

Ψ
PsyScope

User Manual

Version 1.0

Credits

Design Jonathan D. Cohen Brian MacWhinney
Jefferson Provost Matthew Flatt

Development Jefferson Provost Matthew Flatt
Matthew Cushman Jonathan D. Cohen
Erik Selberg Robert Findler
Eric Sedlar Darius Clynes
Jay Gowdy

User Documentation Matthew Flatt Jonathan D. Cohen
Jefferson Provost

Editing and Typesetting Matthew Flatt

Button Box Hardware Bruce Taylor

Contributors Jonathan Cohen Brian MacWhinney
Jay McClelland Elizabeth Bates
Mark Seidenberg Maggie Bruck
Mark Johnson Jonathan Vaughan
Cathy Harris Kevin Miller
Kay Bock Tom Trabasso
Larry Barsalou

Testing & Feedback Vijoy Abraham Kathryn Brennan
Randy Bruno Robert Buffington
Andy Edmonds Julia Evans
Dan Gallagher Jolene Gordon
Charles Hill Therese Huston
Leigh Nystrom Alan Petersen
Steve Ritter Michael Shapiro
Norman Vinson

PsyScope was written at Carnegie Mellon University, Department of Psychology.

© 1994 Carnegie Mellon University.
PsyScope is free for non-commecial use. All rights reserved.

The PsyScope application and this manual may be obtained from http://psyscope.psy.cmu.edu.
Send all bugs and comments to PsyBug@psyscope.psy.cmu.edu. Correspondence regarding the Psy-
Scope Consortium should be sent to Consortium@psyscope.psy.cmu.edu or to Jonathan Cohen or
Brian MacWhinney at Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15123, USA.

This manual was produced with FrameMaker® publishing software for the Apple® Macintosh™ using the
Hevetica, Times, Courier, Chicago, and Symbol typeface families.

Table of Contents

Overview of the PsyScope Manual

0.1 Organization 1
0.2 System Requirements 1
0.3 Conventions 2

Part 1: Introduction to PsyScope

Chapter 1. Introduction 1

Chapter 2. Running Your First Experiment 3
2.1 Open the Experiment 3
2.2 Run the Experiment 4
2.3 Look at the Experiment in the Design Window 4
2.4 Change One or Two Things in the Experiment 5

Chapter 3. Designing an Experiment 9
3.1 A Word About Scripts and the Graphic Environment 9
3.2 Creating a New Experiment 10

3.2.1 Using the Design Window 11
3.2.2 Creating a Trial Template 12
3.2.3 Creating a New Event 14
3.2.4 Setting Attributes Using the Event Dialog 16
3.2.5 Timing and Sequencing Events 19

3.2.5.1 Timing an Event 19
3.2.5.2 Sequencing Events 22

3.2.6 Recording Responses 26
3.2.7 Conditions and Actions 30
3.2.8 Using Factor Tables and Lists 36

3.2.8.1 Creating a Factor Table 36
3.2.8.2 Creating Trials from a Factor Table 41
3.2.8.3 Controlling How Cells are Chosen 49
3.2.8.4 Lists 59
3.2.8.5 Counterbalancing 63

3.2.9 Using Blocks 65
3.2.9.1 Blocking Trials 66
3.2.9.2 Varying by Block 72

3.2.10 Using Subject Info and Groups 74
3.2.10.1 The Subject Info Dialog 75
3.2.10.2 Groups 81

3.2.11 Experiment Attributes 90
3.2.11.1 Instructions and Debriefing Files 91
3.2.11.2 Rest Periods 92
3.2.11.3 Reverse Video 92

3.2.12 Running Trials 92
3.2.12.1 Running the Experiment and Breaking 92
i

PsyScope User Manual

3.2.12.2 Practice vs. Run Mode 93
3.2.12.3 Previewing Trials and Using the Trial Chooser floating window 94
3.2.12.4 The Trial Monitor 95

3.3 Where to Go from Here 99

Part 2: Graphic Environment Reference

Chapter 4. Introduction 103
4.1 A Word About Scripts 103

Chapter 5. Windows and Dialogs 105
5.1 Windows vs. Dialogs 105

5.1.1 Windows 105
5.1.2 Dialogs 106

5.2 The Design Window 107
5.2.1 Objects and the Experiment Hierarchy 107

5.2.1.1 Linking Objects 108

5.2.2 Design Window Palettes 109
5.2.2.1 The Tools Palette 110
5.2.2.2 The Events Palette 112

5.2.3 Design Window Work Area 113
5.2.3.1 Cleaning Up 113
5.2.3.2 Trash 113

5.2.4 Design Window Control Area 113
5.2.5 New Object Name Dialog 114
5.2.6 The Palettes Window 114
5.2.7 Object List Dialog 115
5.2.8 Get Object Dialog 115
5.2.9 View Trash Dialog 115

5.3 The Experiment Object 116
5.3.1 Connecting Objects to the Experiment 116
5.3.2 Experiment Dialog 116

5.4 Groups 118
5.4.1 Connecting Objects to a Group 118
5.4.2 Group dialog 119

5.5 Blocks 120
5.5.1 Connecting Objects to Blocks 120

5.5.1.1 Connecting Events to a Block 121
5.5.1.2 Connecting Blocks to a Block 121
5.5.1.3 Connecting Lists to Blocks 121

5.5.2 Block Dialog 121
5.5.3 Superblock Dialog 123

5.6 Trials and Templates 124
5.6.1 The Trial Template Window 124

5.6.1.1 Template Name and Buttons 125
5.6.1.2 Palettes 125
ii

Table of Contents

5.6.1.3 Event Name Area 126
5.6.1.4 Timeline Area 126
5.6.1.5 Event Status Area 128

5.7 Factors and Lists 129
5.7.1 Definitions 129

5.7.1.1 Factor Table Sets 130
5.7.1.2 Lists 130
5.7.1.3 List Files 131
5.7.1.4 Expanded Lists 132
5.7.1.5 Nested Factors 132
5.7.1.6 Lists in a Factor table 132
5.7.1.7 Level Order and Crossing Types 132
5.7.1.8 Factors in the Hierarchy 135

5.7.2 Factor Table Windows 138
5.7.2.1 The Factor Table Window 138
5.7.2.2 Table Info Dialog 140
5.7.2.3 New/Rename Table Factor Dialog 142
5.7.2.4 New/Rename Table Level Dialog 142
5.7.2.5 Latin Squares Dialog 142
5.7.2.6 Choose Crossing Dialog 143
5.7.2.7 Factor Table Floating Window 144

5.7.3 List Dialogs 145
5.7.3.1 List Dialog 145
5.7.3.2 List File Dialog 146
5.7.3.3 Factor Set Dialog 147
5.7.3.4 Level Dialog 147
5.7.3.5 Connect List Dialog 148

5.8 Attributes 149
5.8.1 Definitions 149

5.8.1.1 Attribute Inheritance 150
5.8.1.2 Factor Table and Attributes 150
5.8.1.3 Attribute Dialogs 150

5.8.2 The Standard Attributes Dialog 151
5.8.2.1 Settings 152
5.8.2.2 Custom Attribute Sets 156
5.8.2.3 Special Keyboard Shortcuts 157
5.8.2.4 New/Rename/Retype Attribute Dialog 157

5.8.3 Experiment Attributes 158
5.8.3.1 Custom Run and Custom Practice Attributes 158
5.8.3.2 Default Stimulus/Event/Trial Attributes 159
5.8.3.3 Experiment Attributes Dialog 160
5.8.3.4 Standard Experiment Attributes 161

5.8.4 Group Attributes 169
5.8.4.1 Custom Group Attributes 169
5.8.4.2 Default Stimulus/Event/Trial Attributes 169
5.8.4.3 Group Attributes Dialog 170

5.8.5 Block Attributes 170
5.8.5.1 Custom Block Attributes 171
5.8.5.2 Default Stimulus/Event/Trial Attributes 171
iii

PsyScope User Manual

5.8.5.3 Block Attributes Dialog 172

5.8.6 Trial Attributes 172
5.8.6.1 Custom Template Attributes 173
5.8.6.2 Default Stimulus/Event Attributes 173
5.8.6.3 Trial Attributes Dialog 174
5.8.6.4 Standard Trial Attributes 175

5.8.7 Event Attributes 176
5.8.7.1 Event Types 177
5.8.7.2 Event Attributes 179
5.8.7.3 Stimulus Attributes 181

5.8.8 Stimulus Attribute Dialogs 185
5.8.8.1 Stimulus Dialog 185
5.8.8.2 Stimuli Dialog 185
5.8.8.3 Style Dialog 185
5.8.8.4 Ports and Positions Dialogs 187

5.9 Conditions and Actions 192
5.9.1 Conditions and Actions Dialog 193
5.9.2 Conditions Dialog 194
5.9.3 Condition Parameter Dialogs 195

5.9.3.1 Button Box Parameter Dialog 195
5.9.3.2 Key Parameter Dialog 196
5.9.3.3 Mouse Parameter Dialog 197
5.9.3.4 Start/End Parameter Dialog 197
5.9.3.5 When Parameter Dialog 198
5.9.3.6 ScriptWhen Parameter Dialog 198

5.9.4 Actions List Dialog 198
5.9.4.1 Available Actions 198

5.9.5 Parameters dialogs 205
5.10 Trial Manager Variables 205

5.10.1 How Trial Manager Variables Work 206
5.10.2 Trial Manager Variable Expressions 206
5.10.3 Built-in Variables 207
5.10.4 Linking to Variable Values 207
5.10.5 Trial Manager Variables Dialog 208

5.11 Trial Chooser Floating Window 209
5.12 Additional Concepts 210

5.12.1 List Ordering 210
5.12.1.1 Weights 210
5.12.1.2 Other Modifiers 210

5.12.2 Trial Counting 211
5.12.2.1 Experiments without Blocks 211
5.12.2.2 Experiment with Blocks 211
5.12.2.3 Block Scaling 211
5.12.2.4 Superblocks 212
5.12.2.5 Trial Counts and Crossing Factors 212
5.12.2.6 Trial Counts Reported in the Trial Monitor 212

Chapter 6. Running and Managing Experiments 213
iv

Table of Contents

6.1 File System 213
6.1.1 Using Projects 213

6.1.1.1 Creating a Project 213
6.1.1.2 The Scripts Dialog 214

6.1.2 Path Names 215
6.1.2.1 Relative Paths 215
6.1.2.2 Reverse Notation 215

6.1.3 Resources 216
6.1.3.1 PsyScope Extensions 216

6.1.4 The Data File 217
6.1.4.1 Specifying the Data File 217
6.1.4.2 Information in the Data File 217
6.1.4.3 Formatting the Data File 222

6.1.5 The Log File 222
6.1.5.1 Specifying the Log File 222
6.1.5.2 Viewing and Editing the Log File 223
6.1.5.3 Information in the Log File 223

6.1.6 Safe Saves 224
6.1.7 Start-up Shortcuts 224

6.2 Subject Info 224
6.2.1 Subject Info Items 225

6.2.1.1 Special Items 225
6.2.1.2 Subject Info Dialog 226

6.2.2 Subject Info and the Log File 230
6.2.3 Subject Number Calculation 230

6.2.3.1 Logging and Scheduling Correctly 231
6.2.3.2 How the Subject Number Calculations are Performed 232

6.2.4 Automatic Grouping 233
6.2.4.1 Automatic Grouping Dialog 234
6.2.4.2 Group Criteria Dialog 235

6.2.5 Data File Dialog 236
6.2.6 Subject Info Schedule Dialog 237

6.3 The Trial Monitor 238
6.3.1 Trial Compilation Statistics 241

6.4 The Event Monitor and Variable Monitor 241
6.4.1 The Event Monitor 242

6.4.1.1 Trial Information 242
6.4.1.2 Event Information 243
6.4.1.3 Action Information 243

6.4.2 Event Monitor Operation 244
6.4.2.1 Perceived Times 244
6.4.2.2 Step Mode 245

6.4.3 The Variable Monitor 245
6.5 Space and Speed 246

6.5.1 Precompiling 246
6.5.1.1 Problems with Precompiling 247

6.5.2 Loading Stimuli 247
6.5.2.1 Load Time 247
v

PsyScope User Manual

6.5.2.2 Controlling The Load Procedure 249

Chapter 7. User Environment 253
7.1 Menus Reference 253

7.1.1 File Menu 253
7.1.2 Edit Menu 254
7.1.3 Run Menu 254
7.1.4 Utilities Menu 254
7.1.5 Design Menu 256
7.1.6 Script-Specific Menus 256
7.1.7 Windows Menu 256

7.2 The Console 257
7.3 The Editor 258

7.3.1 Editor Menu Items 258
7.3.2 Keyboard Commands 260
7.3.3 Action Bar 261
7.3.4 Interactive Mode 261
7.3.5 The Find Dialog 262

7.4 The Evaluator 263
7.5 The Help System 264

7.5.1 The Help Search Dialog 264
7.5.2 Help Action bar Buttons 265

7.6 Options 265
7.6.1 General Options 266
7.6.2 Run Options 266
7.6.3 Editor Options 267
7.6.4 Design Options 268
7.6.5 Display Options 269
7.6.6 Custom Options 269

Part 3: Scripting User Manual

Chapter 8. Introduction 273

Chapter 9. Scripting Overview 275
9.1 A PsyScope Script 275
9.2 Entries 275

9.2.1 Entry Name 276
9.2.2 Content 276
9.2.3 Attribute Blocks 276
9.2.4 How Entries Are Used 277
9.2.5 Spaces, Blanks, and Quotes 277

9.3 Comments 278
9.4 Entry References 279
9.5 Lists 279
vi

Table of Contents

9.6 Function Calls 280

Chapter 10. Scripting an Experiment 281
10.1 Scripting a New Experiment 281

10.1.1 The Standard Script Template 281
10.1.2 Using the Interactive Editor 284
10.1.3 Scripting a New Event 285

10.1.3.1 Timing and Sequencing Events 287
10.1.3.2 The ‘Duration’ Attribute 287
10.1.3.3 The ‘StartRef’ Attribute 289

10.1.4 Scripting Conditions and Actions 290
10.1.5 Scripting Templates 292

10.1.5.1 Scripting Trial Actions 295
10.1.5.2 Attribute Inheritance 296
10.1.5.3 TrialAttrib() 297

10.1.6 Scripting Experiment Attributes 299
10.2 Scripting Factors 299

10.2.1 Scripting the Acuity Experiment 299
10.2.2 Scripting Free Factors 301

10.2.2.1 Compact Factors 303
10.2.2.2 Factor Interactions 304
10.2.2.3 Factor Sets 306
10.2.2.4 Nested Factors 307

10.2.3 Scripting Factor Tables 309
10.3 Scripting Blocks and Groups 309

10.3.1 Scripting Blocks and BlockAttrib() 309
10.3.2 Scripting Groups 311

10.3.2.1 GroupAttrib() 312

10.4 Advanced Topics 312
10.4.1 Linking to the PsyScope Environment 312

Part 4: Scripting Reference

Chapter 11. Introduction 317

Chapter 12. PsyScript Reference 319
12.1 Components of a Script 319
12.2 Entries 320

12.2.1 Entry Content and Expressions 320
12.2.2 Attributes 321
12.2.3 Entry Syntax 321
12.2.4 References 323

12.2.4.1 THIS and OWNER 324

12.3 Comments 324
12.4 Modifiers 324

12.4.1 #PsyScope 324
vii

PsyScope User Manual
12.4.2 #include and #winclude 325
12.4.3 #inherit and #noinherit 325
12.4.4 #NoIncludeStdLib 326

12.5 Section Markers 326
12.6 Operators and Functions 326

12.6.1 Literals 326
12.6.2 Function Calls 327

12.6.2.1 Exceptions to the Rules 327

12.6.3 Operation Sentences 328
12.6.3.1 Distributivity 328

12.7 Attribute Block Reference 329
12.8 Lists 329

12.8.1 Accessing a List 330
12.8.2 Access Type 331
12.8.3 Linking 332
12.8.4 Weights, Multiple, Grip 332
12.8.5 Offsets 333
12.8.6 SaveCurrents 334
12.8.7 Sublisting 334

12.9 Inline Entries 335
12.9.1 Inline Entries vs. Regular Entries 336
12.9.2 Attributes of Inline Entries 337
12.9.3 Incorporating a Global Entry 338
12.9.4 Inline Entries and Lists 338
12.9.5 Token Reference Inline Entries 339
12.9.6 Function Definitions 340

12.9.6.1 THIS and Inline Entries 341
12.9.6.2 Using THIS to Define a Function 341
12.9.6.3 Parameter Tags 342

12.10 Using a File as an Entry 343
12.11 Inherited Attributes 344

12.11.1 Inheritance and Token Reference Inline Entries 346
12.12 Crossing Lists 347

12.12.1 Mapped Crossings 348
12.12.2 Checklist Storage 349

12.13 Optimizations 349
12.14 Script Operators and Functions Summary 349

12.14.1 Operators and Functions 350
12.14.1.1 Reference Operations 350
12.14.1.2 Math Operations 351
12.14.1.3 String Operations 352
12.14.1.4 List Operations 352
12.14.1.5 Other Operations 354

12.14.2 Operator Precedence 356
12.15 The Evaluator 356

Chapter 13. Experiment Scripting Reference 357
viii

Table of Contents
13.1 Experiment Scripting Basics 357
13.1.1 Introduction 357
13.1.2 Script Interpretation 357

13.1.2.1 Self-Modifying Scripts 358

13.1.3 Script Formats 358
13.1.4 The ‘Experiments’ Entry 359
13.1.5 Experiment Entries 359
13.1.6 Standard Attributes 360

13.1.6.1 Standard Experiment Attributes 360
13.1.6.2 Standard Trial Attributes 366
13.1.6.3 Standard Event Attributes 367

13.2 StimList and EventList Formats 368
13.2.1 StimList Format 368

13.2.1.1 Trial Attributes in StimList Format 370
13.2.1.2 Block Mode in StimList Format 370

13.2.2 EventList Format 371
13.2.3 Attribute Inheritance in StimList/EventList Format 372
13.2.4 StimList/EventList Event Names 373
13.2.5 StimList/EventList Optimization 373
13.2.6 Summary of Attributes for EventList and StimList Formats 374
13.2.7 StimList/EventList Compilation Details 375

13.3 Factor Format 376
13.3.1 Scripting the Experiment Hierarchy 376
13.3.2 Scripting the Factor Format Experiment Entry 378

13.3.2.1 Factoring and Linking Experiment Attributes 379

13.3.3 Scripting Groups 379
13.3.3.1 Factoring and Linking Group Attributes 380

13.3.4 Scripting Blocks 380
13.3.4.1 Factoring and Linking Block Attributes 381

13.3.5 Scripting Templates 381
13.3.5.1 Factoring and Linking Template Attributes 382

13.3.6 Scripting Events 383
13.3.6.1 Factoring Event Attributes 384
13.3.6.2 Linking Event Attributes to Template, Block, and Group Attributes 385
13.3.6.3 Linking Event Attributes to the Run Mode 385
13.3.6.4 Factor Format Tags 386
13.3.6.5 Constant Events in Factor Format 387

13.3.7 Scripting Factors 387
13.3.7.1 Scripting Factor Sets 388
13.3.7.2 Scripting Crossing Types 389
13.3.7.3 Scripting Access Types 391
13.3.7.4 Scripting Cell Weights 393
13.3.7.5 Scripting Nested Factors 393

13.3.8 Scripting Compact Factors 394
13.3.9 Scripting Factor Tables 395

13.3.9.1 Scripting Factor Table Structures 395
13.3.9.2 Scripting Factor Table Crossing Values 396
13.3.9.3 Nested Factor Values in a Factor Table 399
ix

 PsyScope User Manual
13.3.9.4 Scripting the Factor Set Scope 400

13.3.10 Scripting Factor Format Trial Counts 401
13.3.11 Technical Details of Factor Format Scripting 402

13.3.11.1 Structural vs. Non-structural Attributes 402
13.3.11.2 Attribute Inheritance in Factor Format 403
13.3.11.3 Factor Format Optimization 404
13.3.11.4 Factor Format Compilation Order 404

13.3.12 Summary of Factor Format 405
13.3.12.1 Factor Format Entry Types Summary 405
13.3.12.2 Factor Format Summary Object Attribute Groups 407
13.3.12.3 Factor Format Summary Description Attribute Groups 408

13.4 Complex Attribute Formats 409
13.4.1 Action Lists 409

13.4.1.1 Specifying Action Lists 409
13.4.1.2 Instances and ActiveUntil 410

13.4.2 Start Reference 411
13.4.2.1 Start Reference Format 411

13.4.3 Duration 411
13.5 Trial Manager Variables 412

13.5.1 Declaring Variables 412
13.5.1.1 Variable Types 412
13.5.1.2 Variable Declaration Entries 412
13.5.1.3 Composite Types 413
13.5.1.4 Type Declarations 415
13.5.1.5 Built-in Variables 417

13.5.2 Using Trial Manager Variables 417
13.5.3 Variable Expression Syntax 417

Chapter 14. Actions and Devices Reference 419
14.1 Actions Reference 419

14.1.1 Standard Actions 419
14.1.1.1 Trial Termination Actions 419
14.1.1.2 Event Scheduling Actions 419
14.1.1.3 Unscheduled Stimulus Display Actions 420
14.1.1.4 Miscellaneous Actions 421
14.1.1.5 Trial Variable Actions 422
14.1.1.6 Factor Format Actions 423

14.1.2 Type-specific Actions 424
14.2 Stimulus Types Reference 424

14.2.1 Text 424
14.2.1.1 Text and Screen Attributes 424
14.2.1.2 Text and Screen Experiment Attributes 429
14.2.1.3 Text and Screen Actions 430

14.2.2 Document 431
14.2.2.1 Formatting characters 431
14.2.2.2 Document Attributes 431

14.2.3 Paragraph 432
14.2.3.1 Paragraph Attributes 432
x

Table of Contents
14.2.4 KeySequence 432
14.2.4.1 KeySequence Attributes 433

14.2.5 PICT 433
14.2.5.1 PICT Attributes 433

14.2.6 Pasteboard 434
14.2.6.1 Pasteboard Attributes 434
14.2.6.2 Pasteboard Experiment Attributes 435

14.2.7 SoundLabel 435
14.2.7.1 SoundLabel Attributes 435

14.2.8 BBox 436
14.2.8.1 .BBox Attributes 436
14.2.8.2 BBox Experiment Attributes 437

14.3 Conditions and Inputs 437

Chapter 15. Trial Manager Technical Reference 441
15.1 Running Trials 441

15.1.1 Loading Stimuli 441
15.1.2 Running Events and Actions 442

15.1.2.1 The START Event 442
15.1.2.2 The Life of an Event 442
15.1.2.3 Running an Event More than Once Per Trial 444
15.1.2.4 Event Statistics 444
15.1.2.5 The Life of an Action 444
15.1.2.6 Ending a Trial 445

15.2 Screen Stimulus Display 445
15.2.1 Screen Stimulus Loading 445
15.2.2 How a Screen Stimulus is Drawn and Cleared 445

15.2.2.1 Screen Timing 446

15.3 Playing Sound Stimuli 447
15.3.1 Loading Sounds 447
15.3.2 Sound Timing 447

15.3.2.1 Actual Duration vs. Recorded Duration 447

Chapter 16. Configuring the User Environment 449
16.1 Setting up the Menus 449

16.1.1 Item Entries 450
16.1.1.1 Checkmarks 452
16.1.1.2 Range Checking 452
16.1.1.3 Open/Close Alert 453
16.1.1.4 Menu Disabling 453
16.1.1.5 ‘MenuName’ and ‘ItemName’ 453
16.1.1.6 Title 454

16.1.2 Submenus 455
16.2 The Console 455
16.3 Custom Options 456
16.4 File Names 456
16.5 Log File 458

16.5.1 Log File Format 458
xi

 PsyScope User Manual
16.5.2 Logging script information 458
16.6 Special Entries 459

16.6.1 Experiments 459
16.6.2 Execution Entries 460
16.6.3 Resources 461

16.7 PsyScopeStdLib 461
16.7.1 CurrentExperiment 461
16.7.2 Standard Menu Items 461

16.7.2.1 UserLevelMenuItem 461
16.7.2.2 SettingsMenuItem 462
16.7.2.3 DataFieldsMenuItem 462
16.7.2.4 ReverseVideoMenuItem 462
16.7.2.5 InputDevicesMenuItem 462
16.7.2.6 TimerMenuItem 463
16.7.2.7 OptimizeMenuItem 463
16.7.2.8 Test BBox 463
16.7.2.9 TurnOffBBox 463

16.7.3 Standard Menus 464
16.8 SubjectInfoLib 464

16.8.1 The Subject Menu 464

Chapter 17. Dialog and Function Extensions 467
17.1 Calling Sequence for Dialogs 468
17.2 Standard Dialogs and Functions Reference 469

17.2.1 Standard Configurable Dialogs 469
17.2.1.1 The Standard Attributes 469
17.2.1.2 Messages to the Standard Dialogs 471
17.2.1.3 Standard Dialog Descriptions 472

17.2.2 Miscellaneous Dialogs and Functions 476
17.2.3 Input Device Dialogs 477
17.2.4 Stimulus Attribute Dialogs 478
17.2.5 File Name Dialogs 480
17.2.6 Log File Related Functions 482

Part 5: Appendices

Chapter 18. Error Messages 489
18.1 Error Numbers 489
18.2 Global and Memory Errors 489
18.3 PsyScript Errors 490
18.4 User Environment Errors 493
18.5 Graphic Environment Errors 495
18.6 Factor Format Errors 499
18.7 Trial Manager Errors 502
18.8 Screen Manager Errors 507
18.9 Sound Manager Errors 510
xii

Table of Contents
18.10 Button Box Errors 511

Chapter 19. Configuring the Button Box 513

Chapter 20. Creating Picture Resources 517

Chapter 21. Creating SoundEdit™ Sound Files 519
xiii

 PsyScope User Manual
xiv

Ψ
Overview of the PsyScope Manual

Overview of the PsyScope Manual

0.1 Organization

The PsyScope user documentation is divided into five parts:

Part 1: Introduction to PsyScope

A step-by-step tutorial which explores the basic features of PsyScope and takes the user
through the process of creating a working experiment in the graphic environment.

Part 2: Graphic Environment Reference

A reference for the basic experiment concepts, the dialogs in the graphic environment, the
features for running and managing an experiment, and all of the menus and windows in the
user environment.

Part 3: Scripting User Manual

An introduction to using PsyScript to define an experiment, including a scripting tutorial.

Part 4: Scripting Reference

An exhaustive reference for PsyScript, experiment description formats, user environment
configuration, and dialog extensions.

Part 5: Appendices

A list of PsyScope’s error messages, details about configuring the CMU button box, and
instructions for creating PICT and digitized sound stimuli.

0.2 System Requirements

PsyScope will run on any Macintosh from the Mac Plus upward running System 6.0.5 or
later.

 Overview of the PsyScope Manual
0.3 Conventions

This manual can be used for learning PsyScope or as a reference for experienced users. We
assume that those reading this manual have a basic knowledge of the Macintosh — how to
click on things with the mouse, and how to use the menus.

For instance, when we say,

“Choose Paste from the Edit menu,”

we assume that you will know what me mean, without our having to say, “Move the cursor
up to the Edit menu in the menu bar, push the mouse button down and hold it down while
moving the cursor until the word Paste is hilited,” etc.

Key terms or concepts are italicized and boldfaced where they are first defined. References
to items that actually appear on the screen, in windows or dialogs, are generally printed in
Chicago font. The generic name for windows or dialogs of given type are capitalized (e.g.,
the Positions dialog). Text that is seen in the script is printed in Courier.

In examples, steps that should be followed in order are numbered; bulleted steps can be car-
ried out in any order desired.
2

Part 1:
Introduction
to PsyScope

Chapter 1. Introduction 1

Chapter 2. Running Your First Experiment 3

Chapter 3. Designing an Experiment 9

4

Ψ
Chapter 1. Introduction

Part 1: Introduction to PsyScope

The laboratory microcomputer has become a crucial tool for conducting experiments in
psychology. But students who wish to use this tool to construct new experiments typically
find it out of their grasp, either because they are not expert programmers or because they
cannot devote the hundreds of hours needed to program new experiments from the ground
up. In this respect, psychology students are much like chemists without bunsen burners or
geologists without compasses. Denied access to the basic tools of their trade, they are
blocked from first-hand access to laboratory work in their science. The basic goal of Psy-
Scope is to remove this technological barrier.

PsyScope is designed to eliminate the need for programming skills on the part of the user.
Instead, the user can work within the graphic environment, which provides a direct visual
representation of the design of the experiment. This will allow the student to focus on un-
derstanding the principles of experimental psychology, instead of the mechanics of com-
puter programming. The crucial design features of PsyScope are:

1. No programming — The PsyScope system does not require the user to be a program-
mer or to learn a complex symbolic scripting language. These aspects of the system
are made transparent to the user.

2. Graphic environment — To create this transparency, we have used the standard
Macintosh interface of pop-up menus, buttons, scrollable windows, and icons to con-
struct fully visual psychological experiments.

3. Complete coverage of design types — The PsyScope system is designed to support
the full range of design types. Included are Latin square, Graeco-Latin square,
blocked, embedded, linked, matched, random factor, fixed factor, and all other major
design types.

4. Accuracy checking — To guarantee the accuracy of the program the student produc-
es, the PsyScope graphic environment produces an “event schedule” that expresses in
great detail the contents of each experimental trial. The student does not need to type
in this list, since it is automatically compiled by PsyScope. It is made available to al-
low the student to make sure that the intended experimental design is actually being
implemented on a particular run of the experiment. For example, if the student wants
to examine the exact composition and shape of trial number 88, even before running
the experiment, this can be easily done.

5. A variety of input and output formats — PsyScope supports all of the major output
formats that computers can control. It is capable of playing digitized sound or speech.
It can present words in Roman or non-Roman alphabets. It can display any form of
computer graphics and now has primitive abilities to display animations. Currently,

 Part 1: Introduction to PsyScope
simple experiment forms such as Stroop, ESP, Signal Detection, Picture-Word Nam-
ing, Mental Rotation, and so on are easy to design. Even more complex paradigms
such as Moving Window or RSVP can be designed within PsyScope. Although Psy-
Scope can support many input and output types, there are still others that must be im-
plemented as separate extensions.

6. Precise timing — For students who need full experimental timing precision, Psy-
Scope can be run in conjunction with a piece of external hardware called the “button
box” which provides timing accurate to one millisecond. The low-level timing rou-
tines required for this box and for the precise control of the screen have been worked
out in detail and have been thoroughly tested on all machines in the Macintosh line.
When developing this system, we paid close attention to software timing routines
(Rensink, 1990; Westall, Perkey, & Chute, 1989). However, we found that a general
solution to the problem required an external device.

7. Clear representation of experimental designs — The graphic environment pro-
vides a clear representation of the structure of the experiment. This representation can
then be used as a reference point for instruction on the principles of experimental de-
sign, such as Shaughnessy and Zechmeister (1990).
2

Ψ
Chapter 2. Running Your First Experiment

Part 1: Introduction to PsyScope

Let’s begin our look at PsyScope by running a simple demonstration experiment called the
“Acuity Experiment”. To run the Acuity Experiment, you need to have a copy of PsyScope
installed on your hard disk. PsyScope can be anywhere on your disk, but it is probably best
to keep your experiments and PsyScope in the same general folder. The other thing you
need to run the Acuity Experiment is a copy of the script which should be called simply
“Acuity Experiment script”.

2.1 Open the Experiment

When you have PsyScope and “Acuity Experiment script” in place, double click on the icon
for “Acuity Experiment script”. This should launch PsyScope. First you will see a window
with the PsyScope logo. Next, the logo will disappear and you will see two new windows.
The first is the PsyScope Console window which looks like this:

The Experiment pop-up menu lists all of the experiments you currently have available. At
this point the only available experiment is called “Acuity Experiment”. The five buttons on
the right allow you to control various high-level functions in PsyScope. If you click on the
Quit button or the close box at the top left of the console window, you will quit PsyScope
or close the script. Don’t do this quite yet.

The second window is the Design window, which has a set of icons connected with lines.
If you close the Design window, you can re-open it from the Console by clicking on the
Design button. Try closing the Design window (by clicking on its close box) and then re-
opening it with the Design button in the Console.

Figure 1 – PsyScope Console

 Part 1: Introduction to PsyScope
2.2 Run the Experiment

Next we are ready to run the experiment. This can be done by typing Command-R at any
time. Alternatively, you can click on the Run button in the PsyScope console window or
you can choose Run under the Run pulldown menu at the top of the screen. Each of these
three ways of issuing the command leads to the same result.

As soon as the experiment is loaded, an instructions screen will come up telling you about
the operation of the three keys. The basic idea is that you should wait for the asterisk to
come on. Then you should press the “2” key as soon as you are ready for the next word.
The word or non-word will come on immediately and you will have to decide whether it
was a word or a non-word. If you think it was a word you should type “1”. If you think it
was a non-word, you should type “3”. The experiment will run through 8 trials. Give it a
try. If you want to interrupt the experiment, hold down Command-. (Command-Period).

After each trial, data are written to the output file. You can view this output file by typing
Command-O to open a file, or choosing View Data File under the Utilities menu at the
top of the screen. You can perform the normal Macintosh operations of printing and editing
this file. If you break from the experiment (using Command-.) your data for completed tri-
als will still be saved. The format of the data file, and how to customize this is discussed in
below, and in detail in “Part 2: Graphic Environment Reference, 6.1.4 The Data File”,
p217.

Another file that is automatically generated whenever you run PsyScope is the “Psy-
Scope.log” file. Unless you specify otherwise, this file is stored in the folder which contains
the PsyScope application. The log file lists the times at which you started experiments, the
numbers of trials you ran, error messages, and so on.

2.3 Look at the Experiment in the Design Window

There are three factors in the Acuity Experiment. One is the position of the stimulus on the
screen. There are five positions: far left, near left, center, near right, and far right. The sec-
ond factor is the size (font pitch) of the stimulus which is either 12, 18, or 24. Finally, the
stimulus is either a word or a non-word. From the viewpoint of experimental design, this is
a fully-crossed three factorial within-subject design. You can see this design more clearly
by double-clicking on the Factor Table icon (see “Figure 2 – Factor table icon”) in the De-
sign window to open the Factor Table window.

Figure 2 – Factor table icon
4

2.4 Change One or Two Things in the Experiment
This window specifies a within-subject design in the full version of the experiment because
each subject sees stimuli in each of the cells of the design when the number of trials is set
to 30 (that’s how many cells there are). We have set the number of trials to 8 rather than 30
to keep your introduction to PsyScope brief (that is, to keep you from hitting the Quit but-
ton).

2.4 Change One or Two Things in the Experiment

To get a sense of how to work with an experiment in PsyScope, let’s change a couple of
things in the Acuity Experiment. If you found the experiment a bit too easy, you can make
it harder by cutting down the exposure time for the stimulus. Do this by going to the Design
window (the one titled “Acuity Experiment” containing the various icons connected by
lines), and double-clicking on the icon called “Stimulus” (if you don’t see this, look to see
if the Show Events checkbox just below the window title is checked, and if it isn’t, click

Figure 3 – Factor Table window
5

 Part 1: Introduction to PsyScope
on it to check it; a number of icons should appear, including the one for the Stimulus event).
This brings up the Event Attributes dialog, which looks like this:

To change the duration of the stimulus, click on the Event Attribs radio button. The win-
dow dialog will change to show a different set of attributes, including the Duration at-
tribute with “100” written next to it, indicating that the current duration is 100 milliseconds.
Clicking on the 100 will open up a new dialog, where you can change the duration by typing
in some other value, say “50”.

For a second change, try reducing the smallest font from 12 to 8 point. To do this, you first
need to select the “Small” level of the Size factor, so that you are working only with trials
that will use the smallest words. Do this by going back to the Factor Table window, and
clicking on the Small column heading. This will highlight all of the cells in that column,

Figure 4 – Event Attributes dialog
6

2.4 Change One or Two Things in the Experiment
corresponding to all of the trials in which the smallest size will be used for the stimulus
word.

Once this column is highlighted, double-click on one of the cells within it, or click on the
Open Cells button, and the Trial Template window will come up:

Here, double-click on the icon for the Stimulus event, which will re-open the Event At-
tributes dialog. Size is about halfway down in the list of attributes. Open the pop-up menu
next to this attribute, and choose Set To. This will open a dialog that will allow you to
change the size of the stimulus from 12 to 8.

Figure 5 – Clicking on a level

Figure 6 – Template window
7

 Part 1: Introduction to PsyScope
Try making both of these changes, and then running the experiment again. It should now
be more difficult, particularly for the smallest stimuli.
8

Ψ
Chapter 3. Designing an Experiment

Part 1: Introduction to PsyScope

This is an introduction to the structure of an experiment in PsyScope, and how to build ex-
periments interactively within the graphic environment. If you are an experienced Macin-
tosh user, this section should provide enough information to get you started “snooping
around”. More detailed descriptions of the components of an experiment, and the tools and
dialogs used to build them, are provided in “Part 2: Graphic Environment Reference”.

3.1 A Word About Scripts and the Graphic Environment

Information about each experiment in PsyScope is stored in a script. You can build exper-
iments in one of two ways: by using PsyScript (the PsyScope scripting language) to write
a script directly, or by using PsyScope’s point-and-click graphic environment to build the
experiment interactively. When you design an experiment interactively, PsyScope actually
writes the script for you. You can view this script at any time, and edit it directly. In fact,
anything you do interactively is reflected immediately in the script, and most changes made
directly in the script are reflected immediately in PsyScope’s interactive windows and dia-
logs.

PsyScript is a powerful scripting language that will allow you to design just about any type
of experiment you can imagine. Sooner or later, you will want to make use of PsyScript to
take full advantage of the power of PsyScope. However, learning PsyScript may take more
time or energy than you have immediately available.

The graphic environment provides an intuitive, easy-to-use environment that will allow
you to get most experiments up and running quickly, without having to learn PsyScript.
This environment is also organized around the basic concepts of experimental design, so
that it should seem natural to experienced psychologists, and will help introduce new stu-
dents to these concepts. Even once you are familiar with PsyScript, you may still find it
convenient to outline an experiment graphically, and then customize it using PsyScript.

This chapter will introduce you to the basic concepts and techniques needed to design an
experiment graphically. In Part 2, you will find a complete reference to the structure and
construction of a PsyScope experiment using the graphic environment. Part 4 is a reference
for the PsyScript scripting language.

 Part 1: Introduction to PsyScope
3.2 Creating a New Experiment

The first thing you will need to do to create a new experiment using the graphic environ-
ment is to create the script in which it will be stored.

Begin by double-clicking on the PsyScope application to open it. Once the application has
opened, the menu bar should contain the following menus:

Create a new script by doing the following:

1. Go to the Design menu, and choose New ExperimentÉ. A dialog asking
you for the name of the new experiment will appear.

2. Type in the name you wish to give your experiment (let's say “Example Ex-
periment”).

3. Click on the OK button.

Note: If another experiment is already open and you have made changes to it, a dialog will
appear asking if you want to save the changes to the current experiment. Choose Yes
if you want to save the changes, or No if you do not. If you are not sure, choose Cancel
to review the changes before continuing. When you are ready, go back to step 1 above.

4. A standard Macintosh file dialog will appear, asking you to name the file in
which the script for your experiment will be saved. Enter the name of the file
(say, “Example Experiment Script”) and, if you wish, locate the folder in
which you want to save it. Then click on the Save button.

All of your work will now be stored in the script file. It is a good idea to save this file to
disk periodically by choosing Save Script from the File menu, or typing Command-S. If
the Save Script menu item is grayed out, then there are no new changes to save. You can
also save your script to a new file, by choosing Save Script As... from the File menu. A
copy of the old file will remain on disk, but any new changes you make to the experiment
will be stored in the new file. Save a Copy as... lets you save a copy of your script to a
new file, while you continue to work with the old file.

Once you have named the experiment and created the script file, the PsyScope Console will
appear, with the name of your experiment in the Experiment pop-up menu, and the name
of your script listed as the Script File at the bottom. (If your version of PsyScope is con-
figured to automatically open the Design window, the Console window will be behind it.

Figure 7 – Standard menu bar
10

3.2.1 Using the Design Window
Click on the Console window to see it, or choose Console from the Windows menu, or
type Command-1).

You are now ready to begin designing an experiment. Whenever you create a new experi-
ment, PsyScope provides you with some initial building blocks. You can see these repre-
sented graphically in the Design window.

3.2.1 Using the Design Window

The Design window shows a graphic view of all the components of the current experiment.
This is your “home base”. You use this get an overview of the experiment, to create new
components and interconnect them, and to access windows and dialogs for customizing
these components. “Part 2: Graphic Environment Reference, 5.2 The Design Window”,
p107 provides a complete guide to all of the tools available in the Design window, and the
techniques for using these.

If the Design window is not already opened, open it by doing one of the following:

• Click on the Design button in the Console window.

• Go to the Window menu and choose Design.

• Type Command-2.

Figure 8 – The Console window for a new script
11

 Part 1: Introduction to PsyScope
The Design window will appear, and will look like this:

When you create a new experiment, PsyScope starts you out with the experiment object,
which is the first component that you need to get going. The icon for the experiment (Ψ)
appears in the work area of the Design window.

Notice that there is also a palette on the left side of the window, which contains a number
of other icons. These represent the other components that can be included in an experiment,
and tools for linking them. In this chapter, we will focus on only those components that are
needed to get simple experiments up and running. In the sections that follow, we will intro-
duce you briefly to each of these components, show you how you can create them, and dem-
onstrate some of the ways in which you can use them to design an experiment. The
information in this chapter should help you get started quickly. You will find more detailed
information about each component in “Part 2: Graphic Environment Reference”. This in-
formation will be useful to you when you begin to design more complex experiments.

To get going immediately, let’s build a simple experiment that presents two stimuli on the
screen, one after the other, and then records your reaction time to the second stimulus. The
components that we will need for this little experiment are trial templates, events, and at-
tributes. Later in the chapter we will also be interested in factor tables.

3.2.2 Creating a Trial Template

The most basic element of a PsyScope experiment is a trial. A trial is simply a sequence of
events during which one or more stimuli are presented, and responses from the subject are
collected. An experiment may consist of several different types of trials (for example, trials
during which stimuli are presented tachistoscopically and reaction times are measured, and
others in which questions are presented and choices are recorded).

Figure 9 – Design window for a new script

Palettes

Work Area
12

3.2.2 Creating a Trial Template
In PsyScope, you use a trial template (or simply template) to design each different type of
trial that you want to include in the experiment. The idea here is simple: usually you will
want to run a number of trials of the same type, which vary in their details (such as the stim-
ulus actually presented, or how long to wait for a response), but all of which share a com-
mon overall structure (present the stimulus, wait a specific amount of time, and then record
the response). You would define the structure for this type of trial using the trial template
object. You would design a different trial template for each set of other trials that have a
different structure. When you run the experiment, each actual trial is an instance of a par-
ticular trial template.

A trial template consists of a sequence of events that make up the trials of that type. These
events, in turn, determine which stimuli to present, how and when to present them, when
to wait for delay intervals, and what input to look for from the subject. You design and edit
trial templates using the Trial Template window. First, however, you must create the trial
template, and link it to the experiment.

To create a new trial template do the following:

1. Click on the trial template icon (see below), drag it to the work area of the De-
sign window, and then release the mouse.

2. When you release the mouse, a dialog will appear asking you to name the new
trial template. Enter the name you want to use, and then click on OK, or press
Return. (See “Part 2: Graphic Environment Reference, 5.2.5 New Object
Name Dialog”, p114 about legal names.)

Note: Whenever you create a new object in PsyScope, it will ask you to name that object.
If you find this feature annoying, you can turn it off through the Always ask for
new object names Design options (see “Part 2: Graphic Environment Reference,
7.6.4 Design Options”, p268). If you do this, PsyScope will automatically give names
to objects for you, which you can later change at your convenience.

A new trial template will now appear in the work area, along with the experiment. Also, the
cursor should have changed to the link tool icon (see below), unless the automatic tool-
switching option has been turned off (See “Part 2: Graphic Environment Reference, 7.6.4
Design Options”, p268). You can always select the link tool from the palette at the left of
the Design window.

Using the link tool, link the trial template to the experiment:

Figure 10 – The Template icon

Figure 11 – The link tool
13

 Part 1: Introduction to PsyScope
3. Click on the trial template, and then drag to the experiment icon. As you drag,
you should see a link line stretch from the trial template to the cursor.

4. Release the mouse button when the experiment icon is hilited. A link should
now appear between the experiment and the trial template, indicating that the
template is part of the experiment.

To work with the trial template, you will need to open it.

To open the Trial Template window:

• Double-click on the trial template icon in the Design window.

The following window will appear on your screen:

Notice that the three areas of this window are empty. To begin designing the trial template,
you will need to create some new events.

3.2.3 Creating a New Event

Trials are made up of events. You can think of an event as a period of time during which
you want something specific to happen. You create a separate event for each thing that you
want to happen during the trial, and then order the events according to the sequence in
which you want them to occur.

There are separate event types, for each thing that you might want to happen during the trial.
For example, there are event types for different kinds of stimuli — such as text, sounds and
pictures — as well as special event types for time delays and subject input. Each type of
event is represented by its own icon in the Event palette, at the left of the Trial Template
window.

You design a trial template by creating new events, and sequencing them in the Time Line
area.

Figure 12 – Anatomy of the Trial Template window

Event Name Area

Event Palette

Event Status Area

Time Line Area
14

3.2.3 Creating a New Event
To create a new event:

• Click on the icon in the Event palette for the type of event you wish to create,
and then click in the Event Name area.

The different types of events are described fully in “Part 2: Graphic Environment Refer-
ence, 5.8.7.1 Event Types”, p177. For now, we will stick with Text events, which display
a line of text on the screen. After choosing the Text event type (the icon, pictured below,
is in the Events palette), the following dialog will appear asking you to enter the name of
the new event:

Note: This dialog will not appear if the Always ask for new object names item is
not checked in Design Options dialog. See also “Part 2: Graphic Environment Refer-
ence, 7.6.4 Design Options”, p268

If you chose a different type of event, a comparable dialog will appear, listing its type in
the Event Type pop-up menu.

• Type the name you want to give the event in the hilited area, and then click
OK, or press Return.

Figure 13 – The Text event icon

Figure 14 – New event name dialog
15

 Part 1: Introduction to PsyScope
The Trial Template window should now look like this:

Note that both the name of an event and an icon for it have been added to the Event Name
area, while an event bar for it appears in the Time Line area. You can select the event by
clicking on any of these. Information about the selected event appears in the Event Status
area. In the figure above, Event1 is selected, so information about when it starts and its du-
ration appear in the Event Status area.

The trial template now contains a single event, but we have not yet specified anything about
this event, other than the fact that it will be used to present text. To specify the details of an
event (the specific stimulus to be presented, or how it will be presented), you must set its
attributes.

3.2.4 Setting Attributes Using the Event Dialog

The attributes of an event determine all of the features of the event. You set these using the
Event Attributes dialog.

Figure 15 – The Template window with a new event

Event Status
 Area
16

3.2.4 Setting Attributes Using the Event Dialog
• Open the Event Attributes dialog for Event1 by double-clicking on its name
or icon in the Event Name area, or its event bar in the Time Line area. The
following dialog will appear:

At the top of the Event Attributes dialog are a field for changing the name of the event, a
pop-up menu for changing its type, and radio buttons to choose which set of attributes you
want to work with. Each event is associated with two sets of attributes: stimulus attributes
and event attributes.Stimulus attributes control aspects of the event that are specific to its
type (e.g., the font or size of a text stimulus, or the volume of a sound stimulus). Event at-
tributes control more general properties of the event that are common to all event types
(e.g., their duration). The list area of the Event Attribute dialog displays the list of attributes
belonging to the set you have chosen with the Stimulus Attribs and Event Attribs radio
buttons. When you first open the Event Attribute dialog for an event, it displays the list of
stimulus attributes for that event. You can switch to the event attributes by clicking the
Event Attribs radio button.

Each attribute in the list area has a pop-up menu that lets you decide how you want to assign
the value for that attribute. If you do nothing, or choose Default, PsyScope will give it a
reasonable value. If you choose Set To:, the attribute will be given the value that you as-
signed to it; this will be the same on every trial. You can vary the value of the attribute from
trial to trial by choosing one of the items under Vary By:; We will discuss this technique
below (“3.2.8.4 Lists”, p59, “3.2.9.2 Varying by Block”, p72, “ The Group Object and
Varying By Group”, p83, and “3.2.12.2 Practice vs. Run Mode”, p93).

Note: The only attribute that you must set is the Stimulus attribute. This attribute deter-
mines the stimulus that will be presented during the event. You will be given an error
message if you try to run an experiment that contains any events whose stimulus at-
tribute has not been set.

Figure 16 – The Event Attribute dialog
17

 Part 1: Introduction to PsyScope
Assign the text to be displayed during Event1 by setting its Stimulus attribute:

1. Go to the pop-up menu next to Stimulus in the list of attributes, and choose
Set To:, as shown below. (If you cannot find the stimulus attribute, check to
be sure that Stimulus Attribs radio button is selected.)

2. A standard text dialog will appear. Enter the text you want displayed during
the event, and then click OK.

3. The stimulus that you entered now appears next to a bullet to the right of Set
To: in the Stimulus attribute menu:

Single-clicking on the bullet or the stimulus will reopen the standard dialog,
allowing you to change its value. The stimulus also appears above the event
bar in the Trial Template window, in place of the “???” that was there when
you first created the event:

Figure 17 – Setting an attribute

Figure 18 – Attribute showing a constant value for its setting

Figure 19 – Event in Template window with the stimulus set
18

3.2.5 Timing and Sequencing Events
Note: Whenever you see a bullet in a PsyScope dialog, you can click on it — or the item
that appears next to it — to change the value of that item.

Set the values of any other attributes that you wish, by choosing Set To: in the pop-up
menu next to the attribute’s name. (The meaning of all stimulus attributes are described in
“Part 2: Graphic Environment Reference, 5.8.7.3 Stimulus Attributes”, p181.)

Tip: You can enter the value of any attribute that can be specified as text directly from the
Attributes dialog by selecting the attribute and typing Command-right arrow. This au-
tomatically chooses Set To from the attribute’s menu, and creates a text field next to
it for entering the value. (See “Figure 20 – Shortcut for setting an attribute value”.)
Many attributes for which you usually use pop-up menus can also be assigned by text
(e.g., colors, font names, font sizes, etc.)., although you are then responsible for mak-
ing sure that you enter a legal value.

Once you have created at least one event, and assigned its stimulus value, you can run a
trial.

Run the trial by doing one of the following:

• Make the Console the active window (by clicking on it, choosing its name in
the Window menu, or typing Command-1), and then click on the Run but-
ton.

• Go to the Run menu and choose Run.

• Type Command-R.

The text that you entered as the stimulus attribute for the event should appear at the center
of a blank screen for 1/2 second.

3.2.5 Timing and Sequencing Events

You control the timing of the events in a trial by setting their durations and by linking
events to one another in a sequence.

3.2.5.1 Timing an Event

You can make an event last a set amount of time, or allow it to last until something happens,
such as input generated by the subject, the end of the trial, or — for certain types of stimuli

Figure 20 – Shortcut for setting an attribute value
19

 Part 1: Introduction to PsyScope
(such as sound) — until the end of the stimulus itself. You set the duration of an event by
first choosing how you want it to be decided (by a fixed time value, or by some occurrence
or condition), and then providing any necessary details (i.e., the amount of time, or the spe-
cific occurrence that will end the event). You can do this from either the Trial Template
window or the Event dialog, whichever is most convenient. If you do not explicitly set the
duration of an event, PsyScope will assign it a default duration, depending upon its type.
For Text stimuli, this is 500 milliseconds.

Note: For screen-based stimuli — such as text and graphics — the actual duration of the
stimulus is constrained by the refresh rate of the screen. For most screens this is 66
Hz, which means that the actual duration of the stimulus will be a multiple of 16.6
msecs. See “Part 4: Scripting Reference, 15.2 Screen Stimulus Display”, p445 for a
more complete discussion of how PsyScope handles the timing of screen-based stimuli.

Set Event1 to last until the mouse is clicked by doing one of the following:

1. Select Event1 in the Trial Template window (single click on it; double-click-
ing will open the Event dialog).

2. Go to the Duration pop-up menu in the Event Status area (at the bottom of
the Trial Template window), and choose Conditions.... The Duration dia-
log will appear.

or

1. Open the Event dialog, or click on it to make it active if it is already open.

2. Click on the Event Attribs radio button. The list of attributes will change
to the event attributes.

3. Go to the Duration menu, and choose Set To:. The Duration dialog will ap-
pear.

4. Choose Conditions... in the Duration: pop-up menu at the top of the Du-
ration dialog.
20

3.2.5 Timing and Sequencing Events
Either method will open the Duration dialog, and show Conditions: selected in its pop-
up menu, with a list of input devices below it:

Conditions can be used to terminate an event in three ways: when the subject responds on
an input device (clicks or moves the mouse, presses a button, etc.), when a certain amount
of time has elapsed (the Timeout condition), or when a trial variable expression evaluates
to true (the When condition). If you choose more than one of these, the event will end as
soon as the first condition occurs. We will discuss conditions more fully below, in “3.2.7
Conditions and Actions”, p30.

To select mouse-click as the condition for terminating the event:

• Click on the mouse icon (see below) or the checkbox next to it. A check will
appear in the checkbox, and • Click will appear next to Mouse in the list
of devices.

Figure 21 – The Duration dialog in Conditions mode

Figure 22 – The Mouse icon

Figure 23 – The Duration dialog with Mouse selected
21

 Part 1: Introduction to PsyScope
Whenever you select an input device, PsyScope makes some default assumptions about
what response you expect from the user on that device (see “Part 2: Graphic Environment
Reference, 5.8.7.1 Event Types”, p177 for the defaults for each input device). For the
mouse, this is a click. You can change the response you want PsyScope to look for by dou-
ble-clicking on the name of the device in the list or, if the device is already checked, single-
clicking on the bulleted list of responses that appear next to it.

The Timeout condition specifies the maximum amount of time that PsyScope will wait for
the input to occur, after which the event will end regardless of whether the input has oc-
curred. If you check Timeout, a default value of 500 msec will be assigned. You can dou-
ble-click on the icon or label to open a dialog in which you can enter a different maximum
amount of time to wait.

Close the Duration dialog (by clicking in its close box). Notice that the event bar in the Trial
Template window is now “broken”, and that a mouse icon appears at to the right of it:

Try running the trial, using one of the methods described above. The stimulus should now
appear on a blank screen, and remain there until you click the mouse. If you specified a
Timeout value, then the text should disappear after that amount of time if you don’t click
the mouse.

The length of the event bar in the Trial Template window tells you about the duration of
the event. If the event has a fixed duration, then the length of its event bar tells you how
long the event will last. You can change the duration by clicking on the event bar, and re-
sizing it using the handle in its lower right hand corner. As you change the size, the value
for the duration changes in the box at the bottom of the Trial Template window. You can
also set the value of the duration directly, by entering a number in the box.

If the duration of an event depends on an occurrence (such as a mouse click), then the event
bar appears broken, indicating that its exact duration is not known; it will vary from trial to
trial, depending upon when the input (or other terminating condition) actually occurs. You
can still resize the event bar, however this will not affect the duration of the event. For this
type of duration, one or more icons will also appear at the end of the event bar, indicating
the conditions that will end the event. Clicking on any of these icons will show the duration
menu.

3.2.5.2 Sequencing Events

Most trials that you design will, of course, involve more than a single event. For example,
in the little experiment that we are designing, there are two events, one of which follows
the other. You sequence events by linking them in the Trial Template window.

Figure 24 – A Text event that ends with a Mouse click
22

3.2.5 Timing and Sequencing Events
Add another Text event and assign it a stimulus using the methods described above. The
Trial Template window should now look something like this:

Note: Whenever you add a new event to a trial template, PsyScope automatically links it to
the end of the last event created.

Switch the durations of the two events, so that the first lasts only 500 milliseconds, and the
second lasts until you click the mouse. To change the duration of the first event to 500 mil-
liseconds, you can choose Default in the Duration menu, or choose msec: and then en-
ter 500 as the value.

Try running the trial. The first stimulus should flash briefly, followed immediately by the
second which remains on the screen until you click the mouse.

Now, add a delay between the two events, by doing the following:

• Add a Time event, by clicking on the Time icon (see below) in the Events
palette of the Trial Template window, and then clicking in the Time Line area.
Call the event “Delay”.

Figure 25 – Template with more than one event

Figure 26 – The Time icon
23

 Part 1: Introduction to PsyScope
The event should appear linked to the second event. You may need to resize the window to
see all of the events. Alternatively, you can rescale the Time Line area by clicking on the
demagnify icon (see below) just below it.

As noted above, whenever you create a new event, PsyScope links it to the last event in the
sequence. However, you can rearrange things as you wish.

To change the sequence of the events, so that the time event comes in between the first and
second events, use one of the following methods to re-link the events.

1. Select the Delay event in the Trial Template window.

2. Go to the second of the two pop-up menus that appear to the extreme right of
Start at: in the Event Status area.

3. Choose Event1 (or the name of first event, if you have changed it):

4. Follow the same set of steps to link the second event to the end of the Delay
event.

Here is an alternative method:

1. Hold down the command key and click on the Delay event. The cursor will
change to the link tool (see below).

2. Click on the right half of the event bar for first event. The Delay event will
now be linked to the end of first event.

Figure 27 – The demagnify icon

Figure 28 – Setting an event starting time

Figure 29 – The link tool
24

3.2.5 Timing and Sequencing Events
3. Follow the same procedure to link the second event to the end of the Delay
event.

The Trial Template window should now look something like this:

Try running the trial. The stimulus for the first event should appear briefly, followed by a
blank screen for a brief period, and then the stimulus for the second event.

Using the Trial Template window, you can arrange the order and timing of events in any
way that you want. This can be done using the menus and value boxes of Start at: in the
Event Status area, or by manipulating the event bars directly. In general, you will find that
there is more than one way to accomplish a particular goal. For example, to introduce a de-
lay between the first and second stimulus events in the example above, you could have set
the second event to start at 500 milliseconds after the end of the first event, rather than add-
ing a separate time event. Try doing this.

Re-link the second event directly to the first event, by using one of the methods described
above. Then, remove the Delay event by doing the following:

1. Select the Delay event.

2. Use either the Cut or Clear command from the Edit menu. The event will
be moved to the trash, and can be recovered later if you wish.

Now, make sure the second event is selected, and then use one of the following two meth-
ods to delay the start of the second event for 500 milliseconds after the end of the first event:

• Enter “500” in the value box just next to Start at: in the Event Status area.
You make this area active by clicking on it with the mouse, or pressing the
tab key until the number in it is hilited.

or

• Drag the event bar for the event to the right, until the number next to Start
at: in the Event Status area is “500”.

Figure 30 – Template window with a re-linked event
25

 Part 1: Introduction to PsyScope
Trial Template window should now look like this:

Running the trial now should produce the same results that it did earlier, when the delay
event was used.

In general, if you just want to delay the beginning of an event, do this by changing the value
for Start at in the Event Status area (i.e., when the event starts relative to the event that it
is linked to, or to the beginning of the trial). However, if you want something to happen
during the delay, then you should add a new event. For example, if you want to record a
response to the first event during the delay between it and the second event, then use a delay
event or an input event. In the little experiment we have been working on, we want to record
the subject’s reaction time to the second event. The next section describes how to do this.

3.2.6 Recording Responses

Recording a response in PsyScope is actually a special case of scheduling an action to occur
during a trial. Actions are operations that you can schedule to be performed under specified
conditions during the running of a trial. This section will show you how to use conditions
and actions to record a response. In the next section, we will show you how to schedule oth-
er kinds of actions to carry out a variety of operations during a trial.

To record a response (e.g., a mouse click or key press), you must schedule the RT[] action
to take place when the type of response that you are interested in has occurred. (The brack-
ets following RT indicate that it can be assigned parameters. You do not need to worry
about this now — they are included here simply for accuracy; parameters are discussed in
the next section, “3.2.7 Conditions and Actions”, p30). The RT[] action records the time
and nature of the response in the data file (the data file is described in “ Log File and Data
File”, p79; also see “Part 2: Graphic Environment Reference, 6.1.5 The Log File”, p222
and “Part 2: Graphic Environment Reference, 6.1.4 The Data File”, p217). You schedule
the RT[] action by setting the Actions attribute of the event during which you expect the
response to occur. The Actions attribute is in the Event Attribs attribute set. You must
also specify the type of response, or condition, that will trigger the RT[] action — that is,

Figure 31 – Template window with delayed event
26

3.2.6 Recording Responses
the response you wish to record. When the RT[] action is triggered, it records the time at
which the response occurred relative to the beginning of the event which owned the RT[].

To record a key press during the second event:

1. Open the Event dialog for Event2, and select the Event Attribs radio but-
ton.

2. Go to the Actions pop-up menu, and choose Set To:. The Actions dialog
will appear.

3. Click on the New button in the Actions dialog. It should now look like this:

Notice that there are two boxes separated by an arrow, below the Conditions and Ac-
tions headings, respectively. You specify the action that you want to perform in the ac-
tions box, and the condition that you want to trigger it in the conditions box. Follow these
remaining steps to record a key press during Event2:

Figure 32 – The Actions dialog with one empty condition-action pair
27

 Part 1: Introduction to PsyScope
4. Double-click on the box on the left (under the Conditions heading, with
Never written in it). The Conditions dialog will appear:

5. Click on the Key icon (see below) or the checkbox next to it, or double-click
on the word Key. The Key dialog will appear:

6. Any is the default. You could replace this by typing in the keys to which you
want to record a response, but for now leave Any as the value to record any
key press. Close the dialog when you are done.

Figure 33 – The Conditions dialog

Figure 34 – The Key icon

Figure 35 – The Key dialog
28

3.2.6 Recording Responses
7. Go back to the Actions dialog, and select the box to the right of the arrow,
under the Actions heading. A pop-up menu marked New will appear to the
right of the Actions heading. Choose RT from this menu.

The Actions dialog should now look like this:

Try running the trial. Remember, Event2 will continue until you click the mouse (since that
is how its duration is set), unless you specified a timeout value in the Duration dialog.

Figure 36 – Selecting a new action in the Actions dialog

Figure 37 – The Actions dialog with a new action
29

 Part 1: Introduction to PsyScope
If you press one of the keys that you set in the Key dialog before the event ends, then the
key and the time that it was pressed — relative to the beginning of Event2 — will be re-
corded in the data file. You can see this once the trial has ended by opening the data file
using the View Data File command in the Utilities menu. The format of data files is de-
scribed in “Part 2: Graphic Environment Reference, 6.1.4 The Data File”, p217.

Recording input from the subject is one example of how you can use conditions (such as
Key[Any]) and actions (such as RT[]) to perform a variety of operations during the running
of a trial in PsyScope. There are a number of other actions that you can execute, and a va-
riety of conditions that you can use to trigger these. Some examples of these are discussed
in the next section.

3.2.7 Conditions and Actions

Actions are operations that are performed under specified conditions during the running of
a trial. The action is performed when the specified condition occurs. You can think of the
occurrence of the condition as “triggering” the action.

Note: You should not confuse this meaning of the term “condition” with its meaning as a
particular crossing of the factors in the factor table (as in a “condition of the experi-
ment”). This other meaning of the term condition is discussed below, under “3.2.8.1
Creating a Factor Table”, p36, and in “Part 2: Graphic Environment Reference, 5.7
Factors and Lists”, p129.

There are three types of conditions that can be used to trigger an action: 1) the start or end
of an event; 2) subject input (such as a mouse click or a key press); and 3) the value of a
trial variable expression (this is an advanced feature of PsyScope, not discussed further
here; see “Part 2: Graphic Environment Reference, 5.10 Trial Manager Variables”, p205
for a description of variables).

As you saw in the previous section, conditions and actions are set using the Actions event
attribute. There, you set the RT[] action to occur when the subject pressed a key. As you
probably noticed, there are a variety of other actions that are available. For example, you
could have PsyScope beep at the beginning of an event with the Beep[] action and the
Start[] condition; you could initiate or terminate an event when a particular response oc-
curs using the RunEvent[] and EndEvent[] actions and an input condition; or you could
quit the trial when Command-Q is pressed, using the QuitTrial[] action and Key[CMD-q]
as the condition. Explore some of these, by setting the Actions attribute of an event. A
complete description of all of the actions in PsyScope is in “Part 2: Graphic Environment
Reference, 5.9.4.1 Available Actions”, p198.

Note that you can associate a number of actions with a given condition, with the result that
all of the actions will be performed when that condition occurs. Conversely, you can asso-
ciate actions with multiple conditions, so that when any of the specified conditions occurs
then all of the associated actions will be performed. As an example, let’s embellish our little
experiment, by causing PsyScope to beep when you respond to the second event.
30

3.2.7 Conditions and Actions
Schedule a beep to occur when the RT[] action is performed in response to a key press:

1. Open the Actions dialog for Event2 if it is not already opened (see steps for
the example in the previous section)

2. Click on the box with the RT[] action in it to select it.

3. Choose Beep, click on the New menu next to the Actions heading.

The Actions dialog should now look like this:

Try running the trial. You should now hear the system beep when you press any key during
Event2.

You can add another condition to trigger the RT[] and Beep[] actions by double-clicking
in the conditions box, and checking the box for one of the other conditions. For example,
add Mouse[Click] as a condition by doing the following:

1. Click anywhere in the conditions box to select it, and then double-click on it
to open the Conditions dialog.

2. Click on the mouse icon or the checkbox next to it, or double-click on the
word Mouse.

3. In the Mouse dialog, check the box marked Click, or click on the icon of the
finger pressing the mouse button, and then click on OK.

