CoNLL 
wisteria01  3   0   He      He      PRP (S(S(NP*)   _    He      _ 
wisteria01  3   1   made    make    VBD (VP*        _    made    made 
wisteria01  3   2   no      no      DT  (NP*        no   _       _ 
wisteria01  3   3   remark  remark  NN  *)))        _    remark  remark 
 


S-expression 
(S  
  (NP  
     (token wisteria01/3/0/0 PRP He He _ + - 0)) 
  (VP  
     (token wisteria01/3/0/1 VBD made make _ + + 1)  
     (NP  
        (token wisteria01/3/0/2 DT no no no - - 2)   
        (token wisteria01/3/0/3 NN remark remark _ + + 3))))  
 


MALLET SimpleTagger 
cpr_S_X-1 up_NP_VP down_NP dist=-2 cue_word_no cue_lemma_no cue_pos_DT in=false pos_PRP  
   word_he lemma_he + 


cpr_VP_X-1 up_NP down_ dist=-1 cue_word_no cue_lemma_no cue_pos_DT in=false pos_VBD  
   word_made lemma_make + 


cpr_NP_H0 up_ down_ dist=0 cue_word_no cue_lemma_no cue_pos_DT in=false is_cue pos_DT  
   word_no lemma_no ! 


cpr_NP_H1 up_ down_ dist=1 cue_word_no cue_lemma_no cue_pos_DT in=false pos_NN  
   word_remark lemma_remark + 


 







Errors 


•  A clear systematic error occurs with affix cues 
because their roots are unconditionally output as an 
event 


•  Negated event tagging is weak 
•  There are relatively few negated events because of  the 


requirement for factuality 


•  This is a data-driven approach and more data might 
help 







Results 


                              Gold   System   TP FP FN Precision (%) Recall (%) F1 (%) 
Cues 264 285 243 33 21 88.04 92.05 90.00 
Scopes (no cue match) 249 270 158 33 89 82.90 64.26 72.40 
Scope tokens (no cue match) 1805 1816 1512 304 293 83.26 83.77 83.51 
Negated (no cue match) 173 154 83 60 80 58.04 50.92 54.25 
Full negation 264 285 94 33 170 74.02 35.61 48.09 
Cues B 264 285 243 33 21 85.26 92.05 88.52 
Scopes B (no cue match) 249 270 158 33 89 59.26 64.26 61.66 
Negated B (no cue match) 173 154 83 60 80 53.9 50.92 52.37 
Full negation B 264 285 94 33 170 32.98 35.61 34.24 


Alternate run without idiom filter and without allowing a suffix after an affix cue: 


264 284 98 35 171 73.68 34.94 47.4 







Improvement? 


•  Use CRF sequence tagger for affix cues 


•  Learn more complex cue patterns so that exceptional 
negative cases can be rejected 


•  Include some feature(s) to provide context to lowest 
common syntax node for scope tagging  







Thank You 


•  Organizers 
•  Roser Morante & Eduardo Blanco 


•  Reviewers 


•  Emily Bender 


•  Groovy 
•  http://groovy.codehaus.org/ 


•  Source Code 
•  https://github.com/jimwhite/SEMST2012   
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