4. Close the Conditions dialog.

Figure 38 – Actions dialog with a Beep[] action
31

 Part 1: Introduction to PsyScope
The Actions dialog should now look like this:

Now, when either you press a key or you click the mouse, you will hear the beep and the
RT will be recorded. Note that if you click the mouse, not only will these actions occur, but
the event will end as well; this is because Mouse[Click] is also the condition for ending
the event.

You can delete actions by selecting them and then choosing Clear from the Edit menu, or
typing Command-X. You must open the Conditions dialog and un-check the device to de-
lete a condition. New sets of condition-action pairings can be added by clicking the New
button at the top right of the Actions dialog.

Most actions have one or more parameters, which can be used to control details about how
they will be performed. In most cases you will not need to specify the parameters of an ac-
tion — PsyScope assumes reasonable default values for them. For example, the Beep[] ac-
tion plays “correct beep” (build into PsyScope) if no parameters are specified. However,
action parameters can be useful for customizing your experiment. For example, Beep[]
takes a parameter that directs it which sound to use, which can be any sound in the system
file, or a ‘snd ’ resource that has been opened by PsyScope (see “Part 2: Graphic Environ-
ment Reference, 6.1.3 Resources”, p216 for a discussion of how to add resources in Psy-
Scope). You set the parameter for an action by double-clicking on the action in the Actions
dialog. A dialog will appear with the list of parameters, and a pop-up menu for setting the
value of each that is the same as the ones for setting the value of attributes.

Change the Beep that occurs when the subject presses a key by doing the following:

1. Double-click on the Beep[] action in the Actions dialog. A dialog will ap-
pear, with the Beep parameter listed (here, the name of the parameter hap-
pens to be the same as the action itself).

Figure 39 – Actions dialog with more conditions
32

3.2.7 Conditions and Actions
2. Choose Set To: from the pop-up menu next to Beep. A dialog with the list
of available beeps will appear. Choose the one you want, and then close the
dialog.

Pressing the a key or clicking the mouse during Event2 should now produce the new beep
sound.

The parameters for all of the actions available in PsyScope are described in “Part 4: Script-
ing Reference, 14.1 Actions Reference”, p419 (you can also get on-line help for the action
you are interested in).

The active until and maximum instances parameters of an action allow you to control, re-
spectively, the period of time that it is active — that is, during which it can be triggered —
and how may times it can be performed. Normally, an action is active for the duration of
the event that it belongs to. For example, the RT[] and Beep[] actions in the example above
will only be performed if a key is pressed or the mouse is clicked during Event2. If neither
of these responses occurs until after Event2 ends, then neither of the actions will be per-
formed. Under some circumstances, however, you may want to extend the period during
which an action is active, beyond the duration of the event. For example, you might want
to record a response to an event that is very brief. To do this, you could set Active Until
for the RT[] action to be At Least One Instance. This would insure that the action re-
mained active until it had been performed at least once. In fact, the trial would continue,
even if there were no more events left to run, until the appropriate input occurred to trigger
that action. Another way to make an action remain active beyond the event that it belongs
to is to set Active Until to the end of some other event (for example, a Time event following
the brief stimulus event).

To demonstrate the above example, make Event2 very brief and then change:

1. Set the duration of Event2 to be 100 msec.

2. Open the Actions dialog for Event2.
33

 Part 1: Introduction to PsyScope
3. Select the RT[] action and set Active Until to be At Least One In-
stance. Then do the same for the Beep[] action.

Now when you run the trial, it will last until you press a key or click the mouse.

Try removing Mouse[Click] as a condition for the RT[] and Beep[] actions (open
the Conditions dialog and uncheck the Mouse line). Now try running the trial and clicking
the mouse during Event2. Event2 will end, but PsyScope will wait (that is, the trial will con-
tinue) until you press a key. This is because the duration of Event2 is still
Mouse[Click], but this no longer triggers the actions; since they are now set to remain
active until they are performed at least once, the trial will continue until they are triggered
— that is, until you press a key.

Now try keeping an action active until the end of another event:

1. Go to the Trial Template window, add a new Time event, and make sure that
it is linked to the end of Event2.

2. Set its duration to be 1000 msec.

Figure 40 – Setting Active Until
34

3.2.7 Conditions and Actions
3. Open the Actions dialog for Event2, and set Active Until for the RT[] and
Beep[] actions to be End of Event3.

Now you will have until the end of Event3 to press a key or click the mouse. Once Event3
ends, its too late. Note that once Event3 ends, the trial also ends.

Maximum Instances determines how many times an action can be performed. Once it
has been performed this number of times, it is immediately inactivated, regardless of what
Active Until is set to. Usually, Maximum Instances is set to 1, which means that it can
only be performed once. If this value is greater than 1, then the action will be performed
every time its associated condition(s) occur(s) until it has been performed its maximum
number of times, or until its active period is over.

Modify your script to measure how many times you can press a key in one second:

1. Remove Event3.

2. Set the duration of Event2 to be 1000 msec.

3. Set Active Until to be End of This Event.

4. Place the cursor in the Maximum Instances box by either pressing the tab
key or clicking the mouse in it, and then enter a large number, such as 100 or
200.

Run the trial, and as soon as Event2 begins, starting pressing a key as furiously as you can.
When the trial ends, open the data file, go to the end of it, and count how many lines are in
the data area (consider using the Statistics utility; see “Part 2: Graphic Environment Ref-
erence, 7.3.1 Editor Menu Items”, p258). This is how many times you pressed the key; one

Figure 41 – Setting Active Until relative to another event
35

 Part 1: Introduction to PsyScope
line for each key press equals one triggering of the action. If the number is greater than 60,
something has gone wrong.

Events, attributes, and actions give you a powerful set of tools for constructing trials in Psy-
Scope. Until now, however, the trials you have worked with were fixed. That is, once you
made a change to the trial, every time you ran it, it was identical. Needless to say, most ex-
periments require that you vary at least the stimuli in some way from trial to trial. There are
a number of ways to accomplish this in PsyScope. The most important is the use of factors.

3.2.8 Using Factor Tables and Lists

In a PsyScope experiment, as in general, a factor is a variable that is relevant to the scien-
tific question you are attempting to answer with the experiment. For example, you may be
interested in how the size of a stimulus affects subjects’ response times. It would be im-
practical to test all possible sizes, so you would choose a few— say three — and test sub-
jects’ response times to stimuli presented in these three sizes. In this case, the size of the
stimulus would be a factor in the experiment, and it would have three levels, corresponding
to the three sizes you are testing. You may also want to vary other aspects of the stimulus,
such as its distance from the fixation point (at the center of the screen). This would be an-
other factor in the experiment. When you have two or more factors, then these factors are
crossed to determine how the combinations of their levels are sampled from trial to trial
(e.g., large and to the left, small and in the middle, etc.).

There are two ways that you can create factors in PsyScope. The easiest, and most common
way is to create a factor table. Factor tables are displayed in the Factor Table window. You
can think of a factor table as an interactive table that shows you all of the factors and levels
that you have created, shows you the way in which they are crossed, and allows you to edit
the factors, levels, and crossings. Factor tables also give you a convenient way to set the
values associated with the levels of each factor.

The other way to create factors is through the List dialog, which is used with lists. This is
a somewhat more flexible, but more advanced technique. In this section, we will show you
how to use factor tables. Creating lists is discussed in “3.2.8.4 Lists”, p59.

To demonstrate the use of factor tables, let’s switch to a more realistic example of an ex-
periment. We will recreate the Acuity Experiment that you worked with in “Chapter 2.
Running Your First Experiment”, p3.

Create a new experiment by choosing the New Experiment command in the Design
menu, and calling it “Acuity Experiment”. If the Design window doesn’t open automatical-
ly, go ahead and open it (see above, “3.2.1 Using the Design Window”, p11, for a descrip-
tion of how to do this).

3.2.8.1 Creating a Factor Table

As you saw earlier, when you create a new experiment, PsyScope starts you out with the
experiment object. We then went on to create a trial template, that defined the trials in the
experiment. When you use a factor table, however, the trial template object is replaced by
the factor table object, and you design the trials via the table.
36

3.2.8 Using Factor Tables and Lists
The basic idea is this: After you create a factor table object, you open the Factor Table win-
dow by double-clicking on the object. In the Factor Table window, you create the factors
for your experiment, and the levels for each factor. These are represented as a table, where
the rows and columns correspond to the different levels of the factors, and each cell in the
table corresponds to a particular combination of levels — or crossing — of the factors.
Let’s first see how this works, and then go on to designing the actual trials of the experi-
ment.

First, create a new factor table by doing the following:

1. Click on the factor table icon in the tools palette (see “Figure 2 – Factor table
icon”, p4), then click in the Design window, a factor table object should ap-
pear, named Table1

2. Drag the link from Table1 to the Experiment

3. Double-click on Table1 to open the Factor Table window.

4. Create two factors by clicking on the New Factor button, and name them
“Size” and “Position”, respectively.

Figure 42 – Linking a factor table to the experiment
37

 Part 1: Introduction to PsyScope
Note: Each factor table object can actually contain a set of closely related factor tables.
This is useful when you are working with between subject designs, which is discussed
below (see “ Groups and Between Subject Designs”, p89). However, the vast majority
of the time you will have only one table in the set. To keep things simple, the name of
the object is a“Factor Table” rather than a “Factor Table Set”.

Now you need to add levels to the two factors. Start with the Size factor:

Figure 43 – Anatomy of the Factor Table window
38

3.2.8 Using Factor Tables and Lists
5. Select the Size factor by clicking on its name.

6. Add a new level to the Size factor either by clicking on the New Level but-
ton, or typing Command-N. Name the level “Small”.

7. Add another new level and call it “Middle”. Before you close the New Level
dialog, notice the button called Another. You can use this to add additional
levels, without having to go back to the Factor Table window.

8. Click on the Another button, or type Command-A, and name the third level
“Large”. This is all the levels you will need, so now click on the OK button or
press the Return key.

Figure 44 – Selecting a factor in a factor table

Figure 45 – The New Level dialog
39

 Part 1: Introduction to PsyScope
The Factor Table window should now look like this:

Using the same procedures as above, select the Position factor, and create five levels for it,
called “LeftFar”, “LeftNear”, “Center”, “RightNear”, and “RightFar”. The Factor Table
window should now look like this:

You have now created a factor table. Each cell in this table corresponds to a crossing of the
two factors in the experiment. For example, the cell in the upper left corresponds to the
combination Small and LeftFar, and the one at the extreme lower right to Large and Right-
Far. At the beginning of each trial, PsyScope chooses one cell, or crossing, and runs the
trial according to that crossing. The number in each cell indicates how many times that cell
will be chosen before PsyScope cycles through all of the cells again. You can set this by
setting the weight for the corresponding cells. This will be discussed below (see “ Cell
Weights”, p54). You can reorder the factors and levels in a factor table to customize the
display and to influence the order in which cells are chosen when the experiment is run. The

Figure 46 – Factor Table window with new levels

Figure 47 – Factor table window with levels for all factors
40

3.2.8 Using Factor Tables and Lists
order in which PsyScope chooses cells will also be discussed below (see “ Ordering Cells”,
p50).

Note: There is a close relationship between the cells of a factor table and the conditions of
an experiment. In general, these are related, but not identical items. When there is only
one factor table in an experiment, then each cell corresponds to a condition of the ex-
periment. However, when an experiment has more than one factor table (and/or set of
free factors), then each condition of the experiment corresponds to a particular com-
bination of cells from the factor tables (and/or crossings of the free factor sets). The
relationship between conditions, cells, and crossings is discussed fully in “Part 2:
Graphic Environment Reference, 5.7 Factors and Lists”, p129.

As we have seen, factors and levels determine how aspects of a trial vary from one cell to
the next. The next step, therefore, is to create the trials for each cell, and assign the values
that the factors and levels in the table actually correspond to in those trials.

3.2.8.2 Creating Trials from a Factor Table

You create the trials for the cells in a factor table by “opening” them and constructing the
trial in a Trial Template window, similar to the standard one that you have already worked
with. When you double-click on a cell or group of cells in a factor table, a Trial Template
window opens that allows you to create the trials for that set of cells. However, this Trial
Template window is special (as indicated by the diamond (◊) at the left of the window title)
in that it is linked to the factor table; anything you do in this window applies only to trials
associated with the cells that are currently selected in the factor table. So, for properties of
a trial that are common to a set of cells, you would select those cells and then assign the
properties to the trial in the Trial Template window. For properties that differ, you would
select the only the appropriate subset of cells in the table, and set the properties in the Trial
Template window accordingly. At this point, an example will surely be instructive.

First, however, it will be helpful to know some of the navigation and selection tricks for
working with the table and cells.

The factor table you have already created has two factors: Size and Position. Now we have
to create the trials and events that these correspond to. The best place to begin is by con-
structing the elements that are common to all of the trials in the experiment. In the Acuity
Experiment, every trial has four events: the fixation event, which displays the fixation
point, and waits for the subject to click the mouse to continue; the stimulus event, which
presents the stimulus briefly on the screen; the RT period during which the subject re-
sponds; and the intertrial interval (ITI). Let’s begin by creating these:

1. Select all of the cells in the table, and then either click on the Open button,
or double-click on any of the cells. This will open a Trial Template window,
which has a diamond (◊) at the left of its title.

2. Create the four events in the order listed above. The fixation and stimulus
events should be Text events, the RT period should be an Input event, and
the ITI should be a Time event. You may want to reduce the scale of the event
area to see all of the events; do this by clicking on the zoom icon in the lower
left corner of the window.
41

 Part 1: Introduction to PsyScope
When you are done, the Trial Template window should look something like this:

Now that you have the events in place, set the values of the attributes that will not vary from
trial to trial. (Remember, since all of the cells in the factor table are still selected, the event
structure that you have created — and any attribute values that you set — will apply to all
trials.) First, set the duration of each event:

• Set the duration of the Fixation event to be Key[2].

• Set the duration of the Stimulus event to be 100 msecs.

• Set the duration of the RT Period event to be 1500 msecs.

• Set the duration of the ITI event to be 500 msecs.

The fixation point will be the same for all trials, so go ahead and set the stimulus for that
event:

• Open the Attributes window for the Fixation event, and set the Stimulus at-
tribute to be an asterisk (*) or a plus sign (+).

Figure 48 – Template window with more events
42

3.2.8 Using Factor Tables and Lists
The Trial Template window should now look something like this:

At this point, you have the basic structure of the trials in the experiment in place. Now it is
time to set the attribute values that vary from trial to trial according to the conditions of the
experiment (i.e., according to the factors and levels you defined earlier). Let’s begin with
the Size factor.

1. Make the Factor Table window the active window by clicking on it or by
choosing it in the Window menu.

2. Select the cells for the Small level of the Size factor by (single-)clicking on
its heading at the top of the column:

3. Return to the Trial Template window, either by choosing the window name
from the Windows menu, or by clicking on it directly. You could also dou-
ble-click on the cells selected in the table, or click on the Open button.

Figure 49 – Template window with more parameters set

Figure 50 – Selecting the cells for a level
43

 Part 1: Introduction to PsyScope
If you position the Trial Template window so that you can still see the table, you will notice
that the selected cells in the factor table are grayed:

Any changes that you make in the Trial Template window or an attribute window apply
only to trials associated with the cells that are currently selected in the Factor Table win-
dow. This allows you to set the values associated with each level of a factor.

Set the size of the stimulus for each level of the Size factor, starting with Small, which you
already have selected:

1. Open the Attributes window for the Stimulus event, set its size to 9, and then
click on OK. Now, for all trials run when the level of the Size factor is Small,
the size of the stimulus will be 9 point.

2. Leave the Attributes window for the Stimulus event open. Make the Factor
Table window active, and select Middle. Now return to the Attributes win-
dow. Notice that the value for size has changed back to “Default”. Set the val-
ue to 12

3. Follow the same steps to set the size for the Large level to 18.

When you select a new set of cells in the Factor Table window, PsyScope updates the Trial
Template and Attribute windows (if they are open), to reflect the values corresponding to
the newly selected cells (sometimes it may take one or two seconds for this to occur).

Try this out:

Figure 51 – Cells are grayed when the window is in the background
44

3.2.8 Using Factor Tables and Lists
• Make the Factor Table window active, and select Small. Notice that the value
in the Attributes window in the background changes to 9. Select Middle, and
it should change to 12.

You can also use the Cell Chooser palette to select cells. The Cell Chooser is a palette win-
dow that has a copy of the factor table in it. Because it is a palette, it “floats” in front of
other windows — that is, it will always be available whenever a template window or at-
tribute dialog is selected (when any other type of window or dialog is selected, it will be
hidden). You can use the Cell Chooser to select cells, as well as to change to another table
in the set, but you cannot double-click on cells in the palette to open the template window.

Open the Cell Chooser by selecting it in the Window menu, and use it to set the values for
the levels of the Position factor:

1. Click on LeftFar, at the left of the first row in the table:

2. Select the Position attribute in the Event Attributes dialog (notice that the
Cell Chooser palette remains active and in front of the attributes dialog).

Figure 52 – Attribute values depend on which cells are selected

Figure 53 – Attribute window with the Cell Chooser open

Small Selected Middle Selected
45

 Part 1: Introduction to PsyScope
3. Select Set To in the Position attribute menu. This will clear the screen and
open the Positions dialog:

The Positions dialog allows you to create ports and to define positions within them for plac-
ing stimuli on the screen. The screen clears so that you can work interactively with these
elements as you create them. For now, however, we will just use this dialog to create posi-
tions for each of the locations at which we want the stimulus to appear (see “Part 2: Graphic
Environment Reference, 5.8.8.4 Ports and Positions Dialogs”, p187 for a complete expla-
nation of ports and positions and a full description of the Positions dialog).

4. Click on the New Positions button. This will open the New Position Dia-
log.

Figure 54 – The positions dialog

Figure 55 – New Position dialog
46

3.2.8 Using Factor Tables and Lists
5. Click on OK to create a single position. A position named “New Position 1”
will appear at the center of the screen, and in the list of positions at the right
of the Positions dialog. You move the New Position 1 by directly dragging it
to a new location or by using the Position Info dialog (which is what we will
do).

6. Double-click on New Position 1 to open the Position Info dialog, and rename
the position to “LeftFar.” Then enter “10%” in the Horizontal field and
“50%” in the Vertical field (be sure to include the “%” sign, so that Psy-
Scope will know to use this as a relative rather than absolute position value).
When you are done, click on OK to close this dialog.

7. Be sure that LeftFar is selected in the list of positions in the Positions dialog,
and then click on the Set button to its left. This sets the value of the Position
attribute to this position. LeftFar should now appear in bold to indicate this.

Figure 56 – Positions dialog with a new point

Figure 57 – Position Info dialog
47

 Part 1: Introduction to PsyScope
8. Click on the Done button, which will return you to the Event attributes dia-
log. Notice that the value of the Position attribute is set:

At this point you can repeat the steps above, each time selecting a different level of the Po-
sition factor in the Cell Chooser, creating an actual position that corresponds to that level,
and assigning it as the value for the Position attribute. A slightly quicker method is to re-
turn to the Positions dialog, create all four of the remaining positions you need, and then
assign them to each level of the Position factor. Let’s do it that way:

9. Reopen the Positions dialog by clicking on the value of attribute.

10. Repeat steps 4 and 5 above to create 4 more points, named “LeftNear”, “Cen-
ter”, “RightNear”, and “RightFar”. Assign a Vertical value of 50% and
Horizontal values of 30%, 50%, 70%, respectively. The positions dialog
should now look like this:

11. Click on Done, to return to the Event Attributes dialog, and then click on
LeftNear in the Cell Chooser. Wait a couple of seconds; the value of the
Position attribute will change to Default.

12. Select Set To, and in the Positions dialog select LeftNear in the list of
points. Then click on Set and then Done. The value of the Position at-
tribute should now be set to the position of the “LeftNear” point — 20% hor-
izontal and 50% vertical.

13. Repeat steps 9 and 10 to set the value for the other levels of the Position factor.

When you are done, try clicking on individual cells in the table, or in the Cell Chooser, and
notice that both the size and position values will change in the Event Attributes window for
Stimulus, corresponding to the levels of each factor for that cell.

At this point, the only thing that you need to do before you can run some trials is to specify
the text to be displayed during the Stimulus event. For now, let’s just set this to be the same
for all trials, and see how things are working.

Figure 58 – Position attribute showing new port specification

Figure 59 – Positions dialog with five points
48

3.2.8 Using Factor Tables and Lists
• Select all of the cells (a shortcut for this in the factor table window is CMD-
A), and then set the stimulus attribute for the Stimulus event to be “GLEEP”,
or any other word that you like.

Try running a trial. First you should see the fixation character appear; then PsyScope should
wait for you to press the “2” key, following which you should see the stimulus word — in
9 point — flash at the far left side of the screen.

Now try running several trials, by doing the following:

1. Open the Experiment dialog by double clicking on the experiment icon in the
Design window.

2. Enter the number of trials you want to run in the Cycles field at the bottom
of the dialog

3. Choose Run from the Run menu, or type CMD-R

(Other methods for controlling the number of trials to run are discussed below, under
“3.2.12 Running Trials”, p92, and in “Part 2: Graphic Environment Reference, 6.3 The Tri-
al Monitor”, p238.)

Run at least 4 or 5 trials. Notice that from trial to trial, the cells of the factor table are sam-
pled randomly, but that every cell is sampled once before any is repeated.

By default, PsyScope selects cells from a factor table in random order as it constructs each
trial to run. The next section will show you how you can control this order.

3.2.8.3 Controlling How Cells are Chosen

Unless you specify otherwise, PsyScope will run one trial from each cell in the factor table
in random order. Once all of the cells have been run, PsyScope will start again at the begin-
ning, picking cells in a new random order. However, there are a number of ways you can
modify the order and number of times that cells in a table are chosen. You can do this table-
wide, or for subsets of cells. In this section we consider some of the simpler methods. You
will find a full discussion of how to control cell selection in “Part 2: Graphic Environment
Reference, 5.7.1.7 Level Order and Crossing Types”, p132.

You control the manner in which cells are chosen on a table-wide basis from the Table Info
dialog.
49

 Part 1: Introduction to PsyScope
Open the Table Info dialog by clicking on the Table Info area in the control bar of the Factor
Table window:

The Table Info dialog will appear:

The Table Info dialog allows you to change the name of the table you are working with, set
the crossing type and access type, or set the base weight for all of the cells in the table.
These settings provide control over how cells in the table are chosen.

Ordering Cells

There are a number of ways you can influence the order in which cells are chosen: by se-
lecting the Access Type for the table, by rearranging levels and factors in the table, and by
setting the Level Order value for individual factors. Below, we consider the first two of
these. Working with individual factors is a more sophisticated method, which is discussed
fully in “Part 2: Graphic Environment Reference, 5.7.1.2 Lists”, p130.

Setting Access Type for the Table

You can use the Access Type menu in the Table Info dialog to select the method by which
cells are chosen from the table. There are several choices:

Figure 60 – Opening the Table Info dialog

Figure 61 – The Table Info dialog
50

3.2.8 Using Factor Tables and Lists
Random (the default)
Cycle Random
Random with Replacement
Blocked Random
Least-Used Random
Sequential
Blocked Sequential
By Factor

All but the last choice set the order by which cells are chosen on a table-wide basis. The
last choice, By Factor, allows you to control the order on a factor-by-factor basis. This
method is significantly more sophisticated, and is discussed in “Part 2: Graphic Environ-
ment Reference, 5.7.2.2 Table Info Dialog”, p140.

By default, Access Type is set to Random. With this method, PsyScope chooses cells from
the table randomly. Each cell is chosen a number of times equal to its weight (see below, “
Cell Weights”, p54), after which PsyScope begins the selection again.

Setting Access Type to Sequential causes cells to be picked in columnar order, from top
to bottom and then left to right.

Select Sequential from the Access Type menu, and then run some trials. They should
occur in the following order:

Note: the numbers in this figure correspond to trial order, not to cell weights (as they do in
the actual factor table).

Rearranging Levels

Notice that when Access Type is set to Sequential, the order of factors and levels in the
table determines the order in which cells are chosen. You can modify this order by rear-
ranging the levels and factors.

Try reversing the order in which the levels of the Size factor are arranged:

1. Select the Large level by clicking on its heading in the table.

2. Drag it to the position currently occupied by the Small level.

3. Select the Small level and drag it to the right end of the table.

Figure 62 – Sequential ordering for cells in a table; see note below

1
7

13
4

10

11
2

8
14

5

6
12

3
9

15
51

 Part 1: Introduction to PsyScope
Note: Whenever you drag a level to a position occupied by another level, it is placed just
beyond that level.

The factor table should now look like this:

Try running the experiment. All of the Large trials should now run first, followed by Mid-
dle, and then Small.

Rearranging Factors

Another way of influencing the order in which cells are chosen is by rearranging factors.
This can also be useful for customizing their display in the factor table. Let's first look at
how factors can be rearranged, and then consider — in some simple cases — how this in-
fluences the ordering of cells.

Change the table so that both of the factors are displayed as columns:

1. Select the Position factor heading, and drag it up and to the right, over the di-
agonal line that separates the two names.

Figure 63 – Factor table with levels rearranged
52

3.2.8 Using Factor Tables and Lists
The table should now look like this:

Notice that the cells no longer all fit within the window. You can scroll the window, to see
cells that extend beyond it, or you can use the size tool in the lower left-hand corner of the
window to reduce the size of the table. Click on the zoom icon (see below) to the right of
the magnification icons to return the table to its original size.

More importantly, notice that the columns for the Size levels are now subdivided within the
columns for the Position levels. That is, there are now Small, Middle and Large sub-col-
umns of LeftFar, and of LeftNear, etc.

Whenever there is more than one factor in a table, then there is an ordering of factors from
inner to outer. Inner factors can be thought of as being subdivided within outer ones. The
table displays this relationship explicitly for the factors in each dimension, by showing in-
ner row factors subdivided within outer row factors, and similarly for factors in columns.
In addition, all of the factors in rows are considered to be within those in columns. In se-
quential designs, PsyScope cycles through all of the cells corresponding to the levels of a
inner factor (for example, all of the rows within a column, or all of the subdivided columns
within an enclosing one), keeping the level of outer factors constant, before moving on to
the next level of the next outer factor, etc. Having spelled this out, it is best understood
through experimentation.

Position is currently the outer factor, while Size is the inner one. Try reversing this arrange-
ment by dragging Size back above Position, or Position below Size. Also try placing them
both as column factors. Run the experiment with the different arrangements to see the ef-
fects that each has.

Figure 64 – Factor table with factors rearranged

Figure 65 –
53

 Part 1: Introduction to PsyScope
Cell Weights

In the examples we have seen so far, each cell was chosen once per pass through the table.
However, you can modify this by changing cell weights. The weight of a cell — the number
that appears inside of it in the table — determines the number of times PsyScope will
choose that cell on each pass through the table. For example, if there are four cells in your
table, and each cell has a weight of two, then PsyScope will choose each cell twice before
going through the table again. Cells will not necessarily be chosen twice consecutively; as
we will see, this depends on how Access Type is set.

You can modify the weight of all of the cells in the table at once, by setting the Cell Weight
value in the Table Info dialog. You can also adjust the weights of cells in specific rows or
columns, by modifying the weight of individual levels in the table.

Setting the Cell Weight

The Cell Weight value in the Table Info dialog multiplies the weight of all of the cells in
the table. You set it from the Table Info dialog.

Go to the Table Info dialog, and enter 2 in the Cell Weight field, just below the Access
Type menu. The weight of all of the cells in the table should now be “2”, and the table
should look something like this:

Set the Access Type menu back to Random, and run at least 30 trials; otherwise, trust
us: Each cell will have run twice before any were repeated again. However cells did not
necessarily run twice in a row.

The total number of trials that make up a complete pass through the table is equal to the
sum of the weights of all of the cells in the table. In other words, this is how many trials
you need to run the complete design.

Note: There is no way to have PsyScope automatically run the current number of trials to
exhaust the current design.

 The process of picking cells works something like this: At the beginning of each trial, Psy-
Scope picks a cell from the table, and gives it a check mark. When the number of check
marks for a cell is equal to its weight, it is crossed out. When all of the cells are crossed out,
the pass is over, PsyScope clears the boards, and begins the process over again from the

Figure 66 – Factor Table with Cell Weight of 2
54

3.2.8 Using Factor Tables and Lists
beginning. Cell weights have different effects, depending upon how Access Type is set for
the table.

When Access Type is set to Random, PsyScope selects cells and checks them off in ran-
dom order, so that even if the weight of a cell is greater than one, it will not necessarily be
chosen consecutively. If you want to run cells consecutively, you need to change Access
Type either to Blocked Random or Sequential.

With Blocked Random, PsyScope picks a cell randomly from the table, and then continues
to pick that cell until it has been “crossed out”; i.e., until it has been picked a number of
times equal to its weight. PsyScope then chooses another cell randomly from the table, and
continues with that one until it has been crossed out, etc. Sequential operates in a similar
way, except that when PsyScope is finished with one cell, it moves to the next one in co-
lumnar order (see “3.2.8.3 Controlling How Cells are Chosen”, p49).

With Random, Blocked Random, and Sequential, every cell in the table is assured of be-
ing chosen the number of times specified by its weight. Random with Replacement
works differently. In this case, the weight of each cell determines the probability with
which that cell will be chosen. It is possible that some cells will never be chosen, while oth-
ers may be chosen more often than their weight.

Note: The exact probability with which a cell is chosen — with Random with Replace-
ment — is the cell’s weight divided by the sum of all of the weights in the table.

Weights are particularly useful when you want to assign different frequencies or probabil-
ities to different sets of cells. To do this, however, you need to assign different weights to
each set of cells. You do this by setting level weights.

Setting Level Weights

Using level weights, you can modify the weights of cells in a specific row or column. You
do this by changing the weight of the level to which those cells belong, using the Level Re-
name dialog.
55

 Part 1: Introduction to PsyScope
Open the dialog for the Large level of the Size factor, by double-clicking on its name in the
factor table.

Change its weight to 3. Notice that the weight all of the cells in the column under Large is
now 6. This is the cell weight (2, set in the Table Info dialog) times weight of the Large
level (3). The table should now look like this:

Now try changing the weight for one of the levels of the Position factor. For example,
change the weight of the Center level to 2. The sable should now look like this:

The weight of a cell is the product of the Cell Weight value in the Table Info dialog and
the weights of the levels that the cell belongs to.

Setting level weights is useful if you want to alter the frequency with which a particular set
of cells occurs in your experiment (for example, you want stimuli to appear more often at
the center of the screen than to the sides). Set the Access Type of the table to Random or
Sequential, and then the weight of each level to the relative frequency with which you

Figure 67 – The Level Rename/Set Weight dialog

Figure 68 – Factor table with weight 3 added to Large level

Figure 69 – Factor table with weight 2 added to Center level
56

3.2.8 Using Factor Tables and Lists
want those cells to occur. Remember when Access Type is set to Random with Replace-
ment, weights influence only the probability with which cells are chosen: the higher the
weight, the higher the probably it will be chosen.

Using Crossing Type and Factor Table Sets

In addition to setting Access Type and cell weights, there is another important way by
which you can influence how cells are chosen. This is using the Crossing Type menu in
the Table Info dialog. This determines how the factors in the table are crossed. Usually you
will want this to be Within, the default setting. In this case, cells are run as described in the
sections above. That is, all of the cells in the table will be run in each pass (except, as noted
above, when the Access Type is Random with Replacement).

You can limit the set of cells that are picked each time the experiment is run by choosing
one of the other settings in the Crossing Type menu. The two other primary choices —
Between and Latin Squares — cause PsyScope to pick only one or a subset of cells for
each run of the experiment. These are typically used for between-subject designs, when
each subject is to be exposed to only a subset of conditions. Below, we will consider a cou-
ple of simple cases of between-subject designs. For a more complete discussion of Be-
tween and Latin Squares designs, see “Part 2: Graphic Environment Reference, 5.7.2.2
Table Info Dialog”, p140.

Between-subjects Designs

If you set the Crossing Type of a factor table to Between, then PsyScope will choose one
cell from the table, and run all of the trials in the experiment from that one cell. The trials
in the next run of the experiment will all be from the next cell of the table, etc. In other
words, instead of choosing cells from trial to trial, PsyScope chooses them from run to run.
This is called a full between-subjects design (because typically each run of the experiment
is performed by a different subject). However, it is rare that you will want do things in this
way. More frequently, you will want to vary only certain sets of factors between subjects,
while you vary the rest within.

Suppose, for example, that you wanted to vary the font of the stimulus from subject to sub-
ject, but you still wanted to vary the size and position from trial to trial, as before. In other
words, you want to add Font as a between-subjects factor, while Size and Position remain
as within-subjects factors. To do this, you need to add a new factor table, and assign it a
Crossing Type of Between.

Create the new factor table for the Font factor by doing the following:

1. Choose New from Table menu in the control area of the Factor Table win-
dow. A dialog asking you to name the new table will appear.

2. Name the table and click on OK.

3. Create the Font factor by clicking on the New Factor button in the Factor
Table window, and naming the factor in the dialog that appears.

4. Create three levels for this factor, and name them “Times”, “Helvetica”, and
“Monaco”.
57

 Part 1: Introduction to PsyScope
5. Assign the font of the stimulus for each level by opening its cell, then opening
the Event Attributes dialog for the Stimulus event, and setting the font ac-
cordingly.

6. Open the Table Info dialog, and choose Between from the Crossing Type
menu. The Choose Crossing dialog will appear, with a menu allowing you to
select how cells will be picked.

7. Choose Run from the menu. This will cause PsyScope to access a new level
of the Font factor each time the experiment is run. That is, this part of the de-
sign is “between by run.”

Note: There are six pre-defined types of “between” designs in PsyScope: group, subject,
run and subject within group, run within group, and run within subject. Each of these
uses a different variable (CurrentGroup, SubjectCount, RunCount, SubjectNumber,
GroupRunCount and RunNumber, respectively) to choose the levels of Between fac-
tors. In addition, a Custom setting allows you to use other variables in the script, or
to define and use new variables. See “Part 2: Graphic Environment Reference, 6.2.1
Subject Info Items”, p225 for a description of the pre-defined variables, how to use
others, and how to define your own. See “Part 2: Graphic Environment Reference,
5.7.2.2 Table Info Dialog”, p140 for a more complete description of Between de-
signs.

Try running the experiment several times. Each time you run, a different font should be
chosen.

Access type, cell weight, and level weights are ignored in Between designs. This is be-
cause all trials winin a run are being selected from a single cell in that table.

Notice that the template that appeared when you opened cells for the Font factor was the
same one you created while working with the Size and Position factors. This is because
these factors all belong to tables in the same factor table set. All of the tables in a set refer
to the same template.

Figure 70 – The Choose Crossing dialog
58

3.2.8 Using Factor Tables and Lists
Note: Whenever you pick one or more cells from one table, it is as if you selected all of the
cells from all of the other tables in the set. Therefore, any changes you make to the tem-
plate from a cell (or cells) in one table influences all of the cells of all of the other ta-
bles in the set.

By using the various features of factor tables — access type, cell weight, level weights, and
the various crossing types — you can create highly sophisticated experimental designs. For
a complete description of all of the features associated with factors in PsyScope, see
“Part 2: Graphic Environment Reference, 5.7 Factors and Lists”, p129.

3.2.8.4 Lists

Lists, like factors, provide a means for varying parts of a template from trial to trial. The
most common use of lists is to vary some aspect of the trial independently of the factors in
a table. For example, you may want to randomly choose the stimulus for each trial. Let's
add this feature to the Acuity Experiment, which is the last addition we have to make for
the experiment to be complete.

First, we must create the list of stimuli to choose from:

1. Go to the Factor Table window, and select all of the cells in the table. Double-
click on the table (or click the Open button) to edit the master template.

2. Open the Event Attributes dialog for the Stimulus event.

3. Select Vary By and List from the Stimulus attribute menu. The following
message dialog will appear:

Figure 71 – Create New List alert
59

 Part 1: Introduction to PsyScope
4. Click on the Create button, to create a new list. The List dialog will appear:

5. Name the list “Stimulus List”.

Once you have created a new list, it will appear as a List object in you experiment. Confirm
this by selecting the design window; Stimulus List should appear as a list object linked to
the factor table. If it is not there, try checking the Show Factors box in the control area.

Each list is made up of a set of items, in much the same way that a table is made up of cells.
One difference between lists and tables, however, is that a new item is chosen from the list
only if the list is accessed in that trial, that is, if some attribute in the trial is linked to the
list. If no attribute in the trial is linked to the list, then no new item is chosen. This is in
contrast to tables, where a cell is chosen at the beginning of every trial. You can change this
feature of a list by changing its crossing type (see “Part 2: Graphic Environment Reference,
5.7.2.2 Table Info Dialog”, p140). For now, however, we will consider lists only in their
native state.

The Item Order menu for a list functions like the Access Type menu for a table, control-
ling the order in which items are chosen from the list. The Weight of an item is also similar

Figure 72 – The List dialog

Figure 73 – Experiment hierarchy showing a list connected to the table
60

3.2.8 Using Factor Tables and Lists
to the weight of a cell: it determines the number of times that each item will be chosen each
pass through the list.

You assign the value of each item in the list using the area to the right of the list of items
and their weights.

Add a new item to the list:

1. Click on the New button in between the Items and Weight headings. An
item named Item1 will appear, with “???” in the value field.

2. Double-click on the question marks, or select them and then press return. A
standard text dialog will appear,

3. Enter a word that you want to use as a stimulus, and then close the dialog. You
can press Return to close the dialog.

Tip: You can quickly create a list of items and assign their values as you go, by first select-
ing the list fields in the dialog, and then repeating the following sequence of steps:

1. Press Command-N (creates a new list item).
2. Press Return or Enter (opens the value dialog).
3. Enter the value.
4. Press Return or Enter (closes the value dialog).
5. Press Command-N (to create the next item in the list).

Create several more stimuli. Then set the Item Order menu to Random, so that a stim-
ulus will be chosen randomly from trial to trial.

You can also try setting the weight of one or more items, by clicking on the value in the
column under the Weight heading (or typing Command-Right arrow). A text area will ap-
pear, in which you can enter the weight for that item.

When you are done, close the list dialog. Note that the Event Attributes window now shows
that the value of the Stimulus attribute is being set by the list:

Figure 74 – Setting the weight for an item in the list

Figure 75 – Attribute status shows vary by the new list
61

 Part 1: Introduction to PsyScope
Try running the experiment. The stimulus word should now vary randomly from trial to tri-
al.

You can have as many lists as you like in an experiment, which can be used to vary the stim-
ulus or any other attribute of an event (e.g. the size, font, or color of a stimulus). Whenever
you create a new list, PsyScope figures out what type of attribute it is for, and creates a list
for that type. You can also link more than one event to the same list, as long the attributes
you are linking are all of the same type (for example, they are all size or all font attributes).

Note: PsyScope will actually allow you to link incompatible attributes to a list, however un-
expected results may occur. Usually the need for this arises when you want several dif-
ferent attributes of an event or a trial all to vary together, in parallel. To do this, you
should use fields within the list. See “Part 2: Graphic Environment Reference, 5.7.1.2
Lists”, p130.

Just for fun (well, also to show you a couple of additional things about working with lists),
let's create another list, which we will use to vary the type face of the stimulus.

1. Go back to the Event Attributes dialog for the Stimulus event, and choose
Vary By and List in the Face attribute menu. Because you have already cre-
ated a list, you will get the Vary By List dialog, instead of the message dialog
you got earlier.

2. Select the List pop-up menu. Notice that the Stimulus List is an item on the
menu.

3. Choose New... from the menu. You will get the List dialog you saw earlier,
only now the heading for the value field will be Face, indicating that the
items in this list are faces rather than stimuli.

Note: The heading of the value field in the List dialog indicates the type of event and type
of attribute that items in list are compatible with.

4. Create a few items and assign them each a different face (bold, italics, etc.).

Figure 76 – The Vary by List dialog
62

3.2.8 Using Factor Tables and Lists
Run the experiment. Now both the word and the face of the stimulus should vary from trial
to trial.

Lists, like factors, provide a means for varying features of the experiment from trial to trial.
Lists provide a convenient method for doing so independently of the factors in a table. The
list dialog also provides a convenient format for entering the values you want the feature to
assume, rather than having to go through the table cell-by-cell.

3.2.8.5 Counterbalancing

Stimulus counterbalancing is a common experiment design requirement. In a counterbal-
anced design, each subject sees every stimulus in only one condition; but, across subjects,
every stimulus is seen in every condition.

Usually, experiment conditions are implemented in a factor table and stimuli are imple-
mented in a list. To counterbalance the stimuli against the conditions, you must:

• import the list into the factor table

• use the Latin Squares crossing type

When we created a list earlier, it was automatically put into its own factor set, independent
of the factor table. This meant that a stimulus could be selected randomly, regardless of the
current cell in the factor table. Now, however, we want the stimulus selection to depend on
the factor table cell selection, because we want each stimulus to appear in only one condi-
tion. To create this dependency, we have to import the list into the factor table.

A full discussion of Latin Squares is reserved for “Part 2: Graphic Environment Refer-
ence, Latin Squares”, p133. In brief, Latin Squares uses only a “diagonal” of the cells
from a table, and the diagonal that is used depends on the Choose Crossing index.

The Size and Position factors will need to be placed into the same Latin square partition,
and Stimulus List will need to be in a separate partition. Factors which are in the same par-
tition are crossed fully, but only a subset of the crossing is used for factors in separate par-
titions.

To counterbalance Stimulus List against the Position and Size factors, we need as many
stimuli as we have cells in the table. Then, we have to relink the list to the factor table,
choosing to put it into the table. Then, we will change the Crossing Type and set the Latin
square partitions.

1. Double-click on the Stimulus List icon in the Design window to open the List
dialog.

2. Add a few more items to the list, as described in “3.2.8.4 Lists”, p59, so that
there are fifteen items.

3. Using the scissors tool in the Design window, cut the link between Stimulus
List and Table1. A message dialog may appear, warning you that some at-
tributes use the list that you have disconnected; if it does, hit Ignore, be-
cause we are going to reconnect the list.
63

 Part 1: Introduction to PsyScope
4. Use the link tool in the Design window to reconnect Stimulus List and
Table1. The Connect List dialog will appear (see figure below).

5. This dialog is used to specify how the list should be connected to the factor
table object. In this case, we want to add Stimulus list into the same table as
Size and Position, so choose Table 1 from the pop-up menu and hit OK. (“1”
is the table within the Table1 object which contains Size and Position).

Now, you can open the Factor Table window for Table1, and you will see that
Stimulus List has been added to the table (see figure below). Since Stimulus
List is imported, however, its items are not shown like the levels of a regular
factor; instead, they are all collapsed into “<All Levels>”.

Figure 77 – The Connect List dialog

Figure 78 – Factor table with an imported list
64

3.2.9 Using Blocks
6. Go to the Table Info dialog and choose Latin Squares in the Crossing
Type menu. This will open the Latin Squares dialog. Drag the list items
around so that Size and Position are together and Stimulus List is separate, as
shown in the figure below.

7. Hit the ChooseÉ button in the Latin Squares dialog. This will open the
Choose Crossing dialog which was introduced in “ Between-subjects De-
signs”, p57. Just as then, choose Run from the pop-up menu. This will cause
PsyScope to use a different counterbalancing each time the experiment is run.

With counterbalancing set up on Stimulus List, you should see each item in the list in only
one position and size for any single run of the experiment. However, over fifteen runs of
the experiment, you should see every stimulus in every combination of size and position
(assuming that you run enough trials to see every stimulus every time).

3.2.9 Using Blocks

Often, you will want to group trials into discrete sets for presentation when the experiment
is run. For example, you may want to present some instructions, followed by one set of tri-
als, and then different instructions followed by another set of trials. This process is called
blocking, and there are several ways to accomplish it in PsyScope. The simplest and clear-
est way to do this is to use blocks.

A block is set of trials that will be presented together when the experiment is run. Each
block can contain one or more types of trials: PsyScope will present all of them together,
before presenting the trials of the next block. There are two types of blocks, that have slight-
ly different icons. A regular block (see “Figure 80 – Block icon”) is made up of trials. A
superblock (see “Figure 81 – Superblock icon”) is made up of other blocks. In this section,

Figure 79 – The Latin Squares dialog
65

 Part 1: Introduction to PsyScope
we will focus on regular blocks. Superblocks are described in “Part 2: Graphic Environ-
ment Reference, 5.5.2 Block Dialog”, p121.

3.2.9.1 Blocking Trials

As an example of how you might use blocks, let's imagine that you want to demonstrate
that the effects in the Acuity Experiment are due to attention. One way to do this is to com-
pare subjects’ performance when they maintain central fixation with performance in a con-
trol condition in which they look directly at the stimulus. To do this, you need to divide the
trials into two separate blocks, and include a set of instructions before each. The easiest way
to do this is to create a block for each set of experimental trials, as well as one for each set
of instructions (you can think of these as special trials).

Add four blocks to the Acuity Experiment, by doing the following:

1. Select the regular block icon in the Objects palette of the Design window, and
place it in the work area. The cursor will change to the link tool, unless the
automatic tool-switching option has been turned off (See “Part 2: Graphic
Environment Reference, 7.6.4 Design Options”, p268). You can always se-
lect the link tool from the palette at the left of the Design window.

2. Link the block to the Experiment icon. Notice that Table1 automatically gets
re-linked to the block.

Note: Only objects of the same type can be linked to a given object. You will get an error
message if you try to link objects of incompatible types to the same object. See “Part 2:
Graphic Environment Reference, 5.2.1.1 Linking Objects”, p108 for more information
about linking objects in the experiment hierarchy.

3. Create three more blocks, linking each one to the Experiment.

4. Rename Block3 and Block4 “Instructions 1” and “Instructions 2”, respective-
ly

In the experiment we have planned, the trials in the central-fixation vs. direct-look blocks
will be identical, therefore we can use the same trial template for both. You can do this by
linking Table1 (which contains the template for those trials) to both Block1 and Block2:

• Select the link tool in the Tools palette, and link Table1 to Block2, so that it
is linked to both Block1 and Block2.

Figure 80 – Block icon

Figure 81 – Superblock icon
66

3.2.9 Using Blocks
The Design window should now look something like this:

Now let’s create the template for the instructions trials:

1. Create a new template in the work area and name it “Instructions Trial.”

2. Open the Template window, and create two events. Make one a Time event,
and name it “ITI”. Make the other a Paragraph event (see below), and name
it “Instructions.”

3. Set the duration of the Instructions event to Mouse[Click]. (See “3.2.5.1
Timing an Event”, p19.)

Paragraph events allow you to present text that includes line breaks, tabs, etc.; this is
more convenient than Text for presenting something that includes several lines of text,
such as instructions.

Now, we want to present a different set of instructions before each of the blocks of exper-
iment trials. The most straight forward way to do this is to duplicate the Instructions Trial
template, and assign a different set of instructions to the paragraph event in each:

1. Go to the Design window, select the Instructions Trial template, and then
choose Duplicate from the Edit menu, or type Command-D. A new tem-
plate will appear, called “Instructions Trial copy.” This will have copies of all
of the events in the Instructions Trial template. At this point, it may be helpful
to reduce the clutter in the Design window, by unchecking the Show Events
and Show Factors checkboxes in the Control area.

Figure 82 – Acuity experiment using blocked trials

Figure 83 – The Paragraph icon
67

 Part 1: Introduction to PsyScope
3. Rename the two instructions templates as “Instructions Trial 1” and “Instruc-
tions Trial 2”

2. Open the Template window for each of the instructions trials in turn, choose
Set To for the paragraph (stimulus) attribute, and type in the instructions for
that set of trials.

3. Return to the Design window, and link the template for each instructions trial
to the corresponding block.

The Design window should now look something like this:

Note: There is another way that you can present different instructions in each of the in-
structions blocks, using a single instructions template. This involves the use of custom
block attributes and the Vary By Block setting for the stimulus attributes. We will
describe this more advanced technique shortly (See “3.2.9.2 Varying by Block”, p72).

Now that you have created a set of blocks, you must order them, and specify how many
trials will be presented in each,

You set the number of trials presented in a block, or the amount of time that you want the
block to run, using the Block dialog.

Figure 84 – Experiment hierarchy with instructions trials
68

3.2.9 Using Blocks
Open the Block dialog for Instructions1 by double-clicking on it in the Design window.

At the top of the Block dialog is the usual name field. Below it are radio buttons and value
fields for specifying how many trials to run in the block, or to time its duration.

Set the Instructions1 block to run a single trial by doing the following:

• Click on the Trials in Block button (to specify a number of trials rather than
a timed duration), and enter 1 as the value. Also, click on the Fixed radio but-
ton. This insures that only one trial will run in this block, even if the block-
scaling feature is used by an object above it in the hierarchy (see below).

Do the same for the Instructions2 block. Then set the Trials in Block or Block Duration
for Block1 and Block2. For example, just to try things out, set Block1 to run 10 trials, and
Block2 to run 15 seconds.

Below the controls for the block’s length is a list of templates that are linked to the block.
You can re-order them, assigning them different weights, and create new templates that are
linked to the block. However, because each block in the Acuity Experiment has only one
type of trial, you will not need to bother with these features.

When you have several blocks in an experiment, you must set the order in which you want
the blocks to be run, and the number of times you want to run each one. You do this in the
dialog for the object just above the blocks in the hierarchy. In the Acuity Experiment, this
is the Experiment dialog.

Figure 85 – The Block dialog
69

 Part 1: Introduction to PsyScope
Open the Experiment dialog by double-clicking on the experiment icon.

Note: Which dialog you use for ordering blocks depends upon the structure of your exper-
iment. In the Acuity Experiment, the blocks are linked directly to the experiment, so the
Experiment dialog controls how the blocks are run. However, if they were linked to a
superblock, then you would use the superblock’s dialog; and if they were linked to a
group, then you would use the group’s dialog. In general, the dialog that contains the
list of blocks is called the Block List dialog.

The dialog shows a list of the blocks linked to the experiment. When the dialog is first
opened, the blocks are listed in the order in which they were created. If the Block order
menu (at the bottom of the dialog) is set to Sequential (as it is by default), this is also the
order in which they will be run. If this is not the order in which you want them to run, you
will need to reorder them in the list, so that they run in the correct order.

Reorder the blocks by doing the following:

1. Select Instructions1 by clicking on it once.

2. Drag it to the top of the list.

Figure 86 – The Experiment dialog
70

3.2.9 Using Blocks
3. Select and drag Instructions2 to a position just in between Block1 and
Block2. This may be a bit tricky. If you don't get it just right, it will end up
above Block1 or below Block2. You can try again, or you can just play Chi-
nese-checkers with the blocks until you have them in the correct order.

Notice that a Trial Count or Duration value is listed next to each block in the list. These
correspond to the number of trials or duration (in seconds) that you previously set for each
block (in the Block dialogs). Double-clicking on this value (or anywhere on that line) will
open the dialog for that block, allowing you to modify the value.

The fields below the list of blocks provide additional control over how the blocks in the list
are run. The Cycles value controls how many times PsyScope will run through the list of
blocks. Scale Blocks influences the number of trials that are run in each block that has
Scalable selected; this value is multiplied by the Trials in Block value to arrive at the total
number of trials to run in that block. The Scale Blocks value has no effect on blocks that
have Fixed selected, or that have a time duration specified (see the “3.2.12.4 The Trial
Monitor”, p95 for an example of scaling blocks). Finally, the Block order menu controls
whether the blocks are run in sequential or random order.

Note: A full discussion of trial counting is in “Part 2: Graphic Environment Reference,
5.12.2 Trial Counting”, p211.

In this section we showed you how to use blocks to block trials in PsyScope. There are also
other methods for accomplishing this. For example, you can block trials by using a separate
template for each block (this is a simpler, but more limited method). You can also use fac-
tors to block trials using certain access types (see “Part 2: Graphic Environment Reference,
5.7.2.2 Table Info Dialog”, p140).

Figure 87 – Reordering a block
71

 Part 1: Introduction to PsyScope
3.2.9.2 Varying by Block

In addition to using blocks for blocking trials, you can also use them to vary attributes of
the trials in each block. For example, instead of using two separate templates for the in-
structions before each experimental block, you can use the same template for both instruc-
tions blocks, and vary the actual text of the instructions by block.

Return to the Design window, and follow these steps:

1. Select one of the Instruction Trial templates — let’s say the Instructions Trial
2 — and drag it to the trash or choose Clear from the Edit menu. You might
also want to empty the trash (Design menu), as there is not reason to keep
the extra template around.

2. Link Instructions Trial 1 to the Instructions2 block.

The Design window should now look something like this:

Now, open the Block Attributes dialog for either of the two instruction blocks — let’s say
Instructions1 — using one of the following two methods:

• Open the Block dialog by double-clicking on the block, and then open the
Block Attributes dialog by clicking on the Attributes button.

or

• Hold the Control key down while you select the block icon with the mouse.
Choose Edit Block Attribs from the menu that appears.

Figure 88 – Using the same template for both kinds of instructions
72

3.2.9 Using Blocks
Tip: When you are in the Design window, you can open a menu that will provide direct ac-
cess to the Attributes dialog for an object by holding the control key down while select-
ing the object with the mouse.

The Block Attributes dialog should now be open (Instructions1 Attributes). Create a new
custom block attribute, and assign its value for each block as follows:

1. Choose Custom Block Attribs from the Attribute Set menu, if it is not
already selected, and then click on the New button. This will open the New
Attribute dialog.

2. Name the attribute “Instructions”.

3. Select Stimulus Attribs from the Attribute Set menu, and select Para-
graph from the Stimulus Type menu.

When you are done, click on the OK button. This will return you to the Block
Attributes dialog, and Instructions should appear as a custom block at-
tribute.

4. Set the instructions for this block by choosing Set To from the menu for the
Instructions attribute, and entering the instructions in the text dialog that ap-
pears.

Figure 89 – The Create/Rename/Retype Attribute dialog (used here to create a custom attribute)
73

 Part 1: Introduction to PsyScope
When you are done, the Block Attributes dialog should look like this:

Once you have defined Instructions as a custom block attribute, it will be there for all
blocks. Therefore, all you have to do for the Instructions2 block is open its Block Attributes
dialog, and enter the instructions for that block as the value of the Instructions attribute.

Note: Whenever you create a custom attribute for an object of a particular type, PsyScope
automatically adds it to all objects of that type in the experiment, and sets their value
to Default.

You can use Vary by Block to vary the value of any trial, event or stimulus attributes in
your experiment. For example, you might want to vary the font of the stimulus in each of
the two experimental blocks. This provides a convenient method of blocking features of
your design, without having to create a new template for each block. You can also vary the
value of attributes according to the group that the subject is in. Of course, this requires that
you have defined subject groups, which is the topic of the next section.

3.2.10 Using Subject Info and Groups

When conducting a real experiment, you will want to record information about the subjects
you run in the experiment. For some designs, you may also want to vary how the experi-
ment is run based on which group the subject belongs to, or to keep track of the number of
subjects run in each group. In this section, we will show you how to use PsyScope to record
information about each subject, and how to set up and use groups.

Figure 90 – Block attributes dialog showing a custom attribute
74

3.2.10 Using Subject Info and Groups
3.2.10.1 The Subject Info Dialog

Let’s begin by setting things up to record the Subject’s name, age and handedness. You do
this using the Subject Info dialog.

Open the Subject Info dialog by clicking on the Subject Info button (see below) in the con-
trol area of the Design window. Notice that three items are already defined.

The Subject Info dialog contains a list of the information items that will be recorded for
each subject. PsyScope automatically creates three items for you, which must always be
present: “SubjectName”, “SubjectNumber”, and “RunNumber”. SubjectNumber and Run-
Number are values that PsyScope calculates automatically for each run of each subject in
an experiment.

SubjectNumber and RunNumber

PsyScope assigns a SubjectNumber to each subject run in each experiment. Numbers are
assigned sequentially, starting with 1. Each subject will have the same SubjectNumber for
a given experiment, even if they are run multiple times in that experiment (assuming the
name is spelled exactly the same and the group assignment does not change). However, the
same subject may have different SubjectNumbers for different experiments. If you are us-
ing groups, PsyScope maintains a separate series of SubjectNumbers for the subjects in
each group (see “ Groups and Between Subject Designs”, p89).

PsyScope also calculates a RunNumber each time an experiment is run, which is the num-
ber of times that particular subject has been run in that particular experiment.

Figure 91 – Subject Info icon button

Figure 92 – The Subject Info dialog with the default items
75

 Part 1: Introduction to PsyScope
See “6.2.3 Subject Number Calculation”, p230 for a complete description of how PsyScope
computes the values of SubjectNumber and RunNumber.

Adding New Subject Info Items

You can use the Subject Info dialog to create additional items, specify when and if Psy-
Scope will prompt you to enter information for them, and when PsyScope will record the
information.

Add items for the subject’s age and handedness, by doing the following:

1. Click on the New button at the top of the Subject Info dialog. The New Sub-
ject Info dialog will open.

2. Enter “Age” as the name for the first new item.

3. You will want to insure that a numeric value is entered for the subject’s age,
so choose Value from the Item Type menu.

Now, if anything other than a numeric value is entered for the age, an error
message will be displayed, and the user will be prompted to enter a numeric
value. You will also be able to specify the particular type of number, and the
range of values that are permissible, as you will see shortly.

Figure 93 – Creating a new numerical Subject Info item
76

3.2.10 Using Subject Info and Groups
4. Next, use the Prompt when menu to choose the time at which you want
PsyScope to prompt the user for the subject’s age, or choose Never for not
at all.

5. Finally, you can set when you want PsyScope to record the information, using
the Record when menu. For now, leave this set to Experiment is run.
We will discuss how PsyScope records information shortly.

6. Click on OK. After the New Subject Info dialog closes, the Configure Value
dialog will appear. Check the Range box, and enter the range for permissible
values of the subject’s age.

Now, any non-integer values, or values that are outside of the specified range,
will generate an error message.

7. Click on OK when you are done. PsyScope will present the dialog for entering
the subject’s age (try entering an inappropriate value), and then return you to
the main Subject Info dialog.

Follow the same procedure to add handedness as an item. However, in this case, set the
Item Type to Buttons. When you close the New Subject Info dialog, the Configure Val-

Figure 94 – Setting the prompt time

Figure 95 – Defining a numerical item
77

 Part 1: Introduction to PsyScope
ue dialog will be different, letting you define the list of buttons instead of numerical fea-
tures. Use this to create two buttons: one for Right and one for Left.

When you are done, PsyScope will present you with a dialog for entering the Subject’s
handedness, and then return you to the main Subject Info dialog, which should look some-
thing like this:

Once you have created a subject info item, you can modify it by double-clicking on its
name in the list, or by using the Configure and Define buttons at the top of the dialog. The
Define button opens a dialog similar to the New Subject Info dialog, in which you can set
when PsyScope will prompt for and store information. The Configure button re-opens the
type-specific Configure Value dialog.

Figure 96 – Creating Left and Right buttons for Handedness

Figure 97 – Subject Info dialog with Age and Handedness added
78

3.2.10 Using Subject Info and Groups
You can set the value for each item from the Subject Info dialog by clicking on its value in
the list. You can specify where the information will be recorded by checking in the Data
File and/or Log File columns. These are the two files in which PsyScope records informa-
tion about the session, the experiment, and the subject. PsyScope stores information about
each session in the log file, and about the running of each experiment in the data file. Below
is some additional information about each of these files.

Log File and Data File

Log file

Whenever the PsyScope application is run, it opens a log file in which it records informa-
tion about the session, such as the version of the PsyScope application that was run, the time
each experiment began and ended, and any error messages that occurred.

By default, PsyScope uses a file named “PsyScope.log” in the same folder as the applica-
tion. However, you can change the log file, as well as add comments to it and view it, using
commands in the Utilities menu (see “Part 2: Graphic Environment Reference, 7.1.4 Util-
ities Menu”, p254).

To store information about the subject in the log file, check next to the items you want re-
corded in the Log File column of the Subject Info dialog. You can control when this infor-
mation is recorded using the Subject Info dialog (see above) or Subject Info Schedule
dialog (see “Part 2: Graphic Environment Reference, 6.2.6 Subject Info Schedule Dialog”,
p237).

Data file

Whenever an experiment is run, PsyScope records all of the data from the experiment (such
as the subject’s responses) in a data file.

By default, PsyScope creates a file whose name is the name of the experiment appended
with “Data” (for example, “Acuity Experiment Data”), and stores it in the same folder as
the PsyScope application. You can change the name and location of the data file, and view
its contents, using commands in the Utilities menu.

To store information about the subject in the data file, check next to the items you want re-
corded in the Data File column of the Subject Info dialog. You can control when this in-
formation is recorded using the Subject Info dialog (see above). You can also use the
Subject Info dialog to have PsyScope automatically create a name for the data file, based
on information about the subject, as described below.
79

 Part 1: Introduction to PsyScope
Note: Both the log file and data file are text files. That is, they do not contain any special
codes or characters, so they can be viewed and edited by any standard text editor.
However, PsyScope relies on the format of these files for certain types of information.
Changing the format may interfere with PsyScope’s ability to keep track of information
about groups, subjects, and runs. See “Part 2: Graphic Environment Reference, 6.1.5
The Log File”, p222 and “Part 2: Graphic Environment Reference, 6.1.4 The Data
File”, p217 for details about the format of the log and data files.

To have PsyScope automatically generate a custom name for the data file, click on the
Data File button in the Subject Info dialog. This will open the Data File dialog.

The Subject Info items are shown in the list on the right of the Data File dialog. You can
use the value of these items, their initials, and any separators you want to construct the
name of the data file.

Let’s have PsyScope generate a name for the data file based on the subject’s initials, their
handedness, and the subject number. For example, the data file for Archie Undergraduate
who is subject 12 and is right handed should be AU12-R. For the purposes of this example,
set SubjectName to Archie Undergraduate, the SubjectNumber to 12, and Handedness to
Right, by clicking on their values in the Subject Info dialog and entering the values you
want in the corresponding dialogs. Then return to the Data File dialog and follow these
steps:

1. Select SubjectName in the list of Subject Info Entries and then click on the
Add button (or just double-click on SubjectName). SubjectName should now
appear under the Data File Items list.

2. Click in the Use Initials column next to SubjectName. in the Data File
Items list.

Figure 98 – The Data File dialog
80

3.2.10 Using Subject Info and Groups
3. Add SubjectNumber and Handedness to the list of data file items, and check
Handedness.

Notice the example of the data file name next to the Automatic radio button at the top of
the dialog. It should currently be “AU12R”. Now let’s add the hyphen in between the Sub-
jectNumber and Handedness.

1. Click on the Separator button, enter a hyphen (“-”) in text dialog, and click
on OK. The hyphen should now appear in Data File Items list.

2. Drag the hyphen above Handedness.

The Data File Name dialog should now look like this:

Try changing the value of SubjectName, SubjectNumber, or Handedness items, and notice
how the data file name changes.

By default, the data file is saved in the same folder as the PsyScope application. You can
save it in another folder by clicking in the Use Folder checkbox, and setting the folder us-
ing the standard Macintosh file dialog.

You can override the automatic data file calculation by clicking the Set to radio button,
and entering the file name in the text field to its left.

3.2.10.2 Groups

There are two main reasons for using groups: to vary how the experiment is run for different
groups of subjects, or to keep track of how many subjects have been run from different
groups. The latter is particularly important for between-subject designs, in which you want
to be sure that the same number of subjects from each group are run in each condition of an

Figure 99 – Automatic Data File Name dialog with a calculated name
81

 Part 1: Introduction to PsyScope
experiment. In this section we will first show you how to define groups using the Subject
Info dialog, and then show you how to use them for each of the purposes referred to above.

You define groups in the Subject Info dialog, by selecting the items that should be used to
assign subjects to groups.

Let’s group subjects by handedness.

• Check next to this item in the Group column of the Subject Info dialog.

Notice that a checkmark automatically appears in the Log File column. This is because any
information used to group subjects must be stored in the log file.

PsyScope decides which group to assign a subject to by checking the current values of in-
formation items that are used to group subjects (in the example above, it is just handed-
ness). These information items are called the group criteria. All subjects that share the
same values for all of the group criteria belong to the same group. In the example, all right-
handed subjects will form one group, and all left-handed subjects will form another. If you
had added Age as a group criterion, then all right-handed subjects of a given age would
form one group, all right-handed subjects of a different age would form another group, etc.

When you define groups, PsyScope calculates the SubjectNumber for each subject relative
to the group. For example, if the first three subjects were right-handed and the fourth was
left-handed, the SubjectNumber for the 4th subject would be 1, not 4. This is important for
between-subject designs, as we will see below (in “ Groups and Between Subject Designs”,
p89).

Figure 100 – The Subject Info dialog with grouping by Handedness
82

3.2.10 Using Subject Info and Groups
The Group Object and Varying By Group

As we noted above, one use of groups is to vary aspects of the Experiment based on the
group that the subject is in. For example, suppose that you wanted to vary the input key
used for responding based on the subject’s handedness. You can do this using groups, and
Vary By Group for the input condition.

You defined the two handedness groups above. To be able to vary the experiment according
to these, you now need to create two group objects, and “splice” them into the experiment.

1. Go to the Design window, select the group object in the Tools palette (see fig-
ure 101 below), and place two groups in the work area. Name them “Left
Handers” and “Right Handers” respectively.\

2. Using the scissors tool (see figure 102 below), clip the links from the experi-
ment to the block objects. Then link the two groups to the experiment, and to
the blocks.

Tip: You can simultaneously link multiple objects to another one by selecting the link tool,
then selecting all of objects to be linked and dragging to the object you want to link
them to.

Figure 101 – The Group icon

Figure 102 – The scissors tool
83

 Part 1: Introduction to PsyScope
The Design window should now look something like this:

The next step is to link the group criteria you defined earlier to the two group objects.

Figure 103 – Experiment hierarchy with groups

Figure 104 – Experiment hierarchy with groups and blocks
84

3.2.10 Using Subject Info and Groups
1. Open the Group dialog for the Left Handers group, and click on the Criteria
button in the lower right hand corner. This will open the Criteria dialog:

Notice that Handedness is the only item listed in the dialog. This is because
this is the only item that was checked as a group criterion in the Subject Info
dialog.

2. Double-click on Handedness and then click on Left in the Handedness di-
alog.

3. Do the same for the Right Handers group, setting the Handedness criterion to
Right.

The criteria for each group are now set. The final step is to create a custom group attribute
for each group that specifies which input key is to be used for each group, then vary the
input condition for the RT Period event by group. The procedure for doing this is analogous
to the one for creating custom block attributes, which you saw earlier. In case you skipped
that section here is how you do it. Create the custom attributes first:

1. Go back to the Left Handers group dialog, and click on the Attributes but-
ton.

2. Choose Custom Group Attribs from the Attribute Set menu, if it is not
already selected, and then click on the New button. This will open the New
Attribute dialog.

Figure 105 – The Group Criteria dialog
85

 Part 1: Introduction to PsyScope
3. Select Conditions and Actions from the Attribute Set menu.

Check that Conditions is selected in the Attribute menu, and then click on
OK. This will return you to the Left Handers Attributes dialog, and Condi-
tions should appear as a custom group attribute.

4. Set the value of the Conditions attribute to the “f” and “d” keys (See the ex-
ample in “3.2.6 Recording Responses”, p26, for a reminder of how to do this).

When you are done, the Left Handers Attributes dialog should look like this:

Once you have defined Conditions as a custom group attribute, it will be there for all
groups. Therefore, all you have to do for the Right Handers group is open its attributes di-
alog, and set the value of Conditions to the “j” and “k” keys.

Figure 106 – The Create/Rename/Retype Attribute dialog (used here to create a custom attribute)

Figure 107 – Group Attributes dialog showing a custom attribute
86

3.2.10 Using Subject Info and Groups
Note: Whenever you create a custom attribute for an object of a particular type, PsyScope
automatically adds it to all objects of that type in the experiment, and sets their value
to Default.

All that remains to be done now is to set the input for the RT Period event so that it will be
determined by the subject’s group. For left-handed subjects, the response keys on the key-
board will be “d” for word and “f” for non-word, while right-handed subjects will use “j”
for word and “k” for non-word:

1. Make sure all of the cells in the factor table are selected, and then go to the
Template window and open the Event Attributes dialog for the RT Period
event.

2. Select Set To: in the Input/Actions attribute menu. This will open the Ac-
tions dialog.

3. Select the conditions part of the conditions-actions pair (set up in “3.2.6 Re-
cording Responses”, p26), but do not double-click to open the Conditions di-
alog.

4. In the pop-up menu which appears at the bottom of the Actions dialog, select
Vary by Group; this will open the Vary by Group dialog.

3. Choose Conditions from the Attribute menu in the Vary by Group dialog,
and click on OK.

Figure 108 – Selecting Vary by Group
87

 Part 1: Introduction to PsyScope
The Actions dialog should now look like this:

This indicates that the value of the conditions will be determined by the Conditions custom
group attribute. Try this out, by setting the value of the handedness in the subject info dia-
log, and then running the experiment.

The Current Group

Whenever you have group objects in your experiment, there is always one current group.
This is the group that is used to set the values for all attributes that are set to Vary by
Group. If you have defined group criteria, then the current group is determined by the val-
ues of the subject info items that make up the group criteria (for example, if handedness is
set to “Right”, then Right Handers is the current group). If no group criteria have been de-
fined, you can select the current group manually from the Experiment dialog.

Set the current group to Left Handers manually as follows:

Figure 109 – The Actions dialog showing conditions varied by group
88

3.2.10 Using Subject Info and Groups
1. Go to the Design window, and double-click on the Acuity Experiment icon.
This will open the Experiment dialog

Notice that Right Handers is bold faced. This is the current group.

2. Click on the Manual current group radio button, select Left Handers, and
then click on the Selected -> Current button.

Left Handers should now be the current group. Confirm this by running a trial. “f” should
be the input key.

Setting the current group manually overrides the group criteria, if any have been defined.
You can reset automatic group selection by clicking on the Automatic from subject info
radio button. Clicking on the Update button will re-check the value of all of the group cri-
teria, and set the current group accordingly.

Groups and Between Subject Designs

In the previous section, you learned how to use groups to vary features of the experiment
across groups. A second important use of groups is to keep track of the number of subjects
run from each group. This is particularly important for between-subject designs, when you
want to be sure that the conditions of the experiment are distributed across subjects in the
same way for each group.

Suppose, for example, that we want to run the Acuity Experiment in normal and visually
impaired subjects, to test for differences in peripheral acuity between these two types of
subjects. Suppose furthermore that we want to examine the influence that different fonts
have in these two different groups, and that we want to do this in a between-subject design.
That is, each subject will see only one of the fonts, which we will vary from subject to sub-
ject (as in the example in “3.2.8.3 Controlling How Cells are Chosen”, p49). We want to
be sure that the assignment of fonts to subjects occurs in the same way for the two groups.
That is, we want the between-subjects table to be used in an equivalent way across groups.
For example, if we have already run three normal subjects who have been assigned the first
three fonts, and the next subject is visually impaired, we want that subject to see the same
font seen by the first normal subject, and not simply the next font in the list.

Figure 110 – Group List dialog showing two groups
89

 Part 1: Introduction to PsyScope
Using groups and setting the crossing type of a factor table to Between, and then choosing
Subject within Group in the Choose Crossing dialog (see “3.2.8.3 Controlling How Cells
are Chosen”, p49 for an example of how to do this) insures that the assignment of cells from
the table will be done in an equivalent way across groups. This is because PsyScope picks
cells based on the value of SubjectNumber when a table’s crossing type is Between and
the Between type is Subject within Group. Since, with this setting, PsyScope computes
the SubjectNumber separately for each group, corresponding members of each group are
numbered the same, and so they will be assigned a comparable cell. For example, the Sub-
jectNumber of the first subject in both the normal and the visually impaired groups will be
“1”, it will be “2” for the second subject in both groups, etc. Since this number is also used
to choose the cell in Font factor’s table — its Crossing Type is Between by subject — cor-
responding members of each group will be assigned the same level of that factor.

This introduction to Groups should give you an idea of how they can be used, in combina-
tion with between-subject factors, to construct a variety of complex experimental designs.
In the next section, we turn to a set of features that will help polish your experiment, and
get it ready to run with actual subjects.

3.2.11 Experiment Attributes

Experiment attributes are features that can be used to customize your experiment. There are
a variety of these, some of which are fairly technical. Here, we will describe three sets of
these that are of general use. The remaining experiment attributes are described in detail in
“Part 2: Graphic Environment Reference, 5.8.3.4 Standard Experiment Attributes”, p161.

All of the experiment attributes are set in the Experiment Attributes dialog. You can
open this dialog from the Design Window — like the attributes dialog for any other type of
object — in one of two ways: Either by double-clicking on the experiment object to open
the Experiment dialog, and then clicking on the Attributes button; or directly by holding
90

3.2.11 Experiment Attributes
down the control key while you click on the experiment object with the mouse, and then
selecting Edit Experiment Attribs from the pop-up menu that appears.

3.2.11.1 Instructions and Debriefing Files

In the example that we used in the section on blocks, we showed you how to present in-
structions before each block. Usually, however, you will only want to present a single set
of instructions at the beginning of the experiment, and perhaps another message at the end
of the experiment. For routine cases like this, PsyScope provides a simpler method, so that
you do not have to create special blocks or templates for this purpose. All you have to do
is create a text file for each message, and then set the Instructions File and/or Debriefing
File attributes in the Experiment Attributes dialog.

Create an instructions message as follows:

1. Go to the File menu and select New Text File.

2. Enter the instructions in the text editing window, and then save the file.

3. Go to the Design window, and open the Experiment Attributes dialog.

4. Select Set To from the menu of the Instructions File attribute. This will
open a standard Macintosh file dialog. Select your instructions file and then
click on Open.

Try running the experiment. At the very beginning, a bordered window will appear show-
ing your instructions. You can experiment with the positioning of the text within the win-
dow by using returns, tabs, spaces, etc.

Instructions are presented at the beginning of the experiment, before any trials are run; the
debriefing text is displayed at the end of the experiment, after the last trial has been run.

Figure 111 – Control-clicking to get to attributes quickly
91

 Part 1: Introduction to PsyScope
3.2.11.2 Rest Periods

As with instructions, you can use blocks and templates to add rest periods at specified
points in your experiment. Also like instructions, PsyScope provides a simpler method for
standard cases. You can add “pre-packaged” rest periods to your experiment, using the Tri-
als Per Rest, Num Rests, and Rest Duration experiment attributes. With Trials Per
Rest, you specify how often you want rest periods to occur, in terms of the number of trials
between each one. With Num Rests, you specify how many rest periods you want in the
experiment. PsyScope then distributes these evenly throughout the experiment, by dividing
the total number of trials in the experiment by the Num Rests value you specify.

Note: The Num Rests attribute does not work correctly — in such cases, rests may not be
distrubuted evenly— with blocks that have time durations; this is because PsyScope
cannot, in advance, predict how many trials will be run.

The Rest Duration attribute determines how long — in milliseconds — the rest periods
last. During each one, PsyScope presents a blank screen with the message: “You can take
a break now”. When the rest period ends, PsyScope adds the message: “Please hit any key
to continue”. Pressing any key on the keyboard will continue the experiment.

3.2.11.3 Reverse Video

Sometimes you may want all of the text stimuli in the experiment to appear in white against
a black background; that is, in reverse video. You can do this by choosing Reverse Video
from the Experiment menu in the menu bar, and then clicking the On radio button in the
Reverse Video dialog. This actually sets the Backcolor and Forecolor experiment at-
tributes; Backcolor is set to black, while Forecolor to white.

You can set these attributes directly to achieve other color effects. The value of Forecolor
is used for any stimulus in the experiment whose color is unspecified, and the Backcolor
attribute determines the background color.

3.2.12 Running Trials

There are a number of ways of running trials in PsyScope. Of course, you can run the whole
experiment as you have been doing. You can also run subsets of trials — to preview or de-
bug them — as well as practice trials.

3.2.12.1 Running the Experiment and Breaking

Running the experiment is simple: Select Run from the Run menu, type Command-R, or
click on the Run button in the Console. The number of trials run will be determined by set-
tings in the Experiment and Block dialogs. These are discussed in “Part 2: Graphic Envi-
92

3.2.12 Running Trials
ronment Reference, 5.12.2 Trial Counting”, p211. You can interrupt the experiment at any
time by typing Command-.; this will invoke the Break dialog.

Clicking the Continue button will continue the experiment where you left off. Clicking on
Break button will quit the experiment and return you to PsyScope.

3.2.12.2 Practice vs. Run Mode

You can run a set of trials in Practice mode by choosing Practice from the Run menu or
by clicking on the Practice button in the Console. The experiment is run exactly as it
would be in a regular run, except that in practice mode PsyScope does not store any data in
the data file, and RunNumber is not incremented. The practice run is, however, logged in
the log file.

You can also use custom practice and custom run attributes to vary features of trials accord-
ing to the mode in which they are run. You do this in a way similar to creating and assigning
other custom attributes (see the “3.2.9.2 Varying by Block”, p72 and “ The Group Object
and Varying By Group”, p83 sections above). First, you choose Custom Practice Attribs
or Custom Run Attribs from the Attribs Set menu in the Experiment Attributes dialog.
Next, you create the new custom attributes that you want (creating a new attribute in one
set automatically creates it in the other), and assign their values for the Run and Practice
modes. You can then use these to vary the value of any attribute by setting its value to Vary
By Run Mode.

Tip: While Vary by Run Mode provides a certain amount of control over practice trials,
you may still find yourself limited by the fact that the same trials will be run in both
modes. If you wish to differentiate more fully between practice and experimental trials,
you can do this by creating a separate block of practice trials, that you place first in
the list of blocks for the experiment. If you don’t want to record data during these tri-
als, simply omit any RT[] actions from that set of trials.

Figure 112 – The Break dialog
93

 Part 1: Introduction to PsyScope
3.2.12.3 Previewing Trials and Using the Trial Chooser floating window

When you are in the process of designing an experiment, it can be useful to run some trials
to see how things are shaping up. You can do this using the Preview button in the Tem-
plate and Block dialogs. When a trial is run in preview mode, PsyScope does not store any
data collected during the trial.

The Preview button in the Template window runs a single trial from that template. You
can use the Trial Chooser floating window to specify which trial to run; that is, to set the
value of any determinants of the trial. For example, if any attributes in the trial are linked
to lists, then you can use the Trial Chooser to select the specific items from those lists that
you want to preview in the trial. Similarly, if any of the attributes in the trial are varied by
block, the Trial Chooser lets you select which block to use when the trial is previewed. The
same is true for groups.

Preview a trial from the Template window, as follows:

1. Open the Template window.

2. Open the Trial Chooser palette, by selecting it in the Windows menu.

3. Select an item from the Stimulus List in the Trial Chooser:

Recall that the stimulus attribute of the Stimulus event is linked to the Stimulus List. Notice
that when you select an item from the Stimulus List, that item is displayed as the stimulus
above the Stimulus event bar in the Template window.

4. Click on the Preview button at the top of the Template window. The trial
should run, and the stimulus should be the item that you selected from the
Stimulus List.

Figure 113 – The Template window with the Trial Chooser open
94

3.2.12 Running Trials
Try changing the group in the Trial Chooser, and previewing the trial. Recall that the re-
sponse key in the RT Period event is varied by group, so it should change according to the
group selected in the Trial Chooser.

Note: Selections in the Trial Chooser palette only effect the previewed trial. They have no
effect on trials when the experiment is actually run

The Preview button in the Block dialog will preview all of the trials in that block. The Tri-
al Chooser can be used to select which group to use. It can also be used to set which item
to select first from any lists to which attributes are linked. After the first trial is previewed,
PsyScope will continue picking items as usual.

Previewing trials lets you see how they will actually run in the experiment. In some circum-
stances, however, you may want to conduct more sophisticated tests. The Trial Monitor lets
you do this.

3.2.12.4 The Trial Monitor

The Trial Monitor provides you with more elaborate control over how trials are constructed
and run, as well as some diagnostic tools for testing your experiment. The top half of the
monitor controls how many trials will be run; the bottom half controls how they are con-
structed, and provides diagnostics.

Open the Trial Monitor by choosing Monitor from the Windows menu, clicking on the
Monitor button in the Console, or typing Command-M.

Figure 114 – The Trial Monitor
95

 Part 1: Introduction to PsyScope
The Run and Practice fields at the top of the monitor specify the number of trials to run.
If there are blocks in the experiment, Mode: Block appears at the top of the monitor, and
the Run and Practice values function like the Scale value in the Experiment dialog — that
is, they multiply the number of trials in each block. Total to run reports the actual number
of trials that will be run.

Notice that the Total to run value is 13. This number reflects the single trial in each of
the instructions blocks, the 10 trials in Block1, but only one trial for Block2. Only one trial
is counted for Block2 because it has a time duration specified rather than a number of trials.
PsyScope cannot accurately calculate beforehand how many trials will run in a specified
period of time, therefore it cannot accurately calculate the total number of trials that will
run in the experiment.

Note: If any blocks in the experiment have a time duration specified rather than a number
of trials, then the value reported by Total to run will be inaccurate — only one trial
will be counted for each timed block.

Open the Block dialog for Block2, and assign it 10 trials in the block. The Trial Monitor
should now accurately report Total to run as 22.

Try changing the value in the Run field to 2. Total to run will now be 42. This is because
this value functions like the Scale value, multiplying the number of trials in each block.
However, because the Instructions blocks were set to Fixed rather than Scalable, they are
unaffected. So, setting Run to 2 doubles the number of trials in Block1 and Block2, for a
total of 20 in each, but keeps only one trial in each of the two instructions blocks, for a total
of 42 trials in the experiment.

Note: The value in the Run field may be linked to the Scale field of the Experiment dialog
by default. Changing the value in one changes the value in the other. You can uncouple
these by checking Trial Monitor count separate from script in the Run Op-
tions dialog (see “Part 2: Graphic Environment Reference, 7.6.2 Run Options”,
p266).

If there are no blocks in the experiment, then the Run and Practice values directly specify
the number of trials to run; this is indicated by Mode: Direct.

To run the trials, be sure that the mode you want is selected (by clicking on either the Run
or Practice radio buttons), and then click on the Do Trials button. You can run a subset of
trials, using the Run By Index dialog. Open this by clicking on the By Index button, enter
the number of the first and last trials you want to run, and then click on the Do Trials button
in the dialog.

Precompiling Trials and the Intertrial Interval

By default, PsyScope constructs each trial just before it is run. Depending upon the com-
plexity of your experiment, this process can take anywhere from one millisecond to one
second or longer, and can vary from trial to trial. There are two ways you can handle this,
if the timing between trials - the intertrial interval (or ITI) - is critical to your experiment.
96

3.2.12 Running Trials
If you just want to be sure that the ITI is consistent from trial to trial, you can set the Min-
imum ITI attribute “Part 2: Graphic Environment Reference, 6.5.1 Precompiling”, p246.
If you want to eliminate it altogether, you can precompile trials and use the Preload All
Stimuli special attribute flag. Each of these is discussed below.

Minimum ITI

This is a trial attribute, that specifies the minimum amount of time to wait before beginning
each trial. PsyScope constructs the trial during that period, including loading any stimuli
that it will need from disk. The default value is 0, so that PsyScope will begin the trial as
soon as it has been constructed. This means that some trials may begin sooner than others.
However, by setting this to a value equal to or longer than the time it takes to construct the
longest trial, you can ensure that all of the ITIs will be the same. Typically, a value of 1
second will do the trick. You can be more precise by running a check on the experiment
(see below), to find out the longest amount of time it will take to compile a trial.

Precompiling Trials

Setting Minimum ITI ensures that ITIs will be consistent. However, if you want to elimi-
nate the time occupied constructing each trial before it is run (for example, you need very
brief ITIs), then you can have PsyScope construct all of the trials at once, before the exper-
iment begins. You can do this by checking Compile all trials before running in the bot-
tom half of the Trial Monitor, or setting the Precompile experiment attribute to All. When
you run the experiment, PsyScope will begin by compiling the trials. While it is working,
it will present a message dialog indicating how many trials are being prepare, along with a
time bar tracking its progress and an estimate of how much longer it will take.

If you are using the Instructions experiment attribute, this message will appear below the
text, in the same window. You can suppress the number of trials in the message (if you do
not want the subject to see this information) by unchecking Show number to be com-
piled in run time bar in the Run Options dialog (see “Part 2: Graphic Environment Ref-
erence, 7.6.2 Run Options”, p266).

Even if you precompile trials, there may still be some time occupied between trials as Psy-
Scope loads the stimuli for the next trial from disk, and performs any manipulations on
them that you have specified (for example, flipping text vertically or horizontally). You can
eliminate this time as well, by setting the Preload All Stimuli special experiment flag. Do-
ing this will ensure that the ITI is 0. However, you must have enough RAM available for
PsyScope to be able to store all of the stimuli in the experiment in memory at once.

Figure 115 – The experiment compiling timebar
97

 Part 1: Introduction to PsyScope
The advantage of precompiling trials and preloading stimuli is that you can then make the
time between trials as short as you like. The disadvantage is that you have to wait for all of
the trials to be constructed and stimuli loaded before the experiment begins. If you have a
large number of trials or stimuli, this can take a while.

See “Part 2: Graphic Environment Reference, 6.5.1 Precompiling”, p246 for more informa-
tion on precompiling.

Note: Precompiling trials will not work if your experiment uses any Trial Manager Vari-
ables (see “Part 2: Graphic Environment Reference, 5.10 Trial Manager Variables”,
p205), or if of any blocks have a time duration specified rather than a specific number
of trials (this is because, for timed blocked, PsyScope cannot calculate beforehand
how long each trial will take, and therefore how many to allocate to the block).

Checking Trials

You can have PsyScope check your experiment by clicking in the Check box in the bottom
half of the Trials Monitor, and then clicking on the Do Trials button. PsyScope will con-
struct the number of trials in the Run field (without actually loading stimuli — see below),
and report any errors it encounters in the process. When it is done, instead of running the
experiment, PsyScope will open the Check Statistics window. This window reports several
statistics about the experiment, which are described in “Part 2: Graphic Environment Ref-
erence, 6.3.1 Trial Compilation Statistics”, p241. These statistics are useful for deciding
how to set Minimum ITI, to ensure that the ITIs are consistent when you are not precom-
piling the experiment (see above, “ Precompiling Trials and the Intertrial Interval”, p96).

Checking the List Events box in the monitor causes PsyScope to list the events of each
trial, and their associated stimuli, in the Check Statistics window. This is useful if you want
to verify that randomization of stimuli is occurring as anticipated.

Checking Load Stims causes PsyScope to load every stimulus from disk when checking
the trials. This will take longer, but will check that every stimulus file in your experiment
is appropriately specified and accessible.

A full description of the Trial Monitor is provided in “Part 2: Graphic Environment Refer-
ence, 6.3 The Trial Monitor”, p238.

The Event and Variable Monitors

Checking the Monitor events box at the bottom of the Trials Monitor opens two win-
dows: the Event Monitor and the Variable Monitor. These windows dynamically track the
trials of your experiment as they run.

The Event Monitor reports which trial is being run, all of the events in that trial, and their
current status; it also maintains a list of all active functions.
98

3.3 Where to Go from Here
The Variable Monitor reports the status of trial manager variables. If the Step box is
checked, then the trial will run “step-by-step,” so that you can examine the progress of the
trial more carefully. You advance each step by pressing any key on the keyboard.

The Event Monitor and Variable Monitor are extremely useful debugging tools, especially
when you are designing an experiment using PsyScript. These are described fully in
“Part 2: Graphic Environment Reference, 6.4 The Event Monitor and Variable Monitor”,
p241.

3.3 Where to Go from Here

This is the end of your introduction to the graphic environment, and the structure of an ex-
periment in PsyScope.

Details of each of the components discussed above, as well as all of the event types and
actions available in PsyScope, are in “Part 2: Graphic Environment Reference”.

The scripting language is introduced in “Part 3: Scripting User Manual”, with a tutorial for
creating the Acuity experiment using PsyScript instead of the graphic environment. “Part 4:
Scripting Reference” is the corresponding reference section; it contains a complete defini-
tion of PsyScript, the available experiment scripting formats, technical details of the Trial
Manager, and information about using PsyScript to configure the interface.

Finally, “Part 5: Appendices” provides a list of error messages, details about using the but-
ton box, and creating sounds and pictures for use with PsyScope.
99

 Part 1: Introduction to PsyScope
100

Part 2:
Graphic
Environment
Reference

Chapter 4. Introduction 103

Chapter 5. Windows and Dialogs 105

Chapter 6. Running and Managing Experiments 213

Chapter 7. User Environment 253

102

Ψ
Chapter 4. Introduction

Part 2: Graphic Environment Reference

This part describes, in detail, how elements of an experiment are created and modified in
PsyScope. “Chapter 5. Windows and Dialogs” contains sections on each of the major com-
ponents of a PsyScope experiment: the experiment itself and the components that make it
up — groups, blocks, templates, events, attributes and factors. “Chapter 6. Running and
Managing Experiments” provides information on running and managing experiments.
“Chapter 7. User Environment” contains information about the general environment.

4.1 A Word About Scripts

PsyScope provides a powerful and easy-to-use facility for designing experiments in graphic
form. However, like most graphic approaches to programming, it has inherent limitations.
Inevitably, you will find that some experiments — or parts of some experiments — cannot
be created using just graphic elements. For these, you will need to use PsyScript, the Psy-
Scope scripting language.

The graphic tools in PsyScope actually create a PsyScript script for your experiment. You
can view this script at any time, and edit it directly. In fact, anything you do in the graphic
environment is reflected immediately in the script. Conversely, changes made in the script
will appear immediately in the graphic environment (as long as it can be represented graph-
ically).

Eventually, you will want to make use of PsyScript to take full advantage of the power of
PsyScope. PsyScript is covered in detail in “Part 3: Scripting User Manual” and “Part 4:
Scripting Reference”.

 Part 2: Graphic Environment Reference
104

Ψ
Chapter 5. Windows and Dialogs

Part 2: Graphic Environment Reference

In the PsyScope graphic enviroment, you use windows and dialogs to design an experi-
ment. You can keep most of these open as long as you wish, returning to them as you need
to. This chapter goes through all of them, describing each window or dialog’s purpose and
use. Details concerning the concepts and objects that these dialogs correspond to are pro-
vided along the way.

5.1 Windows vs. Dialogs

The main difference between windows and dialogs in PsyScope is that windows contain
graphic elements (or icons) which represent the components of an experiment and tools for
manipulating them, whereas dialogs contain only text (plus non-manipulable graphics).

The standard Macintosh conventions apply for working with objects in a window or dialog.
To select objects, click on them with the mouse. To select multiple objects either hold the
shift key down while selecting, or hold the mouse button down and enclose the desired ob-
jects with the “rubber band”. To move objects, drag them with the mouse button held down.

5.1.1 Windows

The three primary windows in PsyScope are the Design window, the Trial Template win-
dow, and the Factor Table window.

The Design window is used to view and edit the experiment as a whole; each experiment
has only one Design window. The Design window is described in “5.2 The Design Win-
dow”, p107.

The Trial Template window is used to view and edit specific types of trials. A single exper-
iment can have many Trial Template windows, one for each type of trial in the experiment.
The Trial Template Window is described in “5.6.1 The Trial Template Window”, p124.

The Factor Table window is used to define and manipulate the factor structure of the ex-
periment. An experiment can have many Factor Table windows. The Factor Table window
is described in “5.7.2.1 The Factor Table Window”, p138.

 Part 2: Graphic Environment Reference
5.1.2 Dialogs

Dialogs are the basic method of setting parameters for objects within the graphic environ-
ment. Unlike dialogs in many programs, most dialogs in PsyScope are non-modal — that
is, you do not ordinarily have to close them in order to work with other dialogs and win-
dows. (You can recognize non-modal dialogs by the absence of OK and Cancel buttons.)

To open the dialog for an object, double-click on it. To close the dialog, click in the close
box at the left of the title bar, just as you would close any window.

Dialogs are made up of the following areas:

• text fields

• list boxes

• buttons

 • selection devices (checkboxes, radio buttons, and pop-up menus)

Text fields and list boxes contain items that you can edit. To activate an item for editing,
click on it once with the mouse or tab to it (as described below).

To select an item in a list box, click on it once with the mouse. To select a list of items, hold
down the Shift or Command key while clicking the mouse. (Many lists do not allow mul-
tiple selections, however.)

Active text and list items accept certain keyboard commands — such as the arrow keys —
for moving around or selecting an item. When a text field is active, its contents will be hi-
lited; when a list box is active, its border will be bolded. You can change the active item in
a dialog by pressing the Tab key; this will cycle through items in a top-left to bottom-right
order.

In an active text field, the cursor responds to the arrow keys in the usual way. Holding down
the Shift key while the cursor is moved will hilite an area of text.

In an active list, the arrow keys can be used to move around the list. The Shift key can also
be used here to extend a selection (if multiple item selections are allowed). Command-
Down arrow is usually the same as double-clicking on the selected item in a list.

Buttons are used in dialogs to open another window or dialog, or to perform some imme-
diate action. In modal dialogs, you can usually press a button by typing Command and the
first letter of the button’s name.

Selection devices — checkboxes, radio buttons, and pop-up menus — are used to choose
among a fixed set of options. These operate in the standard way.
106

5.2 The Design Window
5.2 The Design Window

To open the Design window, use one of the following methods:

• Click on the Design button in the Console.

• Select Design from the Windows menu.

• Type Command-2.

The Design window is shown in the figure below. It is composed of a Control area, tool
palettes, and a Work area. The palettes can be optionally moved to a floating window
(through the Design Options dialog, see “7.6.4 Design Options”, p268).

The Work area of the Design window displays all of the objects that have been created for
the experiment, andtheir hierarchical relationship to one another.

5.2.1 Objects and the Experiment Hierarchy

An experiment in PsyScope is made up of a number of different components which are ar-
ranged in a hierarchy. In brief, an experiment is made up groups, a group is made up of
blocks, a block is made up of templates and/or tables, and templates and tables are made up
of events. An example hierarchy is illustrated in the “Figure 116 – Anatomy of the Design
window”, above.

An object is a particular instance of a group, block, or template, etc.; each object is repre-
sented in the Work area by an icon, as you can see in the figure. An object is owned by an-
other (higher-level) object in the hierarchy if it is connected to the object in the graphic
display. (The connection lines tend to run from the bottom/right of the owner object to the

Figure 116 – Anatomy of the Design window

Control Area

Palettes

Work Area

Exeriment
Hierarchy
107

 Part 2: Graphic Environment Reference
top/left of the owned object.) An ownership connection can be direct (as with the connec-
tion of a template to an event) or indirect (as with a blockto an event, via a template that is
connected directly to the block).

An experiment is designed in PsyScope by building a hierarchy and then filling in the de-
tails. You build the hierarchy by adding and linking objects to one another, and you fill in
the details by double-clicking on the objects and setting values in the dialogs that pop up.

Some levels of the hierarchy can be left out. For instance, blocks can be connected directly
to the experiment, leaving groups out. The only objects that must be explicitly specified are
the experiment and events; objects in all of the intervening levels can be omitted (although
it is unusual to omit templates or tables).

The hierarchy that is displayed in the Design window defines the experiment conceptually.
When the experiment is run, however, it is just a list of trials, each of which executes a set
of events. To run each trial, PsyScope consults the experiment hierarchy to decide details
about the trial to run:

• Blocks and groups are used to direct a search down the tree to get to a template (or factor
table with a built-in template).

• The template is used literally as a “template” to construct a single trial. A trial template
is made up of a set of events, each of which specifies a simple occurrence (such as the
presentation or removal of a stimulus), a delay period, or the recording of a response.

• All of the events owned by the template will be run in that trial.

PsyScope cycles through these operations until the required number of trials have been ex-
ecuted.

5.2.1.1 Linking Objects

When you create an experiment hierarchy, you must first decide what types of objects to
include and in what order to link them together. Here are some basic guidelines:

• You can skip any level of the hierarchy except for the experiment and event objects. Ev-
ery experiment must have an experiment and an event object.

• An object can only own objects of one particular type (not counting lists). For example,
a group that owns blocks cannot also own templates or tables. As an exception, tem-
plates and factor tables can be used interchangeably That is, a given experiment,
group or block objects can own both templates and factors.

• An object can be connected to many different owners — even owners of different types.
For example, a template could be connected to both a group and a block.

• With the exception of blocks, objects of the same type cannot be linked. For example,
you cannot connect a template to another template.
108

5.2.2 Design Window Palettes
• If there are no blocks in an experiment, then an experiment or group that is linked di-
rectly to a template will act like a block.

• If there are no templates or factor tables in an experiment, then any object that is linked
directly to an event will act like a template.

• Most experiments will have a template or factor table.

• Events are almost always connected to a template or factor table. Linking an event to
other types of objects is only useful for very simple types of experiments, in which
the same type of trial will be run repetitively.

• Lists are usually connected to a template or factor table. (See also “5.7.1.8 Factors in
the Hierarchy”, p135.)

Advanced Note: Connecting lists to the experiment can be useful for maintaining a consis-
tent item-selection across templates; if the same set of lists is included in two different
templates, the item-selections will be independent, so that using an item in one tem-
plate does not keep the same item from being used in the other template.

5.2.2 Design Window Palettes

There are three palettes at the left of the Design window: the Tools palette, the Objects pal-
ette, and the Event palette. The Tools palette contains tools that are used to manipulate ob-
jects the Work area. The other two palettes contain object-creator tools.

Only one tool is active at any time; a bold box is drawn around the active tool. To activate
a tool in the palette, click on it. To use the current tool, move the cursor to the Work area;
the cursor will change into that tool.

The set of tool icons may be too large to fit in the Design window; you can scroll it verti-
cally by clicking on arrows at the top and bottom of the list.

If the Palettes in separate floating window option is on (see “7.6.4 Design Options”,
p268), the palettes will not appear in the Design window. Instead, they will apear in a sep-
arate floating window, and a magnet icon will appear to the left of the Control area. When
the magnet is on, the floating window will “stick” to the Design window, always appearing
to the left of the active window. If the magnet is off, the floating window cna be placed any-
where.

To open or close the Palettes window, select Palettes in the Windows menu. (Clicking
on the magnet icon will also open the Palettes window.) Having the palettes in a floating
window does not affect the operation of the tools or object-creator palettes.
109

 Part 2: Graphic Environment Reference
5.2.2.1 The Tools Palette

Selection Tool

The selection tool functions the same way the as in most other applications:

• To open the dialog for an object - double-click on it.

• To select multiple objects - shift-click the objects or lasso them.

• To change the name of an object (in the same way that you change the name of a file or
folder in Finder) - click once on the name or press the Return key once the object is
selected.

• Option-double-click on an object to open its dialog and close the Design window.

• Option-click on an object to select it and all the objects it owns.

• Command-click on an object to select it and switch to the link tool (see below).

• Control-click on an object to activate a pop-up menu of operations. For most objects,
this menu lets you open the object’s dialog, its Attribute dialog, or its Factor Set dia-
log. For the trash can icon, you can open the trash or empty it.

Link Tool

The link tool is used to connect any two compatible objects (see “5.2.1.1 Linking Objects”,
p108). To link two objects, click on one object and drag a connecting line to the other. To
link multiple objects to a single object, first select the multiple objects, and then drag a con-
necting line from any of them to the single object.

Figure 117 – The Tools palette

Figure 118 – The selection tool

Figure 119 – The link tool
110

5.2.2 Design Window Palettes
If you try to link two objects that are incompatible or already connected, you will receive
an error message. If the direction in which the link can be applied is ambiguous, the object
first clicked on will be the owned object and the second will be the owning object.

If the Shift key is held down, then clicking on an object with the link tool simply selects the
object.

After the link tool is used to connect objects, it changes back to the selection tool automat-
ically.

If some level in the experiment hierarchy had been skipped, but you wish to insert an object
of that type (e.g., a block), you can insert the object so that it is in its proper place in the
hierarchy, and all objects that were owned by the connected object will be shifted down to
the inserted object. For example, to add a block to an experiment that has no blocks — but
owns a list of templates directly — create the new block and drag a connection to the ex-
periment; the template connections will be moved to the block automatically.

In some cases, you may want an object to be included in another object multiple times (e.g.,
including the same block several times in the owning object’s list of blocks).You cannot do
this in the Design window using the link tool. You must open the owning object’s dialog
and use Get [Object]É from the Edit menu.

Scissors Tool

The scissors tool is used to cut the link between objects, by clicking on the line connecting
them. While the mouse button is held down, the link to be cut is hilited. Releasing the
mouse button cuts the connection.

Template <-> Table Transform Tool

The transform tool changes a template into a factor table set, or vice-versa; it is meant to be
used when a template-based design needs to be changed to a table-based design. A warning
message will be given if some information will possibly be lost in the transformation.

Keyboard Shortcuts

• Space: changes the active tool to the next one in the palette.

• Shift-Space: changes the active tool to the preceding one in the palette.

• Period (.) or Command-.: changes to the selection tool.

Figure 120 – The scissors tool

Figure 121 – The transform tool
111

 Part 2: Graphic Environment Reference
The Objects Palette

The Objects palette is used to create new (non-event) objects. You can create a new object
by two methods:

• Drag an object from the palette into the Work area.

• Select an object from the palette and click somewhere in the Work area to drop the ob-
ject there.

Using the latter method, you can create multiple objects by holding down the Shift key
when dropping an object.

If the Always ask for new object names Design option is on (see “7.6.4 Design Op-
tions”, p268), a dialog will appear asking for the object name whenever you create a new
object.

5.2.2.2 The Events Palette

The Events palette functions just like the Objects palette. The above figure shows the stan-
dard Events palette, but you can expand the list of available event types by adding Exten-
sions to PsyScope.

Figure 122 – The Objects palette

Figure 123 – The Events palette
112

5.2.3 Design Window Work Area
5.2.3 Design Window Work Area

The Work area of the Design window (see “Figure 116 – Anatomy of the Design window”,
p107) displays the current structure of the experiment in hierarchical form. The hierarchy
may flow top-to-bottom or left-to-right, depending on the Use horizontal arrangement
for structure display Design option (see “7.6.4 Design Options”, p268).

You can move objects around the Work area using the selection tool (see “ Selection Tool”,
p110).

5.2.3.1 Cleaning Up

The Clean Up item in the Design menu repositions all the objects in the Work area, putting
them into a standard arrangement. You can undo a Clean Up by selecting Undo from the
Edit menu.

5.2.3.2 Trash

To throw away an object that is in the Work area, drag it to the trash can. Objects are not
permanently deleted until the trash is emptied. The trash can bulges to show that some items
have been thrown away (but not permanently deleted), just like the Finder’s trash can.

To fix the trash can in the lower right hand corner, select the Trash always in lower right
corner Design option (see “7.6.4 Design Options”, p268). Otherwise, you can move the
trash can around the Work area just like any other object.

To see a list of objects currently in the trash can, double-click on the trash can. From this
list, you can remove an object from the trash. (See also “5.2.9 View Trash Dialog”, p115.)

When you delete an object from anywhere in the graphic environment, it is thrown into the
trash. If you try to name an object and you are told that the name is already in use, it could
be because an object in the trash has the same name. Emptying the trash will get rid of the
object and allow you to use the name.

5.2.4 Design Window Control Area

Clicking on the Subject Info icon opens the Subject Info dialog, described in “6.2.1.2
Subject Info Dialog”, p226.

Figure 124 – The Design window Control area
113

 Part 2: Graphic Environment Reference
Clicking on the Variables icon opens the Variables dialog, described in “5.10.5 Trial Man-
ager Variables Dialog”, p208.

The Show Events checkbox controls whether events are shown as part of the experiment
hierarchy in the Work area. If this checkbox is off, events are hidden from the Work area
in the Design window, although they can still be accessed through the Template window.
Use this to remove clutter in the Design window when there are many objects.

The Show Lists checkbox works like the Show Events checkbox, controlling whether
lists are displayed in the Work area. If this checkbox is off, lists are hidden from the Work
area, but can still be accessed through the Lists button in Experiment, Group, and Block
dialogs and Template windows by ctl_clicking on an object.

Clicking on the Notes button opens a standard text-editing window where you can enter
notes about your experiment design. These notes are saved in the script. (Separate notes are
saved for each experiment within one script.)

5.2.5 New Object Name Dialog

When you create a new object, you can either name the object yourself or have PsyScope
assign a default name. If the Always ask for new object name option is off (see “7.6.4
Design Options”, p268), the object will get a default name; if the option is on, the New Ob-
ject Name dialog will appear.

To name a new object, type the name into the text field of the New Object Name dialog.
When you hit OK, the validity of the new name is checked; the name is rejected if it is al-
ready being used, if it is the same as a special keyword (“this”, “start”, “end”, “owner”,
“last”, “none”, “force_one”, “force_all”, “factor_format_default”, “factorstructure”,
“omit”, or any condition or action name), or if it contains certain symbols (#, :, quotes, or
leading spaces).

Hitting Cancel cancels the creation of a new object.

In some cases, a pop-up menu appears below the text field from the name so that the object
can be further specified. For example, when a new event is created, you can set the event’s
type through the pop-up menu.

5.2.6 The Palettes Window

Palettes are usually embedded in the Design and Trial Template windows, but you can use
a floating palette window by turning on the Palettes in separate floating window De-
sign option (see “7.6.4 Design Options”, p268).

As a separate floating window, the palettes work just as when they are part of the Design
window. Tools that do not apply to the current window will be grayed out.
114

5.2.7 Object List Dialog
To open and close the floating palette window, select Palettes from the Windows menu.
If the frontmost window is not the Design or Trial Template window, the Palettes window
will be automatically hidden.

Windows that use the Palette floating window will have a magnet icon in the top left corner
of the window. Clicking on the magnet icon causes the palette to “stick” to the top left of
the active window. Clicking on the magnet again leaves the palette in place when the win-
dow is moved or the active window changes.

5.2.7 Object List Dialog

The Design menu contains an Objects in Script submenu. Selecting one of the object
types in the submenu opens an Object List dialog, which lists all the known objects of that
type in the script including those in the trash. Double-clicking on an untrashed object opens
the window for that object.

A trash can next to the object indicates that it is in the trash. Trashed objects cannot be
opened. If you wish to open this object, you must first remove it from the trash (see <ref>
above).

5.2.8 Get Object Dialog

This dialog is a (modal) version of the Object List dialog — which is used when objects are
linked through dialogs instead of through the Design window. When you select Get [Ob-
ject]É (or Import ListÉ) from the Edit menu, the Get Object dialog is opened.

In the Get Object dialog, select the object that you want to get and hit the Select button.
You can select an object that is in the trash, and it will be removed from the trash. To cancel
the GetÉ command, click on Cancel.

5.2.9 View Trash Dialog

To open the View Trash dialog double-click on the trash can icon in the Design window or
select View Trash from the Design menu. The View Trash dialog shows a list of all objects
currently in the trash.

To remove an object from the trash, double-click on it; removed objects will appear in the
Work area of the Design window. If you recover an object that owns other objects in the
trash, the owned objects will be recovered, as well.

To permanently delete trashed objects from the script click on the Empty button in the
View Trash dialog, or select Empty Trash from the Design menu, or .
115

 Part 2: Graphic Environment Reference
5.3 The Experiment Object

The experiment object is the starting place for building an experiment; it represents the en-
tire experiment, and it owns all other objects.

The attributes associated with the experiment object control general features of the exper-
iment (e.g., the instructions file, the background color for the screen, etc.; these are de-
scribed in “5.8.3.4 Standard Experiment Attributes”, p161).

5.3.1 Connecting Objects to the Experiment

Groups, blocks, templates, factor tables, or events can be connected to the experiment ob-
ject. If groups are to be used at all in the experiment, they must be connected to the exper-
iment object. See also “5.2.1.1 Linking Objects”, p108.

If groups are connected to the experiment, then only one of the groups — the current group
— will be used for each run of the experiment. The current group can be set directly through
the Experiment dialog (see “5.3.2 Experiment Dialog”, p116), or automatically using the
Subject Info facilities (see “6.2 Subject Info”, p224). The trials that are presented during a
run will be created only from templates and events owned by the current group.

If no groups are specified, the dialog used for the experiment object (i.e., the dialog that is
opened by double-clicking on the experiment in the Design window) will depend on wheth-
er blocks, templates, factor tables, or events are connected to the experiment (see “5.3.2 Ex-
periment Dialog”, p116). The Attributes dialog for the experiment will always be the same.

Lists can be connected directly to the experiment (regardless of whatever else is connected
to it); these lists will be available to all objects belonging to the experiment. Lists are usu-
ally associated with a particular template. (Lists are described in “5.7.1.2 Lists”, p130.)

Advanced Note: Connecting lists to the experiment can be useful for maintaining a consis-
tent item-selection across templates; if the same set of lists is included in two different
templates, the item-selections will be independent, so that using an item in one tem-
plate does not keep the same item from being used in the other template.

5.3.2 Experiment Dialog

To open the dialog for an experiment object, double-click on the experiment icon. The ac-
tual dialog you see depends on what objects are connected to the experiment. There are four
possible cases:

• Groups are connected to the experiment
116

5.3.2 Experiment Dialog
• Blocks are connected to the experiment

• Templates and/or Factor Tables are connected to the experiment

• Events are connected to the experiment.

This section will describe the dialog opened in the first case; this is called the Experiment
dialog. In the second case, the experiment acts as a group (see “5.4.2 Group dialog”, p119).
In the third case, the experiment acts as a block (see “5.5.2 Block Dialog”, p121). In the
final case experiment acts as a template (see “5.6.1 The Trial Template Window”, p124).

At the top of the Experiment dialog is a text box with the experiment name. To change the
experiment name, type your changes in the text box. The name change will take effect when
you close the dialog, move another window to the front, or when no typing occurs after a
specified delay (see “7.6.4 Design Options”, p268).

The Attributes button opens the Experiment Attributes dialog (see “5.8.3 Experiment At-
tributes”, p158).

The Lists button opens the Factor Set dialog for the experiment (see “5.7.3.3 Factor Set
Dialog”, p147).

The main body of the Experiment dialog contains a list of the groups that are in the exper-
iment. One of the group names should appear in bold: that group is the current group (see
“5.3.1 Connecting Objects to the Experiment”, p116). The current group will be the one
used if the experiment is run at this point.

To create new groups and add them to the experiment, click on the New button above the
list. To include groups that already exist, select Get GroupÉ from the Edit menu (see
“5.2.8 Get Object Dialog”, p115).

To open the dialog for a group in the list, select it and click on the Edit Group button (see
“5.4.2 Group dialog”, p119). Groups can be re-arranged in the list by dragging them, but
the order of groups is irrelevant for executing the experiment.

Figure 125 – The Experiment dialog
117

 Part 2: Graphic Environment Reference
The radio buttons at the bottom of the dialog determine how the current group is chosen. If
Manual current group is on, then the current group will never be changed automatically;
in this case, the current group is changed by pressing/chicking on the Selected -> Current
button.

If Automatic from subject info is on, then the current group will be selected automati-
cally, based on Subject Info values. You must set up grouping information prior to using
this setting (see “6.2.4 Automatic Grouping”, p233). When the subject information chang-
es, the current group will not usually change until the group criteria are evlauated(usually
when the experiment is run). Pressing/chicking on the Update button forces the automatic
group selection to occur immediately.

5.4 Groups

The group object is used to specify a part of the experiment that is to be seen only by a par-
ticular set of subjects. The way in which a subject is associated to a group is discussed in
“6.2.4 Automatic Grouping”, p233. Only one group is used in a given run of the experiment
(see “5.3.1 Connecting Objects to the Experiment”, p116), and only the blocks, templates
and events owned by that group will be used to create trials.

5.4.1 Connecting Objects to a Group

Blocks, templates, factor tables, or events can be connected to a group.

If blocks are connected to a group, then all of the blocks within the group will be executed.
This is called the group’s Block List The number of trials executed within these blocks is
determined by the trial count value of each block, the cycle count value of the group, and
the block-scaling value of the group. See “5.12.2 Trial Counting”, p211 for more details.

Within one execution of the block list, blocks are selected according to a block order —
Sequential, Random, or Random with Replacement. For example, blocks ordered by
Sequential are executed in the order which they are listed in the Group dialog. See “5.12.1
List Ordering”, p210 for more information on block order.

If no blocks are specified, the dialog used for the group object (i.e., the dialog that is opened
by double-clicking on the group in the Design window) will depend on whether templates,
factor tables, or events are connected to the group (see “5.4.2 Group dialog”, p119). The
Attributes dialog for the group will always be the same.

List objects can be connected to a group (regardless of whatever else is connected to the
group), but this is unusual. (Lists are described in “5.7.1.2 Lists”, p130.) Lists that are con-
nected to the group are available to all blocks, templates, and events owned by the group.
118

5.4.2 Group dialog
5.4.2 Group dialog

To open a dialog for the group, double-click on the group icon in the Design window. The
actual dialog you see will depend on which of these cases apply:

• Blocks are connected to the group.

• Templates are connected to the group.

• Events are connected to the group.

This section will describe the dialog presented in the first case; this is called the Group di-
alog. In the second case, the group acts as a block (see “5.5.2 Block Dialog”, p121). In the
final case, the group acts as a template (see “5.6.1 The Trial Template Window”, p124).

At the top of the Group dialog is a text box with the group name. To change the group name,
type your changes in the text box. The name change will take effect when you close the
dialog, move another window to the front, or when no typing occurs after a specified delay
(see “7.6.4 Design Options”, p268).

The Attributes button opens the Group Attributes dialog (see “5.8.4.3 Group Attributes
Dialog”, p170). If the Group dialog was actually opened for an experiment, the Experiment
Attributes dialog will be opened instead (see “5.8.3 Experiment Attributes”, p158).

The Lists button opens the Factor Set dialog for the group (see “5.7.3.3 Factor Set Dialog”,
p147).

The Criteria button opens the Group Criteria dialog for setting automatic group assign-
ment parameters (see “6.2.4.2 Group Criteria Dialog”, p235).

Figure 126 – The Group dialog
119

 Part 2: Graphic Environment Reference
The main body of the Group dialog contains a list of the blocks that are in the group. To
open the dialog for a block selected in the list, click on the Edit Block button (see “5.5.2
Block Dialog”, p121).

To create new blocks and add them to the group, click on the New button above the list. To
include Blocks that already exist, select Get BlockÉ from the Edit menu (see “5.2.8 Get
Object Dialog”, p115). You can also include blocks that are already within the group.

The order in which the blocks will be run is controlled by the Block Order menu; for in-
formation about the choices in this menu, see “5.12.1 List Ordering”, p210 and “5.4.1 Con-
necting Objects to a Group”, p118 for information on block selection.

To set the number of times the entire list of blocks will be executed within the group, type
the number in the Cycles box. The Scale Blocks box sets a scaling factor that is applied
to all of the scalable block counts. (See “5.12.2 Trial Counting”, p211 on trial counting.)

5.5 Blocks

A block object describes a set of trials that are to be run together within the experiment. The
trials can be of all derived from the same template or factor table, or from different tem-
plates and factor tables.

5.5.1 Connecting Objects to Blocks

Block objects typically own one or more templates and factor tables. (Trial templates are
discussed in more detail in “5.6 Trials and Templates”, p124; factor tables are discussed in
“5.7.1.1 Factor Table Sets”, p130). One run of a block consists of executing a series of tri-
als, each drawn from the list of templates and factor tables connected to the block.

The number of trials executed within a block depends on the trial count value or block du-
ration set for the block object, and possibly the block-scaling value of the block object’s
owner. (See “5.12.2 Trial Counting”, p211 for trial count details.)

For each trial, only one template or factor table is used. The way in which templates are
selected depends on the template order and template weight that are set for the block ob-
ject. A template weight does not guarantee that it will be run the weighted number of times;
templates are selected according to the access type until the required number of trials have
been run (or the time is exhausted for blocks with a duration); weights in a random design
essentially control the probability distribution for selecting a template, unless there are
enough trials to exhaust the weights. (See “5.12.1 List Ordering”, p210 on accessing modes
and weights.)
120

5.5.2 Block Dialog
5.5.1.1 Connecting Events to a Block

Events can be connected directly to a block, although this is unusual. In this case, the block
object takes on the role of a template, as well as a block. Except for attribute-setting pur-
poses, the block object will behave exactly like a template.

5.5.1.2 Connecting Blocks to a Block

Instead of owning a list of trial templates and factor tables, a block can be used to own other
blocks; a block used this way is a superblock.

The purpose of a superblock is to run a set of blocks together. The owned blocks will spec-
ify some set of trials to be run together; the superblock thus provides a higher level of trial
grouping.

One run of a superblock will run all of the blocks it owns in the same way that all of the
blocks of a group are executed. Like groups, a superblock has a cycles count and block-
scaling value. (See “5.12.2 Trial Counting”, p211 for more details.)

The superblock structure is recursive; i.e., superblocks can own other superblocks, ad in-
finitum. While superblocks cannot contain a mixture of blocks and trials, they can contain
a mixture of blocks and other superblocks.

5.5.1.3 Connecting Lists to Blocks

List objects can be connected to a block (regardless of whatever else is connected to the
block). Lists that are connected to the block are available to all templates and events be-
longing to the block. (Lists are described in “5.7.1.2 Lists”, p130.)

Connecting lists to a block can be useful for maintaining a consistent item-selection across
templates owned by the block; even if a set of lists is included in two different templates,
the item-selections will be independent, so that using an item in one template does not keep
the same item from being used in the other template.

5.5.2 Block Dialog

To open a dialog for a block object, double-click on the block icon in the Design window.
The actual dialog you see will depend on which of these cases apply:

• Templates and/or factor tables are connected to the block.

• Events are connected to the block.
121

 Part 2: Graphic Environment Reference
This section will describe the dialog presented in the first case; this is called the Block di-
alog. In the second case, the block acts as a template (see “5.6.1 The Trial Template Win-
dow”, p124).

At the top of the Block dialog is a text field that contains the name of the block. To change
the block name, edit the text in the box; the name change will take effect when you close
the dialog, move another window to the front, or when no typing occurs after a delay (see
“7.6.4 Design Options”, p268).

The main body of the Block dialog contains a list of templates and factor tables that are
owned by the block. To open the dialog for the template or factor table selected in the list,
click the Edit Template button (see “5.6.1 The Trial Template Window”, p124 and
“5.7.2.1 The Factor Table Window”, p138).

To create new templates and add them to the block, click on the New button above the list.
To include templates and factor tables that already exist, select Get TemplateÉ from the
Edit menu (see “5.2.8 Get Object Dialog”, p115). You can also include a template multiple
times using Get TemplateÉ.

The Order menu chooses the template order, i.e., the order in which the templates will be
run within the block; see “5.12.1 List Ordering”, p210 for information about the choices in
this menu, and “5.5.1 Connecting Objects to Blocks”, p120 for information on template se-
lection.

You can change the weight for a template by clicking under the Weight column in the tem-
plate list. To enter a new weight, type it into the text box that will appear, and then hit Re-
turn.

Figure 127 – The Block dialog
122

5.5.3 Superblock Dialog
Trials in Block and Block Duration are mutually exclusive items that determine the num-
ber of trials to run in the block. When Trials in Block is selected, the number in the text
field is the number of trials that will be run in that block. If Scalable is set, the number of
trials is scaled by a factor from the block’s owner (see “5.12.2 Trial Counting”, p211 on
trial counting). When Block Duration is selected, the number in the text field is the length
of time that the block will run (see “5.5.1 Connecting Objects to Blocks”, p120); this value
is never scalable.

The Attributes button opens the Blocks Attributes dialog (see “5.8.5.3 Block Attributes
Dialog”, p172). If the dialog was actually opened for the experiment, the Experiment At-
tributes dialog is opened instead (see “5.8.3 Experiment Attributes”, p158). Or, if the dialog
was opened for a group, the Group Attributes dialog is opened (see “5.8.4.3 Group At-
tributes Dialog”, p170).

The Lists button opens the Factor Set dialog for the block (see “5.7.3.3 Factor Set Dialog”,
p147).

To run a single execution of the block (in practice mode) to check your design, click the
Preview button. For Preview to work, the block must be connected to the experiment.
(See also “5.11 Trial Chooser Floating Window”, p209).

5.5.3 Superblock Dialog

The Superblock dialog is almost identical to the Group dialog, described in “5.4.2 Group
dialog”, p119. The only addition is the Scalable/Fixed button pair, which controls whether
the cycle count can be scaled by the superblock’s owner. (See “5.12.2 Trial Counting”,
p211.)

Figure 128 – The Superblock dialog
123

 Part 2: Graphic Environment Reference
5.6 Trials and Templates

PsyScope is based on the usual notion of a trial in psychology experiments: a trial is the
smallest unit of repetition used to collect data in an experiment.

In PsyScope, a trial is defined as a sequence of events, all of which occur within a specific
time frame. This time frame is controlled precisely using a millisecond clock (if the CMU
button box is used, or a 17 millisecond clock if none is available). At the start of each trial,
the clock is reset. If you want to control the relative timing of two events precisely, then
both events must be in the same trial.

Not all trials in an experiment are identical. Usually, you will want to vary aspects of the
trial — such as stimuli, delay periods, or possible responses — from trial to trial. Neverthe-
less, the trials of an experiment usually share a common structure (e.g., present one stimu-
lus, wait for a period, present a second stimulus, then collect a response), with only the
details (for example, the specific stimuli presented or the duration of a delay) varying from
trial to trial.

The basic structure of a trial is represented by a template. In many experiments, all trials
share the same basic structure, so only one template is needed. In general, you will use a
separate template for each type of trial that varies greatly in structure from the others.

For example, suppose you wanted to design an experiment with the following structure: in
one type of trial, you want to measure simple responses to a stimulus; in a second type of
trial you want to present a question that will test the subject’s comprehension. To do this,
you would probably use two different templates — one for the stimulus trials, and a second
one for the comprehension trials.

Factor table set objects (see “5.7.1.1 Factor Table Sets”, p130) automatically include a
built-in template. The above description of templates applies to this built-in template.

5.6.1 The Trial Template Window

The Template window allows you to edit the sequence of events that will take place during
a trial.

At the top of the window, there is a text box for changing the name of the template, and
buttons for setting template attributes, controlling lists, and running a preview of the tem-
plate. At the left of the window are the standard tool and event palettes. The rest of the win-
124

5.6.1 The Trial Template Window
dow is divided into three areas: the Event Name area, the Timeline area, and the Event
Status area.

5.6.1.1 Template Name and Buttons

To change the template name, type your changes in the text box at the top of the dialog; the
name change will take effect when you close the dialog, move another window to the front,
or when no typing occurs after a short delay (see “7.6.4 Design Options”, p268).

The Attributes button opens the Template Attributes dialog. If the dialog was actually
opened for the experiment, the Experiment Attributes dialog is opened instead (see “5.8.3
Experiment Attributes”, p158). Or, if the dialog was opened for a group, the Group At-
tributes dialog is opened (see “5.8.4.3 Group Attributes Dialog”, p170). Finally, if the dia-
log was opened for a block, the Block Attributes dialog is opened (see “5.8.5.3 Block
Attributes Dialog”, p172).

The Lists button opens the Factor Set dialog for the template (see “5.7.3.3 Factor Set Dia-
log”, p147).

The Preview button runs a single trial from the template (in practice mode) so that the tem-
plate design may be checked. The template must be connected to the experiment for this to
work. (See also “5.11 Trial Chooser Floating Window”, p209.)

5.6.1.2 Palettes

The Tools and Events palettes work in much the same way as they do in the Design win-
dow. As with the Design window, the palettes may be in a separate window if the Palettes
in separate floating window Design option is on (see “7.6.4 Design Options”, p268).

To create a new event, select an event type in the palette and drag or drop it into the Event
Name area (see below). The link and scissors tools are used in the Timeline area to adjust
start references.

Figure 129 – Anatomy of the Template window

Timeline Area

Event Status Area

Ti li Z C t l

Timeline Scrol

Event Bar

Event Duration

Event Time Lin

Time Line Scal

Palette

Event Name Area
125

 Part 2: Graphic Environment Reference
5.6.1.3 Event Name Area

In the Event Name area of the dialog, all of the events owned by the template are shown in
an area like the work area of the Design window. You can move the event icons move in
this area, and their corresponding timelines to the right will follow them. To expand the
event name area, click on the line that separates the event name area from the timeline area
and drag it. (The cursor will change to a special dragging tool when it is over the dividing
line.)

Events are created by dragging or dropping an event type from the palette, or by selecting
New EventÉin the Edit menu. To add existing events to the template, select Get Event...
in the Edit menu. You cannot include the same event multiple times.

Double-clicking on an icon in the event name area opens the Event Attributes dialog for the
event (see “5.8.7 Event Attributes”, p176). Unfortunately, you cannot edit Event names
Finder-style in this area.

5.6.1.4 Timeline Area

Each event displayed in the Event Name area has a timeline to the right, in the Timeline
area; this timeline is a graphical representation that shows the timing and terminating con-
ditions of each event within the template.

The timeline scale in milliseconds is shown above the timeline area. If the selected event
has a known start time, then the start and ending times of the visible area are shown; other-
wise, only the duration of the visible area is shown. The scale can be changed using the “+”
and “-” magnifying glass icons that are below the event name area.

The scroll bar along the bottom of the timeline controls the “window” of time that is shown
in the Timeline area. When the thumb on the scroll bar is all the way to the left, the line
dividing the Timeline area from Event Name area marks the beginning of the trial.

Timeline

The timeline is the “line” that the event bar sits on; this line is visible if the event has an
exact start time, or invisible if the event’s start time is unscheduled or depends on some ex-
ternal input.

Timelines can be moved up and down by Shift-clicking on the event’s bar and then drag-
ging it up or down. (This is effectively the same as moving the event’s icon vertically in the
event name area.)

Event Bars

Each event in the timeline area has an event bar. The event bar represents the time that the
event is “on” within the trial.

The stimulus value for an event is shown above its time bar. “???” means that a stimulus
value has not been specified (though possibly only in the current context; see “5.7.2.1 The
Factor Table Window”, p138).
126

5.6.1 The Trial Template Window
Double-clicking on an event bar performs the same operation as double-clicking on the
icon in the event name area: the Event Attributes dialog is opened.

Scheduling Dependencies

A scheduling dependency means that the start of one event depends on the start or end of
another event. The time that elapses between the start/end of one event and the start of the
dependent event is called an offset.

If the start time of an event is dependent on another event, a dependency line is drawn in
the Timeline area from the start of the dependent event’s time bar to the start or end of the
other event’s time bar.

To increase or decrease the offset time for an event, drag the event’s time bar horizontally.
The offset will be shown interactively in the Event Status area (see below).

Unscheduled events are shown close to the start of the trial without a visible time line. You
cannot drag unscheduled events horizontally. (Unscheduled events must be started with the
RunEvent[] action; otherwise, they will never be executed.)

You can change scheduling dependencies in the Timeline area. To link one event to the start
of another event, select the link tool and click anywhere on the bar for the first event. Then,
to link the event’s start time relative to the start of another event, click in the left half of the
relative event’s time bar; to link relative to the end of the event, click in the right half of the
time bar. Command-clicking an event bar hilites the bar and invokes the link tool.

To remove a scheduling dependency, use the scissors tool to cut the line connecting the
event bars. The dependent event will be changed to start at the beginning of the trial.

Scheduling dependencies can also be controlled in the Event Status area (see below).

Event Duration

An event’s duration is represented roughly by the length of the event’s time bar. A solid bar
is used when the event has a fixed duration; a “broken” bar is used when the event’s dura-
tion depends on external input, so that the exact end time is unknown. A broken bar dura-
tion is usually accompanied by a list of icons that represent the conditions for terminating
the event. (See “5.9.2 Conditions Dialog”, p194.)

To change the length of the bar, drag the lower right corner of the bar — just like resizing
a window. For events with a timed duration, changing the length of the bar changes the ac-
tual duration of the event. For events that are terminated by an event, changing the length
simply changes the display size of the bar.

Clicking on a terminating condition icon or option-clicking in the duration-resize area dis-
plays a pop-up menu; this menu is the same as the menu in the Event Status area (see be-
low), and can be used to quickly change the duration type of the event.

Event durations can also be controlled in the Event Status area (see below).
127

 Part 2: Graphic Environment Reference
5.6.1.5 Event Status Area

When an event is selected, information about the start and duration of the event is displayed
at the bottom of the Template window. You can use the value boxes and menus in this area
to change the starting time and duration of an event.

Start at

The number in the Start at box determines an event’s offset; i.e., how long, in millisec-
onds, to wait after the starting dependency before starting the selected event. This value is
reflected in the Timeline area by an offset from the start of the trial, or an offset from the
beginning or end of another event on which it depends.

The menus that follow msec after are used to set the starting dependency. The starting
time can be relative one of the following:

• start of the trial

• start of another event

• end of another event

The event can also be unscheduled (no auto-start). An unscheduled event will not be ex-
ecuted unless it is started by a RunEvent[] action; see “5.9.4.1 Available Actions”, p198.

The scheduling dependencies will be represented in the Timeline area with links between
event time bars (see above).

Note: You are not allowed to set an event to start at the end of another event whose duration
has been set to End of Trial (see below for the meaning of this duration value).

Duration

The Duration pop-up menu is used to control how long the selected event will last. For
more information on duration types, see “ Duration”, p179. Two of the duration types —
msec: and Conditions — require further parameterization.

If an absolute duration has been assigned to the event (with msec:), you can edit the dura-
tion directly by entering a new value in the text box. This value is immediately reflected in
the event’s time bar. Likewise, if you make changes in the event’s time bar, they will be
reflected in this value.

Figure 130 – The Event Status area
128

5.7 Factors and Lists
If an event has a list of terminating conditions (with Conditions), icons for the terminating
conditions are listed. You cannot edit the terminating conditions directly. To open the Con-
ditions dialog, however; select Conditions from the Duration menu (see “5.9.2 Condi-
tions Dialog”, p194).

To vary the duration of an event in more complex ways, use the Duration attribute in the
Event Attributes dialog. The Duration menu may be missing if the duration is varied in this
way, replaced by information on how the duration is varied.

5.7 Factors and Lists

5.7.1 Definitions

A factor is an independent variable that controls parameters of an experiment. Each factor
is made up of levels; the levels represent — abstractly — the possible values for parameters
controlled by the factor. For example, A factor that controls the color of a text stimulus
might have levels “Red”, “Green”, and “Blue”.

Factors are grouped together in factor sets; any number of factors can be in a factor set. All
of the factors in a factor set are crossed with each other to produce cells. Each cell corre-
sponds to a unique permutation of the factors’ levels, where one level is used from each
factor in the set.

For example, consider a factor set made up of a Size factor — with levels “Big” and
“Small” — and a Color factor — with levels “Red” and “Blue”. There are four cells in this
factor set, represented by the combinations “Big Red”, “Small Red”, “Big Blue”, and
“Small Blue”.

The usual form of a factor set is the factor table. When a factor is in a table, the levels look
like rows or columns in the table. The cells of the table are the boxes of the grid created by
intersecting all of the level rows and columns. Factor tables are handled by the Factor Table
window (see “5.7.2.1 The Factor Table Window”, p138).

Factor sets can also be created by crossing the items of lists (see “5.7.1.2 Lists”, p130).
There is no graphic representation of the set’s cells in this case. Factor sets made from lists
are controlled through the Factor Set dialog (see “5.7.3.3 Factor Set Dialog”, p147).

Figure 131 – Example factor table
129

 Part 2: Graphic Environment Reference
Factor sets control experiment parameters by acting on templates and events. For each trial
in the experiment, a current cell is selected from each factor set. (See “5.7.2.2 Table Info
Dialog”, p140 for information on how the current cell is selected.) The current cell provides
special context to templates and events, which can be configured to use different attribute
values dependent on this factor context.

Any number of factor sets can act on a template. In the case of tables, both the tables and
the template are built into a single object called a factor table set (see “5.7.1.1 Factor Table
Sets”, p130). For list-based factor sets, the lists are connected to some object and then
grouped into sets within the object.

The condition of a trial is the collection of current cells from all of the factor sets acting on
the trial. In an experiment with a single factor set, the each cell corresponds to a condition
of the experiment.

Note: “Condition” has been defined here with its strongest meaning, also called the “trial
condition”. The term “set condition” can be used to mean “cell”, and “factor condi-
tion” to mean “level”. Further, the term “condition” is used to refer to a collection of
states used to trigger an action during the running of the experiment.

5.7.1.1 Factor Table Sets

Factors and their levels are usually created as elements within a factor table set (which is
not to be confused with factor set). A factor table set owns one or more built-in tables, and
one built-in trial template which its tables will act on (see “5.6 Trials and Templates”,
p124).

In the experiment hierarchy, a factor table set object can be used interchangeably with a
template object.

The tables of a factor table set are shown graphically in the Factor Table window. Each cell
in this graphic table corresponds to an actual table cell. The Factor Table window is used
by selecting cells and setting the values of attributes — usually event attributes — which
depend on the selected cells. See “5.7.2.1 The Factor Table Window”, p138 for more infor-
mation.

5.7.1.2 Lists

Factors are usually created as elements in a factor table, but they can also be created as in-
dependent objects. Factors of this type are called lists, and their levels are called items. Lists
work differently from factors that are in a table; instead of setting attributes in the context
of cells selected from a crossing of lists, lists contain physical values for each item, and at-
tributes of other objects are explicitly linked to these values using Vary by List.

Lists are defined using fields. A field represents a type of value that is to be stored in the
list; there is usually a one-to-one mapping between fields and the attributes elsewhere in
130

5.7.1 Definitions
the experiment that are to vary by the list. While the items of a list represent different values
abstractly, a concrete value is assigned to the field for each item.

As an example, consider implementing a Size factor as a list. The Size list would have one
field, “Text Size”, and two items: “Big” and “Small”. A value of 24 (points) could be as-
signed to the “Text Size” field for the “Big” item, and 9 (points) for the “Small” item. Then,
the Size attribute of the event that displays the text would be set to Vary by List using the
“Text Size” field.

A linear list is a list that is constrained to have a single field. The Size list in the above ex-
ample could have been implemented using a linear list.

A single list can belong to any number of objects; usually, lists are owned by templates or
factor table sets. Within the owner objects, lists are grouped together in factor sets (see “5.7
Factors and Lists”, p129) through the owning object’s Factor Set dialog (see “5.7.3.3 Factor
Set Dialog”, p147).

5.7.1.3 List Files

A list file is a list that reads its item values from a separate file. A list file is defined by
choosing the file containing the items and specifying the number and type of the columns
of items in the file. Each column in the file will correspond to one field of the list created
from the file. A list file object is used just like a list object.

The content of the file should be item values, in the same form as strings in PsyScript:
space-delimited or quoted. (Tabs, carriage returns, and newlines count as spaces.) All of the
items must be literal strings, unless the file is specially defined to have non-literals (see be-
low). (Regular list files cannot be used for non-literal or multiple-token values, e.g., dura-
tion, actions.) List files can be viewed, but not edited through the usual List dialog (see
“5.7.3.2 List File Dialog”, p146).

The file that is read for the list does not have to have items arranged in an actual columnar
format, since spaces are ignored. For instance, if a file is defined to have two columns, ev-
ery other token will be placed in the first column, regardless of the spatial arrangement of
the tokens within the file.

List Files with Non-literals

If a list file has a column type that expects non-literal or multiple-token values, the column
in the file must be specially formatted to allow the values to be read in. Column types that
need this formatting are indicated in the List File dialog (see “5.7.3.2 List File Dialog”,
p146)with an asterisk (*) next to the field name.

A list file set up to handle special columns must have the #NonLiteral identifier at the very
beginning of the file (no preceding characters are allowed). For the special column(s), you
must add an extra set of square brackets around the values in the file; this lets the file-reader
know how to group the tokens, in case multiple tokens are assigned as a single value.
131

 Part 2: Graphic Environment Reference
5.7.1.4 Expanded Lists

An expanded list is a type of list in which the items are free objects. An expanded list is
typically used as a factor, and the free items are therefore called free levels. The extra struc-
ture of an expanded list allows other lists or factors to be nested within its levels (see
“5.7.1.5 Nested Factors”, p132).

Few experiment designs will use expanded lists. They are provided because the expanded
form can sometimes be more convenient for PsyScript users.

5.7.1.5 Nested Factors

A nested factor is a factor (in a table or as a list) that is relevant only when a particular level
in another factor is current. The level in which the factor is nested is referred to as the own-
ing level. (See “5.7.3.1 List Dialog”, p145 and “5.7.2.1 The Factor Table Window”, p138
for information about creating nested factors.)

Nested factors owned by a particular level are grouped into list sets just like regular factors
and lists. (See “5.7.1.1 Factor Table Sets”, p130 for more information.)

In most respects, nested factors act the same way as regular factors and lists. The main dif-
ference is that a new cell is selected for a nested set only when the owning level is current.
Also, nested factors owned by free levels can be linked to only within the owning level (see
“5.7.1.4 Expanded Lists”, p132).

5.7.1.6 Lists in a Factor table

Sometimes it is useful to define a factor as free list object to conveniently create a long list
of values (or to read the values from a file); however, you may then want to cross this list
with other factors that are defined in a factor table set.

The grouping of lists into sets is usually handled in the Factor Set dialog, but this dialog
does not allow you to change the tables that are built into a factor table set. To add a list to
a factor table, drag a connection from the list to the table set object in the Design window;
the Link List dialog will ask in which table you wish to added the list. Alternately, you can
open the Factor Table window and choose Import ListÉ from the Edit menu.

When a list is imported into a factor table, the items of the list will not be individually ac-
cessible in the table (like the levels of a factor in the table), and you will still have to ex-
plicitly link attributes to the list in the usual way.

5.7.1.7 Level Order and Crossing Types

For each trial in the experiment, one cell is selected in each table (or list set) and is desig-
nated the current cell of the table for that trial. The way in which the current cell is selected
depends on:

• The crossing type of the table
132

5.7.1 Definitions
• The access type of the table

• The weights of cells in the table

• The scope of the table

The crossing type of a table specifies the high-level design — which cells of the table are
available for a given experiment and when the cell should be changed. The available cross-
ing types are defined in “5.7.2.2 Table Info Dialog”, p140.

The access type of a table specifies the order in which cells are selected among the available
cells. This is also described in more detail in “5.7.2.2 Table Info Dialog”, p140.

The scope of a factor table is related to table’s position in the experiment hierarchy; this is
described in “ Factor Set Scope”, p136.

Cell Weights

For most crossing types, cells are selected from the table so that all the cells are used at least
once before any are used a second time. However, if a weight is assigned to a cell, that cell
can be used as many times as the weight specifies before becoming ineligible for re-selec-
tion.

A weight can be assigned to all cells in a table through the Table Info dialog (see “5.7.2.2
Table Info Dialog”, p140).

If a level is assigned a weight (by double-clicking on the cell in the Factor Table window
or by setting a level weight in the List dialog), all of the cells for that level are given the
weight. If levels from different factors are weighted, the corresponding cells’ weights are
increased multiplicatively.

The Factor Table window shows the weight of each cell in the table (see “5.7.2.1 The Fac-
tor Table Window”, p138).

Note: It is the responsibility of the experiment designer to set up the trial counts so that all
cells are used the correct number of times.

Latin Squares

In the strictest sense, Latin squares refers to a between-subjects two-factor design where
each subject sees several conditions. The condition set for a subject is chosen so that he sees
every level of each factor, but never sees a level in more than one combination with other
levels; however, over a few subjects, every level combination is seen by some subject. This
idea is extended to three-factor designs with the Graeco-Latin square. The factors must all
have the same number of levels.
133

 Part 2: Graphic Environment Reference
Usually, a set of conditions is chosen for a particular subject by using a “diagonal” from
the full crossing. The figure below shows which cells would be used for subjects 1, 2 and 3.

PsyScope uses the term “Latin square” for a more generalized cell-selection construct. Lat-
in squares are defined using any number of factors, and by using Latin square partitions.

Each partition is made up of a number of factors, which are fully crossed with each other.
The cells generated by these crossings are then treated like the levels of factors for Latin
square purposes. There can be any number of partitions (although most designs use just two
partitions), and a condition is selected from a the (hyper-) “diagonal” of the full crossing of
the partition cells.

The factors that are Latin square crossed do not have to be of the same length; the position
of a level within a factor is determined modulo the number of levels in the smallest factor.

As an example, a table is shown below where A x B is Latin square crossed with C x D (i.e.,
there are four factors in the table; A and B are in the first partition and C and D are in the
second partition); the numbers in the table correspond to the first, second, third, and fourth
subjects.

Counterbalanced Stimuli

One common experiment design uses Latin squares in a less obvious way. In this design,
there are a number of conditions and a list of stimuli, where each stimulus could be in any
condition; every subject should see all conditions and every stimulus, but he should see
each stimulus only once. Further, all stimuli should be seen by some subject in every con-

Figure 132 – A 3 x 3 Latin square showing the condition selections for three subject groups

Figure 133 – Latin square with two partitions

1

1

1

3 2

3

2

2

3

Xa Xb Xc

Ya

Yb

Yc

Ba Bb Bc Ba Bb Bc

Aa Ab

Db

Da

Db

Da

Ca

Cb

1

1

1

1

1

1

4

4

4

4

4

4

2

2

2

2

2

23

3

3

3

3

3

134

5.7.1 Definitions
dition, using as few subjects as possible (clearly equal to the number of conditions). This
is called counterbalancing the stimuli.

This design problem is solved by Latin squaring the list of stimuli with all of the conditions;
i.e., all of the factors determining the condition are put together in a partition, and the stim-
ulus list is placed in its own partition.

5.7.1.8 Factors in the Hierarchy

Linking Lists to the Hierarchy

A list can be linked to the experiment object, or to any group, block, template, or factor ta-
ble in the experiment hierarchy. There are two things that depends on where a list is con-
nected to the hierarchy:

• Which objects can access the list using Vary by List.

• How cell-selections within a single factor set interact with the hierarchical path used to
generate trials.

The latter of these is addressed below, in “ Factor Set Scope”, p136.

Usually, a list is connected to a template or factor table set and it used (via Vary by List)
by events which are linked only to that template or table set. In such a case, the list is always
available to the events through Vary by List.

When a trial is built that contains a particular event, it is possible that only part of the hier-
archy will be used to build the trial. (For example, if there are two templates which own the
event, only one of the templates will be used to generate each trial.) In this case, lists must
be properly connected to the hierarchy to allow certain events to use certain lists:

An event attribute can only vary by lists which will always be connected to hierar-
chy that is used in building a trial for that event; i.e., regardless of which group,
block, or template is used to build the trial, the list must be connected to an experi-
ment, group, template, or block which is used. In other words, the list must be con-
nected to the hierarchy through every path to the event from the experiment object.

For example, consider this hierarchy:

Figure 134 – An example hierarchy where “Event1” cannot vary by “List1”
135

 Part 2: Graphic Environment Reference
When “Template1” is used to build a trial, “List1” is not connected to any of the objects
used to build the trial. Since this possibility exists, the graphic environment will not allow
you to use Vary by List with “List1” for an attribute of “Event1”. However, “Event2” can
use “List1” because “Event2” is only linked to “Template2”.

Note that lists which are connected to the experiment can always be used by attributes in
all objects. However, lists often cannot be linked to the experiment due to scope effects (see
“ Factor Set Scope”, p136, below).

 Factor Set Scope

The pattern of cell selection in a factor table or factor set can depend on the non-factor el-
ements of the experiment hierarchy. When an experiment hierarchy contains multiple tem-
plates — or multiple paths to a template — a new cell is not necessarily chosen for every
factor set at the start of every trial. Also, multiple cell-use histories are kept for a factor set
when multiple paths lead to the set’s owner object.

A new cell is chosen only for factor sets which are relevant to the trial being generated. A
factor set is relevant if is it connected to the experiment object, or to a group, block, or tem-
plate object that is used to generate the trial. (A table is relevant if the built-in template of
the factor table set is used to generate the trial.)

For example, consider Figure 135 and Figure 136, below.

Figure 135 – Example hierarchy with a list connected to one block
136

5.7.1 Definitions
In the first figure, “List1” is connected to “Block2”; a new item will be selected from the
list only when “Block2” is used to build a trial. In the second case, a new item is always
chosen for “List1”, because “Template1” is used for every trial.

Note: In Figure 135, the event “Event1” cannot vary by “List1” directly, due to the rules
explained in “ Linking Lists to the Hierarchy”, p135. If this were a real experiment,
some attribute in “Block2” must be using the list, since it is the only object which is
allowed to use the list.

The hierarchical position of a factor set affects not only when a new cell is chosen for a fac-
tor set, but also how the chosen cell relates to cells used in previous trials. Specifically,
when there are multiple paths from the experiment object to a factor set’s owner, then a sep-
arate cell-use history is kept for each path.

For example, in Figure 136, there are two paths that reach “Template1”: through “Block1”
or through “Block2”. This means that the item selection for “List1” within “Block1” will
be independent from the item selection of “List1” within “Block2”. This can have several
implications; for instance, if “List1” uses the Sequential access type, then “Block2” will
always start with the first item of “List1”, regardless of how many items of “List1” were
used in “Block1”.

The scoping of a table can be specially modified through PsyScript; see “Part 4: Scripting
Reference, 13.3.9.4 Scripting the Factor Set Scope”, p400.

Figure 136 – Example hierarchy with a list connected to the template
137

 Part 2: Graphic Environment Reference
5.7.2 Factor Table Windows

5.7.2.1 The Factor Table Window

To open the Factor Table window, double-click on a factor table object in the design win-
dow. The Factor Table window has a general control area at the top of the dialog, and a
factor table area below.

At the top of the Factor Table dialog is the name of the table. To create a new table, click
on the Table pop-up menu and select NewÉ You can create multiple factor tables within
a single factor table set object.

To delete the current table, click on the Delete Table button. There must always be at least
one table in a factor table set.

Below the Table pop-up menu, bulleted text shows the crossing type and access type infor-
mation about the current table. To change these, click on the bulleted text or click on the
Set Table Info button. Doing either opens the Table Info dialog (see “5.7.2.2 Table Info
Dialog”, p140).

The four buttons in the upper right of the dialog allow you to create new factors and new
levels for the current table. Unless a level is selected when you click on New Factor, new
factors will be added to the top level of the current table.

If a level is selected when you click on New Factor, the new factor is added as a nested
factor to the selected level. (The name of a nested factor will not be visible; only its levels
will be selectable.)

Double-clicking on a factor lets you modify the factor name and level order. The level order
is used only if the table access type is By Factor (see “5.7.2.3 New/Rename Table Factor
Dialog”, p142).

New levels are added to the factor that is currently selected by hitting the New Level but-
ton. (Nested factors are selected by selecting any level in the nested factor.)

Figure 137 – The Factor Table window
138

5.7.2 Factor Table Windows
Double-clicking on a level lets you modify the level name and weight (see “5.7.2.4 New/
Rename Table Level Dialog”, p142).

To rearrange a factor in the table, drag the factor name to a new position. There is a dividing
line between factors in this area: factors listed above the dividing line will be displayed with
levels as columns, while factors below the line will be displayed as levels with rows. The
row/column distinction is for viewing purpose only; it does not affect the accessing of cells
in the experiment.

The top-to-bottom ordering of the factors does matter, however, in determining the cell or-
der for Sequential and Blocked access types. (The exception is tables with Latin square
crossing type; in that case, the ordering is controlled in the Latin Squares dialog, see
“5.7.2.5 Latin Squares Dialog”, p142.) Level order within factors can be changed by drag-
ging level names in the column or row headers.

The icons at the bottom left of the Factor Table dialog control the scale used to display the
factor table. The table can be shrunk, enlarged, or zoomed to the standard scale by clicking
on the icons.

The cells selected in a Factor Table window set the context for all Template and Attribute
dialogs of objects owned by this factor table set. The Factor Table dialog and Factor Table
floating window (i.e. Cell Chooser, see “5.7.2.7 Factor Table Floating Window”, p144)
work together to maintain a consistent context.

Cells in the table can be selected directly using the standard Macintosh Shift- and Com-
mand-clicking modes. Cells can also be selected by clicking on a level; in this case, all of
the cells for the level are selected (including those in a different row or column that never-
theless belong to the selected level). There are two special selection modes for clicking on
levels:

• Option-click selects only the cells that are directly in the particular row or column se-
lected.

• Control- or Shift-Command-click is like a selection-extension in reverse: only cells
which are already selected and would have been selected by the click stay selected.
This is useful for selecting cells which are the crossing of particular levels.
139

 Part 2: Graphic Environment Reference
5.7.2.2 Table Info Dialog

To open the Table Info dialog, click on the Set Table Info button in the Factor Table dia-
log (see “5.7.2.1 The Factor Table Window”, p138). The Table Info dialog is used to
change the table name, its crossing type, or its access type. You can also set a weight which
will apply to all of the cells in the table.

The crossing type can be one of the following:

• Within crossing type represents a “within subject” design. Cell-selection depends sim-
ply on the access type of the table (see below).

• Between crossing type represents a “between subject” design; a single cell will be used
for all trials. The cell that is used depends on the set’s index, which usually depends
on the subject number. (See “5.7.2.6 Choose Crossing Dialog”, p143 on setting the
index.) Access type and cell weight specifications are ignored.

• Latin Squares crossing type is used for a Latin squares design (see “ Latin Squares”,
p133). Factors in the table are partitioned into fully crossed subtables; these subtables
are then crossed based on a Latin square pattern that depends on the set’s index,
which is usually linked to the subject number. (See “5.7.2.6 Choose Crossing Dia-
log”, p143 on setting the index; see “5.7.2.5 Latin Squares Dialog”, p142 about set-
ting the subtable partitions; for a more detailed discussion of Latin squares.) The
access type and cell weight specifications are still used to select cells within the Latin
square subset.

• List Access crossing type represents another type of “within subject” design where a
new cell is to be selected for a trial only if an explicit reference (via Vary By List) is
made to one of the lists in the factor set. When a new cell is selected, the access type
and cell weight specifications are used in the standard way. The List Access crossing
type is not available for tables in a factor table set.

• Use Access crossing type is similar to List Access, except that a cell is selected after
every reference (via Vary By List) to a list in the factor set; this means that the current
cell can change during the compilation a trial. When a new cell is selected, the access
type and cell weight specifications are used in the standard way.

Figure 138 – The Table Info dialog
140

5.7.2 Factor Table Windows
• Use/Reset Access crossing type is like Use Access with the further specification that
the table’s access history is erased after every trial. This makes the item-selection in-
dependent for every trial.

• Fixed crossing type is functionally equivalent to Between, but a different name is used
to indicate that the set is somehow unrelated to the subject (e.g., the cell for this table
will be “manually” incremented during the experiment). This crossing type is for ad-
vanced users.

The basic access types are the standard types described in “5.12.1 List Ordering”, p210.
The extra access types available for tables are:

• Cycle Random access type is like Random, but cells are chosen so that all levels of
each factor are used before a factor is used again (as if the factor was accessed inde-
pendently with access type Random).

• Blocked Random access type is sensitive to the order in which factors are listed within
the table. A level is chosen randomly for the first factor, and then that level will be
used until all of the cells for that level are exhausted. This process applies recursively
within the “blocks”: with the first level fixed, a level is chosen for the second factor
and held until all of the cells for the pair of levels are exhausted, and so on.

• Least-Used Random access type is similar to Cycle Random; however, instead of try-
ing to select an independently random level for each factor, a level is selected among
those that have been used the least so far. Among the eligible levels within a factor,
one is chosen randomly. The order in which factors are listed within the table is im-
portant: a level is first selected for the first factor, and then the least-used algorithm
is applied for the second factor, counting level-uses from previous trials only when
the level selected for the first factor was current. Level-use counting for the third fac-
tor takes into account the levels selected for the first two factors, and so on.

• By Factor access type moves the burden of access type specification down to the fac-
tors in the table, where level order is specified. A new cell is selected by choosing new
levels in all the factors — based on the factors’ level orders — such that the cells of
the table are properly exhausted. The level order of a factor is independent of other
factors, and can be any of the standard access types (see “5.12.1 List Ordering”,
p210), plus:

• Blocked Sequential level order specifies that Sequential accessing
should be used, but once a level is chosen, it should be used as long as
possible (i.e. until the need to use an unexhausted cell forces a change
in this factor).

• Blocked Random level order specifies that Random accessing should be
used, but once a level is chosen, it should be used as long as possible.

• Cycle Random level order specifies that Random accessing should be
used, but the factor’s list of level should be independently exhausted, if
possible, before reaccessing a level within the factor. (Independent cy-
cling may not be possible if another factor has Sequential level order.)
141

 Part 2: Graphic Environment Reference
• Least-Used Random level order specifies that Random accessing should
be used, but with precedence is given to levels which have been least-
used so far in the experiment. If this factor is not the first factor in the
table, levels from preceding factors will have already been selected;
when level-uses from previous trials are counted, only trials which also
had these levels as current are counted.

Advanced Note: The standard table access types are all implemented by assigning appro-
priate level order types to the factors. For instance, Random table access is achieved
by assigning all of the level orders to be Random, etc.

5.7.2.3 New/Rename Table Factor Dialog

This dialog is like the New Object Name dialog (see “5.2.5 New Object Name Dialog”,
p114), except that the pop-up menu below the text field is used to specify the access type
of the new factor.

5.7.2.4 New/Rename Table Level Dialog

This dialog is like the New Object Name dialog (see “5.2.5 New Object Name Dialog”,
p114), except that it contains an extra text field for specifying the level weight within the
factor. Also when a new level is being created, there is an Another button that lets you add
multiple levels at one time.

5.7.2.5 Latin Squares Dialog

To open the Latin Squares dialog, select Latin SquaresÉ as the factor set crossing type
in the Table Info or Factor Set dialog (see “5.7.2.2 Table Info Dialog”, p140 and “5.7.3.3

Figure 139 – The Latin Squares dialog
142

5.7.2 Factor Table Windows
Factor Set Dialog”, p147). (The use of Latin squares crossing type is described in “ Latin
Squares”, p133.) The purpose of this dialog is to set the Latin square partitions.

The ChooseÉ button opens the Choose Crossing dialog (see “5.7.2.6 Choose Crossing Di-
alog”, p143), which is used to set the index by which a Latin square “diagonal” is selected.

The main part of the Latin Squares dialog is a list of all the factors in the Latin Square set
with lines between the partitions. Factors that are in the same partition will be fully crossed;
all of the fully crossed partitions will then be crossed Latin square with each other.

To add lines between items in the list, drag the line from the end of the list. You can remove
a line by dragging it back to the end of the list. You can also drag the factors to achieve the
desired partitioning.

The order that factors are listed in the Latin Squares dialog is the “real” order of the factors
within this set; this order can be important for certain access types. Factor order is usually
controlled through the Factor Table or Factor Set dialogs, but the Latin Squares dialog
overrides those orders.

5.7.2.6 Choose Crossing Dialog

The Choose Crossing dialog is used to set the factor set index for Between and Latin Square
crossing types.

The Choose Crossing dialog is opened when you select BetweenÉ from the crossing
types pop-up menu in the Factor Set or Table Info dialogs (see “5.7.2.2 Table Info Dialog”,
p140 and “5.7.3.3 Factor Set Dialog”, p147), or when you hit the ChooseÉ button in the
Latin Squares dialog (see “5.7.2.5 Latin Squares Dialog”, p142). It is used to configure the
factor set’s index.

The only item in the dialog is a pop-up menu with the following items:

Subject within Group – links the index to the current subject number.

Figure 140 – Choose Crossing menu
143

 Part 2: Graphic Environment Reference
Run of Subject – links the index to the current run number.

Run within Group – links the index to the current group run number.

Subject – links the index to the current subject count.

Run – links the index to the current total run count.

Group – links the index to the current group number.

Default – If there is a “SubjectNumber” Subject Info item, the value of this item is used.
Otherwise, the constant 1 is used.

All of the above numbers are calculated by the Assign Group and Calculate Numbers
process, which requires that the subject name be logged with each run of the experiment;
see “6.2.3 Subject Number Calculation”, p230 for more information.

5.7.2.7 Factor Table Floating Window

The Factor Table floating window lets you quickly change the cells that are selected in a
context-setting factor table. This floating window will only be available when a Template
or Attribute window is frontmost, and when there is some factor table that sets context for
the window. (See also “5.7.1.1 Factor Table Sets”, p130.)

To open the Factor Table floating window, select Cell Chooser from the Windows menu.
If there is more than one table that can set context for the current window, you can cycle
through the tables using the Next and Prev buttons. Only the table that is currently shown
will affect the context.

If a table is drawn in both this floating window and a regular Factor Table window in the
background, the cell selections are kept consistent. Thus, when you change the cell selec-
tion through the floating window, the cell selection will also change in the Factor Table
window.
144

5.7.3 List Dialogs
5.7.3 List Dialogs

5.7.3.1 List Dialog

The List dialog is used to set up the items, fields, and values for a list. (Lists are described
in “5.7 Factors and Lists”, p129.) To open the List dialog, double-click on the list’s icon in
the Design window.

At the top of the dialog is a text filed that contains the list name. To change the list name,
edit the value in the text box; the name change will take effect when you close the dialog,
move another window to the front, or when no typing occurs after a certain delay (see
“7.6.4 Design Options”, p268).

The main body of the List dialog is a table (not a factor table) in which each row represents
an item of the list and each column represents a field. Each cell in the table contains the
value of one field for one item. Above the table is the list of fields, and to the left is the list
of items and item weights.

When a cell in the table is selected, the Value Setting pop-up appears in the lower-left cor-
ner. This pop-up works the same as the pop-ups in the list of an Attribute dialog (see
“5.8.2.1 Settings”, p152). The Edit Value button opens a dialog to change the setting value
of the currently selected cell.

To create and add new items to the list, click on the New button above the list of items, or
select New ItemÉ from the Edit menu when the item list is active. To change an item
name, double-click on the item.

Figure 141 – The List dialog
145

 Part 2: Graphic Environment Reference
To create and add new fields to the list, click on the New Field button to the left of the list
of fields, or select New FieldÉ from the Edit menu when the field list is active. this will
open the New/Rename/Retype Attribute dialog (see “5.8.2.4 New/Rename/Retype At-
tribute Dialog”, p157). To change a field name or type, double-click on the field.

To change the weight for an item, click on the weight that appears next to the item name.
A text box will appear to let you change the weight. Hit Return, or click on anywhere else
in the dialog, after making the change.

If you are working with an expanded list (see “5.7.1.4 Expanded Lists”, p132), you can in-
clude existing free levels in the list using Get LevelÉfrom the Edit menu (see “5.2.8 Get
Object Dialog”, p115). You can also open the Level dialog for a level by double-clicking
on the level.

The Item Order pop-up sets the item order for the list used for factor set cell selection; see
“5.12.1 List Ordering”, p210 for information about the choices in this menu; see “5.7.1.7
Level Order and Crossing Types”, p132 for information on the item order.

When a level is selected in an expanded list, the Nested Factors button appears; clicking
on this button opens the Factor Set dialog for the selected level. For more information on
nested factors, see “5.7.1.5 Nested Factors”, p132.

The tick marks above the field list can be dragged to resize the all of column widths; col-
umns cannot be sized independently.

5.7.3.2 List File Dialog

To open the List File dialog, double-click on a list file icon in the Design window. This di-
alog lets you set the file to read for the values and the types of data columns stored in the
file. Creating and setting column types works just like fields in the List dialog (see “5.7.3.1
List Dialog”, p145). The item order for the list is controlled with the pop-up menu at the
bottom of the dialog.

Figure 142 – The List File dialog
146

5.7.3 List Dialogs
A column that has a type expecting multiple or non-literal tokens is marked with an asterisk
(*) after the name. This indicates that a special format must be used for this column in the
file (see “ List Files with Non-literals”, p131).

Hitting View Values opens the List dialog for the file list and all of the field values will be
shown, but they cannot be changed and no new items can be added. (The List dialog is de-
scribed in “5.7.3.1 List Dialog”, p145.)

5.7.3.3 Factor Set Dialog

To open the Factor Set dialog, click on the Lists button in an Experiment dialog, Group
dialog, Block dialog, or Template window. You can also control-click on an icon in the De-
sign window and choose Lists from the resulting pop-up menu.

The Factor Set dialog shows how the lists owned by an object are grouped into factor sets;
lines in the list separate the sets. (See “5.7.1.1 Factor Table Sets”, p130 for information on
factor sets.)

Each set has a pair of pop-up menus associated with it, one for assigning the set’s access
type and another for the set’s crossing type.

To move a list from one set to another, drag it. To create a new factor set, drag a list to the
bottom of the dialog, and the list will be put into a new set.

Double-clicking on the list opens the dialog for that list (see “5.7.3.1 List Dialog”, p145
and “5.7.3.2 List File Dialog”, p146).

Selecting the BetweenÉ crossing type opens the Choose Crossing dialog for setting the
set’s index (see “5.7.2.6 Choose Crossing Dialog”, p143, and “5.7.2.2 Table Info Dialog”,
p140 for information on the factor set index). Selecting the Latin SquaresÉ crossing type
opens the Latin Squares dialog for setting Latin square partitions (see “5.7.2.5 Latin
Squares Dialog”, p142).

If a list has been imported into a factor table, it will be in a partition without pop-up menus,
and you cannot drag to or from the partition. This is because the Factor Set dialog is not
allowed to modify factor tables.

5.7.3.4 Level Dialog

To open the Level dialog, either double-click on a level icon in the design window, or dou-
ble-click on a level of a free factor in the List dialog (see “5.7.3.1 List Dialog”, p145). The
Level dialog allows the values of the factor fields to be set for one particular level.

Note: This dialog is used only by free levels, which are owned by extended lists. If your ex-
periment does not have any extended lists, this dialog will never be used.
147

 Part 2: Graphic Environment Reference
The Level dialog is a standard attribute dialog, described in “5.8.2 The Standard Attributes
Dialog”, p151. Its only set of attributes is a list of fields defined for the factor that owns the
level. Setting the field values in this dialog is equivalent to setting them in the Factor dialog
for the owning factor.

5.7.3.5 Connect List Dialog

When a list is linked to a factor table object in the Design window, the Connect List dialog
appears. This dialog is used to pick the destination table or factor set for the list.

The Connect List dialog contains a single pop-up menu through which a table or factor set
is selected. All tables and factor sets which exist in the factor table object are shown in the
pop-up menu as Table X (for tables) or Set X (for factor sets), where X is the name of the
table or set. There are also New Table and New Set items, which create a new table or set
to contain the list.

Hitting OK links the list to the factor table and places it into the selected table or set. Hitting
Cancel cancels the link.

The Connect List dialog appears only when a list is connected to a factor table object. When
a list is connected to any other type of object, it is automatically placed into its own set.

Figure 143 – The Connect List dialog
148

5.8 Attributes
Part 2: Graphic Environment Reference

5.8 Attributes

5.8.1 Definitions

Every object has attributes associated with it. Attributes specify features about the object
that are used to build trials when the experiment is run.

The graphic environment groups attributes into attribute sets:

Each object type has a set of standard attributes, which are attributes used by every ob-
ject of that type.

Certain types of objects can also have a set of custom attributes. These are attributes that
are defined by the experiment designer; they are used to by other objects that are
owned to the object with the custom attributes.

Except for events, each object has a set of default attributes. These are the same as the
standard attributes for object types that it can own.

The attributes most commonly used are the standard experiment and event attributes. Ex-
periment attributes set global parameters, such as the instructions file or background color
for the screen. Experiment attributes can only be set through the experiment object.

The standard event attributes are actually divided into two sets: event attributes and stim-
ulus attributes. Event attributes are standard for all event types, such as the event’s dura-
tion. Stimulus attributes are standard for a particular event type; e.g., the font or color of a
text stimulus, or the volume of a sound stimulus.

All attribute values are set using the Attributes dialog. Attributes dialogs are basically the
same; each type of object has its own Attributes dialog, which uses attribute sets are appro-
priate for the type.

Every attribute (except the Stimulus event attribute) has a built-in default value which is
used if its value is not explicitly set. The built-in defaults for an object can be overridden
by its owners through the default attribute sets. For example, in a template that owns events,
you can set the font to be used for all of the template’s text events; this is done by setting
the font attribute in the template’s default stimulus attribute set.

In general, specifying an attribute value at one level of the hierarchy overrides all values
specified for that attribute at any higher level in the hierarchy. For example, default at-
tributes values assigned in a block override default attribute values assigned in the experi-
ment, and those of the template will override the block’s, etc. (See “5.8.1.1 Attribute
Inheritance”, p150 for more information about default attributes.)
149

 Part 2: Graphic Environment Reference
Tip: Assigning values to the default attributes at the level of the experiment object provides
a useful means for changing the default values of attributes ordinarily used by Psy-
Scope.

5.8.1.1 Attribute Inheritance

Usually, the value of an object’s attribute is specified within the object. If no value is spec-
ified, the default attribute sets of the object’s owners are searched to obtain a value. When
the default value of an attribute is found in this way, it is called attribute inheritance. If no
value for the attribute is found in the owning objects, all attributes — except the Stimulus
event attribute — have built-in defaults that are used.

The search for an inherited attribute proceeds from the lowest level in the hierarchy to the
highest, so that specifications “closest” to the object are the ones that apply.

When a particular attribute in the Attributes Dialog has the Default setting, attribute inher-
itance will be used to find a value (or the attribute will take the built-in default if no value
can be inherited). See “5.8.1.3 Attribute Dialogs”, p150.

To set attribute values that you want to be inherited, you use the Default [Type] Attribs
(e.g. Default Event Attribs) attribute sets in the Attributes dialog (see “5.8.3 Experiment
Attributes”, p158, “5.8.4.3 Group Attributes Dialog”, p170, “5.8.5.3 Block Attributes Dia-
log”, p172, and “5.8.6.3 Trial Attributes Dialog”, p174).

5.8.1.2 Factor Table and Attributes

The process of searching for an object’s attribute value changes when the object is linked
to a factor table. Instead of simply finding an attribute value in the object or finding an in-
herited value, there may be a different value for the attribute that depends on which cell is
current in the factor table.

When an object is linked to a factor table, its attribute values are always set in context; i.e.
when you set an attribute value, the value will only apply to the cells which are currently
selected in a context-setting factor table. In this way, the linking of attribute values to the
various levels of a factor occurs automatically.

If no Factor Table window is open — or no cells are selected in a context-setting table —
then attribute value changes will apply to all cells of the table.

See “5.7.2.1 The Factor Table Window”, p138 for more information on the Factor Table
window and setting attributes.

5.8.1.3 Attribute Dialogs

The attribute dialog for an event or sub-stimulus object is opened by double-clicking on the
object in the Design window, Template window, or Stimuli dialog. For all other objects,
the attribute dialog is opened through an Attributes button in the object dialog, or by con-
150

5.8.2 The Standard Attributes Dialog
trol-clicking on the object in the view window and selecting [Object] Attributes from the
resulting pop-up menu.

The attribute dialogs for the standard object types are basically all the same; they just have
different sets of attributes available. The object dialogs are all considered examples of the
Standard Attributes dialog.

5.8.2 The Standard Attributes Dialog

All attribute dialogs have the same basic form, and are therefore called Standard Attributes
dialogs.

At the top of the dialog is a text box that contains the name of the object. You can usually
change the name of the object in this text box; the name change will take effect when you
close the dialog, move another window to the front, or when no typing occurs after a certain
delay (see “7.6.4 Design Options”, p268).

The main body of the dialog consists of a list of attributes. Each attribute has a setting,
which is displayed in a pop-up menu, and a value with the setting. Except for some of the
experiment attributes, all of the settings start out as Default. (Some experiment attributes
are initialized in the standard script file created by New ExperimentÉ.)

Not all of the object’s attributes are shown at once. A pop-up menu (or a pair of radio but-
tons in the case of the Event Attributes dialog) switches the list between different attribute
sets.

In the list of attributes, the setting pop-up menu provides a choice of ways to set an at-
tribute's value. The possible settings are Set To, Default, Vary ByÉ, and ScriptÉ.

Figure 144 – A Standard Attributes dialog
151

 Part 2: Graphic Environment Reference
The settings Multiple and Other are display-only: they are possible interpretations of the
current attribute value, but you cannot directly set an attribute to be one of these.

To the right of the setting pop-up, the current setting value of the attribute is shown with a
bullet. (If the setting value is Default, no setting value will appear.) To change the setting
value, click on the bulleted value.

The setting value that is shown might depend on whether the Trial Chooser is open or
closed. When the Trial Chooser is open, the setting value shows the actual attribute value,
given the hierarchy and item selections from the Trial Chooser. When the Trial Chooser is
closed, the setting value is a parameter for the setting, such as the list and field to link to for
Vary by List.

5.8.2.1 Settings

These are the possible values for the settings pop-up menu next to each attribute, and the
meanings of the settings:

Set To

This is the basic setting: it allows you to assign a fixed value to the attribute. Choosing this
setting will open a dialog that is specific to the attribute (e.g., a list of fonts for the font at-
tribute) through which you assign the attribute value (e.g., Helvetica).

Default

This setting causes the attribute value to be determined either at a higher level in the exper-
iment structure (see “5.8.1.1 Attribute Inheritance”, p150) or by a built-in default value.

Vary By…

The Vary By submenu allows you to vary the value of the attribute across trials based on
another part of the experiment structure. The ways in which an attribute can be varied are
described below. When the Trial Chooser is open, the value area shows the actual value as-
signed to the attribute for the given hierarchy and item selections.

Vary by List

Vary by List links the value of an attribute to the current value of a field in a list (see “5.7
Factors and Lists”, p129). A new current item for the list is chosen for each trial, so that the
152

5.8.2 The Standard Attributes Dialog
value of the attribute will vary from trial to trial. When the Trial Chooser is closed, the val-
ue area shows the name of the factors and field to which the attribute is linked.

To open the Vary by List dialog, select Vary by List in the settings pop-up menu. This di-
alog lets you set the list and field that the attribute will vary with. The top pop-up menu
selects a list, and the bottom pop-up menu selects a field.

The list you select must already be connected to something in the attribute’s hierarchy. For
event attributes, this means that the list must be connected to the event’s template, block,
group, or experiment.

To create a new list, select NewÉ from the top pop-up menu. The new list will be auto-
matically linked to the hierarchy, and it will automatically have a field with the correct type.

Fields of the list that have the same type as the attribute being set are underlined in the field
pop-up menu. In general, you will only link and attribute to a field that is underlined.

Clicking on the Open List button accepts the current pop-up items as the list and field to
link to and then opens the List dialog for that list (see “5.7.3.1 List Dialog”, p145).

For more on lists, see “5.7 Factors and Lists”, p129.

Figure 145 – The Vary by List dialog
153

 Part 2: Graphic Environment Reference
Vary by Template

When an event is part of more than one template, the event can take its value from the tem-
plate that executes it using Vary by Template. Vary by Template works with custom
template attributes (see also “5.8.6.1 Custom Template Attributes”, p173).

Choosing Vary by Template will open the Vary by Template dialog, which lets you select
which custom template attribute to link to. A pop-up menu selects the attribute.

For an attribute to use Vary by Template, all of the owning templates must have a custom
attribute of the same name. The pop-up menu will contain only custom attribute names that
are common to all of the connected templates.

Vary by Block, Group

Vary by Block and Vary by Group work in the same way as Vary by Template, except
that custom attributes at the block and group levels are used, respectively. See the previous
section for information on Vary by Template. Custom block attributes are described in
“5.8.5.1 Custom Block Attributes”, p171, and custom group attributes are described in
“5.8.4.1 Custom Group Attributes”, p169.

Vary by Run Mode

Vary by Run Mode works in the same way as Vary by Template, except that custom run
and practice attributes are used (see “5.8.3.1 Custom Run and Custom Practice Attributes”,
p158).

Script…

The ScriptÉ class of settings allows you to link the value of the attribute to entities defined
in PsyScript. (PsyScript is described in “, Chapter 12. PsyScript Reference”, p319.)

Figure 146 – The Vary by Template dialog
154

5.8.2 The Standard Attributes Dialog
Script Linked

The Script Linked setting is used to link the attribute’s value to the value of a script entry.
Generally, this means that the two values (the attribute that is being set and the one that it
is linked to) will be the same.

Choosing Script Linked will usually open the Link to Entry dialog; this dialog contains a
list of all of the entries in the script and lets you choose which entry to link to. If the attribute
is already linked to a sublist, the Sublist dialog will be opened instead (see below).

Selecting an entry shows its content (value) at the bottom of the dialog. Clicking the At-
tributes button (or double-clicking on the name of the entry) will “go into” the entry and
change the list to show all of attributes for that entry, in much the same way that a folder is
opened in the standard file dialog. The Attributes button is grayed if the entry or attribute
does not have sub-attributes.

The Sublist... button switches the link mode and opens the Sublist dialog, which allows
you to assign the attribute value to a fixed sublist of an entry value. Sublists are described
in “Part 4: Scripting Reference, 12.8.7 Sublisting”, p334.

Figure 147 – The Link to Entry dialog

Figure 148 – The Sublist dialog
155

 Part 2: Graphic Environment Reference
The Sublist dialog lets you link an attribute to only part of the values of another entry.
Clicking the Not Sublisted... button switches the link mode back to standard and opens
the Link to Entry dialog.

The type of sublist — Sublist of:, Row of:, or Column of: — is selected through the pop-
up menu at the top of the dialog.

The entry that is sublisted is set by clicking on the bulleted entry name at the top of the di-
alog; this opens the Link to Entry dialog described above to select the entry. Unlike clicking
on Not SublistedÉ, no mode change takes place in relation to the attribute being linked,
and closing the Link to Entry dialog will return to this dialog.

The text boxes that are below the entry name set parameters for the sublist, and vary de-
pending on the type of sublist being made. See “Part 4: Scripting Reference, 12.8.7 Sublist-
ing”, p334 for information on these parameters.

Script Access

The Script Access setting gets the value for the attribute by accessing a PsyScript-defined
list (executing the Access() script function). PsyScript lists are described in “Part 4:
Scripting Reference, 12.8 Lists”, p329.

Choosing Script Access opens the same dialog(s) as Script Linked (see above).

Script Current

The Script Current setting gets the value for the attribute as the current item of a Psy-
Script-defined list (executing the GetCurrent() script function). PsyScript lists are de-
scribed in “Part 4: Scripting Reference, 12.8 Lists”, p329.

Choosing Script Current opens the same dialog(s) as Script Linked (see above).

Multiple

This attribute setting (display-only) indicates that the attribute has different values (of equal
precedence) among the cells that are currently selected in the Factor Table window. This
attribute setting will never appear when only one cell, a whole row, or a whole column is
selected in the table.

Other

This attribute setting (display-only) indicates that the attribute value is determined by
something that the graphic environment cannot read. This setting should only appear when
using the graphic environment with scripts that were created through PsyScript directly.

5.8.2.2 Custom Attribute Sets

Experiment, group, block, and template custom attributes are defined in their respective at-
tribute dialogs.
156

5.8.2 The Standard Attributes Dialog
To define a new custom attribute, you must first select the custom attribute set (through the
pop-up menu near the top of the dialog). When the custom attributes are the current set, a
pair of buttons appear in the top left of the dialog: NewÉ, and Delete. These buttons are
used to add or remove custom attributes to the list. Custom attributes can also be cut and
pasted in the list.

Clicking the NewÉ button opens the New Attribute dialog, described in “5.8.2.4 New/Re-
name/Retype Attribute Dialog”, p157. The name or type of a custom attribute can be
changed by double-clicking on the attribute name in the list.

5.8.2.3 Special Keyboard Shortcuts

When the text box at the top of the dialog is the current item (as opposed to the list of
attributes), you can switch attribute sets using Command-Down arrow and Com-
mand-Up arrow.

When the attribute list is the active item and an attribute is selected, Command-Up arrow
or Command-= changes the state of the attribute to Set To. For certain types of at-
tributes — ones whose values are a single token — you can set the value through a
text box in the Attribute dialog without opening a separate window; to do this, hit
Command-Right arrow.

5.8.2.4 New/Rename/Retype Attribute Dialog

The New Attribute dialog is called when either: a) a custom attribute is created in an exper-
iment, group, block, or trial template, or b) a new field is created in a free factor or list. The
Rename/Retype Attribute dialog is called when an attribute created in one of the above
ways is double-clicked (see “5.8.2.2 Custom Attribute Sets”, p156, “5.7.3.1 List Dialog”,
p145).

This dialog has a text field for the attribute name and two or three pop-up menus that spec-
ify the type for the attribute. (Attributes and fields must have a type so that the proper dialog
can be opened to set values.)

Figure 149 – The New/Rename/Retype Attribute dialog
157

 Part 2: Graphic Environment Reference
Note: Factors or lists created by selecting NewÉ in the Vary by List dialog will automat-
ically have a field of the correct type; the user is prompted for the field name only.

The pop-up menus do not represent independent parameters: the top one (or top two, for
stimulus attribute or action parameter sets) navigates among attribute sets that contain the
actual attribute types.

When creating custom attributes, PsyScope may warn you that the suggested name is a
standard attribute name; this means that you have tried to create some attribute that is al-
ready available as a standard or default attribute. You should change the name so that is a
non-standard attribute name.

When you change the type of a field (in a non-file, non-extended list), the attribute types
you can change to will be constrained by the initial type of the field. The constraint is based
on whether the original type could have multiple tokens as a value.

5.8.3 Experiment Attributes

Experiment attributes control features of the experiment that span all of the trials and
events, as well as features that pertain to the overall running of the experiment.

5.8.3.1 Custom Run and Custom Practice Attributes

Custom run and custom practice attributes can be defined for use with the Vary by Run
Mode setting in the Attribute dialogs (see “5.8.1.3 Attribute Dialogs”, p150). This allows
an attribute to have a value that depends on whether the experiment is executed using Run
or Practice commands. See “5.8.2.2 Custom Attribute Sets”, p156 for a description of how
to define custom attributes.

The “RunMode” Attribute

The “RunMode” attribute is not directly adjustable from the graphic environment. Psy-
Scope automatically sets the value of this attribute to Run, Practice or Check when the
experiment is run. This can be used in PsyScript expressions to vary how aspects of the ex-
periment are run in the different modes. It also determines the value of any attributes that
have been varied by Run Mode (see “ Vary by Run Mode”, p154).

The value of “RunMode” is set to Practice whenever you use the Practice command
(from the Run menu or the Console) or the Preview button in a block or template dialog.
When the value is Practice, the experiment is run the same as if the Run command were
used, however no data is recorded in the data file, and the “RunNumber” Subject Info item
value is not incremented (see “6.2.3 Subject Number Calculation”, p230).

The value of “RunMode” is set to Check whenever you run the experiment (in the Run or
Practice mode) and the Check box is checked in the Trials Monitor (see “6.3 The Trial
Monitor”, p238). When the value is Check, PsyScope does not actually run the experiment.
158

5.8.3 Experiment Attributes
It goes through all of the steps involved in constructing each trial of the experiment (includ-
ing loading stimuli if the Load Stims box is checked), and then reports statistics about the
experiment in the Check Statistics window. For more information on the Trial Monitor, see
“6.3 The Trial Monitor”, p238.

5.8.3.2 Default Stimulus/Event/Trial Attributes

Values for attributes used by trials and events can be specified at the experiment level. Un-
less these defaults are overridden at lower levels of the hierarchy, these value will be inher-
ited by all objects belonging the experiment. See “5.8.1.1 Attribute Inheritance”, p150 for
more information.
159

 Part 2: Graphic Environment Reference
5.8.3.3 Experiment Attributes Dialog

The Experiment Attributes dialog is one of the standard attribute dialogs, described in
“5.8.2 The Standard Attributes Dialog”, p151. The attribute sets in the Experiment At-
tributes dialog are:

Figure 150 – The Experiment Attributes dialog

Figure 151 – Experiment attribute sets menu
160

5.8.3 Experiment Attributes
Experiment Attributes (the standard experiment attributes, as described below)

Custom Run and Practice Attributes (discussed in “5.8.3.1 Custom Run and Custom
Practice Attributes”, p158?)

Default Stimulus Attribs (described in “5.8.7.3 Stimulus Attributes”, p181, creation
described in “5.8.2.2 Custom Attribute Sets”, p156)

Default Event Attributes (described in “5.8.7 Event Attributes”, p176)

Default Trial Attributes (described in “5.8.6.3 Trial Attributes Dialog”, p174).

5.8.3.4 Standard Experiment Attributes

Listed below are all of the standard experiment attributes. Other experiment attributes can
appear in the list if you use a PsyScope Extension that uses experiment attributes. Consult
the extension’s documentation for more information.

Data File

Data File specifies the file that stores data generated during an experiment run and other
information about the experiment.

In brief, the data file is a text file that can contain information about the subject (e.g., name,
age, number, etc.) and the experiment (e.g., title, time, machine type, etc.), as well as a line
for each response that is recorded during the run of experiment. See “6.1.4 The Data File”,
p217 for more information about the data file and its content.

The dialog that is opened to set Data File is the standard file dialog.

Data Info

Data Info specifies which data elements related to subject responses should be recorded,
e.g. whether to record the name of the event that received the response. It also specifies
whether or not to record information about the experiment and subject in the data file.

Experiment and subject information are recorded as a “header” at the beginning of the file.
Following the header, a line is added each time a response is recorded using the RT[] action
(see “ RT[]”, p203); each response line is made up of a set of tab-delimited entries record-
ing information about the response.
161

 Part 2: Graphic Environment Reference
For a complete description of the data file and its contents, see “6.1.4 The Data File”, p217.

The dialog that is opened to set Data Info is a shown above. The data recording flags are:

Label to be included on each data line: Enables recording of the “RunLabel” items
at the beginning of every data line. This content of this label is completely up to the
experiment designer, but currently must be set through PsyScript in the “RunLabel”
experiment attribute; it can be used to identify the data with the current subject, run,
script, etc.

Event tag: Enables recording of the Tag event attribute for the event that posted the RT[]
action. This can be used to label events other than by their name and/or type. This
string will appear on each line for which a response is recorded.

Stimulus: Enables recording of the stimulus (in an appropriate text form) of the event
that posted the RT[] action. If the event was a Text event, the text is the stimulus text
itself; otherwise, the text is either the name of the file, the name of a resource, or some
other element within the file that identifies the stimulus.

Response Label: Enables recording of the Label parameter of the RT[] action (see
“5.9.4.1 Available Actions”, p198 for a description of the RT[] action). This is used
by the experiment designer to label responses for analysis purposes.

Event that posted RT action: Enables recording of the name of the event that posted
the RT[] action.

Event during which response occurred: Enables recording of the name of the event
that was most recently started and was still active when the response occurred. This

Figure 152 – Data Info dialog
162

5.8.3 Experiment Attributes
may be different than the event that posted the RT[] action if: 1) another event has
started since the RT[] action was posted, or 2) the posting event ended, leaving the
RT[] action active (using the Active Until parameter; see “5.9.1 Conditions and Ac-
tions Dialog”, p193).

Event that removed RT action: Enables recording of the name of the event that would
have removed the RT[] action (had it not been triggered). This may be different than
the event that posted the RT[] action, if the Active Until parameter was used (see
“5.9.1 Conditions and Actions Dialog”, p193). If the RT[] action is scheduled to be
active until the end of the trial, TRIAL_END will be reported.

Event that RT is relative to: Enables recording of the name of the event that was used
for timing the response. By default, this is the event that posted the RT[] action, and
the time recorded is the number of milliseconds elapsed since the start of the event.
However, the RelativeToEvent parameter of the RT[] action can be used to time a
response relative to the start of another event. This allows RT[] actions posted by dif-
ferent events to time their responses relative to the start of the same event.

Mouse position: Enables recording of the X and Y display coordinates of the mouse po-
sition at the time the response occurred. X is measured in pixels from the left of the
screen, and Y from the top. (If multiple monitors are in use, X and Y are measured
relative to the screen with the menu bar.)

Key sequence: Enables recording of the sequence of keys recorded by the last Key Se-
quence event. See also “ Key Sequence Event Type”, p178.

Onset times for referenced events: Enables recording of the time, relative to the
start of the trial, at which each recorded event began. The “recorded events” are
events whose name has been recorded using one of the data items described above.

DonÕt include header information: Disables recording of subject and experiment in-
formation at the beginning of the data file. This creates “pure” data files, which can
facilitate importing data directly into other programs. The subject and experiment in-
formation can also be recorded in the log file (see “6.1.4 The Data File”, p217 and
“6.1.5 The Log File”, p222).

Summary timing statistics for conditions: Enables recording of the average dura-
tion of each event in each different type of trial (i.e. condition) in the experiment. This
information is recorded at the end of the data file.

Full timing statistics for conditions: Enables recording of the onset and duration of
every event in the experiment, sorted by condition. This information is recorded at the
end of the data file.

Data Variables

Data Variables specifies a list of variables that should be recorded with each line in the
data file. The variables are defined using the Trial Manager Variables dialog (see “5.10 Tri-
al Manager Variables”, p205, and “5.10.5 Trial Manager Variables Dialog”, p208).
163

 Part 2: Graphic Environment Reference
Input Devices

Input Devices specifies which of the available input devices will be checked for input
while the experiment is running. If a device is not included here, input from that device will
be ignored during the experiment.

Timer

Timer specifies the device that PsyScope will use for timing events. The default timing de-
vice is the Macintosh itself, providing 17-millisecond accuracy. If a CMU button box is
available, then Button Box can be selected for millisecond accuracy. Extensions can be
written to use other timing devices.

Figure 153 – The Input Devices dialog

Figure 154 – The Timer dialog
164

5.8.3 Experiment Attributes
Instructions File

Instructions File specifies a file, the contents of which will be displayed to the subject at
the beginning of the experiment. The file must be a plain text file. If the value of this at-
tribute is not set, no starting message will be shown.

While the subject is reading the instructions, the experiment can be precompiled. (See the
description of the Precompile attribute below, and “6.3 The Trial Monitor”, p238 for more
information on precompiling experiments.)

Debriefing File

Debriefing File specifies a file, the contents of which will be displayed to the subject at
the end of the experiment. The file must be a plain text file. If the value of this attribute is
not set, no ending message will be shown.

Trials per Rest/Num. Rests

These attributes specify the number of rest periods that will occur during the run of the ex-
periment; one or the other of these attributes can be used, but not both.

Trials per Rest schedules rest periods to occur after the specified number of trials. Num
Rests schedules the specified number of rest periods to occur during the entire experiment;
these are spaced evenly across the total number of trials in the experiment.

Rest Duration

Rest Duration specifies the minimum duration (in milliseconds) of the rest period. During
this period, the screen will display the message “You may take a rest”. The keyboard and
mouse are deactivated during this period as well (unless Command-. is pressed, in which
case the Break dialog will appear).

Once the rest period has elapsed, the message “Press any key to continue…” will be dis-
played. Then, pressing a key will begin the next trial of the experiment.

Special

Special sets the state (on/off) of a number of options that modify the way the experiment
is run. These are:

DonÕt show instructions: Causes the instructions and debriefing messages to be
skipped, even if the attributes for these messages have been specified.

DonÕt save screens: Disables PsyScope’s default behavior of saving the state of the
display before rest periods and when the experiment is interrupted (by pressing Com-
mand-.), and fully restoring the display when the experiment continues. Saving the
display preserves background elements (such as a ports, as well as any additional el-
ements that have been added during the course of the experiment). Disabling this be-
havior saves memory, especially on large screens, which require a significant amount
of memory to store the display. However, the experiment will resume with a blank
display, unless actions have been used to explicitly restore its contents.
165

 Part 2: Graphic Environment Reference
DonÕt automatically draw ports: Disables PsyScope’s default behavior to draw all
port borders at the beginning of each trial; this flag also overrides the Draw ports
when events start flag. When this option is selected, port borders will only be
drawn when the DrawPortBorders[] or DrawAllPortBorders[] actions are used
(see “5.9.4.1 Available Actions”, p198).

Draw ports when events start: Causes PsyScope to draw the borders of a port at the
beginning of the first event that uses that port, rather than at the beginning of the trial.
This option is overridden by the DonÕt automatically draw ports flag.

Don't automatically clear event stimuli: Changes the default value of the Clearing
event attribute from Always Clear to DonÕt Clear (see “ Clearing”, p180). This caus-
es PsyScope to leave stimuli active until they are cleared using the ClearStim[] ac-
tion (see “5.9.4.1 Available Actions”, p198).

Debugging mode: Used by each input and output device as appropriate. The only effects
to the standard devices are for the display: the experiment is run in a reduced-size
window and some timing interrupts are turned off.

Startrefs default from start: When the starting time for an event is unspecified, it is
scheduled to start at the end of the preceding event (i.e. the preceding event in the
template’s list of events). With this flag on, the default start reference is from the start
of the preceding event. You should not use this flag with the graphic environment,
since it assumes the usual default.

DonÕt hide cursor: Disables PsyScope’s default behavior, which is to hide the cursor
while the experiment is running.

Attempt to correct for unusual screen: Disables PsyScope’s default behavior,
which is to wait for a retrace signal from the display device before writing to the
screen. This option allows PsyScope to run with display devices that do not generate
a retrace signal. However, it should be used with caution, as it will prevent PsyScope
from synchronizing stimulus displays with the screen refresh.

Button Box input only: Disables CMU button box output, even when the button box
device is active. This is used to correct for an error in old versions of the button box
cable, and should not be used otherwise.

Store data at end of experiment: Causes all experiment data to be stored to disk at
the end of the experiment (or when it is interrupted, using Command-.), rather than
after the completion of each trial (which is the default). This saves time during the
intertrial interval (by limiting disk access). However, it introduces a risk of data loss
if the experiment does not end normally.

Preload all stimuli with precompiling: Causes PsyScope to load (and/or construct)
all stimuli used in the experiment into memory at the time the experiment is precom-
piled, rather than loading the appropriate stimuli at the beginning of each trial. This
saves time during the intertrial interval. However, depending upon the number of dif-
ferent stimuli in the experiment, and their size, this may require large amounts of
166

5.8.3 Experiment Attributes
memory, and may add substantially to the precompile time. (See “6.5.1 Precompil-
ing”, p246 and “ Preloading All Stimuli”, p250.)

Beep at start of rest period: Causes the system beep to be sounded at the start of each
rest period. This is useful for alerting the subject or experimenter that a rest period has
occurred.

Precompile

Precompile specifies the number of trials to compile before running the experiment. Se-
lecting All will cause all of the trials to be compiled; specifying a number will cause Psy-
Scope to precompile that number of trials before beginning the experiment, and to compile
the remainder on a trial-by-trial basis. (See “6.3 The Trial Monitor”, p238, for additional
information on precompiling experiments).

Resources

Resources specifies a list of files, containing Macintosh resources, to be opened before the
experiment is run. The resources contained in these files (e.g., ‘PICT’ and ‘snd ’ resources)
will be available for use as stimuli in the experiment. See also “6.1.3 Resources”, p216.

Optimization

Optimization specifies the level of optimization that PsyScope should use in compiling
the experiment. This influences both the speed of compilation and the amount of memory
that is used. By default, a very limited form of optimization is used — Optimize con-
stant-declared events only — in which the experiment designer must specifically an-

Figure 155 – The Resources dialog
167

 Part 2: Graphic Environment Reference
notate constant events (and this can be done only through PsyScript; see “Part 4: Scripting
Reference, 13.3.6.5 Constant Events in Factor Format”, p387).

The more general form of optimization is Standard optimization, which attempts to op-
timize every trial based on table cells selections (and the absence of side-effect operations).

In some cases, Standard optimization can actually cost more than it saves (both in terms
of speed and memory). This is most likely to be true of complex experiments with very little
redundancy across trials, or for experiments where PsyScripted assignment statements are
sued. In such cases, optimization should be disabled entirely (No optimization). (See also
“6.3.1 Trial Compilation Statistics”, p241 and “Part 4: Scripting Reference, 13.3.11.3 Fac-
tor Format Optimization”, p404.)

Decimal Places

Decimal Places specifies the number of digits that should be printed after the decimal
place when a floating-point trial variable is converted to a string (e.g. when a floating-point
variable is written to the data file).

Backcolor

Backcolor specifies the background color in the experiment window. This can be one of
the standard colors, or an arbitrary color specified through the standard Macintosh color
wheel.

Forecolor

Forecolor specifies the drawing color in the experiment window. This can be one of the
standard colors, or an arbitrary color specified through the standard Macintosh color wheel.

BBox Init

BBox Init specifies the state of the CMU button box output lines (including the three LED
lights) that will be set when the experiment begins.

Figure 156 – The Optimization dialog
168

5.8.4 Group Attributes
5.8.4 Group Attributes

There are no built-in attributes that are particular to groups; only custom and default at-
tributes are specified for a group.

5.8.4.1 Custom Group Attributes

Custom group attributes are used with the Vary by Group setting in the Attribute dialogs
(see “5.8.1.3 Attribute Dialogs”, p150). When a template or event is owned by more than
one group, Vary by Group gets a value for the attribute based on which group is currently
being used.

For an attribute to use Vary by Group, all of the owning groups must have a custom at-
tribute of the same name. This name will appear as one of the group attributes that Vary by
Group can link to. See also “ Vary by Block, Group”, p154.

5.8.4.2 Default Stimulus/Event/Trial Attributes

Values for attributes used by trials and events can be specified at the group level. Unless
these defaults are overridden at lower levels of the hierarchy, these value will be inherited
by all objects belonging the group. See “5.8.1.1 Attribute Inheritance”, p150 for more in-
formation.
169

 Part 2: Graphic Environment Reference
5.8.4.3 Group Attributes Dialog

The Group Attributes dialog is one of the standard attribute dialogs, described in “5.8.2 The
Standard Attributes Dialog”, p151. The attribute sets in the Group Attributes dialog are as
follows:

Custom Group Attributes (discussed in “5.8.4.1 Custom Group Attributes”, p169, cre-
ation described in “5.8.2.2 Custom Attribute Sets”, p156)

Default Stimulus Attributes (described in “5.8.7.3 Stimulus Attributes”, p181)

Default Event Attributes (described in “5.8.7 Event Attributes”, p176)

Default Trial Attributes (described in “5.8.6.3 Trial Attributes Dialog”, p174)

5.8.5 Block Attributes

There are no built-in attributes that are particular to blocks; only custom and default at-
tributes are specified for a block.

Figure 157 – The Group Attributes window

Figure 158 – Group attribute sets menu
170

5.8.5 Block Attributes
5.8.5.1 Custom Block Attributes

Custom block attributes are used with the Vary by Block setting in the Attribute dialogs
(see “5.8.1.3 Attribute Dialogs”, p150). When a template or event is owned by more than
one block, Vary by Block gets a value for the attribute based on which block is currently
being used.

For an attribute to use Vary by Block, all of the owning blocks must have a custom at-
tribute of the same name. This name will appear as one of the block attributes that Vary by
Block can link to. See also “ Vary by Block, Group”, p154.

5.8.5.2 Default Stimulus/Event/Trial Attributes

Values for attributes used by trials and events can be specified at the block level. Unless
these defaults are overridden at lower levels of the hierarchy, these value will be inherited
by all objects belonging the block. See “5.8.1.1 Attribute Inheritance”, p150 for more in-
formation.
171

 Part 2: Graphic Environment Reference
5.8.5.3 Block Attributes Dialog

The Block Attributes dialog is one of the standard attribute dialogs, described in “5.8.2 The
Standard Attributes Dialog”, p151. The attribute sets in the Block Attributes dialog are as
follows:

Custom Block Attributes (described in “5.8.5.1 Custom Block Attributes”, p171, cre-
ation described in “5.8.2.2 Custom Attribute Sets”, p156)

Default Stimulus Attributes (described in “5.8.7.3 Stimulus Attributes”, p181)

Default Event Attributes (described in “5.8.7 Event Attributes”, p176)

Default Trial Attributes (described in “5.8.6.3 Trial Attributes Dialog”, p174)

5.8.6 Trial Attributes

Trial attributes control features of individual trials in the experiment. Custom and default
attributes may also be set in templates.

Figure 159 – The Block Attributes dialog

Figure 160 – Block attribute sets menu
172

5.8.6 Trial Attributes
5.8.6.1 Custom Template Attributes

Custom template attributes are used with the Vary by Template setting in the Attribute
dialogs (see “5.8.1.3 Attribute Dialogs”, p150). When an event is owned by more than one
template, Vary by Template gets a value for the attribute based on which template (or fac-
tor table) is currently being used.

For an attribute to use Vary by Template, all of the owning templates must have a custom
attribute of the same name. This name will appear as one of the template attributes that
Vary by Template can link to. See also “ Vary by Template”, p154.

5.8.6.2 Default Stimulus/Event Attributes

Values for attributes used by events can be specified at the template level. Unless these de-
faults are overridden at the event level, these values will be inherited by all events belong-
ing the template. See “5.8.1.1 Attribute Inheritance”, p150 for more information.
173

 Part 2: Graphic Environment Reference
5.8.6.3 Trial Attributes Dialog

The Template Attributes dialog is one of the standard attribute dialogs, described in “5.8.2
The Standard Attributes Dialog”, p151. The attribute sets in the Template Attributes dialog
are as follows:

Trial Attributes (described below)

Custom Trial Attributes (described in “5.8.6.1 Custom Template Attributes”, p173,
creation described in “5.8.2.2 Custom Attribute Sets”, p156)

Default Stimulus Attributes (described in “5.8.7.3 Stimulus Attributes”, p181)

Default Event Attributes (described in “5.8.7 Event Attributes”, p176)

Figure 161 – The Trial Attributes dialog

Figure 162 – Trial attribute sets menu
174

5.8.6 Trial Attributes
5.8.6.4 Standard Trial Attributes

Condition Name

Condition Name specifies a pattern that will be used to generate a condition name to be
written to the data file. By default, the condition name of a trial is the concatenation of the
names of all the levels of factors (and items of lists) that are current for the trial.

The syntax of a condition name pattern is:

prefix<separators>suffix.

The names of the current levels will be inserted in place of the angle brackets (“<nb>”); the
level names will be concatenated, separating the names with separator.

For example, a crossing with levels “green”, “small”, and “verb” and a condition name pat-
tern “A-<.>-Z” would give “A-green.small.verb-Z” for the condition name.

If the angle-brackets do not appear in the condition name pattern, level names will not be
used at all.

ITI

ITI specifies the minimum time to wait from the end of the previous trial to the start of the
current trial. During this time, the trial will be built in memory, and all stimuli will be load-
ed in. If this internal overhead is greater than the time specified in ITI, the start of the trial
will be delayed even further until all overhead has been completed.

Actions

Actions specifies condition-action pairs for trial actions; these actions will be active for the
duration of the trial. Trial actions with Start and End conditions will occur at the start and
end of the trial, respectively. See “5.9 Conditions and Actions”, p192.
175

 Part 2: Graphic Environment Reference
5.8.7 Event Attributes

The Event Attributes dialog is one of the Standard Attributes dialogs, described in “5.8.1.3
Attribute Dialogs”, p150. The two attribute sets — stimulus attributes and event attributes
— are represented by the radio buttons Stimulus Attribs and Event Attribs.

Event attributes are common to all events.They include the event’s duration and any actions
that will occur during the event (see “5.9 Conditions and Actions”, p192).

Stimulus attributes are specific to the type of the event. They include the actual stimulus
that will be presented and its features. For example, Text events have stimulus attributes
for the font, size, color, etc. of the displayed text. Sound event stimulus attributes include
the sound’s volume and channel.

The event attributes are described below in “5.8.7.2 Event Attributes”, p179. Stimulus at-
tributes are described in “5.8.7.3 Stimulus Attributes”, p181.

Figure 163 – Event Attributes dialog
176

5.8.7 Event Attributes
5.8.7.1 Event Types

Clicking on the Event type pop-up menu opens the menu shown below. To change the
current event type, select a new event type from the menu. Each event type is described be-
low.

Time Event Type

Events of type Time present no stimulus. They are used for timed delays, or for null events
to which actions can be attached.

Text Event Type

Events of type Text present a line of text on the screen. The size, font, color, style, and po-
sition of the text can be manipulated through the event's stimulus attributes.

PICT Event Type

Events of type PICT present a picture stored in a PICT file or resource on the screen.

If the picture is in a resource, the resource file is usually specified in the Resources exper-
iment attribute (see “5.8.3.4 Standard Experiment Attributes”, p161 and “6.1.3 Resources”,
p216).

Document Event Type

Document events present text from a file on the screen; unlike the Text event type, the text
will be flowed within its display port (i.e. the text is drawn starting from the upper left cor-
ner of the port, and lines longer than the width of the port will be wrapped to the next line).

The file used by a Document event should be a plain text file. However, the file text can
contain special formatting commands to change the face of parts of the text (e.g underline

Figure 164 – Event types menu
177

 Part 2: Graphic Environment Reference
or bold a section). The formatting commands are part of the text, and will only be used
when the text is displayed by the event. The available commands are:

@b – Start making text bold
@i – Start making text italic
@u – Start making text underlined
@e – End all formatting

For example, given this text:

The @iquick@e sly @bfox@e jumped @uover@e the lazy @b@i@udog@e.

the Document event type will display:

The quick sly fox jumper over the lazy dog.

No effort is made to present Document text quickly or with millisecond accuracy. To
present Documents multi-line text stimuli quickly, use the Pasteboard event type.

Paragraph Event Type

Paragraph events are identical to Document events, except that the text to be displayed
is specified directly, instead of through separate file.

Pasteboard Event Type

Pasteboard events present a combination of screen sub-stimuli with many event types —
Text, PICT, Document, and/or Paragraph — as a single event. Each sub-stimulus in a
pasteboard still has the full set of stimulus attributes appropriate to its type, but no event
attributes.

A Pasteboard event is essentially a picture of its constituent stimuli. PsyScope presents it
like a PICT stimulus — as quickly as possible. If you need to present a Paragraph or Doc-
ument stimulus quickly, you can do so by putting it in a pasteboard.

A pasteboard has a display port like any other screen event type. When a pasteboard picture
is being generated, sub-stimuli are drawn in their own ports, but the drawing for each sub-
stimulus is clipped to the area of its port that overlaps the pasteboard’s port.

Key Sequence Event Type

A Key Sequence event is like a Paragraph event, except that the subject can type during
the event (using the keyboard) and the typed characters are displayed after the prompt para-
graph. You will usually set the duration of a key sequence to be Key[Return]; this way,
the subject can type a response and terminate it by hitting the Return key.

The characters typed by a subject during a Key Sequence event are stored in a key se-
quence buffer. The contents of this buffer can be recorded on every line of the data file by
turning on Key sequence in the Data Info experiment attribute (see “ Data Info”, p161).
The buffer is erased each time a Key Sequence event starts, and a character is added after
every key press by the subject.
178

5.8.7 Event Attributes
The best way to record a Key Sequence response is to add an RT[] action to the event with
the End condition. This way, the key sequence buffer contains the subject’s entire response
when the RT is recorded.

Sound Event Type

Sound events play labeled sounds from SoundEdit™ or Sound Designer II™ sound files.
Unless otherwise specified, the duration of a Sound even is Self Terminate.

If another duration is specified, it will either cause the sound to be cut off — unless DonÕt
Clear is specified for the Clearing attribute of the event (see “ Clearing”, p180) — or it
will cause the length of the event to extend beyond the end of the sound. If no label is given,
the entire file will be played.

5.8.7.2 Event Attributes

Duration

You can set an event’s duration in four ways:

a) by assigning it an absolute value (msec:).

b) by allowing it to last until the end of the trial (End of Trial).

c) by allowing the stimulus to run its course (Self Terminate). This is only appropriate
for certain types of events (e.g. Sound).

Figure 165 – The Duration dialog
179

 Part 2: Graphic Environment Reference
d) by allowing the event to continue until the subject has entered an input, or some other
condition has occurred (Conditions). The required input or condition is called a ter-
minating condition.

In the last case, you must specify a set of conditions which terminate the event. In this
mode, the Duration dialog is much like the Conditions dialog (see “5.9.2 Conditions Dia-
log”, p194). There is additionally, however, a Timeout condition, which specifies how
long to wait, in milliseconds, for the rest of the conditions to occur. (Of course, Start and
End are not valid duration conditions.)

When a new event is created, PsyScope assigns it a default duration value, which depends
on the event’s type. For example, Time events are assigned a default duration of 500 msec,
while Sound events play out the sound.

Actions

Actions specifies a list of sets of conditions-actions action pairs that will be activated when
the event runs. See “5.9 Conditions and Actions”, p192.

Clearing

Clearing specifies the manner in which the stimulus will be cleared. The possible values
are:

Always Clear: The stimulus will be cleared automatically at the end of the event. This
is the default.

Don't Clear: The stimulus will not be cleared automatically. In this case, the stimulus
will never be cleared, or it can be cleared using the ClearStim[] action (see “5.9.4.1
Available Actions”, p198).

Use Mask: When the stimulus would normally be cleared, it will be masked instead.

The Use Mask option is valid only for event types that include a notion of masking. The
Text event type most often utilizes masking; Text events have a Text Mask attribute,
which is a character used to replace all of the characters of the displayed text.

Tag

Tag is useful for labeling events in the data file. PsyScope does not use the Tag attribute for
any other purpose. See also “ Data Info”, p161.

Load Time

When Load Time is not specified, the stimulus is loaded at the beginning of the trial and
unloaded at the end of the trial. Specifying Load Time causes the stimulus to be loaded im-
mediately before it is displayed, and unloaded immediately after.

The value of the Load Time attribute specifies how much time — in milliseconds — to al-
low for loading the stimulus. If loading takes less than this amount of time, everything will
180

5.8.7 Event Attributes
run on schedule; if loading actually takes longer than this, event execution will be delayed
until the stimulus can be loaded.

See also “6.5.2.1 Load Time”, p247.

5.8.7.3 Stimulus Attributes

The stimulus attributes for an event determine features of the stimulus that are particular to
the type of the event. Below is a list of the stimulus attributes for each event type, along
with a short description of what each attribute does.

Time Attributes

The Time event type has no stimulus attributes.

Text Attributes

Stimulus: A string containing the text to be displayed.

Style: The style of the text. Specifies font, size, face, color, and mode as one attribute;
this specification is overridden by the individual attributes for these qualities. See
“5.8.8.3 Style Dialog”, p185.

Font: The font in which the text will be drawn.

Size: The point size of the text.

Face: The face of the text (e.g. bold, italic).

Color: The color in which the text will be drawn.

Mode: The drawing transfer mode of the text.

Port: The stimulus port in which the text will be drawn. (See “5.8.8.4 Ports and Positions
Dialogs”, p187.)

Position: The position of the text within the stimulus port. (See “5.8.8.4 Ports and Posi-
tions Dialogs”, p187.)

Degrade: The amount by which the text should be degraded.

Special: Special qualities of the stimulus to turn on or off:

Follow previous text: If this flag is on, the Position attribute is not used
directly to position the stimulus; instead the text is positioned just after
the end of the previous text stimulus. The Position attribute is used in-
directly: the Position horizontal value is used to specify an extra hori-
zontal offset. (The Positions dialog does not currently recognize the
different uses of the Position attribute.) When Follow previous text
is on, lines of text are automatically “wrapped” within the port.
181

 Part 2: Graphic Environment Reference
Same as previous text This flag works like Follow previous text, but
the stimulus is positioned at the same place as the previous text stimulus.
In this case, both the horizontal and vertical values in the Position at-
tribute are used as offsets.

Draw in masked form: If this flag is on, the text is always drawn in
masked form. See “ Clearing”, p180.

Text Mask: The character to use when masking the stimulus. See “ Clearing”, p180.

Flip: Whether the stimulus should be flipped horizontally or vertically before being dis-
played.

PICT Attributes

Picture: The name of the PICT file or resource to be displayed.

Port: The stimulus port in which the picture will be drawn (see “5.8.8.4 Ports and Posi-
tions Dialogs”, p187). Unless the Draw actual size flag is on (in the Special at-
tribute; see below), the PICT will be scaled to fit into this port.

Mode: The drawing transfer mode for the PICT.

Degrade: The amount by which the picture should be degraded.

Special: Special qualities of the stimulus to turn on or off:

Keep picture in memory: Specifies that the pict should be maintained in
memory after it is read from disk. See “ Keeping Stimuli in Memory”,
p251.

Use default colors: If the default drawing colors have been changed (see
“ Forecolor”, p168 and “ Backcolor”, p168), color PICTs may need this
flag to display in reasonable colors (by ignoring the foreground and
background color settings).

Draw actual size: If this flag is on, the PICT will be drawn in its native
size, centered in its port. PICTs are usually scaled to fit in their ports.

Depth: The depth in pixels of the stimulus; this controls the number of colors to use when
drawing the picture and the amount of memory it will use when stored.

Flip: Whether the stimulus should be flipped horizontally or vertically before being dis-
played.

Document Attributes

File: The name of the document to be displayed.
182

5.8.7 Event Attributes
Style: The style of the text. Specifies font, size, face, color, and mode as one attribute;
this specification is overridden by the individual attributes for these qualities. See
“5.8.8.3 Style Dialog”, p185.

Font: The font in which the text will be drawn.

Size: The point size of the text.

Face: The face of the text (e.g. bold, italic)

Color: The color in which the text will be drawn.

Mode: The drawing mode of the text.

Port: The stimulus port in which the text will be drawn. (See “5.8.8.4 Ports and Positions
Dialogs”, p187.)

Paragraph Attributes

Paragraph: The paragraph of text to be displayed.

Style: The style of the text. Specifies font, size, face, color, and mode as one attribute;
this specification is overridden by the individual attributes for these qualities. See
“5.8.8.3 Style Dialog”, p185.

Font: The font in which the text will be drawn.

Size: The point size of the text.

Face: The face of the text (e.g. bold, italic)

Color: The color in which the text will be drawn.

Mode: The drawing mode of the text.

Port: The stimulus port in which the text will be drawn. (See “5.8.8.4 Ports and Positions
Dialogs”, p187.)

Pasteboard Attributes

Stimuli: A list containing Text, PICT, Document, and Paragraph stimuli to be dis-
played in this pasteboard. See “5.8.8.2 Stimuli Dialog”, p185.

Port: The stimulus port in which the pasteboard will be drawn. (See “5.8.8.4 Ports and
Positions Dialogs”, p187.)

Degrade: The amount by which the pasteboard should be degraded.

Depth: The depth in pixels of the stimulus; this controls the number of colors to use when
drawing the pasteboard and the amount of memory it will use when played.
183

 Part 2: Graphic Environment Reference
Flip: Whether the stimulus should be flipped horizontally or vertically before being dis-
played.

Key Sequence Attributes

Prompt: The prompt text to be shown to the subject. This is in the same format as a
Paragraph event’s Paragraph attribute.

Style: The style of the text. Specifies font, size, face, color, and mode as one attribute;
this specification is overridden by the individual attributes for these qualities. See
“5.8.8.3 Style Dialog”, p185.

Font: The font in which the text will be drawn.

Size: The point size of the text.

Face: The face of the text (e.g. bold, italic)

Color: The color in which the text will be drawn.

Mode: The drawing mode of the text.

Port: The stimulus port in which the prompt and response text will be drawn. (See
“5.8.8.4 Ports and Positions Dialogs”, p187.)

Sound Attributes

Sound: The label (or region) of the sound to play. If this is not specified or empty (“”),
the whole file will be played.

File: The SoundEdit™ or Sound Designer II™ file which contains the sound.

Volume: The volume of the sound. 0 = lowest; 255 = loudest.

Channel: Whether to play the sound through the left or right channel.

Feature: Special features of the sound:

Keep sound in memory: Specifies that the sound should be maintained in
memory after it is read from disk. See “ Keeping Stimuli in Memory”,
p251.

Play in parallel: Allows the sound to be played simultaneously with other
sounds. If you try to run two sound events simultaneously without this
flag, one sound will wait for the other to end.
184

5.8.8 Stimulus Attribute Dialogs
5.8.8 Stimulus Attribute Dialogs

The various stimulus attributes of events require a number of different dialogs. These dia-
logs are opened in the event attributes dialog for the event.

5.8.8.1 Stimulus Dialog

The Stimulus dialog sets the value of the stimulus for an event. The actual dialog that ap-
pears differs according to the event type. It can be standard single line text, free text field,
standard Macintosh file finding dialog, or the picture finding dialog.

5.8.8.2 Stimuli Dialog

Certain kinds of events (such as the Pasteboard) are made up of several stimulus compo-
nents. The set of components is modified through the Stimuli attribute of the event.

Setting the stimulus list opens the Stimuli dialog. This dialog simply displays a list of stim-
uli with New, Delete, and Select buttons. Stimuli are added and removed from this list in
the standard way. Double-clicking on an item in the list or clicking Select opens the Stim-
ulus Attribute dialog for that stimulus. (The Stimulus Attribute dialog is like the Event At-
tributes dialog, except that it only displays stimulus attributes.)

5.8.8.3 Style Dialog

The attributes for several types of events use the Style dialog. In particular, the Style, Font,
Size, Face, Color, and Mode attributes are all set via the Style dialog. For attributes other
than Style only the part of the dialog pertaining to the selected attribute will be active.

The main component of the Style dialog is a box displaying a sample stimulus, in the style
that is currently set. Below this box are several controls, namely, the font menu, checkbox-
es for various text faces, the point size and size menu, the color menu, and the drawing
mode menu.

Figure 166 – The Style dialog
185

 Part 2: Graphic Environment Reference
The Font Menu

The font menu is a pop-up menu of all the fonts currently available to PsyScope. There is
no guarantee that a font selected in this list will be available on another machine. (If a font
cannot be found, the system font (Chicago) is used.)

Text Face Checkboxes

These eight checkboxes — Bold, Italic, Underline, Invert, Outline, Shadow, Con-
dense, and Extend — affect the style of text in the usual way.

The Point Size

Size of the text is set through a text box to the right of the font menu. The size can be
changed by pulling down the menu beside the box and selecting one of the standard sizes,
or by typing a new size directly into the box.

The Color Menu

This menu selects the color of the stimulus. Possible selections are Default (see “ Forecol-
or”, p168), any of the standard colors, or Other....

Selecting Default causes the sample stimulus to be displayed in black, and the actual stim-
ulus to be displayed in whatever color is specified for in the ForeColor attribute of the ex-
periment.

Selecting Other... opens the standard system color picker dialog, from which you can se-
lect any color available to the system.

The Mode Menu

This menu selects the drawing mode for the stimulus, which affects the way the stimulus
drawing interacts with the background or acts when it is drawn over another stimulus. The
choices are Copy, Or, Xor, Erase, Inverse, InvOr, InvXor, and InvErase:

Copy simply replaces anything in the destination screen area with the text stimulus, writ-
ing over that area without regard for what was already there.

Or draws the text without affecting screen pixels except where the pixels for a letter is
placed, thus “overlaying” the destination area with the text.

Xor draws the text without affecting pixels except where the pixels for a letter is placed;
for these pixels, pixels which are off will be turned on, and pixels which are already
on will be turned off.

Erase inverts the text before it draws it. In the standard black-on-white mode, it essen-
tially writes in white instead of black.

Inverse, InvOr, InvXor, and InvErase perform similar operations, but invert the text
first.
186

5.8.8 Stimulus Attribute Dialogs
5.8.8.4 Ports and Positions Dialogs

Screen events (Text, PICT, Document, Paragraph, and Pasteboard are the standard
ones) require a display position. This is accomplished in PsyScope by giving the event a
port.

Ports are independent shapes that you manipulate with the Ports/Positions dialog. A port is
basically a rectangle, round-cornered rectangle, or oval on the screen. It also has a frame
and a collection of positions. You can specify a port size in absolute pixels or percentages
of the screen.You can specify its location using pixel offsets, percentages, or alignments
with an edge on the screen.

Text events need both a port and a position within the port. A single port can own many
positions.

A position is can be specified relative to its owning port or to the screen, using absolute
pixels or with percentages. A position also has an alignment parameter which specifies how
text is drawn relative to the position (centered, to the right, to the left, above, or below).

The default port for stimuli in a pasteboard is the pasteboard’s port. When a port is specified
for a stimuli, the port is still defined relative to the screen, and then all stimulus ports are
clipped to the pasteboard’s port.

Advanced Note: Ports have a built-in position called the hot spot; it is always specified rel-
ative to the port. When you set the location for a port, you are actually positioning the
hot spot relative to the screen.The hot spot’s position relative to the screen and relative
to the port give the port its location. An example use of the hot spot is to align one of
the port’s vertical edges to the center of the screen.

The port and position of a stimulus must be set separately, since they are controlled by sep-
arate attributes. The default port is the entire screen and the default position is centered
within the port.
187

 Part 2: Graphic Environment Reference
The same dialog is used to set ports and positions, but it operates in two modes. When you
open it as the Ports dialog, you can create ports and positions. When you open it as the Po-
sitions dialog, you can only create positions and only for the stimulus’ current port.

When the Ports/Positions dialog is opened, it blanks the screen and opens the dialog shown
in the figure above. Behind the dialog, the points and positions are drawn exactly where
they would be in a run of the experiment.

On the left is a list of all ports in the script. When a port is selected, the list of positions
owned by that port is shown on the right. In positions mode, the port selection in the left
list cannot be changed.

The Display checkmark lets you toggle the display of the port in the background area. This
has no affect on how the experiment is executed.

The background graphic versions of ports and positions can be dragged and resized win-
dow-style.

Double-clicking on a position or port in the display or in the list opens a dialog to control
the port or position attributes more precisely (see below).

New ports and positions are created with the New PortÉ and New PositionsÉ buttons,
both of which open the New Port/Positions dialog (see below). Positions that you create are
added to the currently selected port.

To actually assign a value to the attribute that you clicked to open the dialog, you must click
the Set button. In port mode, the currently selected port will be made bold in the list, and
that port will be written out for the attribute. Similarly, in positions mode, the currently se-
lected position is used.

Hitting Cancel will revert all changes made in the dialog since it was opened, including the
creation of new ports and positions.

Figure 167 – The main Ports dialog
188

5.8.8 Stimulus Attribute Dialogs
New Port Dialog

Hitting the New PortÉ button in the Positions dialog opens the New Port dialog. This di-
alog allows you to name the new port and add some initial positions to the port.

The top text field in the dialog specifies the new port’s name. The Points pop-up menu sets
the number and arrangement of points to be created for the port.

If an arrangement besides No Points or One Point is selected, then an Inset field will ap-
pear; this percentage value specifies how far in from the edge of the port, as a percentage
of the port’s width, the points should be placed. For instance, a circle at 25% will have a
radius that is 1/4 the size of an edge of the port (for a square port). Negative values for the
Inset are OK.

If the Circle arrangement is selected, a Number of points field will appear. The number
you type in this field is the number of points that will be used in making the circle.

New Positions Dialog

The New Positions dialog works just like the New Port dialog, except that the name field
is usually missing. If One Point is selected in the pop-up, however, that point can be named
with the text field.

Figure 168 – The New Port dialog
189

 Part 2: Graphic Environment Reference
Port Info Dialog

The Port Info dialog is opened by double-clicking on a port in the list in the Positions dia-
log, or by double-clicking on its graphic display in the background. This dialog gives you
greater control over the details of a port.

The text field at the top of the port contains the port name. Below the name is a Shape pop-
up, which controls the shape of the port. The possible shapes are Rectangle, Rounded,
and Oval.

The Width and Height of the port can be specified by an absolute number of pixels, or as
a percentage of the screen. For instance, to make the port half as wide as the screen, set
Width to “50%”.

The Horizontal and Vertical position of the port can also be in absolute pixels or percent-
age, or the port can be aligned to an edge of the screen. If the port is not aligned to an edge
of the screen, the absolute pixel offset or percentage offsets are applied to the center of the
port (unless the hot spot has been modified, see“5.8.8.4 Ports and Positions Dialogs”,
p187).

The text box at the bottom is used to specify the thickness of the border that is drawn around
a port. A thickness of “0” makes the border invisible.

Figure 169 – The Port Info dialog
190

5.8.8 Stimulus Attribute Dialogs
Position Info Dialog

The Position Info dialog is opened by double-clicking on a position in the list in the Posi-
tions dialog, or by double-clicking on its graphic display in the background. This dialog
gives you greater control over the position definition.

The point name is shown in the top text field; the port that owns the position is also shown.

The Horizontal and Vertical values for a point are handled the same as for ports. The lo-
cation of positions can be specified relative to its owning port, or relative to the screen; this
is controlled with the Relative to Port checkboxes.

The Align pop-up menus specify how text drawn at the position should be located relative
to the position; the alignment is demonstrated in the graphic display using the position
name.

Hot Spot Dialog

The hot spot (see note at “5.8.8.4 Ports and Positions Dialogs”, p187) has parameters like
a regular position, so the dialog is mostly the same. The hot spot is always positioned rela-
tive to the port. Since there is no alignment value, the Relative to Port checkboxes and
Align pop-ups are missing in the dialog.

There is an extra checkbox, Auto-position. If this is checked, then the hot spot is automat-
ically moved to give the expected port alignments when values in the Port Info dialog are
changed. Unchecking this box keeps the hot spot definition fixed.

Figure 170 – The Position Info dialog
191

 Part 2: Graphic Environment Reference
5.9 Conditions and Actions

Actions are operations that can be performed during the running of a trial. Unlike events,
they have no duration, and they trigger when one of a set of conditions occurs. Anything
that can be done by the Trial Manager can be done via an action— running or ending an
event, showing, clearing, or masking a stimulus, retrieving and storing response informa-
tion, setting variable values, as well as miscellaneous other things. (For the complete list of
available actions, see “5.9.4.1 Available Actions”, p198.)

Most actions take parameters which determine how they will be performed. The parameters
are shown within brackets. For example, the Beep[] action plays “correct beep” if no pa-
rameters are specified, or any available ‘snd ’ resource that is given as a parameter (e.g.,
Beep[“Wild Eep”]). RT[] is an action that records a response in the data file (or to a trial
variable) with the time at which it was received and the state of all active input devices at
that time (see “ Input Devices”, p164 for a description of how to specify which input de-
vices are active).

Each action has a set of conditions under which it will be performed. The types of condi-
tions are as follows:

1) Input states, pertaining to any of the available input devices (Mouse, Key, and Button
Box, plus any custom input devices that have been installed in the version of Psy-
Scope that you are running).

2) The start of the event or the trial (End).

3) The end of the event or the trial (Start).

4) A trial variable expression (When); see “5.10 Trial Manager Variables”, p205.

5) A script evaluation (ScriptWhen).

Each action has a specific time during which it is active, or waiting for one of its conditions
to occur so that it can execute. An action becomes active when it is posted by an event or
trial that has the action in its Actions attribute; events and trials post all of their actions
when they are themselves started.

Unless otherwise specified, an action will be active until the end of the event/trial that post-
ed it, or until it is triggered once. This can be changed in a couple of ways: by modifying
the active until setting for the action, or by allowing multiple instances of the action.

The active until setting for an action controls the maximum time frame in which the action
will be active. An action can be made active until:

• End of This Event – the end of the posting event

• End of [Event] – the end of some arbitrary event in the trial

• End of Trial – the end of the entire trial
192

5.9.1 Conditions and Actions Dialog
• At Least One Instance – after at least one instance is triggered or the end of the post-
ing event, whichever is later

• All Instances – after all of its instances have been triggered

The instances setting of an action determines how many times it can be triggered by its con-
ditions. By default, the number of instances is set to 1, but you can specify as many as
32,767. “-1” can be used to specify an infinite number of instances. (In this case, the active
until setting should not require all instances to be triggered!) If an action can be triggered
by more than one condition, instances are counted independent of which condition triggers
the action.

The meaning of the Start and End conditions changes depending on whether an action is
posted by an event or by a trial. If it is posted by an event (i.e. the action is in an Actions
event attribute), Start means the end of the event; if the action is posted by a trial (i.e. the
action is in an Actions trial attribute), Start means the start of the trial. End changes mean-
ing similarly.

5.9.1 Conditions and Actions Dialog

The Conditions and Actions dialog is used to specify condition-action pairs for an event or
a trial. The main element of the dialog is a list containing condition-action pairs.

Each condition-action pair consists of two boxes: the left box contains a list of conditions
and the right box contains the list of actions to be triggered by these conditions. To add an
empty condition-action pair to the list, click the New button.

Figure 171 – The Actions dialog
193

 Part 2: Graphic Environment Reference
To add, delete, change a condition, double-click on conditions box; this will open the Con-
ditions dialog (see “5.9.2 Conditions Dialog”, p194).

To add individual actions for a condition-action pair, select either box and click on the New
menu that appears above the actions column. The New menu contains all available actions.
Selecting one of the actions will add it to the condition-action pair.

Double-clicking on an action lets you to set the parameters of the action through the Param-
eters dialog (see “5.9.5 Parameters dialogs”, p205).

To delete an action, select it and press the Delete key. Actions can be cut and pasted using
the standard Edit menu items.

The Setting pop-up menu appears at the bottom of the dialog when something is selected
in the condition-action list; it refers to either the entire condition list or to a particular action
— whichever is selected. This menu is just like the pop-up menu for items in the Attribute
dialog (see “5.8.2 The Standard Attributes Dialog”, p151).

Also, when an action is selected, an Active Until pop-up and Maximum Instances field
appear at the bottom of the dialog for editing active until and instances for the action. See
“5.9 Conditions and Actions”, p192 for a discussion of these parameters.

5.9.2 Conditions Dialog

The Conditions dialog allows you to specify the conditions under which actions will occur.
It lists all of the possible triggering “devices”, with checkboxes for turning them on and off.
The standard available devices are Mouse, Key, and Button Box, plus the “virtual” devic-
es Start, End, When, and ScriptWhen. More devices may appear in your list if you have
Extensions installed in your copy of PsyScope.

Figure 172 – The Conditions dialog
194

5.9.3 Condition Parameter Dialogs
When a device is checked, bulleted information appears to the right of the device name; this
is the device’s input parameter. For example, the Key device takes parameters specifying
which keys to look for. The device together with its parameters make a single condition.

To change the device parameter, click on the bulleted information. The dialog that is
opened will be specific to the input device. These dialogs are described below for each of
the standard devices.

5.9.3 Condition Parameter Dialogs

5.9.3.1 Button Box Parameter Dialog

The Button Box condition is used to detect responses through the CMU button box. The
button box can detect button presses and releases, voice start and stops (through a micro-
phone plugged into the button box), and external line inputs.

A single button box condition can be used to watch multiple button, voice, and line inputs.
However, the on/off “direction” of the response must be the same for all of the inputs; e.g.
you can look for either of two buttons to be pressed, but a condition cannot look both for
one button to be pressed and another to be released.

The Press and Release checkboxes at the bottom of the dialog control whether the condi-
tion watches for button presses or releases (or voice starts or ends, or line input ons or offs).

The button icons, microphone icon, and line input checkboxes control which parts of the
dialog will be watched. To toggle a button on or off, click on it.

The Modem and Printer radio buttons at the top of the dialog set where PsyScope expects
to find the button box connected to the machine. Unlike the rest of the dialog, which applies

Figure 173 – The Button Box Condition Parameter dialog
195

 Part 2: Graphic Environment Reference
to the particular condition being set, this setting is stored globally (as an experiment at-
tribute).

The Test Button Box button at the bottom right will put the dialog into testing mode. The
button box should be connected and turned on before this button is hit. In testing mode, you
can hit buttons and get feedback in the dialog to test the button box. You can also test the
output lights using the light icons in the dialog above the buttons; clicking on a light should
toggle its state both in the dialog and on the real button box. Click on End Testing Mode
to return to the normal mode of the dialog.

5.9.3.2 Key Parameter Dialog

The Key device is used to watch for input from the standard Macintosh keyboard. This de-
vice can detect single key presses or combinations of keys using Command-, Shift-, Con-
trol-, and Option- modifiers.

For each Key condition, you can detect for multiple key combinations; these are listed in
the main part of the dialog. The keyword “Any” (added to the list by hitting the ÒAnyÓ but-
ton) can be used to match any (non-modifier) key press.

Clicking the Add button adds a new line to the list of key combinations (setting it to Any
as the default).

If no items are selected in the list, you can also add a combination by typing it. You can
change a combination by selecting it in the list and typing a new combination.

Clicking on the Delete button when a combination is selected will delete the combination.

When you set a key combination through the Key condition parameter dialog, it usually
reads your input combination in a keyboard-independent manner. When the Match phys-
ical key checkbox is on, the dialog reads the keyboard directly and stores information for
exactly the key you pressed. This can be useful if you want to use the function keys on an
extended keyboard.

Figure 174 – The Key Condition Parameter dialog
196

5.9.3 Condition Parameter Dialogs
When the Enable keyboard shortcuts checkbox is on, you can use the usual keyboard
commands to manipulate items in the dialog: e.g. hit Return for the OK button, hit the Delete
key to delete a combination, etc. You may need to turn this checkbox off in order to set cer-
tain key combinations.

5.9.3.3 Mouse Parameter Dialog

The Mouse device is used to watch for input from the standard Macintosh mouse. This de-
vice can detect button clicks and mouse movement.

Turn on the Click checkbox to detect mouse button presses. Turn on the Movement check-
box to detect mouse movement.

5.9.3.4 Start/End Parameter Dialog

The Start and End virtual devices are triggered at the start or end of the posting event or
trial (see “5.9 Conditions and Actions”, p192).

Parameters are not usually assigned for conditions using these devices, but you can specify
a trial variable expression as a parameter; when a trial variable expression is specified, the
condition will trigger only if the expression evaluates to true.

Clicking the Always radio button in the Start/End Condition Parameter dialog causes the
condition to always trigger when the trial/event starts/ends. Clicking If Expression: lets
you specify a trial variable expression.

Figure 175 – The Mouse Condition Parameter dialog

Figure 176 – The Start/End Condition Parameter dialog
197

 Part 2: Graphic Environment Reference
5.9.3.5 When Parameter Dialog

The When virtual device is used to poll the value of a trial variable expression (see “5.10
Trial Manager Variables”, p205); it triggers when this expression evaluates to true.

The When Condition Parameter dialog is a simple text dialog that lets you enter the trial
variable expression.

5.9.3.6 ScriptWhen Parameter Dialog

The ScriptWhen virtual device is used to poll the value of a PsyScript entry. The condi-
tions triggers when the content of the entry has the value true. See “, Chapter 12. PsyScript
Reference”, p319 for more information on PsyScript.

The Link to Entry dialog is used to set the parameter for a ScriptWhen condition. (See “
Script Linked”, p155.)

5.9.4 Actions List Dialog

The Actions List dialog is used to describe a list of actions; it is used for setting the value
of a field or custom attribute with type Action List.

The Actions List dialog works just like the actions box of a condition-action pair in the
Conditions and Actions dialog (see “5.9.1 Conditions and Actions Dialog”, p193).

5.9.4.1 Available Actions

This is a list of all of the standard actions available in PsyScope. Your copy of PsyScope
may have more actions if an extension has been installed.

AbortEvent[]
Parameters: Event

This action aborts the specified event, clearing the stimulus, if appropriate. It also:

• deactivates any actions that are linked to the event.

• marks the time the event ended, and computes the event's duration.

AddToList[]
Parameters: LValue, Expression

This action is used to add a value to a trial variable of List type. LValue should be
a variable expression that evaluates to a array variable, and the result of evaluating
Expression is appended to this array. (See also “5.10 Trial Manager Variables”,
p205.)
198

5.9.4 Actions List Dialog
BBoxOut[]
Parameters: Value, Mode

This action sends bbox output codes directly to the box, without the need for a BBox
event. The syntax is:

Value an integer value in [0..255] representing the decimal value of the bi-
nary lines to be manipulated

Mode (optional: defaults to copy_mode)

"copy_mode" - change the bbox output state to Value.

"assert_mode" - turn on the bits that are on in Value.

"deassert_mode" - turn off the bits that are on in Value.

"xor_mode" - exclusive-or the current state with Value.

Beep[]
Parameters: Beep

This action plays a sound stored in an ‘snd ’ resource, with the name Beep. If Beep
is not specified, “correct beep” is used.

The ‘snd ’ resource must be in an open resource file. See “6.1.3 Resources”, p216.

CancelAction[]
Parameters: Action, Stored with, Type

This action removes either a specified action or all actions (controlled by the Action
parameter) from the action list of either a specified event or all events (controlled
by the Stored with parameter) triggered by either a particular condition or any
condition (controlled by the Type).

If an action name is specified in Action (e.g. RT), only actions with that name will
be removed.

If an event name is given in Event, only actions to be posted by that event will be
removed.

If a condition device name is given in Type (e.g. Start, End, Mouse), only actions
that depend on that device will be removed.

There is a technical interaction between CancelAction[] and the way in which ac-
tions are grouped into action-condition pairs: when any action of a particular con-
dition-action pair is cancelled, all of the actions in the pair are cancelled.
199

 Part 2: Graphic Environment Reference
Note: CancelAction[] can only remove actions that have not yet been executed.

ChanceEvent[]
Parameters: Event, Chance

This action is like RunEvent[], except that the event is run only with the probability
given in Chance. Chance can be a number between 0 and 1, or a trial variable ex-
pression that evaluates to a number.

ClearScreen[]
Parameters: None

This action erases the screen, using the global background color. (See also “ Back-
color”, p168.)

ClearPort[]
Parameters: Event

This action erases the port that is used by the specified event. Event must be of type
Text, PICT, Document, Paragraph, Pasteboard, or Key Sequence. The port
boarder is unaffected.

ClearStim[]
Parameters: Event

This action clears the stimulus associated with the specified event. It also marks the
time at which this occurs, computing and storing the actual duration for the event.

It does not perform the scheduling operations of EndEvent[]; these will be per-
formed when the scheduled end of the event is reached (if the event is currently run-
ning).

DrawAllPortBorders[]
Parameters: None

This action draws the borders of all stimulus ports that are used by screen events in
the experiment.

If different trials use different stimulus ports, then this action can only draw ports
that it knows are going to be used. If the experiment is precompiled (see “6.5.1 Pre-
compiling”, p246), then all ports will always be known at runtime. Otherwise, the
only ports that can be drawn are those used by events which have been compiled so
far.

DrawPortBorder[]
Parameters: Event
200

5.9.4 Actions List Dialog
This action draws the port border for the stimulus port of the specified event. Event
must be of type Text, PICT, Document, Paragraph, Pasteboard, or Key Se-
quence.

EndEvent[]
Parameters: Event

This action ends the specified event, just as if its Duration terminating condition
had been met.

MaskStim[]
Parameters: Stimulus Event, Mask, Attrib Event

This action masks the stimulus associated with Stimulus Event.

By default, MaskStim[] uses the mask specified as the Mask attribute for the event;
however, an optional a mask stimulus (for Text stimuli, this is a character) can be
specified as the Mask parameter.

Also, an optional Attrib Event can be specified as a source for non-Stimulus at-
tributes, just as with ShowEvent[].

NewListItem[]
Parameters: LValue

This action extends the size of the trial variable array given in LValue; the value of
the new item in the list is undefined. (See also “5.10 Trial Manager Variables”,
p205.)

NextCrossing[]
Parameters: Factor

This action causes a new cell to be selected in a factor set — whichever set includes
Factor. The new cell will be used for the next trial.

This action is intended for use on factor sets with crossing type Fixed (see “5.7.2.2
Table Info Dialog”, p140).

QuitBlock[]
Parameters: Block Name, Forward Lists

This action is used to skip any remaining trials in the current block. The current trial
continues to execute normally.

If there are multiple levels of blocks in the experiment hierarchy, then QuitBlock[]
quits within the lowest-level block by default, continuing within that block’s owner
(if there are more blocks to execute). To quit a higher-level block, you can specify
which block to quit in Block Name. Alternatively, you can specify which block to
quit as a number; this number specifies how many hierarchical levels of blocks to
201

 Part 2: Graphic Environment Reference
quit (thus, the default behavior is equivalent to specifying “1” in Block Name).

By default, when trials in the block are skipped, any lists connected to the blocks
are left unaccessed for the trials which are not executed. If Forward Lists is set to
“True”, then for each factor set connected to the block and its owners, a cell is se-
lected for each trial that is not executed; this insures that cells are assigned to trials
consistently, whether or not they are run.

QuitTrial[]
Parameters: None

This action ends the current trial. Any trial actions which execute on the End[] con-
dition will be performed.

RemoveFromList[]
Parameters: LValue, Expression

Given an array trial variable in LValue and an index into this list in Expression,
the indexed item is removed from the list. The list is indexed starting with 1. (See
also “5.10 Trial Manager Variables”, p205.)

RemovePortBorder[]
Parameters: Event

This action removes the port border for the stimulus port of the specified event.
Event must be of type Text, PICT, Document, Paragraph, Pasteboard, or Key
Sequence.

RerunTrial[]
Parameters: Trial Number, When, Arrange

This action tags the trial numbered Trial Number (or the current trial if none is
specified) to be run again.

Trial Number is the Trial’s absolute trial number; this specification can be in the
form of a number or a trial variable expression (see also “5.10 Trial Manager Vari-
ables”, p205).

The When parameter specifies when the trial should be re-run; the possible values
are Mix and End. Mix specifies that the trial re-run should be mixed in with the re-
maining first-run trials, while End specifies that the re-run should be delayed until
all of the first-runs are done. If a trial is re-re-run with End, the second-time re-runs
will be performed after the first-time re-runs are complete.

The Arrange parameter specifies an order within the two When types; the possible
values are Start, End, and Random. Start specifies that the trial should be re-run
before any other trials currently scheduled for re-run in its set (Mix or End). End
specifies that it should be re-run after the other re-run trials. Random specifies that
it should be rescheduled at a random position within its re-run set.
202

5.9.4 Actions List Dialog
ReverseVideo[]
Parameters: None

This function switches the default foreground and background colors for screen
stimuli. See also “ Backcolor”, p168 and “ Forecolor”, p168. If no colors have been
set, then screen stimuli will appear white against a black background, as opposed to
the Macintosh’s usual black-against-white.

RT[]
Parameters: Label, Relative to, Storage Variable, Flag

This action records the state of all input devices and stores this either: a) in the data
file, or b) in a specified trial variable of type Response, or c) in both the data file
and a variable. Where the information is stored depends on the values of the Stor-
age Variable and Flag parameters; the default is to the data file.

The Label string is stored along with the regular response time information; this la-
bel is used by the experiment designer to mark the recorded data and is meaningless
to PsyScope. The default label is “”.

The Relative to parameter changes which event is used to calculate response time;
the recorded response time will be the difference between start time of this event
and the time at which a response was received. The default Relative to event is the
one that posted the action.

The Storage Variable parameter specifies a trial variable with either a numerical
or Response type (see also “5.10 Trial Manager Variables”, p205). If the variable’s
type is Response, the response data is copied into this variable.If the variable’s
type is numerical (Integer, Long Integer, etc.), the variable is filled in with an
index into the standard response list – RTData – when the response was recorded.

The Flag optional parameter is used when a trial variable of type Response is spec-
ified for Storage Variable; if it is VAR_ONLY, the response information is not writ-
ten to the data file (only to the trial variable).

RunEvent[]
Parameters: Event

This action initiates the specified event, just as if it had been started by the regular
scheduling mechanism.

If the event has been run already, but ended, then it will be run again. If the event is
still running, then RunEvent[] does nothing.

Set[]
Parameters: LValue, Expression

Given a trial variable in LValue, its value is set to the result of evaluating Expres-
sion. (See also “5.10 Trial Manager Variables”, p205.)
203

 Part 2: Graphic Environment Reference
SetBackColor[]
Parameters: Color

This function changes the default background color for screen stimuli. See also “
Backcolor”, p168.

SetDefaultColor[]
Parameters: Color

This function changes the default foreground color for screen stimuli. See also “
Forecolor”, p168.

ScheduleEvent[]
Parameters: Event, Start

This action schedules the specified event to be run at the specified starting time, just
as if it had been scheduled according to Start. Start is a string that is the same as
the PsyScript expression of a start dependency.

See also “ RunEvent[]”, p203.

ScriptEval[]
Parameters: Entry Name

This action is used to directly evaluate a PsyScript entry. Usually, evaluating the en-
try will change some value in the script, and that value will be used for compiling
future trials.

For more information in PsyScript, see “, Chapter 12. PsyScript Reference”, p319.

ShowStim[]
Parameters: Stimulus Event, Attrib Event

This action presents the stimulus for Stimulus Event without actually executing
the event (i.e. its duration condition is not watched, actions are not posted, etc.).

Usually, you will not specify the second event. If you specify two different events,
the Stimulus value for the first is combined with the non-Stimulus attributes from
the second.

ShowStim[] does mark the time at which the stimulus began, and records this as the
start time for Stimulus Event; it does not, however, perform the scheduling oper-
ations of RunEvent[] and ScheduleEvent[].

UnscheduleEvent[]
Parameters: Event

This action removes an event from the run schedule. If the event has already been
executed, UnscheduleEvent[] has no effect.
204

5.9.5 Parameters dialogs
5.9.5 Parameters dialogs

To open a Parameters dialog, double-click on an action in either the Actions dialog or the
Action List dialog. The controls in the Parameters dialog work the same as in a Standard
Attribute dialog (See “5.8.2 The Standard Attributes Dialog”, p151), with the action param-
eters as the only available set of “attributes”. The number and type of the parameters in the
dialog depends on the action.

Any parameter can be left as Default; in this case, a built-in default will be used, since
there is no notion of inheritance for action parameters.

5.10 Trial Manager Variables

Trial Manager variables (or simply trial variables) are named run-time variables that can
be used to vary an event based on user inputs and/or previous trials in the experiment.

The graphic environment is rather limited in its handling of trial variables, so that anyone
who needs to use variables in a serious capacity may need to learn a small amount of script-
ing. It should be noted, however, that the PsyScript and trial variable “universes” are sep-
arate: trial variables are described in the syntax of PsyScript, but they are manipulated by
processes outside of the PsyScript interpreter.

Trial variables are created by using the Trial Manager Variables dialog (see “5.10.5 Trial
Manager Variables Dialog”, p208). Each variable has a type, which can be:

Character – Stores a single text character.

Integer – Stores an integer number between -215 and 215-1.

Long Integer – Stores an integer number between -231 and 231-1

Real Number – Stores a “real” (floating-point) number.

Point – Stores a pair of integers.

Response – Stores a response record (from the RT[] action).

There is also are also array trial variable types, which cannot be used with the graphic en-
vironment.

Trial variables values are modified through actions (see “5.9 Conditions and Actions”,
p192). In general, values can be modified with the AddToList[], NewListItem[], Re-
moveFromList[], and Set[] actions are used to modify trial variable values. Of these, only
Set[] can be used with variables defined in the graphic environment. (The other actions
work on variables with array types.)
205

 Part 2: Graphic Environment Reference
The RT[] action also works with variables. A variable of type Response may be passed to
the RT[] action, in which case the input data will be written to the variable as well as the
data file. The data file output is actually stored in a built-in variable called RTData; this trial
variable is a list of Response records. See also “ RT[]”, p203 and “5.10.3 Built-in Vari-
ables”, p207.

The value of a trial variable is used by either:

• including the variable in a condition or action parameter trial variable expression, or

• linking an attribute value to the variable.

The former usage is the most common. The Start, When, and End conditions use trial vari-
able expressions — specifically, expressions which have a “true” or “false” value — to de-
cide when to trigger. Various actions — such as ChanceEvent[] — accept trial variable
expressions as a parameter values. Trial variable expressions are discussed in “5.10.2 Trial
Manager Variable Expressions”, p206.

The latter usage — linking attributes to variables — is discussed in “5.10.4 Linking to Vari-
able Values”, p207.

5.10.1 How Trial Manager Variables Work

When the experiment is started, PsyScope reads all of the trial variables that are defined. If
the Initialize flag is on for a variable (see “5.10.5 Trial Manager Variables Dialog”, p208),
it is set to the given initial value; otherwise, the initial value of the variable may be the value
that it had at the end of the previous run of the experiment.

During each trial of the experiment, built-in variables are updated and user-defined vari-
ables may change due to the execution of Set[] and RT[] actions. Variable values can
change many times within a trial, and the values are retained across trials.

The graphic environment’s Trial Manager Variable dialog outputs trial definitions in Psy-
Script form. Once a variable has been read in for the execution of an experiment, this Psy-
Script definition will be ignored, unless the Update in Script flag is set for the variable
(see “5.10.5 Trial Manager Variables Dialog”, p208). In this case, the trial variable’s cur-
rent value will be written back out to the script after each trial. See also “5.10.4 Linking to
Variable Values”, p207.

5.10.2 Trial Manager Variable Expressions

Trial variable expressions are used to retrieve and compute values from trial manager vari-
ables. These expressions are evaluated a run time, so that the dynamic nature of trial vari-
ables is captured in the evaluation.
206

5.10.3 Built-in Variables
Although the use of trial variable expressions is potentially independent from the use of
PsyScript, it is considered an advanced feature, documented in “Part 4: Scripting Refer-
ence, 13.5 Trial Manager Variables”, p412.

5.10.3 Built-in Variables

There are three built-in Trial Manager Variables:

RTData — an array of response data collected during this execution of the experiment.

TrialNum — the number for the currently executing trial.

RunNumTrials — the number of trials to be executed in this run of the experiment.

These variables can only be used with trial variable expressions. See “5.10.2 Trial Manager
Variable Expressions”, p206, above.

5.10.4 Linking to Variable Values

If you want to link some attribute in the experiment to the value of a particular variable, you
can do it this way:

1) Make sure that the Update in script flag is on for the variable (see “5.10.5 Trial
Manager Variables Dialog”, p208).

2) Use the Script Linked attribute setting, and choose the variable from the Link to En-
try dialog (see “ Script Linked”, p155).

The Update in Script bridges the gap between the variable and PsyScript worlds — some-
what. It is important to remember that trial variables are free to change while a trial is being
executed; however, a trial’s complete description is compiled before any part of the trial is
executed. This means that linking to a variable (in the above manner) lets you use only the
value that the variable has before the trial is executed. On the other hand, variable referenc-
es within trial variable expressions (as condition or action parameters) have access to the
dynamic behavior of the variable within the trial execution.

This subtlety of linking to trial variables is closely related to the subleties of precompiling;
see also “6.5.1 Precompiling”, p246.
207

 Part 2: Graphic Environment Reference
5.10.5 Trial Manager Variables Dialog

The Trial Manager Variables Dialog allows you to create, delete, and edit trial manager
variables (see “5.10 Trial Manager Variables”, p205). To open it, click the Variables icon
at the top of the View window.

Clicking the New button creates a new trial variable. (By default, the new variable will
have the same type as the last selected variable, but this can be changed with the Type pop-
up menu; see below).

When one or more trial variables are selected in the list, hitting the Delete button removes
the variables from the script.

When one trial variable is selected in the list, the name of the variable can be edited in the
Name text box at the top right of the dialog. The variable’s current value can be set in the
Value text box.

When the Initialize checkbox is on, the selected trial variable’s value will always be reset
when the experiment starts; the initial value is set in the text box to the right of the check-
box.

If Update in script is checked, PsyScope will update the value of the variable in the script
after each trial when the experiment is run. This lets you uses trial variable values for script-
ing, as long as the experiment is not precompiled (see “6.5.1 Precompiling”, p246).

The Type pop-up menu determines the type of the currently selected trial variable. See
“5.10 Trial Manager Variables”, p205 for a discussion of the available variable types.

Hitting OK closes the dialog. Hitting Cancel also closes the dialog, but changes made to
variables are discarded, including the creation or deletion of variables.

Figure 177 – The Trial Manager Variables dialog
208

5.11 Trial Chooser Floating Window
5.11 Trial Chooser Floating Window

The Trial Chooser floating window is used with the Block dialog, Template window, and
some Attributes dialogs. It is used to select a path in the hierarchy — from the experiment
object to the dialog’s object — so you can preview trials and attribute values.

For example, suppose a template is owned by two blocks, and some event in the template
uses Vary by Block; the event will be different depending on which block is used to run
the trial. You can preview the trial by hitting the Preview button in the Template window,
but you need to be able to control which block is used for previewing. To set this block con-
text, you use the Trial Chooser.

A context is selected in the Trial Chooser by using pop-up menus: there is one pop-up menu
for each level of the hierarchy. In the above example of choosing a block, there would be a
block pop-up menu (with a block icon next to the menu) that would let you select one block
or the other.

Depending on the structure of your experiment, changing an object in one pop-up menu can
affect the allowed objects in other pop-ups. It may even change the number of object pop-
up menus, if different hierarchical paths are of different lengths.

If lists are connected to the block or template, the Trial Chooser lets you select a current
item for the list; lists are shown in a separate area at the bottom of the Trial Chooser. When
previewing a template, the Trial Chooser sets the list item that will be used; when preview-
ing a block, the Trial Chooser sets the list item used for the first trial, and then item-selec-
tion proceeds normally for the rest of the trials.

Besides previewing, the Trial Chooser is used to select a context for Attribute dialogs.
When the Trial Chooser is open, attributes which are Vary byÉ will display the value they
take in the given context (as opposed to the Vary byÉ parameterization, which is shown
otherwise).

When factor tables are used, the currently selected cell in the factor table is used for pre-
viewing a trial.

Figure 178 – The Trial Chooser
209

 Part 2: Graphic Environment Reference
Shortcut: Clicking on an object icon in the Trial Chooser (to the left of the object pop-up
menu) opens the dialog for the object that is currently selected in that pop-up menu.

5.12 Additional Concepts

5.12.1 List Ordering

When a trial is being generated for the experiment, there are many places in the hierarchy
where something needs to be chosen from a list of items; e.g. from a list of blocks, tem-
plates, or levels. The manner in which a choice is made depends on the list’s access type.

The three possible list access types are:

• Sequential - starts with the first item, and always chooses the next item
in the list. If an item is given a weight > 1 (see below), the same item is used
as many times as the weight specifies.

• Random - chooses an item from the list randomly. An access history is
kept, so that after an item (with weight = 1) has been selected, it is ineligible
for re-selection until all items have been selected at least once. If an item is
given weight > 1 (see below), it can be used as many times as the weight
specifies before it is ineligible for re-selection. When no items are left to be
selected in the list, the access history is erased and selection starts again.

• Random with Replacement - chooses and item from the list randomly.
Unlike Random, each item selection is independent of previous selections,
so there is no guarantee that all items will be used before an item is used
multiple times. Item weights (see below) affect only the probability that an
item will be selected.

5.12.1.1 Weights

The access type of a list can be modified by assigning weights to items in the list. A weight
effectively multiplies the number of occurrences of the item in the list.

5.12.1.2 Other Modifiers

The list selection mechanism can be further modified through parameters available only
through PsyScript. See “Part 4: Scripting Reference, 12.8 Lists”, p329 for more informa-
tion on these parameters.
210

5.12.2 Trial Counting
5.12.2 Trial Counting

5.12.2.1 Experiments without Blocks

In an experiment without blocks, the number of trials to be run is either fixed or is based
on a total running time for the experiment (i.e. a “block” duration).

If there are no groups in the experiment, you can set the trial count through the Experiment
dialog. If there are groups in the experiment, you must set the trial count for each group
separately, using the Group dialog.

5.12.2.2 Experiment with Blocks

In an experiment which contains blocks, the number of trials to be run depends on:

• The number of blocks in the experiment/group.

• The number of trials to be run within each block.

• The number of times the entire list of blocks is to executed.

• The block scaling number of the experiment/group.

At the block level, the number of trials to be run within the block is set in much the same
way as the total trial count for an experiment without blocks (see above). The only addi-
tional feature — the one that makes trial counting seem complicated — is related to the
block scaling value, discussed below.

Given the number of trials to be run within each block, the number of trials that are run in
one execution of all the blocks of the experiment/group is the sum of the block counts. The
experiment/group contains a cycles count, which determines how many times the whole
block list will be executed. Thus, the total number of trials to be run is the cycle count times
the sum of the block counts.

5.12.2.3 Block Scaling

An experiment or group that owns blocks has a block scaling value, which is used to scale
the number of trials to be run within each “scalable” block. The scaling value affects the
trial count of the immediately owned blocks only. Any sub-blocks or factors that are owned
by the blocks are unaffected.

In defining the number of trials to be run within a block, the trial count can be fixed or scal-
able. Fixed-count blocks are not affected by the block scaling number, while scalable
blocks are.

The fixed/scalable nature of a block is set in the Block dialog. Blocks whose trial counts
depend on a block duration are never scaled.
211

 Part 2: Graphic Environment Reference
5.12.2.4 Superblocks

When counting trials, superblocks work the same as groups or experiments which own
blocks. The only difference is that the superblock’s cycle count can be fixed or scalable,
just like a block’s trial count.

5.12.2.5 Trial Counts and Crossing Factors

It is currently still the responsibility of the experiment designer to set up trial counts so that
the right number of cells will be used from factor tables and lists. Future versions of Psy-
Scope will support a more automatic count-setting facility.

5.12.2.6 Trial Counts Reported in the Trial Monitor

The Trial Monitor (see “6.3 The Trial Monitor”, p238) displays the number of trials that
PsyScope expects to execute for a single run of the experiment. In a design without dura-
tion-based blocks (and which does not use RerunTrial[]), this trial count is correct.

If a design contains blocks whose trial counts depend on a block running time, the block is
assigned only one trial for the purposes of predicting the number of trials to run. In this
case, the actual number of trials executed when the experiment is run will be more than the
predicted number.
212

Ψ
Chapter 6. Running and Managing Experiments

Part 2: Graphic Environment Reference

6.1 File System

6.1.1 Using Projects

A project is a PsyScope file that keeps a list of scripts. The experiments in these scripts are
all put together in one pop-up menu in the Console so that you can switch from any exper-
iment in any of the scripts to any other.

The main use of projects is to group experiments that you plan to run together. However,
projects also provide some other features:

• Most options are kept separately for each project.

• An option may be enabled to specify all paths relative to the project (see “6.1.2 Path
Names”, p215); this allows you to create a complex file structure — beneath the fold-
er containing the project — which will remain intact when the whole folder is moved.

6.1.1.1 Creating a Project

A project is created by choosing New ProjectÉ from the File menu. Scripts are usually
added to the project through the Scripts dialog (see below). Also, when a script is created
with New ScriptÉ in the Design menu while a project is open, a Message dialog appears
allowing you to automatically add the new script to the open project.

 Part 2: Graphic Environment Reference
6.1.1.2 The Scripts Dialog

The Scripts dialog is used with projects to add and remove scripts to the project.

At the top of the dialog is a list of scripts included in the project. Clicking on one of these
displays the (full or relative) pathname of the script and fills the lower list with the names
of the experiments in that script. (See also “6.1.2 Path Names”, p215.)

A check mark is placed next to the current script — i.e. the script containing the experi-
ment which is currently loaded for the project; if the Scripts dialog is opened just as the
project is being loaded (by holding the Shift key down; see “6.1.7 Start-up Shortcuts”,
p224), the current script can be changed by clicking to the left of a script name.

A bullet (¥) placed beside the name of a script means that it is the start-up script; it will be
made the current script whenever the project is first opened.

In the experiment list, a filled-in diamond next to an experiment name means that the ex-
periment is visible, i.e. it can be selected from the Switch Experiment submenu or from
the Console pop-up menu. The visibility of an experiment can be set with the Show Exp
and Hide Exp buttons, or by clicking on the diamond to toggle it.

You can add new scripts to the project with the Add Script button; a sequence of standard
file dialogs will get a list of scripts to add. Hit Cancel in the file-finding dialog when you
are done adding scripts.

Scripts can be removed with the Remove Script button. If the currently loaded script is
removed, the script will be automatically changed as soon as the dialog is closed.

Figure 179 – The Scripts dialog
214

6.1.2 Path Names
Hitting the OK button closes the dialog and saves changes to the project; Cancel returns the
project settings to their former state.

6.1.2 Path Names

With the Macintosh’s Hierarchical File System (HFS), files used within PsyScope may
have a complicated location relative to the application or open script or project. To allow
access to any file on the volume, path names are used.

A path name includes the name of the file and the folder in which the file is located; this
folder may be in another folder, and so on. PsyScope uses the file path notation that is stan-
dard to the Macintosh: the volume name is given, followed by a folder in the volume’s root,
and so on, until the file name is finally reached. The parts of the path are separated by co-
lons. For example, a file “Psy.pict” that is in the folder “Picts” in the top level of the volume
“My Disk” would have the full path name “My Disk:Picts:Psy.pict”.

To make things simpler, PsyScope recognizes relative paths (see below), so that file names
can be specified in relation to the current script (or project). Also, because path names can
be very long and therefore difficult to display, PsyScope supports a reverse notation for a
pathname (see below).

6.1.2.1 Relative Paths

In the simplest case, files that are used within a script are placed in the same folder as the
script. Then, the file names can be used without further specification of the location.

A slightly more complex case is when files used by the script are in a folder that is within
the script’s folder. In this case, the full path (starting from the volume) still does not need
to be specified; relative paths can be used instead.

If a pathname begins with a colon (“:”), then it is assumed that the path starts at the script’s
directory. For example, “:Picts:Psy.pict” is the relative path of the file “Psy.pict” that is in
the folder “Picts” which is in the same folder as the script.

Relative paths can be arbitrarily complex — so that folders may be nested within folders,
etc. — as long as the whole folder structure is under the script’s folder.

Relative Paths with Projects

When a project is used, there is an option in the General options dialog — Store path
names relative toÉ — which allows you to change the starting point of relative paths.
This option affects all path names in the script. See “7.6.1 General Options”, p266.

6.1.2.2 Reverse Notation

Path names are usually specified in the order folder-path:file. Reverse notation allows you
to change this to file @ folder-path. There must be exactly one space on each side of the
215

 Part 2: Graphic Environment Reference
“@”, and only the file name can appear before the “@”. No extra spaces may be added any-
where in the name.

For example, the file path “My Disk:Picts:Psy.pict” can also be specified as “Psy.pict @
MyDisk:Picts:”.

6.1.3 Resources

In many experiments, you may want to import custom resources — ‘PICT’ or ‘snd ’, for
example — to be used in running the experiment. You can make these resources available
in three different ways:

• Place the resource file in a “PsyScope Extensions” folder that is in the same folder as
the PsyScope application (see below). The resources will be available whenever Psy-
Scope is running.

• Put the name(s) of the resource file(s) in a “Resources” entry in your script (see “Part 4:
Scripting Reference, 16.6.3 Resources”, p461).The resources will be available when-
ever the script is open.

• Put the name(s) of the resource file(s) in a “Resources” experiment attribute (see “ Re-
sources”, p167). The resources will be available only while the experiment is running.

Resources are accessed within PsyScope by name, never by ID. This means that resources
of the same type in different resource files do not have to have unique IDs, only unique
names.

6.1.3.1 PsyScope Extensions

PsyScope Extensions are Macintosh code resources that extend the functionality of Psy-
Scope. There are several classes of Extensions, including output device drivers (ODEVs),
input device drivers (IDEVs), timers (TIMRs), and dialogs/functions (DCODs).

A PsyScope Extension will typically be bundled in a file with all of the resources it needs.
To install the Extension, you must have a folder named “PsyScope Extensions” that is in
the same folder as the PsyScope application. The Extension file is simply placed in this
folder, and it will be available the next time PsyScope is restarted.

The “PsyScope Extensions” folder can be used to make any kind of resource (e.g. ‘PICT’)
available for use within PsyScope. Generally, the resource must be given a name (a unique
ID does not suffice; see above).

If a text file is placed in the “PsyScope Extensions” folder, it will be interpreted as a script
file to be automatically #included at the end of any script loaded into PsyScope. Any
‘TEXT’ resource with a name that starts with “Script.” (in any of the open resource files)
is treated the same way. (The ‘TEXT’ resources must also have unique names.)
216

6.1.4 The Data File
When Psyscope starts up, a folder icon with a psy on it is drawn at the left end of the menu
bar; this indicates that a “PsyScope Extensions” folder was found, and icons representing
Extensions will be displayed after the folder (similar to start-up icons for Macintosh
INITs). If the folder icon is X-ed out, no “PsyScope Extensions” folder was found.

6.1.4 The Data File

When you run an experiment, the data that is recorded by any RT[] actions in the script is
recorded in a data file. PsyScope appends the new data and experiment information at the
end of the data file every time the experiment is run. The data file is a plain text file that
can be read by any text editor, spreadsheet, or statistics program.

6.1.4.1 Specifying the Data File

The name and location of the data file for an experiment is specified using the Data File
experiment attribute (see “ Data File”, p161), or by using the Data File Dialog (see “Part 2:
Graphic Environment Reference, 6.2.5 Data File Dialog”).

If you do not specify a data file in your script, the program will ask you to specify one each
time you run the script.

6.1.4.2 Information in the Data File

The information in the data file is divided into three categories: header information, re-
sponse data, and timing statistics.

The Data File Header

The data file header is written at the beginning of a run and contains general information
about the experiment run, information about the machine that the experiment was run on,
and optional information defined by the experimenter (especially subject information).

The data header is an optional feature of the data file; it is written by default, but can be
omitted by checking the DonÕt include header information box in the Data Info dialog
(see “ Data Info”, p161).

Figure 180 – PsyScope Extensions Folder Found Icon

Figure 181 – PsyScope Extensions Folder Not Found Icon
217

 Part 2: Graphic Environment Reference
The default data header information looks something like this:

PsyScope 1.0 started: 3/30/93 14:30:04
Script file: My Hello World Script
Run on: Macintosh IIci
Input devices active: Key Mouse

It contains five default data header items:

• PsyScope application name

• Start date and time

• Script file name

• Macintosh type

• Active input devices

Subject information can be added to this header through the Subject Info dialog (see
“6.2.1.2 Subject Info Dialog”, p226). Scripters can add additional fields by using the “Da-
taHeader” experiment attribute (see “Part 4: Scripting Reference, 13.1.6.1 Standard Exper-
iment Attributes”, p360).

Response Data

Response data follows the header information in the data file. This is data from the exper-
iment run from the execution of RT[] actions.

The response data is written out in the form of records, where each record represents one
execution of the RT[] action. Each record is comprised of fields of data, and the first record
contains the name of each field.

By default, each new line represents a new record, and each field is separated from the pre-
vious field within the record by a tab. This format is compatible with most spreadsheet and
data analysis programs, but it can be changed if necessary; see “6.1.4.3 Formatting the Data
File”, p222.

There are four different kinds of data fields that can be in each record:

• Default data fields (always written).

• Optional standard data fields. These can be added via the Data Info experiment at-
tribute; see “ Data Info”, p161.

• Input device data fields. These contain data from whatever input devices are active for
the experiment run. Some fields are optional, and are added via the Data Info exper-
iment attribute; see “ Data Info”, p161.

• Data variable fields. These contain the values of trial variables that are added via the
Data Variables experiment attribute; see “ Data Variables”, p163. See also “5.10
Trial Manager Variables”, p205.
218

6.1.4 The Data File
Default Data Fields

There are three default data fields. These fields are always written in the response data.

Trial Number – The number of the trial in which the data were recorded.

Condition – The condition of the trial in which the data were recorded. This is the value
set automatically by the crossing of factors, or through the Condition Name trial at-
tribute (see “ Condition Name”, p175).

Time – The time at which the data were recorded. This value is the amount of time in
milliseconds since the beginning of the event that the RT[] action was relative to (see
“ RT[]”, p203).

Optional Data Fields

These fields are turned on through the Data Info dialog; see “ Data Info”, p161.

Run Label – This field contains the label specified in the “RunLabel” experiment at-
tribute, which can be set only through PsyScript. It will be the same for every line.
This field is turned on by the Label to be included on each data line checkbox in
the Data Info dialog.

Stimulus – This field contains the stimulus of the event that posted the RT[] action. This
field is turned on by the Stimulus of relative event checkbox in the Data Info di-
alog.

Event Tag – This fields contains the values of the Tag attribute for the event that posted
the RT[] action, providing a way of writing further information about the event in the
data file. This field is turned on by the Event tag checkbox in the Data Info dialog.

Put Up By – This is the name of the event that posted the RT[] action. This field is turned
on by the Event that posted RT action checkbox in the Data Info dialog.

Removed By – This is the event that was scheduled to be active until. This field is turned
on by the Event that removed RT action checkbox in the Data Info dialog.

During – This is the event during which the action was executed. If more than one event
was running, the most recently started is used. This field is turned on by the Event
during which response occurred checkbox in the Data Info dialog.

Relative To – The event that the time is measured relative to. By default this is the event
that posted the action, otherwise it’s the event specified as the Relative To parameter
of the RT[] action. This field is turned on by the Event that RT is relative to check-
box in the Data Info dialog.

Onset – This field contains the onset time, relative to the start of the trial, for the event
listed in the field immediately to its left. If more than one event field (e.g. During and
Relative To) exists in the response data, then there will be one onset field for each.
This field is turned on by the Onset times for referenced events checkbox in the
Data Info dialog.
219

 Part 2: Graphic Environment Reference
Response Label – This field contains the label specified in the first parameter of the RT[]
action. This field is turned on by the Response label checkbox in the Data Info di-
alog.

Input Device Data Fields

Each input device that is active has one or more data fields which it writes in the data file.
These fields are written in the data file in alphabetical order, as listed in the Input Devices
dialog, used by the Input Devices experiment attribute (see “ Input Devices”, p164).

Some input devices have optional fields which are only included if their corresponding
items are checked in the Data Items dialog (see “ Data Info”, p161).

Below are the data fields for the three built-in input devices: BBox, Key, and Mouse. Other
input devices added as PsyScope Extensions will have their owns fields; consult the exten-
sion’s documentation for more information.

BBox Data Fields

state – The current input state of the button box. The input state is represent-
ed numerically, as the sum of the line value for each bbox input line. The
line values are computed as follows: for a line x, the line value is 2x. For
a released line x, the line value is 2x+8. This gives the following line val-
ues:

Key Data Fields

key – The key combination that was pressed at the time of the RT[]. A key
combination is represented as the letter representing the key pressed, op-
tionally preceded by one or more modifiers. Possible modifiers are CMD,
OPT, CTL, and SHIFT, representing the Command, Option, Control,
and Shift keys, respectively. If the key that was pressed is non-printable,

Table 1: Button Box State Values

Line Button Press Release

1 1 1 512

2 2 2 1024

3 3 4 2048

4 n/a 16 4096

5 n/a 32 8192

6 voice key 64 16384

7 n/a 128 32768

8 n/a 256 65536
220

6.1.4 The Data File
then a value of the form ASCII-n or CODE-n will be printed, where n is
an ASCII or keyboard code value, respectively.

sequence – (optional; turned on by the Key sequence checkbox in the
Data Info dialog) The key sequence stored at the time of the RT[]. If a
KeySequence event is currently running, this field will contain every
key pressed since the start of the event. If more than one is running, it
will contain every key pressed since the start of the oldest KeySe-
quence event. If none are running, it will be empty. See “Part 4: Script-
ing Reference, 14.2.4 KeySequence”, p432 for more information on the
KeySequence event type.

Mouse Data Fields

mouse_down – Whether or not the mouse was pressed at the time of the
RT[]. The field will contain 1 if it was pressed, 0 if not.

x – (optional; turned on by the Mouse position checkbox in the Data Info
dialog) The horizontal position of the mouse at the time of the RT[].
This is specified in global screen coordinates, with the origin at the up-
per left corner of the main monitor (the one with the menu bar).

y – (optional; turned on by the Mouse position checkbox in the Data Info
dialog) The vertical position of the mouse at the time of the RT[]. This
is specified in global screen coordinates, with the origin at the upper left
corner of the main monitor (the one with the menu bar).

Data Variables

In experiments using Trial Manager Variables, it is sometimes necessary to record the val-
ues of some variables in the data file. The Data Variables experiment attribute provides
this ability.

Any variable whose name is listed in this attribute will be written in a field in each line of
the data file. The value written will be the value of the variable at the time of the RT[]. If
more than one variable is listed, they will be written in the data file in the order in which
they are listed in the Data Variables attribute.

Timing Statistics

Timing statistics can be written to the data file at the end of the response data. Timing sta-
tistics are optional data, and must be turned on by the Summary timing statistics for
conditions or Full timing statistics for conditions checkbox in the Data Info dialog
(see “ Data Info”, p161).

Timing statistics are meant to be used as an experimental design debugging tool. The sta-
tistics provide information on the actual onset time and duration of the events in the various
conditions for the experimenter to use to confirm that the trials are indeed running as ex-
pected.
221

 Part 2: Graphic Environment Reference
Note: Both timing statistics options assume that the event structure of each trial in a con-
dition is the same. If this is not the case, the statistics presented will not accurately rep-
resent the timing of the experiment.

Summary Timing Statistics

Summary timing statistics present, for each condition in the set of trials run, the average
onset time and duration of each event in that condition, along with the number of trials av-
eraged.

Full Timing Statistics

Full timing statistics present, for each condition in the set of trials run, the actual onset time
and duration of each event in every trial in that condition.

Note: Full timing statistics list a record for every event executed during the run, and as a
result can get rather lengthy — longer, in fact, than the response data.

6.1.4.3 Formatting the Data File

By default the data in the data file are presented with one record per line, and a tab character
separating the records. This format is compatible with most data analysis and spreadsheet
programs.

Nevertheless, two experiment attributes — “DataFieldDelimiter” and “DataRecordDelim-
iter” — have been provided for the purpose of changing the separators between fields and
records. These attributes are available only through PsyScript; see “Part 4: Scripting Ref-
erence, 13.1.6.1 Standard Experiment Attributes”, p360 for more information.

6.1.5 The Log File

As your scripts are run, PsyScope automatically maintains and updates a record of all the
major events and keeps this record in a log file. The log file is an ordinary text file that has
a #LogFile identifier at the top of the file.

6.1.5.1 Specifying the Log File

The current log file can be specified in the script; if it is not, the default log file is named
“PsyScope.log” and is put in the same directory as the PsyScope application.

The current log file can be changed by selecting Change Log FileÉ in the File menu. In
System 7.0, double-clicking on an existing log file in the Finder will also change the log
222

6.1.5 The Log File
file. The script will be updated to refer to the new file. (The script must be saved to retain
this information.)

6.1.5.2 Viewing and Editing the Log File

The log file can be viewed by selecting View Log File in the File menu. The log file is put
into a read-only window; it does not automatically update if the log file is changed. If the
log file is edited in an application other than PsyScope, be sure that it is saved in text format.

6.1.5.3 Information in the Log File

When PsyScope starts up, a line is added to the current log file that records the version of
PsyScope as well as the date and time at which it was run. This line looks something like
this:

#==
Application:: "PsyScope 1.0" "6/23/93" "2:28:58"
#--

Whenever a new experiment is loaded, a line is added that records the name of the Exper-
iment entry and the time at which it was loaded:

ExperimentLoaded: "Acuity Experiment Script" "8:16:44"

Whenever an experiment is run, the name of the Experiment entry is recorded again along
with the name of the data file:

ExperimentRun: "Acuity Eperiment"
DataFile: "My Disk:PsyScope:Sample Script:Acuity Data"

If the experiment completes normally, then the number of trials that were run is recorded:

NumTrialsRun: 100

If an error occurs, then the error message as well as the user’s response is recorded:

Message:
{Call to RunEvent requires an event reference as its first

parameter (trial: 1; event: "Recurrent Entry")}
{*** User Canceled ***}

The user can record information in the log file directly, by selecting the Log Comment
item from the Utilities menu. Comments appear in the log as follows:

Comment:
{This is a comment.
Notice that comments can occupy multiple lines.}

The Subject Info system uses the log file to generate subject and run numbers; see “6.2.3
Subject Number Calculation”, p230. Other information can be added to the log file using
PsyScript. See also “Part 4: Scripting Reference, 16.5 Log File”, p458.
223

 Part 2: Graphic Environment Reference
6.1.6 Safe Saves

When PsyScope saves a script, instead of writing directly over the old file, it uses a special
mechanism to insure against losing data to disk errors. To do this, it changes the name of
the old file, writes a new file, and then deletes the old file. This way, if there is a disk error
or your machine crashes while PsyScope is saving the script, the original file is not de-
stroyed.

The old file’s name is changed by adding “.ssbk” to its name; if the file name is already 32
characters long (the maximum length of a name on the Macintosh), a safe-save cannot be
performed.

If your machine does crash while PsyScope is saving, you will probably find two files after
rebooting. The file with a name ending in “.ssbk” is the original, pre-save file. The other
file (which probably does not have the psy-file icon), was the attempt to save the script; this
file may or may not be valid.

6.1.7 Start-up Shortcuts

If you hold down the Option key while PsyScope is starting up, then the autoload file option
will be ignored and no file will be auto-loaded (see “7.6.1 General Options”, p266). A “no
file” icon will be displayed at the end of the Extensions icon list in the menu bar.

When loading a project, hold down the Shift key to get the Script dialog for the project (see
“6.1.1.2 The Scripts Dialog”, p214). You can add or remove experiments before the project
is opened. Also, when loading a project, hold down the Control key to get the General Op-
tions dialog for the project (see “7.6.1 General Options”, p266).

6.2 Subject Info

PsyScope’s Subject Info system helps you keep track of your experiment subjects and
change parameters of the experiment based on the current subject.

The basic elements of Subject Info system are:

• Subject Info items – These define the information that you will keep about each subject.
They can be simply stored in the log file, or they might be used to select a group for
the subject. See “6.2.1 Subject Info Items”, p225.

• Log file – Most subject information is stored here across runs of the experiment. Subject
information can also be stored in the data file, but information relevant to grouping
must be stored in the log file. See “6.1.5 The Log File”, p222.
224

6.2.1 Subject Info Items
• Subject number calculation – This is a scheduled process which reads the log file and
the current subject information to generate a subject number (and some other indices)
for the current subject. See “6.2.3 Subject Number Calculation”, p230.

• Automatic grouping – This is another scheduled process which is almost always per-
formed along with Subject number calculation. (The processes can be separated
through PsyScript, but the graphic environment forces them to be the same.) Auto-
matic grouping selects a group in the experiment hierarchy to be used for the current
subject. See “6.2.4 Automatic Grouping”, p233.

6.2.1 Subject Info Items

Subject Info items are created and maintained though the Subject Info Item dialog (see
“6.2.1.2 Subject Info Dialog”, p226). A Subject Info item can be any piece of information
about the subject that is relevant to your experiment — e.g. the subject’s name, age, or sex
— but items generally fall into one of two classes:

• Items which are used to determine which group is used in executing the experiment

• Items which are not used directly in executing the experiment, but are recorded in the
log file or data file for later analysis

Items of the first type will be involved with automatic grouping and possibly subject num-
ber calculation. Items of the second type are not involved with automatic grouping, but
must be explicitly configured to be logged or written to the data file.

In the simplest case, a subject into item simply exists, and you can change its value through
the Subject Info dialog. Usually, however, you will schedule a point in your experiment
session (through the Subject Info Schedule dialog) to prompt the experimenter for the
item’s value. The type and definition of an info item — as set in the Subject Info dialog —
determines the kind of dialog that will be given for a prompt.

Note: The Subject Info Schedule dialog also controls when a Subject Info item is written to
the log file or data file. Be sure to schedule the prompt before the item is logged, re-
corded in the data file, used for auto-grouping, or used in a subject number calcula-
tion. See also “Part 2: Graphic Environment Reference, 6.2.3.1 Logging and
Scheduling Correctly”, p231 and “Part 2: Graphic Environment Reference, 6.2.6
Subject Info Schedule Dialog”, p237.

6.2.1.1 Special Items

There are seven special Subject Info items: SubjectName, SubjectNumber, RunNumber,
GroupNumber, SubjectCount, RunCount, and GroupRunCount. The first three are created
by default in any new experiment. The last three can be created in the Subject Info dialog
225

 Part 2: Graphic Environment Reference
just like any other item; PsyScope will automatically recognize items with these names as
special items.

The SubjectName item is special because it is required by subject number calculation and
automatic grouping (see “6.2.3 Subject Number Calculation”, p230 and “6.2.4 Automatic
Grouping”, p233).

The rest are special because they correspond to values that are calculated by the subject
number calculation process; whenever a subject number calculation is performed, the val-
ues of these items are changed to match the computed values.

6.2.1.2 Subject Info Dialog

Subject Info dialog is the central dialog for setting up subject information to be tracked in
PsyScope. The Subject Info dialog is opened by clicking on the Subject Info icon in the
Design window, or by selecting Subject Info from the Windows menu.

The main part of the dialog contains a list of items which hold information about the current
subject; “SubjectName”, “SubjectNumber” and “RunNumber” are the default items. New
subject info items can be created by clicking on the NewÉ button, or by selecting New
Info ItemÉ from the Edit menu.

When you create a new info item, you must specify the type of information that the item
contains. This is done through the New Info Item dialog, which is automatically opened
when you create a new item (see “ New/Reconfigure Info Item Dialog”, p228).

Figure 182 – The Subject Info dialog
226

6.2.1 Subject Info Items
For some item types, you will need to further define the item. When you click OK in the
New Info Item dialog, a Define Info Item dialog will open (see “ Define Subject Info Item
Dialog”, p229).

To reopen the New Info Item dialog or Define Info Item dialog, select the item and click
on the ConfigureÉ or DefineÉ button in the Subject Info dialog.

In the main list of the Subject Info dialog, each Subject Info item is shown with its current
value to the right. Just as in the standard Attributes dialog, the value of an item can be
changed by clicking on it.

To the left of each Subject Info item is a row of checkboxes. The checkboxes control
whether the item is recorded in the data file and log file, and whether it is used as a grouping
criterion.

The Record in Log File column is checked if the item has a Log when configuration is
set to anything other Never (through either the New/Reconfigure Info Item dialog or Sub-
ject Info Schedule dialog; see below and “Part 2: Graphic Environment Reference, 6.2.6
Subject Info Schedule Dialog”, p237). If the column is initially unchecked and is checked
by the user in the Subject Info dialog, the item will be logged just before running the ex-
periment.

If the Record in Data File column is checked, the Subject Info item and its value will be
stored in the header of the data file.

The Group By column is checked when the item is used as a grouping criterion (see “6.2.4
Automatic Grouping”, p233 and “6.2.4.1 Automatic Grouping Dialog”, p234).

The Data FileÉ button opens the Data File dialog, which is used to configure automatic
data file name generation (see “6.2.5 Data File Dialog”, p236).

The Auto Grouping button opens the Automatic Grouping dialog, which is used to config-
ure automatic subject assignment to a group (see “6.2.4.1 Automatic Grouping Dialog”,
p234).

The Schedule button opens the Subject Info Schedule dialog, which is used to control
when items are prompted and logged (see “6.2.6 Subject Info Schedule Dialog”, p237).
227

 Part 2: Graphic Environment Reference
New/Reconfigure Info Item Dialog

This dialog is opened when the NewÉ or ConfigureÉ button in the Subject Info window
is hit. Hitting ConfigureÉ for an item in the Subject Info window allows you to change
anything about the info item except it’s type (which shown in the Item Type: pop-up
menu).

The first item in the dialog is a text box for the item’s name. As with the names of objects
in the experiment hierarchy, this name must be unique, and cannot include certain symbols
or keywords (see “5.2.5 New Object Name Dialog”, p114).

The Item Type: pop-up menu selects the type of information stored by the item. The avail-
able types are:

• Standard – Simple text.

• Value – A (possibly bounded) numerical value.

• Buttons – A one-of-many value selected with radio buttons.

• Checkboxes – A many-of-many value selected with a list of checkboxes.

The Prompt when: pop-up menu sets a time for automatic prompting. At the specified
time (e.g., Start of Experiment), the user will be prompted to set the value of the item.

The Record when: pop-up menu sets when the item will be recorded to the log file. (This
setting is reflected by the Record with Log checkmark in the Subject Info Window).

The Prompt when: and Record when: parameters can also be controlled through the
Subject Info Schedule dialog (see “6.2.6 Subject Info Schedule Dialog”, p237).

The Store In Project checkbox sets whether the info is to be stored in the project (if a
project is being used) or in the local script. Not yet supported.

Figure 183 – The New/Reconfigure Info Item dialog
228

6.2.1 Subject Info Items
Checking the Show In Console checkbox causes the info to be shown in the main console.
The user will be able to change the item’s value by clicking on it in the console.

For a new item of any type except Standard, a Define Subject Info dialog will automati-
cally follow this dialog to further define the item (e.g. to set ranges for a Value item or to
set the possible values for a Buttons or Checkboxes item). For an existing item, the De-
fine Info Item dialog can be opened with the DefineÉ button in the Subject Info dialog.

Define Subject Info Item Dialog

This dialog is opened in one of three ways:

• Automatically after OK is hit in the New Subject Info Item dialog.

• By clicking on the DefineÉ button in the Subject Info window.

• By double-clicking on an item in the Subject Info Window.

The purpose of the dialog is to further specify the type of information stored by the item.
Hitting Cancel in this dialog when it was opened by the New Subject Info Item dialog also
cancels the item’s creation.

There is no one Define Subject Info Item dialog; the actual dialog that will be used depends
on the item’s value type. The possible dialogs are described below.

Value Item Definition Dialog

The radio buttons at the left of the dialog determine the type of number stored by the item:
Integer, Real, or Rational (fractions). To specify a range of numbers, click on the Range
checkbox and set upper and lower bounds on the number.

Figure 184 – The Value Item Definition dialog
229

 Part 2: Graphic Environment Reference
Buttons Item Definition Dialog

This dialog gets a list of button names. Items are created and deleted in the usual way, using
the NewÉ and Delete buttons.

Checkboxes Item Definition Dialog

This dialog gets a list of checkbox names. It is the same as the Buttons Item Definition di-
alog (see above).

6.2.2 Subject Info and the Log File

The log file is described in “6.1.5 The Log File”, p222. It plays crucial role in tracking sub-
ject information for subject number calculations (see “6.2.3 Subject Number Calculation”,
p230).

When you create Subject Info items, you will need to record the data for a particular subject
in the log file or data file; otherwise, this information will not be recoverable after the next
subject is run. Where Subject Info items are stored is controlled by checkboxes in the Sub-
ject Info dialog (see “6.2.1.2 Subject Info Dialog”, p226).

6.2.3 Subject Number Calculation

It is often useful to assign each subject in the experiment a number; this number might be
used to vary the experiment design, or to name a data file. One way to assign a number
would be to create a numerical Subject Info and force the experimenter to type in a number
for each subject that is run. Fortunately, you do not have to do this: given the current sub-

Figure 185 – The Buttons Item Definition dialog
230

6.2.3 Subject Number Calculation
ject’s name and a history of previous subjects (in the log file), PsyScope can calculate a va-
riety of indices for you:

Subject number – An index for the subject within the subject’s groups.

Run number –An index for the run of the subject within this experiment, in case the same
subject is run multiple times.

Group run number – A run index that is counted across all subjects within this subject’s
group.

Subject count – An index for the subject across all groups.

Run count – A run index across all subjects run in this experiment.

Group number – An index for the subject’s group.

In all of the above definitions, “this subject’s group” refers to a group determined by the
automatic grouping criteria (see “6.2.4 Automatic Grouping”, p233). If there is no automat-
ic grouping, all subjects are placed into the same group.

These numbers are most commonly used to vary an experiment design using the Latin
Square or Between crossing type. These crossing types take an index — set through the
Choose Crossing dialog (see “5.7.2.6 Choose Crossing Dialog”, p143) — which deter-
mines exactly which cells of a table are going to be used. See also “5.7.2.2 Table Info Di-
alog”, p140.

The numbers can also be used as group criteria (e.g. to place even-numbered subjects in one
group and odd-numbered subjects in another). Scripters may find these numbers to be use-
ful for other purposes.

Note: SubjectNumber, RunNumber, etc. can be used for automatic grouping, but these cri-
teria will not affect the calculation of the above numbers, since the definitions would
become circular.

6.2.3.1 Logging and Scheduling Correctly

For the subject numbers to be calculated correctly, you must obey a few scheduling con-
straints:

• You must set (i.e. prompt for) all of the relevant information about the current subject
before the subject number calculation is performed.

• All of the current subject’s information must be logged before the experiment is execut-
ed.

• When logging information, you must log the subject’s name before any other informa-
tion.
231

 Part 2: Graphic Environment Reference
• You must log the subject name, and all items used for determining a subject’s group.

The order in which items are prompted, calculated, and logged is controlled through the
Subject Info Schedule dialog (see “6.2.6 Subject Info Schedule Dialog”, p237).

It is not important whether you log the current subject’s information before or after you cal-
culate the subject number, unless you want to log one of the numbers; then, of course, you
must log these items after the calculation is performed.

Note: Logging subject and run numbers is a good idea, since this information can be used
by the calculation process if an early part of the log file is deleted (see below).

6.2.3.2 How the Subject Number Calculations are Performed

The subject numbers are calculated by reading through the log from the start, following this
procedure:

When a “SubjectName” keyword is encountered (indicating that the subject name was
logged) item information is collected until an “ExperimentRun” keyword is encoun-
tered (indicating that the subject was in fact run in the experiment).

If the subject was logged for an experiment (indicated in “ExperimentRun”)
that is not the current experiment, the subject information is ignored.

Otherwise, this run contributes towards the subject count and run count cal-
culation. If the info values between the “SubjectName” and “Experi-
mentRun” keywords match the current group, then subject number and
group run count will also be affected.

If the value of the “SubjectName” item that was found matches the current subject, then
run number will be incremented.

This process is repeated until the entire log file has been read, counting subjects and runs
along the way. If the current subject is found to be already in the log file, the subject number
assigned to the subject the first time will be used.

If “SubjectNumber” and “RunNumber” keywords are found for subjects in the log file, they
can affect the counting of subjects and runs. For instance, if the first subject found in the
current group has “SubjectNumber” info with a value of 5, then it is assumed that subjects
1 through 4 were deleted from the beginning of the log file. However, only subject number
and run number are treated this way; accurate subject, run, and group run counts require
that all subjects be kept in the log file.
232

6.2.4 Automatic Grouping
6.2.4 Automatic Grouping

“Automatic grouping” refers to the automatic selection of a one group in the experiment
structure to be used for the next execution of the experiment. Which group is selected de-
pends on the current values of certain Subject Info items; these items are called the group-
ing criteria.

The Automatic Grouping dialog controls the selection of items as grouping criteria and the
mapping from criteria values to groups.

Automatic grouping is generally performed at the same time as the subject number calcu-
lation; the time at which this occurs is controlled through the in Assign Group and Cal-
culate Numbers item in the Subject Info Schedule dialog. Usually, you will schedule
group calculation just before the experiment is run, but after all the Subject Info item values
have been set for the current subject. See also “6.2.3.1 Logging and Scheduling Correctly”,
p231.

Note: Although the process of selecting a group for the experiment usually occurs at the
same time as the subject number calculations, automatic grouping does not involve the
log file in any way; only the current values of the Subject Info items are relevant. Psy-
Scripters may find it useful to disassociate the subject number calculations and group
selection.
233

 Part 2: Graphic Environment Reference
6.2.4.1 Automatic Grouping Dialog

The Automatic Grouping dialog is used to configure automatic assignment of a group for
the current subject. To open the Automatic Grouping dialog, click on the Auto Grouping
button in the Subject Info dialog.

At the top of the dialog are two lists: the list on the left shows the subject info items that are
used to assign the subject to a group, i.e. the grouping criteria; the list on the right shows
subject info items that are not used to assign a subject to a group (i.e. the non-criteria).

To move an item from the non-criteria list (on the right) to the criteria list (on the left), se-
lect the item and click on the << Group by << button. To move items in the other direction,
click on the >> Remove >> button.

The lower part of the dialog contains a list of all groups currently defined in the experiment.
When you select a criterion in the grouping criteria list, the value specific to each group is
shown to the right of the group in this list. To change the value for a group, click on it.

To open the Group Criteria dialog and display all criteria values for a single group, double-
click on a group in the group list. (See “6.2.4.2 Group Criteria Dialog”, p235.)

Subject Info items (or values read from the log file) are compared to group criteria charac-
ter-by-character (ignoring capitalization), unless the criteria uses a modulo comparison. In
a modulo comparison, both the item value and the criterion are converted to numbers; then,
the numbers are compared modulo some value. The comparison mode and modulo value
for a criterion are set by clicking on the ModuloÉ button.

Figure 186 – The Automatic Grouping dialog
234

6.2.4 Automatic Grouping
If the Notify user of group assignment box is checked, the user will be notified of the
group assignment — through the standard Message dialog — after an automatic assign-
ment is performed.

The Warn about duplicate subject name pop-up menu controls a feature to help insure
that the subject name is updated before every execution of the experiment. This setting is
actually used by the subject number calculation, instead of the automatic grouping process.

When the Warn about duplicate subject name pop-up menu is set to Always, the user
is warned any time the current subject name is found already in the log file. The For Same
Experiment setting gives the warning only if the subject name was previously logged for
the current experiment. The After Reloading Script setting gives the warning only if the
script has been changed or reloaded since the subject name was logged. The After Re-
starting setting gives the warning only if PsyScope has been restarted since the subject
name was logged.

6.2.4.2 Group Criteria Dialog

The Group Criteria dialog shows all of the Subject Info grouping criteria and their values
for a single group. To open the Group Criteria dialog, click on the Criteria button in the
Group dialog, or double-click on a group in the Automatic Grouping dialog.

Each criterion is shown as an item in a list. The value for that criterion within the group is
shown next to the criterion name. This value is changed in the usual way: by clicking on it.

Figure 187 – The Group Criteria dialog
235

 Part 2: Graphic Environment Reference
6.2.5 Data File Dialog

The Data File dialog is used to configure automatic data file name generation. To open the
Data File dialog, click on the Data File button in the Subject Info dialog.

The two radio buttons at the top of the dialog control whether a data file name is calculated
from Subject Info item values (i.e. Automatic is selected) or a fixed name is used (i.e. Set
to is selected). The rest of the dialog applies only if Automatic is selected.

If the data file is to be stored in a directory other than the default directory (which is usually
the location of the script; see “6.1.2 Path Names”, p215 for more information), then Use
Folder should be checked. The folder to be used is shown in the outlined area to the right
of the checkbox. The folder can be changed by hitting the Set FolderÉ button.

The list to the left of the dialog controls what information is used to generate an automatic
file name; a file name can is built by concatenating Subject Info item values and static sep-
arators. The order of the items in the list correspond to the order they are used in the file
name. A checkmark next to an item causes the item’s initials to be used instead of the full
item value.

On the right side of the dialog is the current list of Subject Info info items. To add a Subject
Info item to the list of items used in the data file name, highlight it and click on the << Add
<< button. To add static separator characters, click on the SeparatorÉ button. The Re-
move button deletes items or separators from the data file items list.

The data file name is automatically recalculated anytime one of the items it uses is changed
through a prompt dialog. You can also schedule a recalculation using the Calculate name:
pop-up menu at the bottom of the dialog. (This can also be set through the Calculate Data
File Name item in the Subject Info Schedule dialog; see “6.2.6 Subject Info Schedule Di-
alog”, p237.)

Figure 188 – The Datafile dialog
236

6.2.6 Subject Info Schedule Dialog
6.2.6 Subject Info Schedule Dialog

The Subject Info Schedule dialog is used to control a number of processes:

• When the user is prompted for the value of a Subject Info item (PromptÉ).

• When Subject Info items are recorded in the log file (LogÉ).

• When a group is automatically assigned and subject numbers are calculated (Assign
Group and Calculate Numbers).

• When the automatic data file name is calculated (Calculate Data File Name).

(See also “6.2.4 Automatic Grouping”, p233 and “6.2.5 Data File Dialog”, p236.)

To open the Subject Info Schedule dialog, select the Schedule button in the Subject Info
dialog.

Processes at the bottom of the list — in the Never section — are unscheduled. To schedule
a process in this list, drag it to one of the time sections. To schedule a process to happen
twice, option-drag it.

The schedule times represented by the sections are as follows:

Open Script or Project – Processes in this section are performed when the script is ini-
tially loaded into PsyScope (and a project is not used), or when a project is loaded into
PsyScope. (See “6.1.1 Using Projects”, p213 for more information on projects).

Open Experiment – Processes in this section are performed when the current experi-
ment is changed to this one in PsyScope (by changing the experiment in the Console’s

Figure 189 – The Subject Info Schedule dialog
237

 Part 2: Graphic Environment Reference
pop-up menu or by opening the script or project). Note that Open Script or Project
processes are always followed by Open Experiment processes, although Open Ex-
periment processes will not be preceded by Open Script or Project process if the
current script is changed within a project.

Run – Processes in this section are performed just before the experiment is executed in
Run mode (as opposed to Practice mode).

Practice – Processes in this section are performed just before the experiment is executed
in Practice mode (as opposed to Run mode).

End of Run – Processes in this section are performed just after the experiment execution
is completed in Run mode (as opposed to Practice mode or ending by breaking).

End of Practice – Processes in this section are performed just after the experiment ex-
ecution is completed in Practice mode (as opposed to Run mode or ending by a break-
ing).

Break from Run – Processes in this section are performed just after the experiment ex-
ecution is broken (by Command-.) in Run mode (as opposed to Practice mode or a
completed execution).

Break from Practice – Processes in this section are performed just after the experiment
execution is broken (by Command-.) in Practice mode (as opposed to Run mode or a
completed execution).

Close Experiment – Processes in this section are performed when the current experi-
ment is changed from this one in PsyScope (by changing the experiment in the Con-
sole’s pop-up menu or by opening a different script or project). Note that Close
Script or Project processes are always preceded by Close Experiment processes.

Close Script or Project – Processes in this section are performed when the script is
closed (when a project is not used), or when a project is closed. (See “6.1.1 Using
Projects”, p213 for more information on projects).

6.3 The Trial Monitor

The Trial Monitor is a part of the PsyScope user environment that gives the user greater
control over the running of an experiment, allowing interactive adjustment of some param-
eters of the experiment. It also includes features for use in debugging a script.

The Trial Monitor can be accessed in either of two ways:

• Select the Monitor item from the Windows menu.
238

6.3 The Trial Monitor
• Click on the Monitor button in the Console.

The Format line tells you which scripting format has been specified in the script file. (This
is solely for your information, and cannot be changed from the Trial Monitor.) In the ex-
ample above, the console informs the user that the Factor format has been specified. (Factor
is the default format. See “, Chapter 13. Experiment Scripting Reference”, p357 for infor-
mation on the other available formats.)

The Mode line tells you which mode of the format is being used, and how the values in the
boxes are used. The exact content of these lines depends on the format.

For Factor format, the mode will be Block or Direct. Block mode means that the experi-
ment contains blocks, and the text boxes below are used to specify a block scaling value for
the experiment. Direct mode means that there are no blocks in the experiment, so the text
boxes are used to specify total trial counts.

Just below the Format and Mode fields are two radio buttons: Run and Practice. These
are used to select the mode in which the experiment is to be run. The script may be config-
ured to operate differently in these modes. Each mode button has a box next to it in which
you can change the number of trials to be run in that mode.

When one of the modes is selected, the actual number of trials to be run is displayed below
the boxes. For example, in the trials console shown above, the Total to run is set to “1”,
since that is the number specified for the “Practice” mode. If the Run button were clicked,
Total to run would change to “4”.

The value of Total to run will generally not be correct if block durations are used, if the
RerunTrial[] action is executed, or if the QuitBlock[] action is executed, because these
features dynamically change the number of trials which are executed. (You can, however,

Figure 190 – The Trial Monitor
239

 Part 2: Graphic Environment Reference
use Enforce predicted trial count to force the number of trials actually executed to be
the same as Total to run; see below.)

At the top right of the console are the Do Trials, Reset Exp, and By IndexÉ buttons. Do
Trials causes the specified number of trials to be run in the selected mode. When the trials
are completed, the experiment will still be active — i.e. the experiment is paused, but not
ended, so that more trials may be run without restarting the whole experiment. Hitting Re-
set will then end the experiment, possibly writing out the data for the trials that were run.

By IndexÉ may be used to run specific trials by specifying starting and ending trial num-
bers. If the start number is omitted, it is defaulted to 1. (The indexing of trials starts with
1.) If the end trial number is omitted, it is defaulted so that the number of trials specified in
the trials console will be run.

At the bottom of the Trial Monitor are a number of checkbox options for running the trials.
The first is Check Events, which causes the trials to be compiled, but not run. Check mode
is useful for obtaining compile time and optimization statistics without actually running the
trials.

Load Stimuli works in conjunction with Check Events; Load Stimuli specifies that the
stimuli for the experiment should be loaded during the check. This may be useful for testing
sound file paths, for instance, or for checking the amount of time required to load the stim-
uli.

Checking Report Statistics causes a statistics window to be opened in a standard editing
window after the trials are run or checked. See “6.3.1 Trial Compilation Statistics”, p241
for information on the contents of the window.

Checking List Events causes a window with debugging information to be displayed after
the trials are run or checked. The debugging information includes:

• the condition name for each trial

• the name of each event in the trial

• the stimulus string for each event (in parentheses, following the event name)

If Enforce predicted trial count is checked, block durations and special actions are ig-
nored so that the number of trials executed will match the number of trials predicted in Tri-
als to run.

If Compile all trials before running is checked, the interpreter will process all the trials
to be performed before running the experiment. (Usually, one trial is processed and then
run at a time.) This option is available in case compiling each trial takes more time than can
be spared between each trial, but limits some of the functionality of PsyScope. See “6.5.1
Precompiling”, p246 for more information.

If Auto reset after running is checked, the experiment will be automatically reset after
the trials are run, rather than falling into the “paused” state described above.
240

6.3.1 Trial Compilation Statistics
Checking Monitor Events turns on the Event Monitor debugging system, which shows
the status of events and actions as the trial is run. If Step is also checked, the program will
run only one event at a time; to go to the next event, hit the space bar. Like Check Events,
these options are useful for debugging your script. See “6.4 The Event Monitor and Vari-
able Monitor”, p241 for more information.

6.3.1 Trial Compilation Statistics

When trials are run from the Trial Monitor and the Report Statistics box is checked, a
statistics window opens when the trials are completed. This window contains compile time
and optimization reports.

The first section of the statistics report shows the total, average, minimum, and maximum
times for:

Compile – This includes the time used to select factor levels and then read and parse at-
tributes from the script. Typically, the first couple of trials in an experiment take long-
er to compile than later ones, since the script interpreter may have to parse some
entries for the first time. Trials that are optimized or that have optimized events will
usually compile much faster than unoptimized trials.

Initialize – This includes the time used by the Trial Manager to initialize a trial so that
it is ready to run. This time is typically very short.

Load – This includes the time used by output devices to load stimuli into memory. If trials
are compiled in Check Events mode and Load Stimuli is not checked in the Trial
Monitor, this value will not reflect the actual load time.

Run – This includes the time spent actually running a trial. This value will be 0 if trials
are checked instead of run. If your trials have a fixed duration, it should be reflected
in this value.

In Factor format, the second half of the statistics shows how many events were optimized
during compilation and how many were not. If very few trials were optimized, you may
have optimization turned off, or the experiment may not be very optimizable. (See also “
Optimization”, p167.)

6.4 The Event Monitor and Variable Monitor

The Event Monitor and Variable Monitor are tools for debugging experiments. They are
accessed through the Monitor checkbox in the Trial Monitor (see “6.3 The Trial Monitor”,
p238). The Event Monitor provides information about a trial while the trial is running so
that the experiment designer can see more clearly what is happening while a trial is running.
The Variable Monitor similarly provides information about Trial Manager Variables used
in the experiment.
241

 Part 2: Graphic Environment Reference
6.4.1 The Event Monitor

The Event Monitor has three panes which provide three types of information as a trial is
running. The upper pane contains trial information. The middle pane contains event infor-
mation, and the bottom pane provides action information.

6.4.1.1 Trial Information

There are three pieces of information in given in the Trial Information pane of the Event
Monitor: the trial number, the trial condition, and the current time.

Trial Number

The trial number field gives the number of the current trial. This is the same value that
would appear in the data file for any RT[] action executed during the trial.

Trial Condition

The trial condition field gives the condition name of the current trial. This is the same value
that would appear in the condition field of the data file. See also “ Condition Name”, p175.

Current Time

This is the time of the last Event Monitor update. It is the number of milliseconds of trial
time since the start of the trial. Trial time is measured as the time taken to run the trial minus
the time taken to update the Event Monitor. See “6.4.2.1 Perceived Times”, p244 for more
on the times in the Event Monitor.

Figure 191 – The Event Monitor
242

6.4.1 The Event Monitor
6.4.1.2 Event Information

The event information pane of the Event Monitor window lists each event in the current
trial, the status of each event, and the actual duration. each row of the display represents an
event, with the name of the event in the first column, the status of the event in the second
column, and the duration of the event in the third column.

Event Statuses

The second column of the event information display contains the event status for each
event. This tells whether or not an event has been loaded, queued, run, cleared, etc. The pos-
sible values are:

ON DECK – The event exists in the trial, but its stimulus has not been loaded.

LOADED – The stimulus for the event has been loaded into memory.

ON QUEUE – The event is queued to run, but has not begun to run yet.

RUNNING – The event has begun to run, START[] actions have been triggered and ex-
ecuted.

MASKED – The event has been masked using MaskEvent[].

CLEARED – The event’s stimulus has been cleared. The actual of the duration is now
known and will be displayed. END[] actions have not been triggered yet.

ABORTED – The event was aborted using AbortEvent[]. END[] actions will not be
triggered unless the event is run again.

ENDED – The event was ended normally. END[] actions have been triggered and ex-
ecuted, and any actions that were active until this event should have been removed.

Event Times

The third column of the event information display contains the time for each event in the
current trial. The time displayed for each event is the actual duration of that event in milli-
seconds. For each event, the display will read 0 until the event status reaches CLEARED, END-
ED, or ABORTED, at which point the actual duration stored for that event will be displayed in
the Event Monitor.

Like the current time displayed in the trial information pane, the durations show are in trial
time, which is does not include the time taken to update the monitor. See “6.4.2.1 Perceived
Times”, p244 for more information on trial time.

6.4.1.3 Action Information

The third pane of the Event Monitor window contains action information. It contains a list
of each currently active action, the number of instances active for that action, the event that
posted the action, and the event or other condition until which the action will be active.
243

 Part 2: Graphic Environment Reference
Instances

The second column of the actions information pane contains the number of instances of the
action that are still active. If the action has more than one instance active this value will
decrease each time the action is triggered until the last instance is triggered, or the action is
cancelled.

Put Up By

The third column contains the name of the event that put up the action. If the action is a trial
action, the event “START” will be listed here.

Active Until

The last column contains the name of the event or other trial condition until which the ac-
tion is active; this is the value of the Active Until parameter of the action. Possible values
are:

the name of any event in the trial; active until the end of that event

TRIAL_END; active until the end of the trial

FORCE_ONE; active until at least one instance has triggered

FORCE_ALL; active until all of the instances have triggered

6.4.2 Event Monitor Operation

The Event Monitor operates by keeping track of the current state of the Trial Manager, and
updating the contents of the Event Monitor window when the Trial Managers state changes.

At the beginning of each trial, the event monitor prints the current trial number and condi-
tion, and lists all events in the trial with the status ON DECK. Each time an event is run or
ended, or any other action occurs, the Event Monitor window is updates with the current
state of the Trial Manager.

At each update a number of things occur:

• The current time is written in the trial information pane.

• The status of each event is checked, and changed if necessary.

• The action queue is read, the action list is updated to reflect the current queue.

6.4.2.1 Perceived Times

In order to prevent the time taken to update the event monitor from interfering with the tim-
ing of events in the Trial Manager, that time is not taken into account when calculating trial
244

6.4.3 The Variable Monitor
times while running trials using the Event Monitor. When the event monitor is updated, the
time is recorded at the beginning of the updated, and the trial clock is reset to that time as
soon as the update is finished. In essence, trial time is “frozen” for the duration of the up-
date.

For this reason, event durations of synchronous events, such as text, and pictures, will seem
longer than they should be. Each event will be “stretched” by the amount of time that was
needed to update the Event monitor. On the other hand, asynchronous events that have an
inherent duration, like sounds, will not be stretched in this way, because they are not de-
pendent on the Trial Manager to continue their presentation or to clear them. Actions that
depend on sounds and other events with inherent durations, however, will be delayed by
Event Monitor updates.

6.4.2.2 Step Mode

When Step is checked in the Trial Monitor window, it puts the Event Monitor in step mode.
In step mode, the Event Monitor waits after every update until the space bar is pressed be-
fore allowing the Trial Manager to continue executing the trial. This allows the experiment
designer to see the state of the trial after each action, and to “step” through the trial at his
own pace. This can be helpful when debugging complicated sequences of events that take
place in a very short period of time.

In step mode trial time is “frozen” (see above) until the spacebar is pressed. Synchronous
event types that depend on the trial manager to end them will be extended as long as the
trial is stopped, but asynchronous event types with an inherent duration not dependent on
the trial clock will continue to run.

6.4.3 The Variable Monitor

The Variable Monitor lists all of the trial variables that are used in the experiment. The fig-
ure above shows the Variable Monitor with the standard built-in variables. See also “5.10
Trial Manager Variables”, p205.

Figure 192 – The Variable Monitor
245

 Part 2: Graphic Environment Reference
The first column of the Variable Monitor shows a variable name. The second column is the
type of the variable. The third column shows the variable’s current value if it is a scalar, or
List or *Record* for arrays and records, respectively.

6.5 Space and Speed

In an ideal world, all experiments would run displaying their stimuli instantaneously while
using the least possible amount of memory. Unfortunately, the world is not ideal, and very
often it is necessary to slow down the displaying stimuli in order to minimize memory use,
or to use more memory in order to insure that stimuli are displayed as quickly as possible.

This section is intended to help the experiment designer decide what measures need to be
taken in order to achieve optimal memory usage and time overhead for his or her purposes.
Of particular interest is the intertrial interval, or ITI; this is the time that elapses between
the end of one trial and the beginning of the next.

This section explains a number of problem areas in which trade-offs between speed and
memory need to be made. It also describes some situations in which some other quality
(such as picture quality) can be sacrificed in order to reduce memory usage without sacri-
ficing speed.

6.5.1 Precompiling

Before a trial can be executed, it must be compiled. Compiling is the process of reading the
experiment structure from the script and generating a trial that can be executed by the Trial
Manager. The compilation process must choose a block, template, and condition for the tri-
al, and then read all the trial and event attributes in this context.

By default, PsyScope compiles each individual trial just before it is run. For very complex
experiments, the time required to compile a single trial may become so significant that it
affects the ITI.

One way around this problem is to compile all of the trials before executing any trials; this
is called precompiling. When trials are precompiled, the compile time does not contribute
to the ITI — there is just some waiting time at the beginning of the experiment. (The subject
can be reading experiment instructions during this time; see “ Instructions File”, p165.)

Precompiling can be turned on in a couple of ways. There is a Precompile checkbox in the
Trial Monitor (see “6.3 The Trial Monitor”, p238); checking this box will cause all exper-
iments run in that copy of PsyScope to be precompiled before running. (If a project is used,
this checkbox applies only to scripts in the project; see “6.1.1 Using Projects”, p213.)

There is also a Precompile experiment attribute; in this attribute, you specify a number of
trials to be precompiled (the rest will be compiled normally), or All trials. This attribute ap-
plies only to the current experiment, but it can be overridden by the Precompile checkbox
in the Trial Monitor (i.e., the checkbox can force all of the trials to be precompiled).
246

6.5.2 Loading Stimuli
6.5.1.1 Problems with Precompiling

Unfortunately, precompiling is not a completely general solution; precompiling can some-
times produce different results than regular, trial-by-trial compiling. This happens when
compiled information for one trial depends on the execution of another.

Note that this is different from run information being execution dependent; for example,
trial variable values may be changed from trial to trial, but a reference to a trial variable in
an expression cannot be correctly compiled without executing the previous trials. The ex-
pression will not be evaluated until the trial is actually executed (by which time the trial
variable will have the correct value).

Precompiling does not work under the following circumstances:

• Block durations are used – For most experiments, it is impossible predict in advance
how many trial will be run in a block that uses durations; even when it is possible (i.e.
the trials all have a fixed duration), PsyScope does not attempt to calculate a count.
Instead, duration-based blocks are assigned a trial count of 1.

• Attributes are linked to trial variables – When an attribute is linked to a trial variable
(which is different from using the variable in an expression; see “5.10.4 Linking to
Variable Values”, p207), the attribute depends on the variable’s value to have
changed by the time the trial is compiled. However, with precompiling, no actions
will have been run, so the variable values will all stay the same.

• The ScriptEval[] action is used, and attributes are linked to the result; in this case,
executing a trial could modify the script. If any other trial depends on this modifica-
tion, it will not have been made at precompile time.

6.5.2 Loading Stimuli

6.5.2.1 Load Time

Before PsyScope presents a stimulus, it must be loaded into a buffer in memory. Loading
stimuli not only occupies memory, but also takes time, the amount of which can vary from
trial to trial. Depending upon the nature of your stimuli, and the demands of your experi-
ment, you may be concerned about one or the other of these factors.

Loading Text

PsyScope has the capability of displaying text stimuli in any font, size, face and color avail-
able on the system. The Macintosh system, however, was not designed with the idea that
users would want to have text displayed no more than a few milliseconds after it has been
requested.

Because of this, the Macintosh Font Manager only keeps the most recently used font in
memory, and when it is not using it, will allow it to be purged if that memory is needed for
247

 Part 2: Graphic Environment Reference
something else. The result is that it often takes as long as 60 milliseconds for text to be dis-
played, and in some extreme conditions can take as long as 250-400 milliseconds.

To get around this problem, the Trial Manager has PsyScope’s screen device draw any text
that is loaded at the beginning of the trial into a buffer offscreen and then simply copy the
buffer to the screen when the stimulus is displayed.

The two main factors in increasing the font loading time are the use of color and the use of
resource management utilities such as Suitcase II™. (These utilities allow you to keep a
large number of font files open at the same time. The trouble is that PsyScope must then
search through all these files in order to find a particular font.) In many cases, running in
monochrome mode and without many open font files will reduce the font loading time
(which was moved to the ITI) to acceptable levels.

It is possible that an experiment with many large text stimuli in a trial will use great
amounts of memory. To avoid this, specify a Load Time of 1 ms or more (see “ Load
Time”, p180). When text stimuli are loaded just before playing, they are not written into an
offscreen buffer, but written directly to the screen, since the font would have to be loaded
anyway. Of course, the font loading time will be incurred during the trial instead of at the
beginning. If a constant inter-stimulus interval is necessary, then Load Time can be speci-
fied to be a value greater than the longest incurred font loading time, and the Trial Manager
will insure that it loads the stimulus the given amount of time before it plays the stimulus.

Loading PICTs

In general, the time it takes to load a PICT depends on:

• The PICT’s size — The larger a PICT file is, the longer it will take to load from disk
and draw it off-screen to prepare it to be displayed.

• Whether the PICT is a bitmap or a line drawing — A bitmap will take longer to load
than a line drawing.

• The depth of the PICT, and the relation between the PICT defintion’s depth and the dis-
play depth — In general, a PICT will take longer to load when the screen depth is dif-
ferent from the depth of the PICT definition than when they are the same.

• Whether the PICT has to be scaled — By default, PICT stimuli are scaled to fit exactly
within the borders of the stimulus port in which they are to be displayed. However,
the Draw picture actual size feature attribute of a PICT stimulus can be turned on
to cause the PICT to be drawn the same size as it was in the original drawing.

The Keep picture information in memory feature attribute can reduce the amount of
time taken up loading PICTs in some cases. See “ Keeping Stimuli in Memory”, p251 for
more information.
248

6.5.2 Loading Stimuli
Loading Sounds

The main consideration in loading sounds — both in terms of time and memory consumed
— is the size of the sound. The larger a sound is, the longer it will take to load and the more
memory it will occupy.

In general, higher fidelity means a larger sound. For example, a sound with 16-bit samples
will be twice as large as one with 8-bit samples. A stereo sound will be twice as large as a
monaural sound, and a sound sampled at 44.1 KHz sampling rate will be twice as large as
one sampled at 22.5 KHz sampling rate. A CD-quality stereo sound (16-bit, 44.1 KHz) will
be 8 times as large as a sound recorded with MacRecorder™ on SoundEdit™ (8-bit, mono,
22.5 KHz).

The Keep sound in memory feature can reduce the time consumed by loading sound
stimuli in some cases. See “ Keeping Stimuli in Memory”, p251 for more information.

The Play in parallel feature also has an effect on the load time of a sound. When a sound
has to be played in parallel with other sounds, it must be played in a separate sound channel.
Thus, a new sound channel must be allocated at load time for every sound for which the
Play in parallel feature is turned on. Allocating a sound channel can take 50ms, more or
less depending on the speed of the machine you are running on and how much memory is
currently available.

6.5.2.2 Controlling The Load Procedure

By default, PsyScope loads all stimuli for a trial during the ITI, before the trial begins. Once
a stimulus is presented, it is cleared from memory, so that when the trial is complete all of
the memory has been freed and the stimuli for the next trial are loaded. Each ITI lasts as
long as it takes PsyScope to load the stimuli for the next trial.

There are two problems with loading all of the stimuli into memory at the beginning of a
trial:

1) Keeping several large stimuli in memory may take a great deal of memory, perhaps
more than is available.

2) Moving the loading to the beginning of the trial does not eliminate the time delay, it
just causes it to occur at a (hopefully) more convenient time.

You can control this process in several ways:

• setting the minium ITI.

• preloading all stimuli at the beginning of the experiment.

• keeping stimuli in memory across trials.

• loading stimuli event by event.

Each of these addresses a different concern, as discussed below.
249

 Part 2: Graphic Environment Reference
Setting the Minimum ITI

The Minimum ITI trial attribute sets the minimum amount of time that PsyScope waits be-
tween trials. PsyScope will load all of the stimuli for the trial during this period, but will
wait to begin the trial until the specified amount of time has elapsed.

You can use this attribute to ensure that the amount of time between trials is constant. First,
you should use the Trial Monitor to check the maximum amount of time it will take to load
stimuli before a trial (see “6.3.1 Trial Compilation Statistics”, p241). Then, assign an equal
or greater value to the Minimum ITI attribute. Be sure to run the load time test on the slow-
est machine that you will be using to run the experiment.

Setting Minimum ITI is the best option to use if you do not have the memory available to
preload all of the stimuli at the beginning of the experiment (discussed next), but need to
maintain a consistent interval between trials.

Many experiment designs have an “ITI” event (as the last event in the template) which is
supposed to control the time between trials. If you are not checking for input during this
ITI, it is much better to use the Minimum ITI trial variable, since this allows any sort of
compilation or loading work to be done during the ITI. You can combine a shorter “ITI”
event with Minimum ITI to obtain a variable ITI.

Preloading All Stimuli

For some experiments, it may be important to reduce or eliminate the ITI. You may want
to reduce it because the experiment contains large stimuli that are stored on disk (such as
long sounds or big PICTs, that take a while to load), or stimuli that must be manipulated in
some way (for example, PICTs that are flipped, which also takes a while). In other cases,
you may need to eliminate the ITI altogether. Even loading simple text stimuli can take time
(the bitmap must be constructed for the characters in the string; see “Part 4: Scripting Ref-
erence, 15.2.2 How a Screen Stimulus is Drawn and Cleared”, p445) which may interfere
with the experimental design.

If your experiment can be precompiled (see “6.5.1 Precompiling”, p246), then precompil-
ing may greatly reduce the ITI. If you can precompile an experiment, you can also load all
of the stimuli at the beginning of the experiment by checking the Preload all stimuli with
precompiling checkbox in the Special experiment attribute (see “ Special”, p165).

Using the Preload all stimuli with precompiling option and Precompile mode, you
can ensure that there is no delay between trials. (Of course, you can reintroduce any needed
delay, by including an explicit “ITI” event in the trials of the experiment.) The cost of this
technique is that you must precompile trials, which limits your experimental design and
takes time at the beginning of each run of the experiment.

Also, preloading stimuli requires that you have enough memory to store all of the unique
stimuli in the experiment in memory at once. This is not likely to be a problem for experi-
ments that use repetitive text stimuli; however, it may be a problem if the stimuli are sounds
or PICTs, which can occupy a large amount of memory.
250

6.5.2 Loading Stimuli
Unlike stimuli that are loaded trial-by-trial, preloaded stimuli are never cleared from mem-
ory. This mean that you may have enough memory to load everything at the beginning of
the experiment, but not enough to keep the stimuli around while data is accumulated. It is
therefore important to test the memory usage of your experiment by actually running com-
pletely, rather than simply compiling it.

Keeping Stimuli in Memory

Stimuli of type PICT and Sound are extremely memory intensive. A complicated picture or
a long and/or high-quality sound can take up a great deal of space in memory. Unfortunate-
ly, it also takes a great deal of space on disk, and thus may take a relatively long time to
load into memory.

Because of this, the ability to keep PICTs and sounds in memory from one trial to the next
is available. If you have enough memory, you might decide to keep a long sound or com-
plicated picture in memory until the end of the experiment, thus only having to wait for it
to be loaded once. This can be useful if a small set of sounds will be used in many trials;
e.g., if there is a constant set of sounds which will be used for feedback in every trial in the
experiment.

Pictures and sounds which are to be kept in memory are denoted individually. PICT, Sound,
and SoundDesigner events have a Feature attribute, through which you can set the Keep
picture/sound in memory flag. The picture or sound which is loaded by the event will
be kept for use by later events.

The Keep picture in memory feature causes the raw picture information that is loaded
from disk to be kept from one trial to the next. This information — which could be a bitmap
or line-drawing — is separate from the to the final, scaled bitmap which is created and
stored at load time (and is the bitmap actually seem by the subject).

The Keep sound in memory feature causes the buffer of sound samples to be retained
across trial boundaries. No additional processing has to be performed on a sound buffer.

Note: Keeping sounds or pictures in memory can be very memory intensive and leaves less
memory available for other PsyScope processes and for other stimuli. This feature
should only be used for those sounds that will be needed in every, or almost every trial.

Loading Stimuli Event by Event

By default, PsyScope loads all of the stimuli for each trial before it begins. In some exper-
iments, however, trials may contain a large number of stimuli, or the stimuli may be partic-
ularly memory intensive, so that it is not possible to load all of them — even for a single
trial — into memory at once.

In this case, you will need to direct PsyScope to load stimuli event-by-event. You do this
by setting the Load Time event attribute. This attribute determines when the stimulus for
the event will be loaded. If the value is 0, the stimulus is loaded at the beginning of the trial.
251

 Part 2: Graphic Environment Reference
If it is non-zero, then PsyScope will schedule the event stimulus to be loaded that many mil-
liseconds in advance of the event’s start time.

Once the event ends, the stimulus will be cleared (unless Keep picture in memory or
Keep sound in memory applies; see “ Keeping Stimuli in Memory”, p251), making room
for other stimuli to be loaded. The advantage of this technique is that it allows you to use
memory in the most efficient possible way, permitting the sequential presentation of mem-
ory-intensive stimuli. The cost is the time it takes to load each stimulus, which will take
place during the trial, just before it is presented.
252

Ψ
Chapter 7. User Environment

Part 2: Graphic Environment Reference

7.1 Menus Reference

7.1.1 File Menu

New ProjectÉ – Creates a new project. See “6.1.1 Using Projects”, p213.

OpenÉ/SwitchÉ – Opens and loads a script or project, closing any that are cur-
rently open. Only one project or script can be open at a time, and if a project is open,
only one script owned by the project can be loaded.

Close – Closes the current script or project.

New Text File – Opens a text editor window for a new file. See “7.3 The Editor”,
p258.

Open Text FileÉ – Opens a text file to edit in an editor window. See “7.3 The Ed-
itor”, p258.

Open Selection – Opens a text file named by the current selection in the frontmost
editor window. See “7.3 The Editor”, p258.

Edit This Script – Opens a text editor window for the script currently loaded. See
“7.3 The Editor”, p258.

Save Script – Saves to disk any changes made to the currently loaded script.

Save Script AsÉ – Saves the current script under a different name and makes the
new file the current script file. If the script belongs to a project, the name will also
be changed in the project’s list of scripts.

Save a Copy AsÉ – Saves the current script under a different name but does not
switch to the new file.

Revert Script – Disposes of any changes made to the current script since it was
last saved and then reloads the script from disk.

Quit – Closes the current script and quits PsyScope.

 Part 2: Graphic Environment Reference
In text editor mode:

Save File – Saves the file in the frontmost Editor window to disk. See also “7.3 The
Editor”, p258.

Save File AsÉ – Saves the text file under a different name. Subsequent saves will
go to this new file.

Save a Copy AsÉ – Saves the text file under a different name but does not switch
to the new file.

Revert File – Disposes of any changes made to the text file since it was last saved
and reloads it from disk.

7.1.2 Edit Menu

Most of these menus are only used with the text editor. See also “7.3 The Editor”, p258.

Undo, Copy, Cut, Paste, Clear – These perform the standard operations.

FindÉ, Find AgainÉ, Selection to Search, Replace, Replace and Find Again,
Replace All, Tools – These items are described below in “7.3 The Editor”, p258.

New Object, Get ObjectÉ – These items used by the graphic environment; the
name will change depending on the type of object that is appropriate to the active
window.

Options – This is a submenu for setting various types of options. See “7.6 Options”,
p265.

7.1.3 Run Menu

Run – Runs the current experiment.

Practice – Practices the current experiment.

Monitor – Opens the Trial Monitor or brings it to the front. See “6.3 The Trial
Monitor”, p238.

Build Run FileÉ, Do Run FileÉ – These items build and load run files, precom-
piled experiments saved to disk. Run files are not currently supported.

7.1.4 Utilities Menu

Project Scripts – Adds or removes scripts to the current project and sets the avail-
254

7.1.4 Utilities Menu
ability of the experiments in the scripts. See “6.1.1 Using Projects”, p213 and
“6.1.1.2 The Scripts Dialog”, p214 below.

Switch Experiment – Changes the current experiment by selecting from the hier-
archical list; this is the same as the pop-up menu in the Console (see “7.2 The Con-
sole”, p257). If the selected experiment is in another script of the current project,
then the current script will be closed and the new script will be loaded.

Evaluate, Evaluate Again – These items are described in “7.4 The Evaluator”,
p263.

Text Tools – The items in this submenu are described in “7.3.1 Editor Menu Items”,
p258.

Change Log FileÉ – Changes the name and location of the log file. The location
of the log file is stored in a “LogFile” entry in the script, so the new log file name
and location is saved when the script is saved. See also “6.1.5 The Log File”, p222.

Log Comment – Opens a text window for a comment to be inserted in the log file.
Closing the window automatically writes the window’s contents to the log file. See
also “6.1.5 The Log File”, p222.

View Log File – Opens a read-only copy of the current log file in the edit window.
As the log is changed, this edit window will not be updated.

Change Data FileÉ – Changes the name and location of the data file, as stored in
the Data File attribute of the current experiment. The name and location of the new
data file will be saved when the script is saved. No new files are created until the
experiment is run. See also “6.1.4 The Data File”, p217.

View Data File – Opens the data file specified in the “DataFile” attribute of the cur-
rent experiment. If no data file is specified, a dialog will ask for a file to open. See
also “6.1.4 The Data File”, p217.

Experiment Notes – Opens an editor window for typing in notes about the current
experiment. This uses the same window as the Notes button in the Design window
(see “5.2.4 Design Window Control Area”, p113), but the menu item can be used
for an experiment in any format.

Reinitialize Script – Reinitializes the log file, menu system, and script resources
for the currently loaded script. It does not save the script or reload it from the disk.

List Script Changes – Displays a list of all entries that have changed since the
script was loaded or last saved.
255

 Part 2: Graphic Environment Reference
7.1.5 Design Menu

This menu will be in the menu bar only if Design mode is on (see “7.6.1 General Options”,
p266).

New Experiment – Creates a new experiment. You will be prompted for an exper-
iment name, and whether the new experiment should be written to the currently
loaded script or to a new file.

Clean Up – Available only when the Design window is active; it is used to reformat
object icons in the Work area of the Design window. See “5.2.3.1 Cleaning Up”,
p113.

Objects in Script – A submenu of all of the types of objects in PsyScope; each of
these items opens an Object List dialog (see “5.2.7 Object List Dialog”, p115) con-
taining a list of all of the objects of that type in the script.

Check Links – A utility that is normally run automatically; it analyzes the script
and validates the hierarchical structure. Check Links updates the “BuilderData”
script entry, which is where information specific to the graphic environment is
stored. (This information is not needed for running the experiment.) If the Option
key is held down while this item is selected, “BuilderData” will be erased and com-
pletely rebuilt.

Put in View – Creates a graphic environment object for an arbitrary entry in the
script.This feature is not currently supported.

Empty Trash – Permanently deletes all of the objects that are currently in the trash.
See “5.2.3.2 Trash”, p113.

Show Trash – Opens a window that lists all of the objects currently in the trash.
See “5.2.9 View Trash Dialog”, p115.

7.1.6 Script-Specific Menus

A number of script-specific menus may appear between the Utilities (or Design) menu and
Windows menu. The operations performed by these items are entirely dependent on their
definition in the script.See “Part 4: Scripting Reference, 16.1 Setting up the Menus”, p449.

7.1.7 Windows Menu

Console – Brings the Console to the front. See “7.2 The Console”, p257.

Design – Opens the Design window or brings it to the front. See “5.2 The Design
Window”, p107. This item is only available for scripts using Factor format.
256

7.2 The Console
Subject Info – Opens the Subject Info window or brings it to the front. See
“6.2.1.2 Subject Info Dialog”, p226.

Palettes – Opens or closes the graphic environment tool palette floating window;
this item is enabled if a palette-using window is frontmost and the Palettes in
separate floating window option is on. See also “5.2.1 Objects and the Experi-
ment Hierarchy”, p107.

Trial Chooser – Opens or closes the Trial Chooser floating window for some
graphic environment dialogs. See “5.11 Trial Chooser Floating Window”, p209.

Cell Chooser – Opens or closes the Factor Table floating window for some graphic
environment dialogs. See “5.7.2.7 Factor Table Floating Window”, p144.

HelpÉ – Gets help on a word or opens a help page. See “7.5 The Help System”,
p264.

Monitor – Opens the Trial Monitor or brings it to the front. See “6.3 The Trial
Monitor”, p238.

Evaluator – Opens the Evaluator window or bring it to the front. See “7.4 The
Evaluator”, p263.

Zoom – Makes current window as large as possible or returns it to the user size. (Se-
lecting this item is just like clicking the zoom icon in the right corner of the window
title bar.)

Iconify/Deiconify – Iconify replaces the frontmost window with a small, icon-
sized version of the window. Double-clicking on the icon or choosing Deiconify
restores the window to its normal state. See also “7.6.5 Display Options”, p269.

Close – Closes the frontmost window.

Other items at the end of the Windows menu are the names of currently open windows;
selecting a name brings that window to the front. These windows are typically editor or
graphic environment windows.

7.2 The Console

The Console is always open when a script or project is loaded; closing the Console causes
the script or project to be closed. If a project is loaded, the title of the Console will be the
name of the project; if a script is loaded outside of a project, the title will be “PsyScope”.

The first item in the Console is a pop-up menu of all the experiments available in the current
script or project. This menu is just like the Switch Experiment submenu in the Utilities
menu. If you select an experiment from the menu while pressing the Option key, the exper-
iment’s script file will be opened in a text window, without changing the current experi-
ment.
257

 Part 2: Graphic Environment Reference
Note: See “6.1.1.2 The Scripts Dialog”, p214 for information on adding experiments to this
menu in a project.

At the right end of the Console are Run, Practice, Monitor, Design, and Quit buttons.
These buttons perform the same operations as their menu counterparts. (See “7.1.3 Run
Menu”, p254, “7.1.5 Design Menu”, p256, and “7.1.1 File Menu”, p253.)

At the bottom of the Console is the name of the script file that is currently loaded. Clicking
on the script name opens the script in an editing window (see “7.3 The Editor”, p258).

In the middle of the Console may be a number of bulleted items. These are the names of
some specially configured entries in the script and their current values. You can change the
value of the entry by (single-) clicking on the item in the console. In this way, the Console
provides both the ability to display a few important values from the script for the user, and
allows quick access to the most used entries. (Information on configuring the Console is
given in “Part 4: Scripting Reference, 16.2 The Console”, p455.)

7.3 The Editor

The PsyScope text editor can be used to edit any text file.The Editor’s primary purpose is
to allow scripts and other experiment files to be edited from within PsyScope, but it is used
by PsyScope for several different things: e.g., editing, messages, help files. The Action bar
at the top of the editor will change (and sometimes disappear) based on the mode in which
it is being used.

Except where noted, the information presented here applies to all modes. In general, the ed-
itor will perform like any Macintosh editor, with a vertical scroll bar showing the position
of the visible section in the file, and a horizontal scroll bar for scrolling across the fixed-
width page.

When a text file is opened, the File menu items Save, Save AsÉ, Save a Copy AsÉ, and
Revert change so that they may be used for the text file rather than the script. If the editor
is being used in interactive mode (see below), this does not happen because the file and the
script are the same.

7.3.1 Editor Menu Items

The Edit menu includes these items:

Undo, Copy, Cut, Paste, Clear, and Select All Ð Work in the standard way. If you
hold the shift key down as you select Copy or Cut, however, the copied/cut text will
be appended to the current clipboard, rather than replacing it.

FindÉ – Opens a dialog to locate a string of characters in the text. See “7.3.5 The
258

7.3.1 Editor Menu Items
Find Dialog”, p262.

Find Again – Searches using the parameters set in the Find dialog and starting from
the caret position or end of the current selection. See “7.3.5 The Find Dialog”, p262.

Selection to Search – Sets the find string to be the current selection. See “7.3.5
The Find Dialog”, p262.

Replace – Replaces the currently selected text with the replace string. See “7.3.5
The Find Dialog”, p262.

Replace and Find Again – Performs the Replace and Find Again commands con-
secutively.

Replace All – Finds all occurrences of the find string in the file (after the caret po-
sition in non-wraparound mode) and changes them to the replace string. See “7.3.5
The Find Dialog”, p262.

Text Tools, in the Utilities menu – A submenu with these items:

Interactive Mode – A shortcut item for setting the Interactive Script
Editing option (see “7.6.3 Editor Options”, p267). This item is only enabled
if the frontmost editor window is for the current script.

Scroll to Changes – A shortcut item for setting the Scroll to Changes op-
tion (see “7.6.3 Editor Options”, p267). This item is only enabled if the
frontmost editor window is for the current script.

Script Enabled – Enables and disables reading from and writing to the
script by background processes. This is useful if you need to do a large
amount of editing and wish to suspend background updates. This item is
only enabled if the frontmost editor window is for the current script.

Wraparound – Enables and disables wraparound text. This option is not
used in interactive editing. (This wraparound is unrelated to the Wrap-
around searching option.)

Balance – Extends the current selection forward and backward until a bal-
anced pair of brackets is found.

Statistics – Opens another window to report the number of lines, words,
and characters in the text and in the current selection range.

Count Finds – Counts the number of occurrences of the find string in the
text after the cursor or in the selection range. See “7.3.5 The Find Dialog”,
p262.

Shift Left – Shifts all lines in the current selection left by removing a tab
from the beginning of each line.

Shift Right – Shifts all lines in the current selection right by adding a tab to
259

 Part 2: Graphic Environment Reference
the beginning of each line.

Comment Lines – Places a “#” at the beginning of each selected line if
there is not one already.

Uncomment Lines – Removes “#” from the beginning of each selected line
if it is there.

Uppercase – Converts all alphabetic characters in the selection range to up-
percase letters.

Lowercase – Converts all alphabetic characters in the selection range to
lowercase letters.

Script Functions, Script Keywords, Exp Keywords, Actions, and Con-
ditions submenus – Choose an item from one of these submenus and it will
be pasted into the current selection in the text.

7.3.2 Keyboard Commands

The following special keyboard commands are supported:

Control-P: previous line
Control-N: next line
Control-B: previous character
Control-F: next character
Control-A: beginning of line
Control-E: end of line
Control-D: delete next character
Control-K: cut text from cursor to end of line (append to clipboard)
Control-Y: paste

The Home, End, Page up, and Page down keys are also supported.

The meanings of Command-arrow and Option-arrow depend on the Cmd-arrow and Op-
tion-arrow same as MPW option setting (see “7.6.3 Editor Options”, p267). If it is off:

Option-Up: home
Option-Down: end of file
Option-Left: beginning of line
Option-Right: end of line
Command-Left: start of word
Command-Right: end of word

If it is on:

Command-Up: home
Command-Down: end of file
260

7.3.3 Action Bar
Command-Left: beginning of line
Command-Right: end of line
Option-Left: start of word
Option-Right: end of word

7.3.3 Action Bar

The Action bar at the top of the editor window is provided for information and conve-
nience. The buttons in the Action bar of an editor window generally perform the same op-
erations as certain menu items. Load as Script and Save And Reload are provided so that
you can edit scripts and quickly load them back in to PsyScope. Editor windows in Help
mode have special buttons (see “7.5 The Help System”, p264).

The Tools menu at the left of the Action bar is the same as the Text Tools submenu in the
Utilities menu, provided for quicker access.

Clicking on the pop-up with double-colons (::) (next to the Tools menu) opens a menu that
lists the names of all entry definitions in the text; selecting an item from the menu moves
the selection range to the entry’s definition in the text. In addition to entry names, the menu
also looks for markers of the format #> marker-name; a marker is indicated in the menu
with a > beside the name.

By default, entry names in the :: pop-up menu are listed in the order in which they are found
in the script, but the Sort entry list alphabetically option (see “7.6.3 Editor Options”,
p267) alphabetizes the names, putting marker names at the beginning. This option can be
toggled by selecting the last item in the pop-up menu, Alphabetize. It can be toggled tem-
porarily by holding down the Option key while clicking on the :: pop-up.

7.3.4 Interactive Mode

Interactive mode is a way of editing the current script so that the text you see in the editor
window is a live copy of the script being used: when you make a change to the text, the
script is change parsed immediately, and when an entry’s value changes as a result of some
other action (e.g., a dialog is used in the graphic environment), the changes are immediately
reflected in the text.

Interactive mode is enabled through the Editor options dialog, or by the Interactive
Mode item in the Tools menu.

Figure 193 – Editor action bar
261

 Part 2: Graphic Environment Reference
If the name of an include file is changed in an interactive script, the new file will be loaded
the next time the script interpreter searches that part of the script for an entry. The entries
that were in the old included file will be forgotten.

Because you are modifying the working copy of the script when in interactive mode, back-
ground processes within the PsyScope environment are temporarily suspended while you
are typing. The suspension continues until a certain time after your last keystroke. The du-
ration of this suspension is set through the Script editing suspend time option (see
“7.6.3 Editor Options”, p267).

If you misedit an entry (e.g. forget to close a pair of quotes) and the entry is used by some
other open window (such as the Design window), PsyScope may get into a state where it is
trying to update the entry and constantly gives an error message. In this case, hit the Shut
Up button in the error dialog; you will have about five seconds to fix the script (before the
dialog shows up again).

7.3.5 The Find Dialog

The Find dialog has two fields: one for the find string and one for the replace string. These
strings are used by the buttons at the bottom of this dialog, and are also remembered for use
by the other Find menu items.

The Find dialog lets you set a number of options that control how a search is performed:

If Ignore case is checked, text is found when it matches the letters of the find string,
even if the capitalization is different.

If Match words is checked, text matches the find string only if it is found as a separate
word or phrase, i.e. preceded and followed by spaces.

Figure 194 – The Find dialog
262

7.4 The Evaluator
If Wraparound is checked and a search reaches the end of the file, searching continues
again from the start of the text file

Like the find and replace strings, these search modes are also remembered. The modes can
also be changed through the Editor options dialog (see “7.6.3 Editor Options”, p267).

Hitting the Search button begins the search from the caret position or end of the current
selection in the frontmost editor window. The rest of the buttons perform the same function
as their menu counterparts.

The Select editor window after finding or replacing Editor option controls whether
hitting any of the buttons moves the searched-in editor window to the front, or keeps the
Find dialog active (see “7.6.3 Editor Options”, p267).

The find and replace strings are limited to 255 characters. Tabs and returns may be speci-
fied using “\t” and “\r”, respectively. “\\” must be used for “\”.

7.4 The Evaluator

The Evaluator is a special editor window that is in direct communication with the PsyScript
interpreter. You can use the Evaluator to type in a scripting expression and evaluate it im-
mediately. The result is returned on a line starting with # Result: followed by the value
of the expression.

An expression is evaluated when the Evaluate menu item is selected (or Command-Space
is hit). The expression to be evaluated is determined one of two ways:

1) If a range of text is selected, the selected text is used as the expression. This method
will work in an arbitrary text editing window; the Evaluator will be opened or brought
to the front to return the value of the expression.

2) If no range is selected, the current position of the caret is take to be the end of the ex-
pression; the starting position is the first character after the last previous commented
line. This method works only in the Evaluator. (Note that the Evaluator returns results
in a comment format. This means you can type an expression, hit Command-Space
for the result, type another expression, etc.)

The Evaluate Again menu item re-evaluates the expression that was last evaluated.

New entries can be defined through the Evaluator. To do this, just evaluate a valid entry
definition; the evaluator will know that it is supposed to create a new entry because of the
double colons (“::”) in the text. Only one entry may be defined at a time in this way.

If you try to define an entry with a name that is already used the script, an error is returned.
If an entry by the name had been defined previously in the Evaluator, its definition is re-
placed.
263

 Part 2: Graphic Environment Reference
Entries defined through the Evaluator are not included in the script. Changing scripts or re-
loading will erase the entries. Reinitializing the script will not erase the entries.

If an expression is evaluated containing the THIS operator (see “12.2.4.1 THIS and OWN-
ER”, p324), the operator will refer to a temporary entry that is created in order to evaluate
the expression. This temporary entry is named “TempEntry”. This convention does not, of
course, apply when a new entry is being defined.

7.5 The Help System

The Help system is made up of a number of different sections corresponding to different
parts of PsyScope. A single section can be opened in any one text editing window — called
a page — but any number of sections and any number of copies of a section can be opened
by using multiple pages.

Help can be opened three ways: the main section can be opened by hitting the Help key on
an extended keyboard; a specific section can be opened through the Help submenu in the
ð menu, or a dialog that asks for a keyword on which to find help can be obtained by choos-
ing Help from the Windows menu (or hitting Command-H).

When a help page is opened, the text editor Action bar has a special configuration. At the
left is a menu containing a list of all the sections; choosing one of these changes the section
displayed by the page. If Option is held down as a section is chosen, a new page will be
opened. The Action bar buttons will be discussed further below.

7.5.1 The Help Search Dialog

The usual Find dialog (see “7.3.5 The Find Dialog”, p262) can be used to locate informa-
tion within a page. To locate help on a topic that may be anywhere in the help system, use
the Help Search dialog, which is opened by selecting Help from the Windows menu. A
string typed here will be searched for in the help index to find help on the topic.

If Keywords only is checked, the help search will only use items that are specifically list-
ed in the help index. Otherwise, all of the text in all Help sections is searched.

Figure 195 – The Help Search dialog
264

7.5.2 Help Action bar Buttons
If New page is checked, a new page will be opened to view the findings. Otherwise, the
frontmost open Help window will be used. (If no Help page is already open, a new one will
always be opened.)

If the Open Page button is hit instead of Find, no search will take place; a new page will
simply be opened showing the main Help section.

If you choose Help (or hit Command-H) with an active selection range in any editor win-
dow, the text in the range will be automatically transferred to the search text box in the Help
Search dialog. If you hold the Shift key down at the same time, the dialog will be skipped
altogether.

7.5.2 Help Action bar Buttons

Often, more than one reference will be found for a topic. The help finding system gives ex-
act keyword matches the highest priority, then inexact matches on keywords, then matches
found in the general text (if the Keywords only is not checked).

Multiple findings can be viewed by hitting the Next button at the top of a help page, or by
typing Return, Enter, or N. If the Next button is disabled, no more references were found.
You can go back to previous findings by hitting the Prev button or by typing P.

If you hit the Help On Selection button, the Help system takes the text in the current se-
lection range and attempts to find other help on it. This is the same as copying the selected
text and pasting it into the text box of the Help Search dialog.

7.6 Options

PsyScope’s options are divided up into five dialogs: General options, Run options, Editor
options, Design options, and Display options. Options are set by choosing an item from Op-
tions submenu at the bottom of the Edit menu.

Options are stored in a “PsyScope Preferences” file in the “Preferences” folder in the Sys-
tem folder (or in the System folder itself in pre-System 7.0). If a preferences file is in the
same directory as PsyScope, that one will be used instead. If a project is open, most options
are stored in the project instead, so that each project has its own set of options. The Auto-
load this script/project option is always stored in the preferences file.

Hitting the Save button in any of the options dialogs stores the options for that dialog. Se-
lecting Save as Default from the Options submenu stores the current set options special-
ly, so that newly created projects will start with these options.
265

 Part 2: Graphic Environment Reference
7.6.1 General Options

User mode – If Design is selected, modifications may be made to the script through the
graphic environment; if Run Only is selected, the graphic environment will not be avail-
able.

Autoload this script/project – This sets the script or project currently loaded to be au-
tomatically loaded every time PsyScope starts up. (If another script or project is double-
clicked to start PsyScope, this option will be ignored.)

Autosave – If this option is active, the script will be automatically saved whenever a
change is made to the script. If the immediately mode is selected, changes will be saved
in the background. If before run or quit mode is selected, the changes will only be saved
just before running or quitting the experiment.

Click in inactive window used as if active – If this option is active, clicking in an in-
active window will bring the window to the front, and then the click will count again as a
click in the content of the window.

TimeBar operations backgroundable – Some time-consuming jobs performed by Psy-
Scope use a time bar show to report progress to the user. If this option is on, these jobs can
be performed by PsyScope in the background. This is more convenient if you are perform-
ing multiple tasks concurrently, but it will slow down the job.

Warning Messages – This option allows the user to specify a “safety level” within Psy-
Scope. If All is selected, the user will get all warning messages. If Most is selected, mes-
sages and warnings with the face icon will not be given. If Some is selected, most warnings
will not be given, except those which use the extra-bold exclamation point icon, or which
require a user decision. If Very Few is selected, then only warnings which require a deci-
sion will be given. Error messages (indicated by stop sign or bomb icon) are always given.
Unless you have a reason to skip certain error messages, you should use the All mode.

Store path names relative toÉ – This option is used only for projects. It allows you to
specify the starting point of path names (relative to Project, Script, or PsyScope) for any
file referenced anywhere in PsyScope while the project is opened. Require Full Path al-
ways generates a path name starting with the volume name. Scripts which are not in a
project always have path names relative to the script. See “6.1.2.1 Relative Paths”, p215.

7.6.2 Run Options

Run File Default – This options specifies the default name and file format to be used when
writing a run file. The name and format can be changed by the user when the run file is be-
ing stored. Run files are not currently supported.

Use experiment info from file – This option specifies, when running a run file as an ex-
periment, whether such information as the log file and data file specifications should be
read from the run file, or reread from the current experiment in the open script. If no script
266

7.6.3 Editor Options
is loaded, the experiment information is always read from the run file. Run files are not cur-
rently supported.

Use run file directory as default – This option determines, when a run file is opened
for use as an experiment, whether the default volume and directory for locating files should
be the open scripts, or the directory in which the run file was located. Run files are not cur-
rently supported.

Trial monitor count separate from script – If this option is set, the trial count in the
Trial Monitor will be stored separate from, and will therefore possibly be different from,
the trial count attributes of the experiment in the script.

Show number to be compiled in run time bar – When an experiment is run and the
compile time bar is shown, the number of trials that are being compiled will be displayed
unless this option is off.

7.6.3 Editor Options

Interactive Script Editing – This option enables live editing of the script currently load-
ed. See also “7.3.4 Interactive Mode”, p261.

Select editor window after finding or replacing – This option causes the frontmost
editor window to be automatically moved in front of the Find dialog when one of the search
or replace buttons is hit. See also “7.3.5 The Find Dialog”, p262.

Scroll to Changes – When an entry changes and an interactive editing window is open,
the window will scroll to the changed entry and hilite it.

Wraparound – This option is used for searching; when the end of the file is reached and
this option is on, searching continues again at the beginning of the text.

Match Words – This option is used for searching; if this option is on, text will be consid-
ered a match with the find string only if it is preceded and followed by spaces, tabs, or re-
turns.

Ignore Case – This option is used for searching; if this option is on, upper- and lower-case
representations of a letter are considered equal for searching.

Auto tab for newlines – When a Return is typed into a text file and this option is on, tabs
and spaces are automatically placed at the start of the new line to match the indentation of
the previous line.

Sort entry list alphabetically – This option causes the list of entries obtained by click-
ing on the :: pop-up in the editor window to be sorted alphabetically, with markers at the
top of the list. If this option is off, the items are in the order in which they appear in the
script.
267

 Part 2: Graphic Environment Reference
DonÕt wrap text (newlines with returns only) – This option enables wraparound text
(i.e. flowing text that runs off the right end of the page back to the left end) in the editor
window. An interactive editing window will never use wraparound.

Cmd-arrow and Option-arrow same as MPW – This option controls how Command-
arrow and Option-arrow navigate in the text editor. See “7.3.2 Keyboard Commands”,
p260.

Script editing suspend time – This option sets the pause time after the user stops typing
in an interactive window; during this pause, script reading and writing is suspended for
background processes. See also “7.3.4 Interactive Mode”, p261.

7.6.4 Design Options

Automatically open Experiment View at startup – If this option is on, PsyScope
opens the Design window automatically whenever a script is loaded.

Always ask for new object names – If this option is on, PsyScope always requests a
name for any new object created. If this option is off, a default object name will be usually
generated.

Use horizontal arrangement for structure display – This option is for the Work area
of the Design window: in horizontal arrangement, the experiment hierarchy proceeds left
to right; in vertical arrangement, the hierarchy proceeds top to bottom.

Trash always in lower right corner – This option makes the trash can always float in
the lower right corner of the Design window. Otherwise, the trash can will be a moveable
object like any other in the window.

Palettes in separate floating window – This option moves the palettes out of the De-
sign and Template windows and into a separate floating window. See “5.2.2 Design Win-
dow Palettes”, p109.

Auto-change to link tool after object creation – If this option is on, PsyScope auto-
matically changes the tool to the link tool after an object is created in the Design Window.
See “5.2.2 Design Window Palettes”, p109.

Template time step – This option specifies the minimum granularity used for duration
and start times in the Template window.

Name Change Pause – When the name field of a dialog is edited, this specifies the time
(in seconds) that PsyScope should wait before actually changing the object’s name. This
lets you to finish typing in the name text box before the name is changed. This pause also
applies in the Factor Table window (but not the Cell Chooser) for new cell selections. The
recommended value is 2 to 4 seconds.
268

7.6.5 Display Options
7.6.5 Display Options

Remember new window positions – When this option is on, the position of a window
is remembered when it is closed so that it may be put back at the same place when it is
opened. Turning off the option does not return the windows to their default positions, it
only stops remembering new positions for the windows.

Animate startup window (in 256+ colors only) – This option controls whether or not
the color-cycling animation is used when PsyScope is starting up. You may want to turn
the animation off if it flashes your screen unnecessarily (updating background color) while
starting up.

Iconify to mini-window instead of Finder-style – This option controls how iconified
windows are displayed. The mini-window style may be easier to see on a cluttered screen.

7.6.6 Custom Options

This is a submenu for script-specified options. See “Part 4: Scripting Reference, 16.3 Cus-
tom Options”, p456 for information on configuring this submenu.
269

 Part 2: Graphic Environment Reference
270

Part 3:
Scripting
User Manual

Chapter 8. Introduction 273

Chapter 9. Scripting Overview 275

Chapter 10. Scripting an Experiment 281

272

Part 3: Scripting User Manual

Ψ
Chapter 8. Introduction

The purpose of this part of the documentation is to describe how the scripting language is
used to define an experiment. A little knowledge of scripting is needed, so a little scripting
starter information is presented in “Chapter 9. Scripting Overview”.

It is assumed that the reader is familiar with “Part 1: Introduction to PsyScope” and “Part 2:
Graphic Environment Reference”; many details about the use of trials and events are left
for those parts, while this part is concerned with expression those constructs in the language
of PsyScript.

“Part 4: Scripting Reference” contains an exhaustive reference for PsyScript, experiment
descriptions, and user environment configuration.

 Part 3: Scripting User Manual
274

Ψ
Chapter 9. Scripting Overview

Part 3: Scripting User Manual

This chapter should give you enough information about PsyScript for you to understand
“Chapter 10. Scripting an Experiment”. PsyScript is explained in full in “Chapter 12. Psy-
Script Reference”.

9.1 A PsyScope Script

A script is a text file used to define a PsyScope experiment. The syntax of the script is
called PsyScript. A script consists mostly of entries; they are the basic blocks of informa-
tion in a script, similar to the records of a database. (For example: each object in the graphic
environment is implemented as a separate entry in the script.)

Here is an example of a typical entry:

Experiments:: "Hello World"
Current: 1

A script can also contain comments, modifiers, and section markers. These elements are
used to annotate the script in different ways. (Modifiers and sections markers are not direct-
ly addressed in this chapter; see “Chapter 12. PsyScript Reference”.)

9.2 Entries

An entry has three parts: an entry name (shown as part A in “Figure 196 – The components
of an entry”, below), a content (part B), and an attribute block (part C).

Figure 196 – The components of an entry

Experiments:: "Hello World"
 Current: 1

A B

C

 Part 3: Scripting User Manual
9.2.1 Entry Name

Part A in Figure 196 is the entry name; in the example above, the entry name is “Experi-
ments”. An entry always starts with an entry name followed by double colons. The entry
name can be just about anything, but there are a few restrictions:

• Entry names cannot include any colons (“:”).

• Entry names cannot include any greater-than symbols (“>”).

• Entry names can include spaces.

• Each entry name in the script should start on its own line.

• An entry name cannot be the same as the name of an input device or action.

9.2.2 Content

Part B in Figure 196 is the entry’s content, which always starts immediately after the dou-
ble colons. Content information is important for certain types of entries, such as the “Ex-
periments” entry, but an entry’s content will often be empty.

The content of an entry consists of a list of expressions. An expression is sometimes just a
word or a quoted phrase. In this example, there is only one expression: "Hello World".

The content of an entry can be arbitrarily long, and it does not have to be on a single line.

9.2.3 Attribute Blocks

Part C in Figure 196 is the attribute block. (This use of the word “block” is unrelated to the
concept of an experimental block.) The attribute block is made up of one or more individual
attributes, where each attribute is defined by a name followed by a single colon. (These at-
tributes are directly related to “attributes” of an object in the graphic environment.) The en-
try in Figure 196 has one attribute: “Current”. An entry is not required to have an attribute
block.

The relationship of attributes to entries is analogous to the relationship of entries to scripts;
just as entries label and distribute information within a script, attributes label and distribute
information within an entry.

Attributes are also entries in that they have a content and can own sub-attributes. Expres-
sions following the single-colon of an entry are in the content of the attribute. Ultimately,
all information in a script is stored in the content of an entry or an attribute. In Figure 196,
the content of the “Current” attribute has one expression: 1.
276

9.2.4 How Entries Are Used
Sub-attributes are defined by following the sub-attribute name with “:>”, as in this exam-
ple:

AnEntry:: a b c
1stAttrib: 1 2 3

SubAttribOf1st:> x
2ndAttrib:

FirstSubAttribOf2nd:> 4
SecndSubAttribOf2nd:> 5

SubSubAttribOfSecondSubAttribOf2nd:>> "Deep!"

Sub-sub-attributes are defined using “:>>”, and so on, adding a “>” for each deeper layer
of attributes. In practice, sub-attributes are used only occasionally; sub-sub-attributes and
deeper layers are rarely used in normal scripting.

9.2.4 How Entries Are Used

The sample entry below defines an event that displays the string “Hello World” on the
screen in the twelve-point Geneva font:

Hello Event::
Stimulus: "Hello World"
EventType: Text
Font: Geneva
Size: 12

The “Stimulus” attribute of the entry tells PsyScope that the stimulus will consist of the
string “Hello World”. The “EventType” attribute tells PsyScope that this is a text event —
that is, that the event will cause text to be displayed on the screen (as opposed to displaying
pictures or playing sounds). The “Font” and “Size” attributes tell PsyScope to display the
text in 12-point Geneva font. Other attributes could be included to further specify the fea-
tures of the stimulus, such as its color, its duration, etc.

9.2.5 Spaces, Blanks, and Quotes

In the script, expressions are separated by blanks. A blank can be

• a regular space

• a tab

• a comma

• a return

When an expression contains one or more blanks, the string must be enclosed by quotation
marks. We had to put quotation marks around “Juliet Capulet” because we wanted all the
words to be treated together as a single item. Without quotes:
277

 Part 3: Scripting User Manual
Hello Event::
Stimulus: Hello World
EventType: Text
Font: Geneva
Size: 12

the “Stimulus” attribute would have two values: “Hello” and “World”. In this example,
PsyScope will display an error message since Text events can have only one stimulus.

You never have to put quotes around an entry name in the entry’s definition, even if it con-
tains blanks. If an attribute name has blanks, however, you do need quotes. Here is an ex-
ample of an entry with blanks in its name and some attribute names:

Hello Event::
Stimulus: "Hello World"
EventType: Text
Font: Geneva
Size: 12
"Extra Attribute": TRUE

Note that all of the quotes are straight quotes; never use “smart quotes” in a script. “Smart
quotes” are those curly quotes you see here: “ ”; straight quotes look like this: " ".

The following table summarizes the rules for quotes that apply to the different parts of an
entry:

9.3 Comments

PsyScope allows you to place comments in your script by using a pound sign (“#”); Psy-
Scope will ignore everything after a “#” until the end of the line is reached. For example:

This is an event definition entry
Hello Event::

Stimulus: "Hello World"

Table 2: Quoting conventions

Name
Contains
Blanks

No Blanks

Entry name
in definition

Don’t quote Don’t quote

Entry name
elsewhere

Quote Don’t quote

Attribute
name

Quote Don’t quote

Content
expression

Quote Don’t quote
278

9.4 Entry References
EventType: Text
Use 12-pt Geneva
Font: Geneva
Size: 12

9.4 Entry References

A reference is a “pointer” to an entry. A reference is typically used to perform some oper-
ation on the entry or to obtain some value from the entry. The (full) name of an entry in the
script can always be used as a reference, but there are also other, more complicated ways
of generating a reference.

The most common use of a reference is to get a value stored in the entry; the basic operator
is @, which operates on a reference and returns the content of the referenced entry.

For example, given this entry definition in the script:

Hello Event:: "useless value"
Stimulus: "Hello World"
EventType: Text
Font: Geneva
Size: 12
"Extra Attribute": 1 2 3

Then, the value of @"Hello Event" is "useless value".

To make a reference to an attribute, you concatenate the entry name, the >> symbol, and the
attribute name. For example, "Hello Event>>Stimulus" references the “Stimulus” at-
tribute of “Hello Event”. The value of @"Hello Event>>Stimulus" is "Hello World".

The @ operator returns all of the tokens in the content of an entry, so that the value of
@"Hello Event>>Extra Attribute" is three tokens: 1, 2, and 3.

9.5 Lists

A list is nothing more than an entry that is used in a special context. The values in the con-
tent of the entry become the items of the list; an entry is used as a list when items need to
be selected one at a time.

When an entry is used as a list, there are a few attributes of the list that are given a special
meaning; the most important one is “AccessType”. “AccessType” specifies the order in
which items are selected from the list; its value is usually one of:

Sequential – items are selected from the list in the same order that they appear in the
content of the entry

Random – items are selected from the list without regard to their order in the entry’s con-
tent; however, each item will be used only once
279

 Part 3: Scripting User Manual
The process of selecting an item from the list is called accessing the list. If all of the items
have been selected once from a list, the accessing the list again will start the selection pro-
cess fresh, creating a new ordering of items if the value of “AccessType” is Random.

Lists are described in full detail in “Part 4: Scripting Reference, 12.8 Lists”, p329.

9.6 Function Calls

There are many kinds of expressions that can appear in the content of an entry. For the pur-
poses of scripting a Factor format experiment, you only need to use literal string expres-
sions (such as "Hello World") and function calls.

A function call has the form FunctionName(Param1, Param2, … ParamN). There cannot
be any spaces between FunctionName and the opening parenthesis. The commas separat-
ing the parameters are not actually required, but they may reading the script easier.

Here is an example of an entry using a function call to FactorAttrib():

Hello Event::
Stimulus: FactorAttrib(Language, HelloWorld)
EventType: Text
Font: Geneva
Size: 12
280

Ψ
Chapter 10. Scripting an Experiment

Part 3: Scripting User Manual

10.1 Scripting a New Experiment

In practice, most PsyScope experiment designers will set up a basic design using the graph-
ic environment, and then use PsyScript to fine tune the details of the experiment. In this
chapter, however, we will demonstrate scripting without using the graphic environment at
all.

10.1.1 The Standard Script Template

The easiest way to create a new experiment— even if you plan to implement the experiment
by scripting — is to select New Experiment from the Design menu. When you do this,
PsyScope creates a new text file that is the skeleton of a script.

Let’s create a new experiment — called “Hello World” — so we can look at the resulting
script file, line-by-line.

1. Select New Experiment from the Design menu. This will open a dialog
for naming the new script.

2. Name the new experiment “Hello World”. Leave the New File box checked
if it is present.

3. Save the script as “Hello World Script”, in whatever folder you like.

4. The new script will be automatically loaded into PsyScope. Open a text copy
of the script by selecting Edit This Script from the File menu.

Looking at a script created by New Experiment, we see:

#PsyScope 1.0
Script template, Version 1.0

A script always starts with the modifier #PsyScope 1.0. This lets PsyScope know that this
text file is a script. See also “12.4.1 #PsyScope”, p324.

Script template, Version 1.0 is a comment indicating the version of PsyScope that
originally created this script. Of course, since it is only a comment, this line is not necessary
for running the script.

 Part 3: Scripting User Manual
Experiments:: "Hello World"
Current: 1

This is the first entry in the script, the “Experiments” entry. This entry contains the names
of all experiments defined within the script (a script can implement multiple experiments,
although one script usually corresponds to one experiment). PsyScope just created this file
for the experiment “Hello World”, so that is all that is initially in the “Experiments” entry.

Note that the “Current” attribute of the “Experiments” entry is set to 1. Whenever a script
is loaded, one experiment in the script is designated as the current experiment; this is the
experiment that is executed when the Run button is hit in the Console, or modified when
the Design button is hit, etc. The value of “Current” is an index into the list of experiments
in the “Experiments” entry. Since there is only one experiment in this new script, 1 is the
only possible value for “Current”.

#> ExperimentDefinitions

Hello World::
Format: Factor
InputDevices: MOUSE KEY
Timer: Macintosh
Flags: NO_SAVE_SCREEN
DataFile: "Hello World Data"
ScaleBlocks: 1

For each experiment implemented in a script, there must be an entry — an experiment entry
— with the same name as the experiment. The experiment entry is the starting point for the
definition of an experiment in PsyScript; it corresponds exactly to the psy icon that repre-
sents the experiment in the graphic environment’s Design window (see “Part 2: Graphic
Environment Reference, 5.2 The Design Window”, p107).

The #> ExperimentDefinitions marker simply indicates that this is the section for de-
fining experiment entries. Like all markers, it is for informational purposes only, and does
not affect how the script is read to execute the experiment.

The “Hello World” entry is set up with a number of default attribute values, including the
attributes “Format” (Factor format), “InputDevices” (the keyboard and mouse), “Flags”
(do not try to save the screen on breaks), and “DataFile” (“Hello World Script.data”, in the
same directory as the script).

#> GroupDefinitions

#> BlockDefinitions

#> FactorDefinitions

#> LevelDefinitions

#> TemplateDefinitions

#> EventDefinitions

#> StimulusDefinitions

#> TrialManagerVariables
282

10.1.1 The Standard Script Template
#> Group Definitions, #> BlockDefinitions, etc. are more markers (i.e., guidelines
for placing entry definitions within the script). The graphic environment uses these guide-
lines, and the interactive Editor’s :: pop-up menu distplays them (see “Part 2: Graphic En-
vironment Reference, 7.3.3 Action Bar”, p261), but they are otherwise treated as
comments.

#> PortDefinitions

PortNames:: "Entire Screen"

Entire Screen:: Center 100% Center 100% 0

#> PositionDefinitions

The #> PortDefinitions section includes a “PortNames” entry and one port definition:
“Entire Screen”. This information is used by the Positions extension, which is the part of
the graphic environment that interactively defines new ports for screen events. These en-
tries can be deleted if you have no use for the Positions extension; however, if the Positions
extension is executed, it will re-create “PortNames” and “Entire Screen”. The #> Posi-
tionDefinitions section is also used by the Positions extension, but there are no default
positions.

#> SubjectInfo

SubjectName:: "SUBJECT NAME"

SubjectNumber:: 1
Type: Integer

RunNumber:: 1
Type: Integer

The SubjectInfo section defines some standard subject-tracking items. See “Part 2:
Graphic Environment Reference, 6.2 Subject Info”, p224 for more information.

#> InterfaceDefinition

Console::

Options::

#> MenuDefinitions

Menus:: Experiment

Experiment::
@StandardPsyScopeMenuItems

#> DialogDefinitions

#> InterfaceDefinition, etc. contain entries which are used to customized the PsyScope
environment for this script. See “Chapter 16. Configuring the User Environment”, p449.

#> LogFile

LogRunStart:: SubjectName
Dialog: LogInfo
283

 Part 3: Scripting User Manual
#> OtherConfiguration

RunStart:: LogRunStart

The LogFile and OtherConfiguration sections contain entries which help with subject-
tracking. See “Part 4: Scripting Reference, 16.6.2 Execution Entries”, p460.

#> ExperimentNotes

Notes::
"Hello World": "(There are no notes for this experiment.)"

The #> ExperimentNotes section contains the “Notes” entry. This entry is used by the
graphic environment to store notes about the current experiment (when the Notes button
is hit from the Design window; see “Part 2: Graphic Environment Reference, 5.2.4 Design
Window Control Area”, p113).

#> BuilderData
This information is used by the graphic interface - do not delete

BuilderData::
"Hello World":
GroupsInScript:
BlocksInScript:
TemplatesInScript:
FactorsInScript:
LevelsInScript:
EventsInScript:
StimuliInScript:
Trash:
Desk:
SubjectInfo: SubjectName DataTypes Standard ;

 SubjectNumber DataTypes Value ;
 RunNumber DataTypes Value ;

The BuilderData section contains the “BuilderData” entry. This information is used by the
graphic environment only, and is not intended for human consumption (or modification).

10.1.2 Using the Interactive Editor

PsyScope contains a built-in text editor for modifying scripts. This editor is special: when
the current script is being edited, the changes take effect immediately within PsyScope;
there is no need to save the file and then re-load it into PsyScope, because your changes are
incorporated into PsyScope’s working copy of the script as you type.

You can open a copy of the current script for editing by selecting Edit This Script from the
File menu (see “Part 2: Graphic Environment Reference, 7.1.1 File Menu”, p253). You
should have interactive editing enabled, by checking Interactive Script Editing in the
Editor Options dialog. Also, the Script editing suspend time option in Editor Options
controls how long PsyScope waits after your last click or keypress before reading your ed-
its.

Interactive editing can sometimes cause problems. For example, suppose you edit the ex-
periment entry and accidentally leave out a closing quote. After the prescribed delay, Psy-
284

10.1.3 Scripting a New Event
Scope will try to incorporate your new experiment entry into its current picture of the script;
since a quote is missing, however, the script interpreter will complain. It may keep trying
to read the script, and keep complaining. For this reason, there is a Shut Up button in most
error dialogs which temporarily suspends error messages (for 5 seconds), giving you time
to correct the script. See “Part 2: Graphic Environment Reference, 7.3.4 Interactive Mode”,
p261 for more information.

PsyScope’s text editor contains many other features which can make scripting easier. Most
of these features are accessed through the Text Tools submenu of the Utilities menu, de-
scribed in “Part 2: Graphic Environment Reference, 7.3.1 Editor Menu Items”, p258. (This
menu is also available as the Tools pop-up menu in the editor’s Action bar; see “Part 2:
Graphic Environment Reference, 7.3.3 Action Bar”, p261.)

10.1.3 Scripting a New Event

If you create a new script using New Experiment, open it up, and hit the Run button in
the Console, you will get this error: “‘Events’ attribute or some other link missing in trial
definition.” This error is reported because no events are defined in the experiment skeleton
created by New Experiment.

Let’s define an event that prints the words “Hello World” on the screen for two seconds.
Like any object in an experiment, an event is defined by creating an entry and adding at-
tributes.

If you have not already done so, load “Hello World Script” into PsyScope and open the
script in an editor window. Be sure that you are in interactive editing by checking the In-
teractive Script Editing box of the Editor Options dialog.

1. Scroll down to the section of the script marked #> EventDefinitions.
Put the cursor at the end of this line and hit Return a couple of times to make
space for a new entry.

2. Type in this entry:

Hello Event::
EventType: Text
Stimulus: "Hello World"
Duration: 2000

Be sure that you put two colons after “Hello Event” and one colon after “Stimulus”
and “Duration”.

The “EventType” attribute specifies what kind of event is defined by the entry. If “Event-
Type” is omitted, Text is assumed. All built-in event types are described in “Part 4: Script-
ing Reference, 14.2 Stimulus Types Reference”, p424. More event types can be made
available by using PsyScope Extensions (see “Part 2: Graphic Environment Reference,
6.1.3.1 PsyScope Extensions”, p216).

Almost every event entry will have a “Stimulus” or “Stimuli” attribute. “Stimuli” is used
for multi-part events with sub-stimuli. Null (Time, in the graphic environment) events do
285

 Part 3: Scripting User Manual
not require a stimulus. For all other event types, a “Stimulus” attribute must be specified.
For text events, the value of the “Stimulus” attribute is the text that should be displayed.

The “Duration” attribute here specifies 2000 milliseconds as the event’s duration. More
complicated durations (e.g. waiting for a mouse click) are discussed below (see “10.1.3.2
The ‘Duration’ Attribute”, p287).

At this point, we have a valid event definition, but the experiment entry does not yet
“know” about the event entry. Events are linked to their parents with the “Events” attribute.

Add “Hello Event” to the “Hello World” experiment entry:

1. Add a new line at the end of the “Hello World” entry (after ScaleBlocks:
1).

2. Type this attribute definition:

Events: "Hello Event"

Your experiment entry should now look like this:

Hello World::
Format: Factor
InputDevices: MOUSE KEY
Timer: Macintosh
Flags: NO_SAVE_SCREEN
DataFile: "Hello World Data"
ScaleBlocks: 1
Events: "Hello Event"

Now that “Hello Event” is in the list of events for “Hello World”, try running the experi-
ment.The screen should go blank, the words “Hello World” should appear on the screen for
two seconds, and then the PsyScope environment should return.

Usually, you will want to run more than one trial in an experiment. In a design without
blocks, the number of trials to be run is controlled by the “Cycles” experiment attribute.

Change “Hello World” to run five trials (i.e. display “Hello World” five times in each run):

1. Add a new line to the “Hello Event” entry.

2. Type this attribute definition:

Cycles: 5

Your “Hello World” entry should now look like this:

Hello World::
Format: Factor
InputDevices: MOUSE KEY
Timer: Macintosh
Flags: NO_SAVE_SCREEN
DataFile: "Hello World Data"
ScaleBlocks: 1
Events: "Hello Event"
Cycles: 5
286

10.1.3 Scripting a New Event
When you run now, you will see “Hello World” for a total of ten seconds, flashing
briefly every two seconds as it is cleared an redrawn.

There are many attributes which can be specified for a Text event, controlling features of
the stimulus such as text font and color; the complete list of attribute names — and the for-
mat of their values — is given in “Part 4: Scripting Reference, 14.2 Stimulus Types Refer-
ence”, p424.

You should be able to open the Design window of the graphic interface at any time, even
when you are changing the script through scripting. If you open the Design window now,
you will see the experiment icon with one text event connected to it. (You must have the
Show Events checkbox on to see the event.)

10.1.3.1 Timing and Sequencing Events

Let’s add another event to the “Hello World” script, so that “Goodbye World” follows
“Hello World” in each trial.

Add a “Goodbye Event” event entry:

1. Add a couple of lines to the script after “Hello Event” in the
#> EventDefinitions section of the script.

2. Insert this entry definition:

Goodbye Event::
EventType: Text
Stimulus: "Goodbye World"
Duration: 2000
Color: Red

Just for fun (and example), we have made “Goodbye World” print in red instead of black.
Now, we’ll link “Goodbye Event” to the experiment.

3. Add "Goodbye Event" after "Hello Event" in the “Hello World” ex-
periment entry. Your experiment entry should now look like this:

Hello World::
Format: Factor
InputDevices: MOUSE KEY
Timer: Macintosh
Flags: NO_SAVE_SCREEN
DataFile: "Hello World Data"
ScaleBlocks: 1
Events: "Hello Event" "Goodbye Event"
Cycles: 5

When you run the experiment now, “Hello World” (in black) will be followed in every trial
by “Goodbye World” (in red).

10.1.3.2 The ‘Duration’ Attribute

The duration of an event can be specified in four ways, by setting the value of “Duration”
to:
287

 Part 3: Scripting User Manual
• a duration in milliseconds; the event will last a fixed amount of time.

• the keyword TRIAL_END; the event will end when all other events in the trial have ended.

• the keyword SELF_TERMINATE, for SoundLabel events; the event will end when the
sound is finished playing.

• one or more condition specifications, plus an optional Time[msec]; the event will end
when one of the given conditions is triggered.

Of these possible duration types, the first and last are the most common. TRIAL_END is use-
ful only when events are running in parallel. SELF_TERMINATE is almost always used when
the event is a SoundLabel stimulus.

For condition-based durations, you specify a list of input devices which can terminate the
event; then, for each device, you give parameters which specify the kind of input that is in-
teresting.

Make “Hello World Event” last until the mouse is clicked, instead of a fixed two seconds:

• Replace 2000 in the “Duration” attribute of “Hello Event” with
Mouse[Click]. Make sure there are no spaces between Mouse and [, but
spaces within the brackets are OK.

Your “Hello Event” entry should now look like this:

Hello Event::
EventType: Text
Stimulus: "Hello World"
Duration: Mouse[Click]

If you run the script now, “Hello World” will not go away until you click the mouse button.
“Goodbye World” will still appear for two seconds, whether you click the button or not.

The format of each condition in the “Duration” attribute is: DeviceName[params], where
DeviceName is the input device and params specify one or more states of the input device.
There cannot be any spaces between the device name and the opening square-bracket ([).
The value Mouse[Click] specifies the standard Macintosh mouse as the input device and
the state is with the button clicked.

Any number of input devices and states can be specified for each event. The event will end
when any one of the conditions occurs. In addition to the standard input devices, you can
use the “virtual device” Time to specify a timeout value on the conditions.

Change “Goodbye World” to end when then mouse is clicked, when the any key on the key-
board is hit, or when two seconds pass.

• Replace 2000 in the “Duration” attribute of “Goodbye Event” with
Mouse[Click] Key[Any] Time[2000].
288

10.1.3 Scripting a New Event
Your “Goodbye Event” entry should now look like this:

Goodbye Event::
EventType: Text
Stimulus: "Goodbye World"
Duration: Mouse[Click] Key[Any]

 Time[2000]
Color: Red

If you run the script now, “Goodbye World” will still go away after two seconds, but it will
go away immediately if you click the mouse button or hit a key.

Event durations are discussed further in “Part 4: Scripting Reference, 13.4.3 Duration”,
p411. The list of all condition devices and a description of their parameters is in “Part 4:
Scripting Reference, 14.3 Conditions and Inputs”, p437.

10.1.3.3 The ‘StartRef’ Attribute

In the “Hello World” experiment so far, “Goodbye World” comes after “Hello World” in
each trial because "Goodbye Event" is listed after "Hello Event" in the “Events” at-
tribute of “Hello World”. We can change the order of the events by reversing the order of
the references in the “Events” attribute, or we can explicitly set ordering dependencies us-
ing the “StartRef” event attribute.

Make “Goodbye World” appear before “Hello World”:

1. Add a new line to the “Hello Event” entry.

2. Type this attribute definition:

StartRef: 0 after end of "Goodbye Event"

Your “Hello Event” entry should now look like this:

Hello Event::
EventType: Text
Stimulus: "Hello World"
Duration: Mouse[Click]
StartRef: 0 after end of "Goodbye Event"

Now, when you run the experiment, “Goodbye World” will come before “Hello World”
within each trial.

The general format for “StartRef” is milliseconds after start/end of Event, where
milliseconds is the time to wait after the start or end of the event named Event. The special
event name START can be used for the start of the trial (START can only be used with after
end of).

When “StartRef” is not specified, it defaults depending on the order in which event entries
are referenced in the “Events” attribute. If the first event listed does not have a “StartRef”
value, the default is 0 after end of START; for any other event, the default is 0 after
end of Previous, where Previous is the event that is listed just before this one in the
“Events” attribute.
289

 Part 3: Scripting User Manual
If you are still running five trials in each run of the experiment, it may not be clear after a
few trials whether “Hello World” comes before or after “Goodbye World”. Let’s switch the
order of “Hello World” and “Goodbye World” back to normal, and make “Hello World”
start 500 milliseconds into the trial. This will give us a slight pause between the words of
different trials.

1. Add a new line to the “Goodbye Event” entry.

2. Type this attribute definition:

StartRef: 0 after end of "Hello Event"

Your “Goodbye Event” entry should now look like this:

Goodbye Event::
EventType: Text
Stimulus: "Goodbye World"
Duration: Mouse[Click] Key[Any]

 Time[2000]
Color: Red
StartRef: 0 after end of "Hello Event"

3. Change the value of “StartRef” in “Hello Event” to 500 after end of
START.

Your “Hello Event” entry should now look like this:

Hello Event::
EventType: Text
Stimulus: "Hello World"
Duration: Mouse[Click]
StartRef: 500 after end of START

Now, when you run the experiment, each trial will do nothing for half a second, and then
the “Hello World”-”Goodbye World” sequence will execute.

Start references are discussed further in “Part 4: Scripting Reference, 13.4.2 Start Refer-
ence”, p411.

10.1.4 Scripting Conditions and Actions

Conditions and actions for events are specified in the “EventActions” attribute. The value
of the attribute is a list of pairs; the first half of each pair contains a list of conditions, and
the second half contains a list of actions to be triggered by the conditions.

The “Hello World” text is cleared in our experiment when the subject clicks the mouse but-
ton. Let’s add an action that beeps an alert when a key is pressed instead.

1. Add a new line to the “Hello Event” entry.

2. Type this attribute definition:

EventActions: Conditions[Key[Any]] =>
 Actions[Beep[Instances: -1]]
290

10.1.4 Scripting Conditions and Actions
Your “Hello Event” entry should now look like this

Hello Event::
EventType: Text
Stimulus: "Hello World"
Duration: Mouse[Click]
StartRef: 500 after end of START
EventActions: Conditions[Key[Any]] =>

 Actions[Beep[Instances: -1]]

Now, when you run the experiment and press a key while “Hello World” is showing, you
should hear a system beep from the Macintosh.

The generic form for a conditions-actions pair is: Conditions[condition-list] =>
Actions[action-list]. condition-list has the same syntax as for the “Duration” at-
tribute in a condition-based duration, except that Time[] cannot be used; see “10.1.3.2 The
‘Duration’ Attribute”, p287.

action-list has a form similar to conditions-list; each action is specified with its
name followed by parameters in square brackets ([]), but there are also two special at-
tributes which can be specified within the square brackets: “ActiveUntil” and “Instances”.
“Instances” and “ActiveUntil” must be specified after all parameters of the action, since an
action declaration is really an inline entry (see “Part 4: Scripting Reference, 12.9 Inline En-
tries”, p335).

“ActiveUntil” specifies when the action should become inactive; this can be an event name
— in which case the action is active until the given event starts — or one of a few keywords;
see “Part 4: Scripting Reference, 13.4.1.2 Instances and ActiveUntil”, p410 for more infor-
mation. The default is that the action lasts until the end of its event.

“Instances” specifies the number of times that the action can be triggered. -1 means that it
can be triggered any number of times.

The Conditions and Actions labels are not required in the generic form
Conditions[condition-list] => Actions[action-list], so that a conditions-actions
pair can instead be specified as [condition-list] => [action-list]. This involves
less typing, but may not be as clear to another reader of your script. If the Conditions and
Actions labels are used, there cannot be any spaces between them and the opening square-
bracket ([). Spaces around => do not matter, but there cannot be any spaces between = and
>.

Let’s record some data during “Hello Event” using the RT[] action. When the subject
clicks the mouse to end the event, we will record a “Correct” response; when the subject
presses a key instead, we will record “Incorrect”.

1. Add a new action to the existing conditions-actions pair in the “EventAc-
tions” attribute of “Hello Event”:

RT["Incorrect" Instances: -1]

2. Add a new conditions-actions pair in the “EventActions” attribute of “Hello
Event”:

Conditions[End[]] => Actions[RT["Correct"]]
291

 Part 3: Scripting User Manual
Your “Hello Event” entry should now look like this

Hello Event::
EventType: Text
Stimulus: "Hello World"
Duration: Mouse[Click]
StartRef: 500 after end of START
EventActions:

Conditions[Key[Any]] =>
 Actions[Beep[Instances: -1]

RT["Incorrect" Instances: -1]]
Conditions[End[]] =>
 Actions[RT["Correct"]]

The first parameter of RT[] is a response label that can be recorded to the data
file, but the response label is not recorded by default:

3. Add a new attribute “DataFields” to the “Hello World” experiment entry:

DataFields: RESPONSE_LABEL

Your experiment entry should now look like this:

Hello World::
Format: Factor
InputDevices: MOUSE KEY
Timer: Macintosh
Flags: NO_SAVE_SCREEN
DataFile: "Hello World Data"
ScaleBlocks: 1
Events: "Hello Event" "Goodbye Event"
Cycles: 5
DataFields: RESPONSE_LABEL

Now, when you run the experiment, the data file (“Hello World Data”) will con-
tain entries for each time you hit a key or click the mouse during “Hello
Event”. (You can view the data file by selecting View Data File from the
Utilities menu.)

Notice that in the conditions list for the “Correct” RT[], we used End[] — which triggers
at the end of the action’s event — instead of Mouse[Click]. This lets us change the condi-
tion that ends “Hello Event” without also updating the “EventActions” attribute.

Conditions and actions are discussed further in “Part 4: Scripting Reference, 13.4.1 Action
Lists”, p409. The list of all condition devices and a description of their parameters is in
“Part 4: Scripting Reference, 14.3 Conditions and Inputs”, p437. The list of all actions and
their parameters is in “Part 4: Scripting Reference, 14.1 Actions Reference”, p419.

10.1.5 Scripting Templates

So far, we have only worked at the extreme ends of the experiment hierarchy: the experi-
ment as a whole and the individual events which make up a trial. The template definition
was implicitly in the experiment entry, and all trials were derived from this implicit defini-
tion. In order to have trials with completely different structures, we need to explicitly define
templates.
292

10.1.5 Scripting Templates
Explicitly define the template entry for the “Hello World” experiment:

1. Add a couple of lines to the script in the #> TemplateDefinitions
section of the script.

2. Insert this entry definition:

HelloGoodbye Template::
Events: "Hello Event" "Goodbye Event"

The “Events” attribute is the same as in the “Hello World” experiment entry.

3. Delete the “Events” attribute from the “Hello World” experiment entry.

4. Add a “Templates” attribute to the “Hello World” experiment entry:

Templates: "HelloGoodbye Template"

Your “Hello World” experiment entry should now look like this:

Hello World::
Format: Factor
InputDevices: MOUSE KEY
Timer: Macintosh
Flags: NO_SAVE_SCREEN
DataFile: "Hello World Data"
ScaleBlocks: 1
Cycles: 5
DataFields: RESPONSE_LABEL
Templates: "HelloGoodbye Template"

If you run the script now, it should execute exactly as before. We have defined the template
explicitly, but we did not change its definition.

If you open the graphic environment’s Design window now, you will see that “Hello
Event” and “Goodbye Event” are no longer connected directly to the experiment; there is
now a template object inserted between them.

The “Templates” attribute specifies the list of templates available for use in building a trial.
For each trial, only one template will be used.

Define a new template which only has one event, displaying “Hello World”. There is no
need to define a new event entry; we can use “Hello Event” for this template, too.

1. Add a couple of lines to the script after “HelloGoodbye Template” in the
#> TemplateDefinitions section of the script.

2. Insert this entry definition:

Hello Template::
Events: "Hello Event"
293

 Part 3: Scripting User Manual
3. Add "Hello Template" after "HelloGoodbye Template" in the
“Templates” attribute of the “Hello World” experiment entry. Your “Hello
World” experiment entry should now look like this:

Hello World::
Format: Factor
InputDevices: MOUSE KEY
Timer: Macintosh
Flags: NO_SAVE_SCREEN
DataFile: "Hello World Data"
ScaleBlocks: 1
Cycles: 5
DataFields: RESPONSE_LABEL
Templates: "HelloGoodbye Template"

 "Hello Template"

Now, when you run the experiment, you will see one trial with “Hello World” followed by
“Goodbye World”, then a trial with only “Hello World”, then another “Hello-Goodbye”,
then another “Hello”, and finally one more “Hello-Goodbye”.

When each trial is being compiled, templates are selected from the “Templates” attribute
by accessing it as a scripting list. Scripting lists — which are different from the “lists” of
the graphic environment — were introduced in “9.5 Lists”, p279 and are discussed fully in
“Part 4: Scripting Reference, 12.8 Lists”, p329.

The default access type of a list is Sequential, so trials of “Hello World” were built by
picking “HelloGoodbye Template” and “Hello Template” in the order which they are listed
in the “Templates” attribute of “Hello World”.

Make the ordering of “HelloGoodbye Template” and “Hello Template” random:

• Add an “AccessType” sub-attribute to the “Templates” attribute of “Hello
World”:

AccessType:> Random

Your “Hello World” experiment entry should now look like this:

Hello World::
Format: Factor
InputDevices: MOUSE KEY
Timer: Macintosh
Flags: NO_SAVE_SCREEN
DataFile: "Hello World Data"
ScaleBlocks: 1
Cycles: 5
DataFields: RESPONSE_LABEL
Templates: "HelloGoodbye Template"

 "Hello Template"
AccessType:> Random

Now, when you run “Hello World”, you will see both “Hello” and “Hello-Goodbye” in
each pair of trials, but their relative order will be random.

If you look at the data file after running “Hello World”, you will see that “Correct” and “In-
correct” are being recorded for “Hello Event” in both “HelloGoodbye Template” and “Hel-
lo Template”, but there is no way to tell which template was used to build the trial that
contained the response.
294

10.1.5 Scripting Templates
The “Condition” field of the data file can be used to make this distinction. By default, the
condition name is empty. It can be set using the “ConditionName” attribute.

Set the condition name for “HelloGoodbye Template” and “Hello Template”:

1. Add a “ConditionName” attribute to the “HelloGoodbye Template” entry:

ConditionName: "HelloGoodbye"

Your “HelloGoodbye Template” entry should now look like this:

HelloGoodbye Template::
Events: "Hello Event" "Goodbye Event"
ConditionName: "HelloGoodbye"

2. Add a “ConditionName” attribute to the “Hello Template” entry:

ConditionName: "Hello"

Your “Hello Template” entry should now look like this:

Hello Template::
Events: "Hello Event"
ConditionName: "Hello"

Now, when you run the experiment and look at the data file, you can see which template
was used for the trial by looking at the “Condition” field of each line.

10.1.5.1 Scripting Trial Actions

Actions can be defined to cover the entire trial using the “TrialActions” attribute in a tem-
plate entry. The syntax is the same as for the “EventActions” attribute of an event entry.

Add an action to play the built-in “Bloop” sound anytime the space bar is hit during the tri-
al:

• Add a “TrialActions” attribute to both “HelloGoodbye Template” and “Hello
Template”:

TrialActions: Conditions[Key[SPACE]] =>
 Actions[Beep["Bloop"]]

Your “HelloGoodbye Template” entry should now look like this:

HelloGoodbye Template::
Events: "Hello Event" "Goodbye Event"
ConditionName: "HelloGoodbye"
TrialActions: Conditions[Key[SPACE]] =>

 Actions[Beep["Bloop"]]

Your “Hello Template” entry should now look like this:

Hello Template::
Events: "Hello Event"
ConditionName: "Hello"
TrialActions: Conditions[Key[SPACE]] =>

 Actions[Beep["Bloop"]]
295

 Part 3: Scripting User Manual
Now, when you run the experiment and hit the space bar, you will hear the “Bloop” sound
(but only once during a given trial).

Trial actions are discussed in more detail in “Part 4: Scripting Reference, 13.1.6.2 Standard
Trial Attributes”, p366.

10.1.5.2 Attribute Inheritance

It is unnecessary to define “TrialActions” in both “HelloGoodbye Template” and “Hello
Template” when we want the same trial actions definition in both templates. We can simply
put the attribute in the experiment entry and let both templates inherit the attribute value.

Move the duplicated “TrialActions” definition to the “Hello World” experiment entry, so
that it does not have to be defined twice:

1. Copy the “TrialActions” attribute from the “HelloGoodbye Template” and
paste it into the “Hello World” experiment entry. Your “Hello World” exper-
iment entry should now look like this:

Hello World::
Format: Factor
InputDevices: MOUSE KEY
Timer: Macintosh
Flags: NO_SAVE_SCREEN
DataFile: "Hello World Data"
ScaleBlocks: 1
Cycles: 5
DataFields: RESPONSE_LABEL
Templates: "HelloGoodbye Template"

 "Hello Template"
AccessType:> Random

TrialActions: Conditions[Key[SPACE]] =>
 Actions[Beep["Bloop"]]

2. Delete the “TrialActions” attribute from both the “HelloGoodbye Template”
and “Hello Template” entries.

Your “HelloGoodbye Template” entry should now look like this:

HelloGoodbye Template::
Events: "Hello Event" "Goodbye Event"
ConditionName: "HelloGoodbye"

Your “Hello Template” entry should now look like this:

Hello Template::
Events: "Hello Event"
ConditionName: "Hello"

If you run the experiment now, it will work exactly as it did before.

Attribute inheritance is a rule that allows entries to use attribute values specified in their
owners. For example, an event entry can inherit attributes from the template it is linked to,
plus whatever the template is linked to, and so on up to the experiment entry.

Change the font to Geneva for all of the Text events.
296

10.1.5 Scripting Templates
• Add a “Font” attribute to the “Hello World” experiment entry:

Font: Geneva

Your “Hello World” experiment entry should now look like this:

Hello World::
Format: Factor
InputDevices: MOUSE KEY
Timer: Macintosh
Flags: NO_SAVE_SCREEN
DataFile: "Hello World Data"
ScaleBlocks: 1
Cycles: 5
DataFields: RESPONSE_LABEL
Templates: "HelloGoodbye Template"

 "Hello Template"
AccessType:> Random

TrialActions: Conditions[Key[SPACE]] =>
 Actions[Beep["Bloop"]]

Font: Geneva

Now, when you run the experiment, “Hello World” and “Goodbye World” are always
printed in the Geneva font, instead of the system font (Chicago).

Attribute inheritance is primarily used to set default values for stimulus attributes (such as
the “Font” attribute, above). However, inheritance can also be used to vary the value of an
attribute depending on which path of links is followed to build the trial.

Change the “Hello World” event so that it is blue when it is going to be followed by “Good-
bye World” in the trial. For trials which do not have a “Goodbye World”, the stimulus will
still be black.

• Add a “Color” attribute to the “HelloGoodbye Template” entry:

Color: Blue

Your “Hello Template” entry should now look like this:

HelloGoodbye Template::
Events: "Hello Event" "Goodbye Event"
ConditionName: "HelloGoodbye"
Color: Blue

Now, when you run the experiment, you will know to expect a “Goodbye World” whenever
you see a blue “Hello World” instead of black.

Inheritance works for most — but not all — attributes. Attribute which define the structure
of the experiment — such as the “Templates” or “Events” attribute — cannot be inherited.
Also, the “Stimulus” event attribute cannot be inherited. These technicalities are explained
in detail in “Part 4: Scripting Reference, 13.3.11.1 Structural vs. Non-structural At-
tributes”, p402.

10.1.5.3 TrialAttrib()

When you want to vary an event attribute with respect to the template (i.e., vary the at-
tribute based on which template is used for the trial), attribute inheritance may not always
297

 Part 3: Scripting User Manual
provide sufficient functionality to do what you want. This can happen if you want to vary
the “Stimulus” attribute (which cannot be inherited), or if multiple events require different
values for the same attribute.

These problems can be solved by using a more explicit reference to the template: the Tri-
alAttrib() function call.

Change the “Hello World” event to read “Hello World…” (with ellipses) when it is going
to be followed by “Goodbye World” in the trial. For trials which do not have a “Goodbye
World”, the stimulus will remain “Hello World”.

1. Add a “HelloStimulus” attribute to the “Hello Template” entry:

HelloStimulus: "Hello World"

Your “Hello Template” entry should now look like this:

Hello Template::
Events: "Hello Event"
ConditionName: "Hello"
HelloStimulus: "Hello World"

2. Also, add a “HelloStimulus” attribute to the “HelloGoodbye Template” entry,
but with a slightly different value:

HelloStimulus: "Hello World..."

Your “Hello Template” entry should now look like this:

HelloGoodbye Template::
Events: "Hello Event" "Goodbye Event"
ConditionName: "HelloGoodbye"
Color: Blue
HelloStimulus: "Hello World..."

3. Change the value of “Stimulus” attribute in the “Hello Event” entry:

Stimulus: TrialAttrib(HelloStimulus)

Your “Hello Event” entry should now look like this:

Hello Event::
EventType: Text
Stimulus: TrialAttrib(HelloStimulus)
Duration: Mouse[Click]
StartRef: 500 after end of START
EventActions:

Conditions[Key[Any]] =>
 Actions[Beep[Instances: -1]

RT["Incorrect" Instances: -1]]
Conditions[End[]] =>
 Actions[RT["Correct"]]

Now, when you run the experiment, you will know to expect a “Goodbye World” whenever
you see “Hello World...” instead of “Hello World”.

When attribute values are read while building a trial, TrialAttrib() function calls are re-
placed by values read from the template entry (for the template that is being used to build
298

10.1.6 Scripting Experiment Attributes
the current trial). The single parameter to TrialAttrib() specifies which attribute in the
template entry to read the value from.

In the above example, TrialAttrib(HelloStimulus) is replaced with "Hello World" or
"Hello World...", depending on whether the “HelloStimulus” attribute is read from the
“Hello Template” entry or the “HelloGoodbye Template” entry.

See also “Part 4: Scripting Reference, 13.3.6.2 Linking Event Attributes to Template,
Block, and Group Attributes”, p385.

10.1.6 Scripting Experiment Attributes

There are a large number of standard attributes which can be specified in the experiment
entry. These attributes control features of the experiment as a whole, such a the background
color of the screen, or which input devices are currently active.

An exhaustive list of the available experiment attributes is provided in “Part 4: Scripting
Reference, 13.1.6.1 Standard Experiment Attributes”, p360. You should browse through
this list to get an idea of all of the features available in PsyScope. (Some of these attributes
can not be set through the graphic environment.)

10.2 Scripting Factors

There is a great deal that can be said about the structure and use of factors in PsyScope;
however, such information is contained elsewhere in this manual (see “Part 2: Graphic En-
vironment Reference, 5.7 Factors and Lists”, p129). This section assumes that the reader
possesses a basic understanding of factors and their role in a PsyScope experiment design.

We will once again be implementing the “Acuity” experiment, which was used as the ex-
ample experiment in the graphic environment tutorial (“Chapter 3. Designing an Experi-
ment”, p9). However, once we have scripted this experiment, it will look somewhat
different from the script built by the graphic environment. This is because the graphic en-
vironment uses a complex structure — the factor table — to define experiments in a man-
ner that is much like form-filling. Scripters tend instead to use simpler structures — free
factors, also known as lists in the graphic environment —which are more amenable to pro-
grammatic manipulation.

10.2.1 Scripting the Acuity Experiment

Before we begin scripting factors, we must first set up the higher-level structure of the Acu-
ity experiment.

In Acuity, there are three events:
299

 Part 3: Scripting User Manual
• A fixation point is shown in the center of the screen; it stays there until the subject hits
the “2” key, indicating that s/he is ready for the stimulus. This is event is the same for
every trial.

• A stimulus is shown somewhere on the screen for a brief duration. The size, position,
and “wordness” of this stimulus will vary from trial to trial. (These variations will be
implemented with factors.)

• A response is collected — either the “1” key or “2” key, indicating that the stimulus was
a word or non-word, respectively. This event is the same for every trial.

(The graphic environment tutorial also used an ITI event; we will instead use the “ITI” trial
attribute to implement an inter-trial interval.)

Thus, we will need an experiment entry, one template entry, and three event entries.

Create the skeleton of the Acuity experiment:

1. Create a new script by using the New Experiment item in the Design
menu. Name the experiment “Acuity” and save it to its own script file. Once
your Acuity script is loaded, open the interactive editor (see “10.1 Scripting
a New Experiment”, p281). You will want to make sure that the Design win-
dow is closed, so that it does not interrupt your work by trying to read incom-
plete fragments of the script.

2. In the #> EventDefinitions section of the script, create three new
events:

First, create the “Fixation” event:

Fixation::
Stimulus: "+"
Position: Center Screen Center

 Center Screen Center
Duration: Key[2]

The “Position” attribute is described in “Part 4: Scripting Reference, 14.2.1.1
Text and Screen Attributes”, p424. Here, we have specified that the “+”
should be centered both horizontally and vertically with respect to the screen.
The duration Key[2] means that the fixation symbol will stay on the screen
until the “2” key is pressed.

Create the “Stimulus” event:

Stimulus::
Stimulus: "Hello"
Position: Center Screen Center

 Center Screen Center
Size: 12
Duration: 50

For now, the “Stimulus”, “Position” and “Size” attributes are set to constant
values; these will change when we are ready to link the event to factors. The
duration is set to a fixed value of 50 milliseconds; this can be changed to any
value you prefer.
300

10.2.2 Scripting Free Factors
Finally, create the “Response” event:

Response::
EventType: NULL
Duration: Key[1 3]
EventActions: [Key[1]] => [RT[correct]]

 [Key[3]] => [RT[incorrect]]

The “Response” event does not show any stimulus, so it’s event type is NULL.
For now, we have assumed that “1” is a correct response and “3” is an incor-
rect response, although this will change when we are ready to link the re-
sponse to a factor. The duration attribute specifies that the event lasts until
some response is given.

3. In the #> TemplateDefinitions section of the script, create a new
template entry:

Acuity Template::
Events: Fixation Stimulus Response
ITI: 500

The template is linked to the three events. The value of the “ITI” attribute
specifies that 500 milliseconds should separate the end of one trial and the
start of the next.

A template entry is not really necessary in this implementation of the Acuity
experiment. However, it is generally a good idea to use a template entry, be-
cause it is then easier to change the script in the future.

4. Link the template to the experiment entry, set the trial count to 5, and add
RESPONSE_LABEL to the data fields. Your “Acuity” experiment entry
should now look like this:

Acuity::
Format: Factor
InputDevices: MOUSE KEY
Timer: Macintosh
Flags: NO_SAVE_SCREEN
DataFile: "Acuity Data"
ScaleBlocks: 1
DataFields: RESPONSE_LABEL
Cycles: 5
Templates: "Acuity Template"

If you run the experiment now, you will see a fixation point. Hit the “2” key, and the fixa-
tion point will disappear, followed immediately by the stimulus. When the stimulus has dis-
appeared, you must hit the “1” or “2” key as a response (nothing will be one the screen);
this will end the trial, and then the next trial will start after half a second.

10.2.2 Scripting Free Factors

When you set up a factor design in the graphic environment, you typically use a factor table
object. However, a factor table has a very awkward implementation in PsyScript. (You
might want to look a table-based script to see what it looks like.) For scripted experiments,
you will usually want to use free factors, instead.
301

 Part 3: Scripting User Manual
When you use free factors, each factor is described by a separate entry in the script. Factors
are connected to the experiment hierarchy with a “Factors” attribute; a “Factors” attribute
can appear anywhere in the entry hierarchy from the experiment entry to the template entry.
The way in which factors are crossed together and accessed (i.e., factor sets and their cross-
ing types and access types) is controlled through sub-attributes of the “Factors” linking at-
tribute.

Once a factor is defined and linked to the experiment hierarchy, attributes can access field
values using a FactorAttrib() function call.

Create one of the factors needed for the Acuity experiment — the “Position” factor:

1. In the #> FactorDefinitions section of the script, create a new factor
entry:

Position::
Levels: LeftFar LeftNear Center RightNear

 RightFar

2. In the #> LevelDefinitions section of the script, create entries for the
five levels of the “Position” factor:

LeftFar::
Pos: 10% Screen Center Center Screen Center

LeftNear::
Pos: 30% Screen Center Center Screen Center

Center::
Pos: 50% Screen Center Center Screen Center

RightNear::
Pos: 70% Screen Center Center Screen Center

RightFar::
Pos: 90% Screen Center Center Screen Center

3. Link the factor entry to the “Acuity Template” entry by adding a “Factors”
attribute:

Factors: Position
AccessTypes:> Random

Your “Acuity Template” entry should now look like this:

Acuity Template::
Events: Fixation Stimulus Response
ITI: 500
Factors: Position

AccessTypes:> Random

4. Make the position of the stimulus depend on the “Position” factor by chang-
ing the value of the “Position” attribute of the “Stimulus” entry:

Position: FactorAttrib(Position Pos)
302

10.2.2 Scripting Free Factors
Your “Stimulus” entry should now look like this:

Stimulus::
Stimulus: "Hello"
Position: FactorAttrib(Position Pos)
Size: 12
Duration: 50

Now, when you run the experiment, the stimulus will show up in a different place on the
screen in each trial.

The content of a “Factors” attribute lists references to other factor entries. Each factor entry,
in turn, contains a “Levels” attribute with a list of references to level entries. Within each
level entry, one or more attributes specify field values for that level of the factor.

In our first factor, there is only one field — “Pos” — which contains a position specifica-
tion. The “Position” attribute of the “Stimulus” entry refers to this field with the function
call FactorAttrib(Position Pos). When the trial is compiled, this function call is eval-
uated by finding the entry for the current level of the specified factor, and copying the value
of the specified field attribute. For example, in trials where “FarNear” is the current level
of the “Position” factor, FactorAttrib(Position Pos) is replaced with 30% Screen
Center Center Screen Center.

10.2.2.1 Compact Factors

The field values of the “Position” factor are somewhat complicated, since it takes six values
to fully specify a position. When the values are simpler, there is no need to create separate
entries for each level of the factor.

Create another of the factors needed for the Acuity experiment — the Position factor:

1. In the #> FactorDefinitions section of the script, create a new factor
entry:

Size::
Levels: Big Medium Small
IsList: True
PointSize: 18 12 9

2. Link the “Size” factor entry to the “Acuity Template” entry by modifying the
“Factors” attribute:

Factors: Position Size
AccessTypes:> Random

Your “Acuity Template” entry should now look like this:

Acuity Template::
Events: Fixation Stimulus Response
ITI: 500
Factors: Position Size

AccessTypes:> Random
303

 Part 3: Scripting User Manual
3. Make the size of the stimulus depend on the “Size” factor by changing the
value of the “Size” attribute of the “Stimulus” entry:

Size: FactorAttrib(Size PointSize)

Your “Stimulus” entry should now look like this:

Stimulus::
Stimulus: "Hello"
Position: FactorAttrib(Position Pos)
Size: FactorAttrib(Size PointSize)
Duration: 50

Now, when you run the experiment, both the position and size of the stimulus will vary
from trial to trial.

Setting the “IsList” attribute of a factor entry to True designates the factor as a compact
factor. In a compact factor, the field values for levels are listed in attributes within the fac-
tor entry, in parallel with the “Levels” attribute. The values in the “Levels” attribute are
simply read as level names, instead of references to level entries.

10.2.2.2 Factor Interactions

There are still two things which must vary in our Acuity experiment: the word or non-word
nature of the stimulus, and the actual text that is displayed. Unlike the other two factors (po-
sition and size), these two factors are related: the possible values for the text that is dis-
played during the trial depends on whether it is a word or non-word trial.

When such interactions arise in a table-based script, they are implemented by setting values
for individual cells rather than full rows or columns. When free factors are used, there is no
physical representation for a cell, so that other means have to be used to implement the in-
teraction.

Add the two remaining factors for the Acuity experiment — Wordness and TextStim:

1. In the #> FactorDefinitions section of the script, create two new fac-
tor entries:

TextStim::
Levels: 1 2 3
IsList: True
Words: dog cat man
Nonwords: biv gaf dut

Wordness::
Levels: Word Nonword
IsList: True
Stimulus: FactorAttrib(TextStim Words)

 FactorAttrib(TextStim Nonwords)
RightKey: 1 3
WrongKey: 3 1
304

10.2.2 Scripting Free Factors
2. Link the “TextStim” and “Wordness” factor entries to the “Acuity Template”
entry by modifying the “Factors” attribute:

Factors: Position Size TextStim Wordness
AccessTypes:> Random

Your “Acuity Template” entry should now look like this:

Acuity Template::
Events: Fixation Stimulus Response
ITI: 500
Factors: Position Size TextStim Wordness

AccessTypes:> Random

3. Make the value of the stimulus depend on the “TextStim” and “Wordness”
factors by changing the value of the “Stimulus” attribute of the “Stimulus”
entry:

Stimulus: FactorAttrib(Wordness Stimulus)

Your “Stimulus” entry should now look like this:

Stimulus::
Stimulus: FactorAttrib(Wordness Stimulus)
Position: FactorAttrib(Position Pos)
Size: FactorAttrib(Size PointSize)
Duration: 50

4. Make the response recording sensitive to the “Wordness” factor by changing
the “EventActions” attribute of the “Response” entry:

EventActions:
[Key[FactorAttrib(Wordness RightKey)]]

=> [RT[correct]]
[Key[FactorAttrib(Wordness WrongKey)]]

=> [RT[incorrect]]

Your “Response” entry should now look like this:

Response::
EventType: NULL
Duration: Key[1 3]
EventActions:
 [Key[FactorAttrib(Wordness RightKey)]]

=> [RT[correct]]
 [Key[FactorAttrib(Wordness WrongKey)]]

=> [RT[incorrect]]

Now you have a complete Acuity experiment. The position, size, wordness, and stimulus
should vary from trial to trial, and a “1” or “3” key press should be recorded as “correct”
or “incorrect”.

In the above implementation of “TextStim” and “Wordness”, “TextStim” is never directly
accessed from any of the event entries. Instead, “TextStim” references are within “Word-
ness” field values, thus modelling the interaction between “Wordness” and “TextStim”.

These factors are our first with multiple fields; “TextStim” has “Words” and “Nonwords”
fields, while “Wordness” has “Stimulus”, “RightKey”, and “WrongKey”.
305

 Part 3: Scripting User Manual
Notice that the FactorAttrib() function calls are embedded within a more complex ac-
tion description in the “EventActions” attribute of “Response”. FactorAttrib() can be
placed anywhere in the content of an attribute, except within string literals which are sur-
rounded by quotes or curly braces (see “Part 4: Scripting Reference, 12.6.1 Literals”,
p326).

10.2.2.3 Factor Sets

When you run the Acuity experiment at this point, it is very likely that you will see some
word or non-word multiple times before you see all of the words and non-words once. This
is because “Wordness” and “StimText” are fully crossed with “Position” and “Size”; it is
guaranteed that you will see every position-size-word/non-word combination once before
any repeats, but the same word could be seen two different positions or sizes before some
other word is seen once.

One way to solve this problem is to put “Wordness” and “StimText” into a separate factor
set (or table).

Partition the factors of “Acuity Template” into two factor sets:

• Add a “Sets” sub-attribute to the “Factors” attribute in “Acuity Template”:

Sets:> 2 2

• Add another Random to the “AccessTypes” sub-attribute of “Factors” in
“Acuity Template”:

AccessTypes:> Random Random

Your “Acuity Template” entry should now look like this:

Acuity Template::
Events: Fixation Stimulus Response
ITI: 500
Factors: Position Size TextStim Wordness

AccessTypes:> Random Random
Sets:> 2 2

Now, when you run the experiment, you should see every word and non-word once before
any word or non-word is used twice.

When you run the script in real-time, it can be very difficult to keep track of which words
and non-words you have seen. Try using the Trial Monitor with the Check Events and
List Events options (see “Part 2: Graphic Environment Reference, 6.3 The Trial Moni-
tor”, p238).

The “Sets” sub-attribute of the “Factors” attribute should contain a list of numbers. Each
number represents a single factor set, indicating how many factors are in that set. Factors
from the content of the “Factors” attribute are placed into sets by picking the first n items
for the first set, the next m items for the second set, and so on, where n, m, etc. are the values
in the “Sets” sub-attribute.

The “Factors” attribute can have other sub-attributes which determine properties of factor
sets; e.g., the “AccessTypes” sub-attribute. Values are listed in these attributes in parallel
306

10.2.2 Scripting Free Factors
with the “Sets” sub-attribute, i.e., there is one value for each number in the “Sets” sub-at-
tribute.

Putting “StimText” and “Wordness” into a separate factor set is not necessarily an accept-
able solution. We have lost a useful constraint — that every possible stimulus value is seen
in every possible position and size.

Another solution to our problem is to keep all four factors in the same set, but change the
access type of the set.

Put “StimText” and “Wordness” back into the first factor set, and change the access type
of this set:

• Change the “Sets” sub-attribute of “Factor” in “Acuity Template”:

Sets:> 4

• Change the “AccessTypes” sub-attribute of “Factors” in “Acuity Template”:

AccessTypes:> LRandom

• Reorder the factors in the “Factors” attribute in “Acuity Template”, so that
“TextStim” and “Wordness” have precedence:

Factors: Wordness TextStim Position Size

Your “Acuity Template” entry should now look like this:

Acuity Template::
Events: Fixation Stimulus Response
ITI: 500
Factors: TextStim Wordness Position Size

AccessTypes:> LRandom
Sets:> 4

Now, when you run the experiment, you should still see every word and non-word once be-
fore any word or non-word is used twice, but every word and non-word will also be used
in every size and position (if you run enough trials) before the same word or non-word ap-
pears in the same size and same position.

The LRandom access type is the same as Least-Used Random in the graphic environment
(see “Part 2: Graphic Environment Reference, 5.7.2.2 Table Info Dialog”, p140). The com-
plete list of access types are in “Part 4: Scripting Reference, 13.3.7.3 Scripting Access
Types”, p391.

There are many other properties of a factor set which you can manipulate. All of these are
described in “Part 4: Scripting Reference, 13.3.7 Scripting Factors”, p387.

10.2.2.4 Nested Factors

We have so far implemented the stimulus-selecting factor as an interaction between two
top-level factors: “Wordness” and “StimText”. A more natural approach, however, may be
to first choose a level of the “Wordness”, and then use a nested factor of the selected level:
307

 Part 3: Scripting User Manual
a “WordStimulus” factor in the “Word” level, and a “NonwordStimulus” factor in the
“Nonword” level.

In order to use nested factors, the levels must be implemented as separate entries (i.e., the
“owning” factor cannot be a compact factor).

Change the Acuity experiment to use nested factors for the stimulus value selection:

1. Delete the “StimText” factor link in “Acuity Template”, setting the “Sets”
sub-attribute of “Factors” to 3 and “AccessTypes” sub-attribute to CRan-
dom. Your “Acuity Template” entry should now look like this:

Acuity Template::
Events: Fixation Stimulus Response
ITI: 500
Factors: Wordness Position Size

AccessTypes:> CRandom
Sets:> 3

2. Create two level attributes for “Wordness” in the #> LevelDefinitions
section of the script:

Word::
Stimulus: FactorAttrib(WordStimulus)
RightKey: 1
WrongKey: 3
Factors: WordStimulus

Nonword::
Stimulus: FactorAttrib(NonwordStimulus)
RightKey: 3
WrongKey: 1
Factors: NonwordStimulus

(Here, we are exploiting the fact that the field parameter of the FactorAt-
trib() function defaults to the name of the attribute that owns the Fac-
torAttrib() call. Thus, in “Word”, the function call
FactorAttrib(WordStimulus) is equivalent to FactorAt-
trib(WordStimulus Stimulus).)

3. Delete all of the attributes of “Wordness” except “Levels”. Your “Wordness”
entry should now look like this

Wordness::
Levels: Word Nonword

4. Create the two nested factors in the #> FactorDefinitions section of
the script:

WordStimulus::
Levels: 1 2 3

AccessType:> Random
IsList: True
Stimulus: dog cat man

NonwordStimulus::
Levels: 1 2 3

AccessType:> Random
IsList: True
Stimulus: biv gaf dut
308

10.2.3 Scripting Factor Tables
5. Delete the “StimText” factor from the script.

Now, when you run the experiment, it should behave mostly as before. The interesting
properties should be the same (e.g., using every word or non-word once before using any
word or non-word twice).

Nested factors are always associated to levels — they cannot be linked to factors. (This
would not make sense.)

The “Factors” attribute in a level entry has the same format as when it is in a template,
block, group, or experiment entry; thus, the access type on the nested factor can be con-
trolled through the “AccessTypes” sub-attribute of the “Factors” attribute, as before. Here,
however, we have chosen to use the “AccessType” (singular) sub-attribute in the “Levels”
attributes of the “WordStimulus” and “NonwordStimulus”. This produces the same results
as using Random in an “AccessTypes” sub-attribute within “Word” and “Nonword”; see
“Part 4: Scripting Reference, Scripting the Factor-based Access Type”, p392 for details.

See “Part 4: Scripting Reference, 13.3.7.5 Scripting Nested Factors”, p393 for more infor-
mation on scripting nested factors.

10.2.3 Scripting Factor Tables

Even though you would not want to script a factor table from scratch, you may find yourself
modifying a script that was created in the graphic environment using factor tables. The for-
mat and use of factor table entries is beyond the scope of this tutorial, but they are fully de-
scribed in “Part 3: Scripting User Manual, 10.2.3 Scripting Factor Tables”, p309.

10.3 Scripting Blocks and Groups

10.3.1 Scripting Blocks and BlockAttrib()

Let’s add blocks to the Acuity experiment — as in “Chapter 3. Designing an Experiment”,
p9, the graphic environment tutorial — to test the role of attention in a subject’s perfor-
mance in the experiment. We will need to have four blocks of trials: a single trial to present
the initial instructions, a block of trials using these instructions, a single trial to present the
second instructions, and then a block of trials using these new instructions.

Add the blocks and create the instructions template:

1. Create a new event in the #> EventDefinitions section of the script:

Instruction Event::
EventType: Paragraph
Duration: Key[Any]
Stimulus: BlockAttrib(Instructions)
309

 Part 3: Scripting User Manual
2. Create a new template in the #> TemplateDefinitions section of the
script:

Instructions Template::
Events: "Instruction Event"

3. In the #> BlockDefinitions section of the script, create three new en-
tries:

FirstInstructions::
FixedCycles: 1
Templates: "Instructions Template"
Instructions: "Always look at the center of

the screen."

SecondInstructions::
FixedCycles: 1
Templates: "Instructions Template"
Instructions: "Look at the stimulus when it

appears."

RegularTrials::
Templates: "Acuity Template"

4. Change the “Acuity” experiment entry: first, delete the “Templates” and “Cy-
cles” attributes; then, change the “ScaleBlocks” attribute value to 5; finally,
add a “Blocks” attribute:

Blocks: FirstInstructions RegularTrials
 SecondInstructions RegularTrials

Your “Acuity” experiment entry should now look like this:

Acuity::
Format: Factor
InputDevices: MOUSE KEY
Timer: Macintosh
Flags: NO_SAVE_SCREEN
DataFile: "Acuity Data"
ScaleBlocks: 5
DataFields: RESPONSE_LABEL
Blocks: FirstInstructions RegularTrials

 SecondInstructions RegularTrials

Now, when you run the experiment, you should see the “Always look at the center of the
screen” instructions as the first trial, followed by five normal Acuity trials; then, you should
see the “Look at the stimulus when it appears” instructions as the next trial, followed by
another five normal Acuity trials.

The “FirstInstructions”, “SecondInstructions”, and “RegularTrials” blocks are linked to the
experiment through the “Blocks” attribute. “RegularTrials” is listed in this attribute twice;
this means that the block should be run twice for each pass through the list of blocks. The
blocks are executed in the default order, which is sequential.

“FirstInstructions” and “SecondInstructions” are both linked to the same template. The in-
structions presented by the trial are varies across the blocks by using the BlockAttrib()
function. BlockAttrib() works much like TrialAttrib() (described in “10.1.5.3 Tri-
alAttrib()”, p297), except that the referenced attribute is in the block entry instead of the
310

10.3.2 Scripting Groups
template entry. See also “Part 4: Scripting Reference, 13.3.6.2 Linking Event Attributes to
Template, Block, and Group Attributes”, p385.

Both “FirstInstructions” and “SecondInstructions” use the “FixedCycles” attribute, with a
value of 1. This means that only one trial should be run within the block. The “RegularTri-
als” block does not specify a trial count; by default, the trial count is 1, but this count is
scalable. The “ScaleBlocks” attribute in “Acuity” has a value of 5, which causes the num-
ber of trials within a “RegularTrials” block to be scaled to 5.

Block entries are described in more detail in “Part 4: Scripting Reference, 13.3.4 Scripting
Blocks”, p380.

10.3.2 Scripting Groups

Groups can be scripted into the experiment hierarchy similar to how blocks were added. In
the simplest case, you can set up groups in your experiment, and then manually pick a group
for each run of the experiment. Usually, however, you will want to automatically pick a
group based on information that you enter about the current subject.

Subject information tracking is best implemented by using the Subject Info facilities of the
graphic environment. There is no structured subject information tracking system built into
either PsyScope or factor format; instead, PsyScope’s general-purpose environment con-
figuration is combined with a few “external” functions (built-in DCODs) to attain subject
info tracking independent of the format of the script.

Here, we will demonstrate the use of manually-selected groups, in order to show how
groups fit into the basic experiment hierarchy.

Create two groups for the Acuity experiment: one group will see only one block of trials
(fixating on the center of the screen at all times), while the other group will get the full ex-
periment (with both center-fixation and direct-look blocks):

1. In the #> GroupDefinitions section of the script, create two new en-
tries:

SimpleGroup::
Blocks: FirstInstructions RegularTrials
ScaleBlocks: 5

FullRunGroup::
Blocks: FirstInstructions RegularTrials

 SecondInstructions RegularTrials
ScaleBlocks: 5

2. Change the “Acuity” experiment entry: first, delete the “Blocks” and “Scale-
Blocks” attributes; then, add a “Groups” attribute:

Groups: SimpleGroup FullRunGroup
Current:> 1
311

 Part 3: Scripting User Manual
Your “Acuity” experiment entry should now look like this:

Acuity::
Format: Factor
InputDevices: MOUSE KEY
Timer: Macintosh
Flags: NO_SAVE_SCREEN
DataFile: "Acuity Data"
DataFields: RESPONSE_LABEL
Groups: SimpleGroup FullRunGroup

Current:> 1

Now, when you run the experiment, you should see only the “Always look at the center of
the screen” block. If you change the value of the “Current” sub-attribute of the “Groups”
attribute to 2, then you will see the full experiment again.

Notice that the experiment entry now contains no trial-counting attributes; when a group is
used, all of the trial counting attributes are read from the group entry instead of the exper-
iment entry.

Group entries are described in more detail in “Part 4: Scripting Reference, 13.3.3 Scripting
Groups”, p379.

10.3.2.1 GroupAttrib()

The GroupAttrib() function is directly analogous to the BlockAttrib() and TrialAt-
trib() functions. See “Part 4: Scripting Reference, 13.3.6.2 Linking Event Attributes to
Template, Block, and Group Attributes”, p385 for details.

10.4 Advanced Topics

10.4.1 Linking to the PsyScope Environment

As we implemented the Acuity experiment, the keys “2”, “1”, and “3” were “hardwired”
as the “go”, “word”, and “non-word” keys, respectively; if you wanted to change this key
mapping, you would have to go change every entry that depends on the key assignments.

We instead can store the key assignments in a small set of entries and then reference these
entries whenever key assignments are needed. We can then link this single entry to the
menu system, so that the key assignments can be modified by someone who does not know
PsyScript.

Create a central entry for the key mappings and link this to the menu system:

1. In the #> MenuDefinitions section of the script, create a new entry:

Go Keys:: 2
Dialog: KeyState

Word Keys:: 1
312

10.4.1 Linking to the PsyScope Environment
Dialog: KeyState

Nonword Keys:: 3
Dialog: KeyState

These entries store the keyboard mapping. They also the PsyScope environ-
ment what dialog should be used to modify the values: the KeyState dia-
log.

2. Add "-", "Go Keys", “Word Keys", and "Nonword Keys" to the en-
try named “Experiment” (not to be confused with the “Experiments” entry or
an experiment entry!).

The “Experiment” entry defines the Experiment menu in the PsyScope en-
vironment. When you put a dash in its content ("-"), a separator line is put
in the menu.

Your “Experiment” entry should now look like this:

Experiment::
@StandardPsyScopeMenuItems
"-"
"Go Keys"
"Word Keys"
"Nonword Keys"

3. Select Reinitialize Script from the Utilities menu. This resets the Psy-
Scope environment menus, reading in your changes to the “Experiment” en-
try.

Now, when you click look in the Experiment menu in the menu bar, you should see Go
Keys, Word Keys, and Nonword Keys at the bottom of the menu. However, these val-
ues are not yet linked to the experiment.

4. Change the “Duration” attribute of the “Fixation” event entry:

Duration: Key[@"Go Keys"]

Your “Fixation” entry should now look like this:

Fixation::
Stimulus: "+"
Position: Center Screen Center

 Center Screen Center
Duration: Key[@"Go Keys"]

5. Change the “Duration” attribute of the “Response” event entry:

Duration: Key[@"Word Keys" @"Nonword Keys"]

Your “Response” entry should now look like this:

Response::
EventType: NULL
Duration: Key[@"Word Keys" @"Nonword Keys"]
EventActions:
 [Key[FactorAttrib(Wordness RightKey)]]
313

 Part 3: Scripting User Manual
=> [RT[correct]]
 [Key[FactorAttrib(Wordness WrongKey)]]

=> [RT[incorrect]]

6. Change the “RightKey” and “WrongKey” attributes of the “Word” level en-
try:

RightKey: @"Word Keys"
WrongKey: @"Nonword Keys"

Your “Word” entry should now look like this:

Word::
Stimulus: FactorAttrib(WordStimulus)
RightKey: @"Word Keys"
WrongKey: @"Nonword Keys"
Factors: WordStimulus

7. Change the “RightKey” and “WrongKey” attributes of the “Nonword” level
entry:

RightKey: @"Nonword Keys"
WrongKey: @"Word Keys"

Your “Nonword” entry should now look like this:

Nonword::
Stimulus: FactorAttrib(NonwordStimulus)
RightKey: @"Nonword Keys"
WrongKey: @"Word Keys"
Factors: NonwordStimulus

Now, everything is linked together. Try changing the key mapping — using the menu items
in the Experiment menu — and run the experiment.

Using PsyScope’s environment-configuration features, you can customize the menu bar,
the Console window, and set up entries for automatic execution. See “Chapter 16. Config-
uring the User Environment”, p449.
314

Part 4:
Scripting
Reference

Chapter 11. Introduction 317

Chapter 12. PsyScript Reference 319

Chapter 13. Experiment Scripting Reference 357

Chapter 14. Actions and Devices Reference 419

Chapter 15. Trial Manager Technical Reference 441

Chapter 16. Configuring the User Environment 449

Chapter 17. Dialog and Function Extensions 467

316

Part 4: Scripting Reference

Ψ
Chapter 11. Introduction

This part of the manual provides an exhaustive reference for users of PsyScript:

“Chapter 12. PsyScript Reference” is a defintiion of the “pure” language PsyScript, inde-
pendent of the use of PsyScript to define experiments.

“Chapter 13. Experiment Scripting Reference” details PsyScope’s interpretation of a
script to obtain an executeable experiment. Both Factor and non-Factor formats are
discussed.

“Chapter 14. Actions and Devices Reference” is a reference for all attributes, actions, and
devices that are available for describing an experiment.

“Chapter 15. Trial Manager Technical Reference” contains technical details about Psy-
scope’s real-time Trial Manager.

“Chapter 16. Configuring the User Environment” describes how PsyScope’s user envi-
ronment can be customized through the script.

“Chapter 17. Dialog and Function Extensions” is a reference for all of the dialogs and
functions, which are mainly used for configuring the interface and subject tracking.

 Part 4: Scripting Reference
318

Ψ
Chapter 12. PsyScript Reference

Part 4: Scripting Reference

12.1 Components of a Script

A script is a text file used to define a PsyScope experiment. The syntax of the script is
called PsyScript. A script is made up of:

• Entries – Entries are the basic blocks of information in a script, similar to the records
of a database. For example, each object in the graphic environment is implemented
as a separate entry in the script. Entries make up most of the script; each entry is de-
fined by its name followed with double colons (e.g., My Entry::). The full definition
of an entry is in “12.2 Entries”, p320.

• Comments – A comment is a line of text that is ignored by the script interpreter. All
comments start with “#” and run until the end of the line. Comments can be embedded
within an entry. See also “12.3 Comments”, p324.

• Modifiers – Modifiers are high-level instructions to the script interpreter. For instance,
the #include modifier is used to refer to another script file. Modifiers look like com-
ments, but a modifier is distinguished from a comment by a keyword immediately fol-
lowing the “#” (e.g., include). There are only a few modifiers; they are all defined
in “12.4 Modifiers”, p324.

• Section markers – Section markers also look like comments; they serve only to organize
a script into different sections. For instance, when you create a new template in the
graphic environment, it defines the new template entry in the “Template Definitions”
section of the script. Section markers always start with “#>”, and cannot be embedded
within an entry. See also “12.5 Section Markers”, p326.

As an example, here is a micro-script:

#PsyScope 1.0

Experiments:: HelloWorld

#> Experiment Definitions

HelloWorld::
Events: HWEvent

#> Event Definitions

The only event

 Part 4: Scripting Reference
HWEvent::
Here is the stimulus
Stimulus: "Hello World"

There are three entries here: “Experiments”, “HelloWorld”, and “HWEvent”. #PsyScope
is a modifier. #> Experiment Definitions and #> Event Definitions are section
markers. # The only event and # Here is the stimulus are comments.

12.2 Entries

Entries are the basic unit of information within a script. Each entry is defined by giving it
a name followed by double-colons, and then defining the content and attributes of the en-
try.

12.2.1 Entry Content and Expressions

The content of an entry is made up of scripting expressions. The result of evaluating these
expressions is the entry’s value.

An expression can be:

• A simple literal text string — quoted or unquoted — or a number (e.g., "Hello World",
Hi, 6). See also “12.6.1 Literals”, p326.

• A function call. There are built-in primitive functions, and more functions can be de-
fined within the scripting language. Strcat(Hello " " World) is an example of
calling a built-in function. See also “12.6.2 Function Calls”, p327.

• An operation sentence. There are obvious operators — such as + for addition: 2 + 3 —
as well as operators that work on scripting constructs — such as @: @TheEntry. Op-
erators can be unary (requiring one operand) or binary (requiring two operands). All
operators are built-in. See also “12.6.3 Operation Sentences”, p328.

• A parenthesized group of other expressions; e.g., (2 + 3 "Hello World" @TheEntry).

When an expression is evaluated, it can return one, many, or zero results. The when the
expression 2 + 3 is evaluated, it returns the value 5. Values which are obtained by evalu-
ating expressions are also called tokens.

The content of an entry is specified immediately after the double-colons in an entry defini-
tion. The content of an entry can be empty, or it can be arbitrarily long.

For example, here is an entry with two expressions in its content:

TheEntry:: 2 + 3 "Hello World"
320

12.2.2 Attributes
12.2.2 Attributes

The attributes of an entry are sub-entries that the entry owns. Attributes are defined within
an entry using names followed by single colon. For example, here is an entry with two at-
tributes, “Mickey Mouse” and “GarfieldTheCat”:

CartoonEntry::
MickeyMouse: "Walt Disney"
GarfieldTheCat: "Paws, Inc."

Attributes are entries in their own right. Each attribute has a content, which contains ex-
pressions for the value of the attributes. When an attribute has its own attributes, they are
specified using “:>”:

CartoonFaceEntry::
MickeyMouse: "Walt Disney"

Ears:> Round
Nose:> Round

GarfieldTheCat: "Paws, Inc."
Ears:> Triangular
Nose:> Round

After the “:>” level, further sub-attributes are specified by adding more “>”s:

DetailedCartoonEntry::
MickeyMouse: "Walt Disney"

Ears:> Round
Colors:>> Black

Nose:> Round
GarfieldTheCat: "Paws, Inc."

Ears:> Triangular
Colors:>> Black Orange

ColorArrangement:>>> Stripes
Nose:> Round

The collection of all attributes belonging to an entry is called the entry’s attribute block.
When the script interpreter is searching for an attribute in an entry, it looks at attribute
names in the order that they are listed in the attribute block.

It is syntactically allowed to have two attributes with the same name within an entry, but
only the first instance can be found with the attribute name (in a reference; see “12.2.4 Ref-
erences”, p323). Processes external to the script interpreter can sometimes reach the second
instance by index (e.g., a process might ask for the “fourth” attribute of an entry), but there
is no way to reach the second instance within PsyScript.

12.2.3 Entry Syntax

The entries which are defined with double-colons are called global entries. Attributes, sub-
attributes, etc. are all entries, but they are not global entries.

Each global entry in a script must begin on a new line. Trailing and leading tabs and spaces
in a global entry name are ignored (unless they are included in quotes in the entry name).
321

 Part 4: Scripting Reference
The double-colons — which signal the beginning of the entry’s content — must be on the
same line as the name.

A global entry’s name should be unique; if two global entries are defined using the same
name, the one that is defined first will always be used (because global entries are referenced
by name).

A global entry definition is terminated by one of the following:

• The beginning of another global entry.

• A file inclusion modifier (see “12.4.2 #include and #winclude”, p325).

• A section marker (see “12.5 Section Markers”, p326).

• The end of the script file.

Attributes of a global entry are defined recursively: an attribute begins with the name fol-
lowed by a single-colon and ends with the start of the next attribute. Unlike global entries,
multiple attributes may be specified on a single line. If an attribute has spaces in its name,
the name must be quoted. (The single colon is placed outside the quotes.)

All expressions between a global entry’s double-colons and its first attribute (or end of the
entry if no attributes are specified) are the entry’s content.

Tokens in the content of an entry are separated by blanks. Blanks may occur within an op-
eration sentence or in the parameter area of a function call, but may not appear between a
function name and the opening parenthesis of the function's parameter list.

The blank characters are space, tab, return, newline, and comma. Blanks are ignored unless
they are within quotes.

When a binary operator (i.e., an operator that takes two operands) is being used, blanks
must be used either on both sides of the operator or on neither side. Blanks should not be
placed between a unary operator and its operand.

For a literal expression to contain a blank, it must be quoted; e.g, "Hello World". Smart
quotes are not recognized; always use straight quotes. (Smart quotes look like this: “ ”,
straight quotes look like this: " ".)

Entry, attribute, and function names are case-insensitive. String comparisons (with the ==
operator, for example) are also case-insensitive.

Comments may be placed anywhere in the script, as long as no other syntax rules are vio-
lated when the comments are replaced by blanks. Comments cannot, of course, be placed
within quoted strings.

There are three special separator symbols: =>, @> and ;. These symbols are treated as reg-
ular literal tokens, but with a special parsing feature: they always have implicit blanks
around them. This means that they will always count as separate expressions when they are
322

12.2.4 References
not quoted. For example, if a=>b (with no spaces) is in the content of an entry, it counts as
three separate expressions: a, =>, and b.

12.2.4 References

A reference is a “pointer” to an entry; it is a token that is the “name” of an entry in the
script. (The referenced entry does not have to be a global entry.)

In the simplest case, a reference is literally the name of an entry, but this only works for
global entries. For example, the expression Experiments could be used as a reference to
the “Experiments” entry in the script.

The most common use of a reference is to get a value stored in the entry; the basic reference
operator is @, which returns the value of the referenced entry’s content.

For example, given this entry definition in the script:

SomeEntry:: 2 + 3
Greeting: "Hello World"
Numbers: 1 2 3

Prime:> 2 3

Then, the value of @SomeEntry is 5.

To reference an attribute of a global entry, you concatenate the global entry name, “>>”,
and the attribute name. For example, "SomeEntry>>Greeting" references the “Greeting”
attribute of “SomeEntry”. The value of @"SomeEntry>>Greeting" is "Hello World".

To reference sub-attributes, you keep using “>>” to build a path to the attribute. Thus,
"SomeEntry>>Numbers>>Prime" is a reference to the “Prime” sub-attribute of the “Num-
bers” attribute of the global entry “SomeEntry”.

The @ operator returns all of the tokens in the content of an entry. For example, the value
of @"SomeEntry>>Numbers" is three tokens: 1, 2, and 3.

When a reference is generated by a sublist or inline operation (see “12.8.7 Sublisting”, p334
and “12.9 Inline Entries”, p335), there is no way to write the reference in string form. If the
script interpreter is forced to translate such a reference into a string (e.g., through the Eval-
uator; see “12.15 The Evaluator”, p356), it can produce an output string for you to read, but
this output cannot be passed back to the script interpreter as a reference.

When you use “>>” within quotes, the script interpreter knows how to decompose the string
value to make an attribute reference. You can also reference an attribute using the >> oper-
ator; in the operator form, >> is out of the quotes (if any) in the expression, e.g., SomeEn-
try>>Greeting. The >> operator can be used on reference tokens that do not have a string
equivalent. (See also “12.14.1.1 Reference Operations”, p350.)

The construct @entry>>attrib is very common, so it has a short hand which uses the ->
operator: entry->attrib. Like >>, -> operator can work with non-string references.
323

 Part 4: Scripting Reference
12.2.4.1 THIS and OWNER

THIS is a keyword which evaluates — in the simple case — as a reference to the global
entry in which it appears; the context of THIS may change when it is used in an entry that
is incorporated into an inline entry (see “12.9.6.1 THIS and Inline Entries”, p341).

OWNER is a similar keyword that can only be used in the content of an attribute (or inline
entry). It evaluates as a reference to the entry (possibly non-global) that owns the attribute
(or inline entry) in which the OWNER keyword appears.

12.3 Comments

A comment may be used most anywhere in the script; comments start with a “#” and end
with the end of the line.

Comments cannot appear within entry names, within anything that is quoted, or anywhere
such that replacing the comment with spaces violates some other syntactic rule (see “12.2.3
Entry Syntax”, p321). Comments cannot be placed within modifiers or section markers.

12.4 Modifiers

Modifiers change the way the script interpreter reads or evaluates the script (much like
compiler directives in C). In general, the placement of a modifier is highly constrained, and
modifiers placed out of context are ignored.

Modifiers look like comments in the script: they all start with “#”. A modifier is distin-
guished from a comment because one of a small set of keywords will appear after the “#”,
with no intervening spaces. Some modifiers take a parameter after the keyword; if addition-
al text is added after the parameter (and before the end of the line), it is usually ignored.

The available modifiers are listed and described below.

12.4.1 #PsyScope

The most important modifier is the #PsyScope modifier, which must appear as the very
first line of every script (with no spaces or newlines before it). The #PsyScope modifier
should be followed by the version of the script interpreter to be used with the script. The
current version is 1.0.

For example, scripts that run with PsyScope 1.0 will all have this first line:

#PsyScope 1.0
324

12.4.2 #include and #winclude
Note: It is a good idea to leave a few spaces after the version number in the #PsyScope
modifier; this will allow future automatic script-updaters to easily change the version
number if it gets longer (e.g., 1.0.1).

12.4.2 #include and #winclude

The #include and #winclude modifiers are used to include an external file in the script.
These modifiers must appear at the beginning of a new line, and may not occur within an
entry definition (see “12.2.3 Entry Syntax”, p321).

#include takes one parameter: the name of a file. The specified file is read as a script and
used as if the #include modifier were replaced with the file’s contents. For example, to
include a file name “WordList” (that defines entries to be used as word stimulus), you
would write:

#include "WordList"

If the #winclude (“writable include”) modifier is used, then changes made to entries in the
included file (e.g., through script functions) will be saved when the top-level script is saved.
Otherwise, the included file is “read-only”. (When an included file is “read-only”, the in-
cluded entries can still be modified in PsyScope’s memory after the file is loaded; however,
these changes cannot be written back to the file.)

The #include modifier can also be used to include standard script files stored in an open
resource file (including PsyScope’s resource fork). “SubjectInfoLib” is an example of a re-
source-stored script.

File names specified for the #include modifiers are subject to the path name conventions
described in “Part 2: Graphic Environment Reference, 6.1.2 Path Names”, p215.

12.4.3 #inherit and #noinherit

These modifiers can be used in the attribute block of an entry: attributes following a #noin-
herit modifier and preceding an #inherit modifier in the attribute block will never be
used as inherited attributes (see “12.11 Inherited Attributes”, p344).

If an #inherit modifier precedes any #noinherit modifiers in the attribute block of an
entry, an initial #noinherit modifier is assumed.

Note: Strictly speaking, the “inheritance” described here is different from the inheritance
of attributes in Factor format. However, these modifiers still affect Factor format’s in-
heritance, as well.
325

 Part 4: Scripting Reference
12.4.4 #NoIncludeStdLib

This modifier prevents PsyScope’s standard library of standard scripting tools to be auto-
matically included in the script. This modifier must be placed by itself on a new line. See
also “16.7 PsyScopeStdLib”, p461.

12.5 Section Markers

Section markers serve to organize the script by denoting the types of entries that are within
a section of the script. PsyScope’s graphic environment uses markers for adding new en-
tries to an appropriate place in the script; for example, new template definitions are added
to the section marked #> Template Definitions. Section markers may also be useful to
the scripter for organizing a script.

Section markers always start at the beginning of a line, and must start will “#>”. Section
markers may not be placed within an entry definition (see “12.2.3 Entry Syntax”, p321).

Section markers are also recognized by the :: pop-up menu in PsyScope’s text editor. See
“Part 2: Graphic Environment Reference, 7.3.3 Action Bar”, p261.

12.6 Operators and Functions

As explained in “12.2.1 Entry Content and Expressions”, p320, a PsyScript expression is
either:

• a literal,

• a function call,

• an operation sentence,

• or a parenthesized group of other expressions.

12.6.1 Literals

Any text string that does not contain blanks, operators, or parenthesis is a literal. Also, any
quoted string is a literal.

Any string which contains blanks in it — such as "Hello World" — must be quoted; oth-
erwise, it the blank-separated strings count as multiple expressions. Besides the normal
quote-marks, strings may also be quoted with curly braces ({}); this allows literals which
contain quote-marks: {This literal contains a "quoted" word}.
326

12.6.2 Function Calls
All literals in PsyScript are text — even numbers. In the expression 2 + 3, the + operator
knows how to convert the strings 2 and 3 to the numbers 2 and 3. Even though period (.)
is an operator, decimal numbers — such as 0.5 — can be specified without quotes.

All strings have a Boolean value equivalent to True or False. 0 and False (with any cap-
italization) are the only values equivalent to False; everything else is equivalent to True.
Boolean operators always return the values True or False.

12.6.2 Function Calls

A function call is of the form FunctionName(parameter1 parameter2 …). There cannot
be a blank between the function name and the opening parenthesis.

Each function may take a certain number of input parameters; expressions within the pa-
rentheses of a function call specify the parameter values. For example, the function Str-
cat() takes a list of strings for its parameters, and all the strings are put together into one
string; thus, Strcat(Hello " " World) evaluates to "Hello World".

The values passed to the function are not the parameter expressions themselves, but the re-
sult of evaluating the expressions; this distinction is important, since a single expression
can evaluate to zero or multiple values. All parameter expression are evaluated before a
function is called.

For example, given this entry definition:

HelloWoldParts:: Hello " " World

then Strcat(@HelloWorldParts) also evaluates to "Hello World". Only one parameter
expression was given, but the function received three parameters.

The list of all built-in operators is given in “12.14 Script Operators and Functions Summa-
ry”, p349. Additional functions can be defined by a scripter; see “12.9.6 Function Defini-
tions”, p340.

Built-in functions which take only one parameter can actually take any number of param-
eters; the function will be applied to each parameter and all of the results will be returned.
This generalization does not apply for script-defined functions, but other distributive ef-
fects can be obtained by combining script-defined functions with the distributing operators
** and *! (see “12.6.3.1 Distributivity”, p328 and “12.14.1 Operators and Functions”,
p350).

12.6.2.1 Exceptions to the Rules

There are a handful of built-in functions which break the usual rules:

Div(), NthChar(), Power(), StripFrontChars(), and StripEndChars() are actually
binary operators that are implemented function-style. This means that the parameter
327

 Part 4: Scripting Reference
expressions are treated as the operand expressions of a binary operator (see “12.6.3
Operation Sentences”, p328 below).

If() does not evaluate all of its parameter expressions automatically. It always evaluates
enough expressions to get the value of its first parameter; if this is True (see “12.6.1
Literals”, p326), then If() evaluates enough to get (and return) the second parameter;
otherwise, it evaluates only what is necessary to get (and return) the third parameter.

12.6.3 Operation Sentences

An operation sentence is made by applying an operator to operand expressions. Operators
are always one- or two-character symbols, such as + and ->, and the operands are placed
before or after the operator.

Some operators are unary, i.e., they take only one operand. Most unary operators are placed
before their operand; e.g., the @ operator in @EntryName. There should be no blanks be-
tween a unary operator and its operand.

Binary operators are always placed between their parameters; e.g., the + operator in 2 + 3.
Blanks can be used within binary operation sentences, but they should be used consistently:
if blanks are placed between a binary operator and its first parameter, blanks should also be
placed between the operator and its second argument. (The number of blanks on each side
could be different; all that matters is whether there are any blanks at all.)

The operands of an operator are expressions. When an operand expression evaluates to
multiple tokens, the distributivity property of operators is used (see below).

The list of all built-in operators is given in “12.14 Script Operators and Functions Summa-
ry”, p349.

12.6.3.1 Distributivity

A property of all operators is distributivity. Distributivity means this: if multiple values are
given in the place of an operand, the operation will be performed once for each of the given
values. Multiple values may appear as operands because the operands are specified as ex-
pressions, and a single expression can evaluate to more than one value.

A parenthesized list of values counts as a single expression; (2 3) is a single expression
that evaluates to two values: 2 and 3. Thus, in the expression (2 3) + 3, two values are
given for the first operand of the + operator; the values of this expression will be 5 and 6,
in that order.

If multiple values are given for both the first and the second operand of a binary operator,
the expression is evaluated by taking one value for the first operand and evaluating for each
of the possible second operand values, then using the next first operand, and so on. Thus
(2 3) + (10 30) evaluates to 12, 13, 32, and 33.
328

12.7 Attribute Block Reference
Distributivity also applies when an operand evaluates to zero expressions; () + 3 is a valid
expression which evaluates to nothing (i.e., an empty list of values).

12.7 Attribute Block Reference

Just as the @ operator can be used to refer to the content line of another entry, “@” can also
be used as an attribute name to refer to the entire attribute block of another entry; this is
called an attribute block reference. The content of an “@” attribute should be a reference
to another entry in the script. (Multiple references can be specified.)

When the interpreter is searching for an attribute (see “12.2.2 Attributes”, p321) and it en-
counters an attribute named “@”, it looks in the referenced entry for the attribute. In this
way, the referenced entry’s attributes are “inserted” where the “@” attribute occurs.

For example, given these entry definitions:

EntryOne::
A: 1
B: 2
C: 3

EntryTwo::
B: 4
@: EntryOne
C: 5

Then, the value of EntryTwo->A is 1. The value of EntryTwo->B is still 3, since the “B”
attribute is specified in “EntryTwo” before the “@” attribute. However, EntryTwo->C is 3,
since the “C” attribute of “EntryTwo” follows the “@” attribute.

The “@” attribute may be used any number of times within an entry’s attribute block.

There is a technical constraint that was added to speed up “@” parsing: multiple references
can be specified in the content of a single “@” attribute, but each reference must be in a
separate expression.

12.8 Lists

Note: Lists as described here are not the same as “lists” in the graphic environment. These
lists are more primitive and are purely scripting concepts. Graphic environment lists
are described in “Part 2: Graphic Environment Reference, 5.7 Factors and Lists”,
p129.

A list is an entry that is being used in the context of special scripting functions. There are
a few special attributes that a list can have that are used by these functions, but those at-
329

 Part 4: Scripting Reference
tributes are optional. Any entry (with at least one token in its content) may be used as a list,
and anything that is defined as a list is automatically an entry.

The list functions treat each token of an entry as a separate item in the list. The size of the
list is the number of items it has.

List items are indexed starting with 1; this index can be used with certain operators to obtain
a particular item in a list (e.g. the . operator). Indices are always used modulo the size of
the list, so that the list “wraps around”. Thus, the 5th item in a 12-item list can be indexed
by 5, 17, or -7.

It is important to note again the distinction between a token and an expression. The tokens
of an entry are the result of evaluating all of the expressions in the entry’s content. The
items of a list are the tokens of the entry, not its expressions.

Here is a list with five items:

TheList:: apple 1 Strcat(Hello " " World) (1 2) + 10

The . (“dot”) operator gets an indexed item from a list. Thus, the value of TheList.3 is
"Hello World". The dot operator recognizes modulo indexing, so TheList.8 is the same
as TheList.3.

12.8.1 Accessing a List

Lists are generally used to contain a set of possible values for some other purpose. Access-
ing a list refers to the built-in process of picking a single item from a list, and marking the
item as used.

There is a checklist associated with each list, with one place on the checklist for each item
in the list. When the list is accessed, one item is marked off on the checklist and made to
be the current item for the list.

A list is accessed by using the Access() function, which takes as its parameter a reference
to a list. The return value of Access() is the new current item, i.e., the token which was
selected by the access. To get the current item of a list without re-accessing it, use the Get-
Current() function.

When a new current item is selected, is will always be one that is not yet marked off in the
checklist. When all of the items have been marked off, the checklist is cleared and the mark-
ing-off starts over.

A checklist can be cleared by resetting the list. The Reset() function takes as its parameter
a reference to a list to reset; its return value is NULL. The ResetAll() function takes no pa-
rameters and resets all of the lists in the script.

For example, using this entry:
330

12.8.2 Access Type
AnotherList:: a b c d e
AccessType: Random

Access(AnotherList) might return b (the item Access() picks depends on the list at-
tributes, which are discussed below). Immediately evaluating GetCurrent(AnotherList)
would return b again, but Access(AnotherList) will return a different value, possibly d.

12.8.2 Access Type

The access type of a list determines the way in which a new current item is selected when
a list is accessed. An access type is specified in an “AccessType” attribute of the list’s en-
try; it can be one of three types: sequential, random, or incremental. Sequential accessing
is used when no access type is specified

If a list’s access type is sequential, a new current item is chosen to be the one following the
previous current item. The first item in the list is used as the first current item. If, in this
sequential process, an item is encountered that is already marked-off (by accessing the list
in a non-sequential manner), it is skipped and the next one is used (if it is not already
marked-off, too). Sequential accessing is specified by setting the value of the “Ac-
cessType” attribute to Sequential (or simply Seq).

For example, given this entry definition:

TheList:: a b c d e
AccessType: Sequential

The first evaluation (after each time the script is loaded) of Access(TheList) will return
a. The second evaluation will return b, and so on, until e is returned. Then, another evalu-
ation will return a again.

In random accessing, a new current item is selected randomly from the items that have not
been marked-off (i.e., sampling without replacement). Random accessing is specified by
setting the value of the “AccessType” attribute to Random (or Rand).

If “TheList” in the previous example is given the random access type, then the first evalu-
ation of Access(TheList) could return anything. However, within the first five evalua-
tions, all five values — a, b, c, d, and e — will be returned exactly once. The same will be
true of the second five evaluations, and so on, but each set of five evaluations can have the
items in a different order.

In incremental accessing, the value of the “AccessType” attribute is an integer n. The new
current item is selected to be the nth item after the previous current item; the first current
item is always the first item. Sequential accessing is thus a special case of incremental ac-
cessing.

If “TheList” in the previous example is given 2 as the value of “AccessType”, the first eval-
uation of Access(TheList) will return a. The next evaluation would return c, then e, b,
and d.
331

 Part 4: Scripting Reference
A special case is introduced in incremental accessing: when a item is encountered in the
incremental process that is already marked-off, the next nth item is used. If it keeps trying
each nth item and gets back to trying the previous current item, the checklist is “reset”, even
though items in-between the nths may not have been marked-off. This is because list reset-
ting is done on the basis of whether there are any items unmarked that can be selected based
on the access type; no current item may be selected by making jumps of n, so the list is “re-
set” — but the whole list is not reset, only the items in the n-jump set. This is closely related
to the concept of sublisting; see also “12.8.7 Sublisting”, p334.

12.8.3 Linking

Two lists of the same size can be made to use the same checklist by linking the lists. If a
list has a “Link” attribute whose value is a direct reference to some other list, instead of
creating its own checklist it will use the referenced list’s checklist. Thus, accessing one list
will have the affect of accessing the other list, and they will both have the same current item
index (although the current item will depend on what is in each list at that index).

Two lists which are linked can still be accessed with different access types. Be sure to only
link in one direction: if “List A” is linked to “List B”, “then “List A” is using “List B”’s
checklist, so “List B” cannot be linked to “List A”. The direction in which the link is spec-
ified is never important.

12.8.4 Weights, Multiple, Grip

There are three attributes used by lists which change the way the list is accessed:

The “Weights” attribute assigns to the ith item in the list an integer weight ni, such that the
item must be accessed (i.e. marked off in the checklist) ni, times before the list is reset. The
value of the “Weights” attribute should be a list of integers, one for each item in the list. If
too few or too many weights are supplied, a warning will be reported.

For example, accessing this entry:

WeightedList:: a b c
Weights: 1 2 1
AccessType: Sequential

will return a, b, b, and c.

The “Multiple” attribute is a shorthand for assigning the same weight to each item in the
list. Its value should be a single integer.

The “Grip” attribute acts much like the “Multiple” attribute, except that when an item is
accessed, the next n - 1 accesses of the list (where n is the grip value) will return the same
item, regardless of the access type of the list. Note that, in sequential accessing, “Grip” and
“Multiple” specifications are indistinguishable.
332

12.8.5 Offsets
All three of these attributes change the effective size of the list as far as accessing is con-
cerned, but the actual list size is not changed. The nth item in the unweighted list will still
be the nth item when the list is weighted; weights and grips only effect accessing and the
way items are marked off the checklist. The attributes may also be combined in any way.

Consider these three lists:

ListOne:: a b
Multiple: 2
AccessType: Random

ListTwo:: a b
Grip: 2
AccessType: Random

ListThree:: a b
AccessType: Random

These lists are exactly the same, except that “ListOne” uses a “Multiple” attribute while
“ListTwo” uses a “Grip” attribute and “ListThree” uses no special attributes.

Within four access of “ListOne”, a will be returned twice and b returned twice. The pattern
could be a a b b, b b a a, a b a b, b a b a, a b b a, or b a a b.

Four accesses of “ListTwo” will also return two a’s and two b’s, but the pattern could only
be a a b b or b b a a, because the second access has to return the same value as the first
access.

Four accesses of “ListThree” returns either a b a b, b a b a, a b b a, or b a a b; because there
are no weights or grips, “ListThree” must be exhausted within each pair of accesses.

12.8.5 Offsets

By default, the indexing of items in a list starts with the first item — which gets the index
1 — and continues to the end of the list. The starting position for indexing may be changed
with the “Offset” attribute. If the value of this attribute is an integer n, indexing will start
with the nth item in the list and wrap around. The modulo nature of list indexing will remain
intact; only the starting position for indexing has been changed.

For example, in this list:

OffsetList:: a b c
Offset: 2

the value of OffsetList.1 is b.
333

 Part 4: Scripting Reference
12.8.6 SaveCurrents

By default, a list “remembers” just one current item — the last item marked off in the
checklist — for use with GetCurrent(). If a list has a “SaveCurrents” attribute with an in-
teger value n, the list will also remember the n-1 previous current items.

Just as GetCurrent(List) returns the current item for “List”, GetPrevCurrent(List 2)
returns the item of “List” that was current before the present current item. However, a
“SaveCurrents” value of at least 2 must have been set for “List”, or an error will be report-
ed. (GetPrevCurrent(List 1) is equivalent to GetCurrent(List).)

If the value of “SaveCurrents” is larger than 4, a warning may be given in regard to version
tracking.

12.8.7 Sublisting

A sublist is a list made up of items that belong to another list in the script. Sublists are “vir-
tual” entries; there will be no global entry which contains just the items for the sublist; the
items are merely referenced from a structure that is hidden within the script interpreter.

The list to which the items actually belong is called the parent list. When you access a sub-
list, the items are marked off from the parent’s checklist and the current item is set in the
parent list. Sublists also use the list attributes of the parent list (e.g., “AccessType”,
“Weight”). If a sublist is created from another sublist, the new sublist’s parent list is the
same as the original sublist's parent.

The most general way to create a sublist is by using the Sublist() function. The input pa-
rameters of this function specify a list and a range of items, and the return value is a refer-
ence to the sublist.

The first parameter of the Sublist() function is a reference to the parent list, the second
parameter is the index of the item to start with in the parent list, and the third parameter is
the number of items the sublist should have.

For example, given this list definition:

BigList:: 1 2 3 4 5 6 7 8 9 10 11 12

Sublist(BigList 3 4) creates a sublist equivalent to

Sublist:: 3 4 5 6

Thus, Access(Sublist(BigList 3 4)) will return 3 the first time, 4 the second, and so
on. However, the sublist is never actually made into a global entry, like “Sublist” above.

Sublist references can be used anywhere that a list reference can be used, including in Ac-
cess(), GetCurrent() and Sublist(); sublist references can also be used as generic en-
try references. For example, @Sublist(BigList 3 4) evaluates to 3, 4, 5, and 6.
334

12.9 Inline Entries
Accessing a sublist causes the checklist and current item of the parent list to change. When
all of the items of a sublist have been exhausted in accessing the list, only the check marks
for the items in the sublist will be reset.

An optional fourth parameter can be given to Sublist() which specifies a step size for se-
lecting items from the parent list. Using the previous definition of “BigList”, Sub-
list(BigList 3 3 5) creates a sublist equivalent to

Sublist:: 3 8 1

There are three specialized sublisting functions: Row(), Column(), and Map(). The Row()
function takes as its second and third parameters the number of rows in the parent list and
which of those rows should be used as a sublist. The Column() function does the same for
columns.

For example, Row(BigList 3 2) creates a list equivalent to

Sublist:: 5 6 7 8

and Column(BigList 3 2) creates a list equivalent to

Sublist:: 2 5 8 11

The Map() function is a variation of the Row() function. It takes as its second parameter the
name of another list, called the mapping list. The number of rows in the parent list is taken
as the list size of the mapping list; the row to be used is taken as the current item index of
the mapping list. For example, suppose that this list is in the script:

Mapper:: a b c

and that GetCurrent(Mapper) at the moment returns c. Then the evaluation of Map(Big-
List Mapper) creates a list equivalent to

Sublist:: 9 10 11 12

Although Map() may seen a bit arcane, it is a powerful method of mapping single items
from one list to groups of items in another.

12.9 Inline Entries

An inline entry is a scripting construct in which a temporary, non-global entry is created
within the content of another entry. Typographically, inline entries are created with square
brackets or parentheses. A list of tokens and attribute definitions within these brackets
make up the content and attribute block of the inline entry. When square brackets are used,
a reference to the inline entry is produced. (Parentheses are slightly more complicated and
will be addressed further below.)

Each time an expression describing an inline entry is evaluated, a new entry is created. The
content of the new entry is generated by immediately evaluating the content expressions in
the inline entry’s definition, and using the resulting tokens as the content value. This is dif-
335

 Part 4: Scripting Reference
ferent from global entries, which remember their content expressions and re-evaluate them
to get content values.

Here is an entry that defines an inline entry named “Mouse”:

EntryWithInline:: Mouse[Click X: 100 Y: 100]

The content value of the “Mouse” inline entry is Click. “Mouse” has two attributes: “X”
and “Y”. Evaluating @EntryWithInline will return a reference to (an instance of)
“Mouse”.

Since an inline entry is a virtual entry, it does not have to be named. This entry defines an
equivalent inline entry, but the inline entry’s name is “”:

EntryWithInline:: [Click X: 100 Y: 100]

If a name is provided, it must appear before the opening square-bracket without intervening
blanks. An inline entry name does not have to be a literal; it can be any expression, as long
as there are no blanks between the expression and the opening square-bracket. The naming
expression should have only one value; multiple values are ignored.

For example:

InlineName:: Mouse

EntryWithInline:: (@InlineName)[Click X: 100 Y:100]

This defines an inline entry in “EntryWithInline” that is equivalent to the earlier definition
with the name “Mouse”.

12.9.1 Inline Entries vs. Regular Entries

The effects of the difference between regular and inline entries are not obvious. For exam-
ple, applying @ to an instance of the “Mouse” inline entry (from the previous example) acts
as expected: the value of @@EntryWithInline is Click.

Here is an example that will demonstrate a difference between regular and inline entries:

List:: a b c

RegularEntry:: Access(List)

EntryWithInline:: AccessInline[Access(List)]

“RegularEntry” and “AccessInline” have the same essential definition: both contain a sin-
gle content expression which accesses “List”. However, since evaluating Access() has a
side-effect, there can be a difference between using a reference to “RegularEntry” or to
“AccessInline”.

Evaluating @RegularEntry will cause Access(List) to be evaluated, returning a. Evalu-
ating @@EntryWithInline will do the same thing: @EntryWithInline causes an “Access-
336

12.9.2 Attributes of Inline Entries
Inline” entry to be created, and Access(List) is evaluated, setting the content of the
“AccessInline” instance to a; then, @ is applied to the inline reference returned by @Entry-
WithInline, so that a is returned as the final value. There was no difference between using
RegularEntry or using @EntryWithInline in this case.

However, consider evaluating @(3 ~ RegularEntry) versus @(3 ~ @EntryWithInline).
The ~ operator takes a count for its first operand, and returns its second operand that many
times. Thus, 3 ~ RegularEntry evaluates to RegularEntry RegularEntry RegularEn-
try; the @ operator distributes over the three references —evaluating the content of “Reg-
ularEntry” three times — and returns a b c. 3 ~ @EntryWithInline returns three
references to the same instance of “AccessInline” — the one created by evaluating @En-
tryWithInline; @ distributes over these references, and returns a a a!

In this last case, the difference came from the fact that Access(List) was evaluated only
once when the inline instance was created, and then this value was remembered for the con-
tent of the instance. Then, the content of the instance was read three times; this content did
not contain the expression Access(List), only the value a.

The reason that inline entries were made to behave this way has to do with the interaction
between inline entries and script-defined functions, which are described in “12.9.6 Func-
tion Definitions”, p340.

12.9.2 Attributes of Inline Entries

Attributes are not treated the same as content values in an inline entry. While the content
of an inline entry is a temporary set of values created just for the instance, all instances of
an inline entry use the same set of attributes, and these attributes are permanent.

For example, consider this entry definition:

TestEntry:: Switches[Light: Off TV: Off]

TurnOnLight:: (@TestEntry)->Light = On

BadSwitch:: Light[Off]

BadTurnOnLight:: @@BadSwitch = On

When @TurnOnLight is evaluated, @TestEntry returns a reference to an instance of
“Switches”. This inline entry has a “Light” attribute, which is assigned a new value by
(@TestEntry)->List = On. In the script, the definition of “TestEntry” becomes:

TestEntry:: Switches[Light: On TV: Off]

However, evaluating @BadTurnOnLight will cause an error. When @BadSwitch instanti-
ates “Light”, the expression Off is evaluated into a token value; even though the original
Off in Light[] appears to be an assignable literal, the content of the instantiated “Light”
is a value that cannot be changed through assignment.
337

 Part 4: Scripting Reference
12.9.3 Incorporating a Global Entry

A special property of inline entries is invoked when an inline entry is given a name that is
also the name of a global entry. When this happens, a reference — referencing the global
entry’s content line — is added to the end of the content line of the inline entry, and an at-
tribute block reference — referencing the global entry’s attribute block — is added to end
of the attribute block of the inline entry. This has the effect of incorporating the global en-
try’s definition into the inline entry.

While this rule may see strange, it is actually the most powerful feature of inline entries and
leads to a entry-definable functions (see “12.9.6 Function Definitions”, p340). This feature
is also useful for changing list parameters for sublisting (see “12.9.4 Inline Entries and
Lists”, p338), or for assign attribute values in inheritance (see “12.11.1 Inheritance and To-
ken Reference Inline Entries”, p346).

Here is an example of an inline entry incorporating a global entry:

SomeEntry:: b c
X: 100
Y: 50

EntryWithInline:: SomeEntry[a]

Because the inline entry is given the name “SomeEntry”, it is as if it were defined like this
(without the special incorporation rule):

EntryWithInline:: SomeEntry[a @SomeEntry @:SomeEntry]

Thus, @@EntryWithInline will return a b c, and (@EntryWithInline)->X returns 100.

Giving an inline entry the same name as a global entry is a special case; in fact, you can use
any reference for the “name” of an inline entry, and the referenced entry will be incorpo-
rated into the inline entry. See “12.10 Using a File as an Entry”, p343 for an example use
of this feature.

12.9.4 Inline Entries and Lists

Inline references are often useful for list manipulations. One simple application is to use an
inline entry for a list instead of creating a separate entry for a small list.

For example:

Item:: Access(List)

List:: a b c d
AccessType: Random

can be formed equivalently by

Item:: Access([a b c d AccessType: Random])
338

12.9.5 Token Reference Inline Entries
This shorthand can often be more clear than the separate-entry method. However, when an
inline entry is used in this way, there is a question as to what entry is owning the checklist,
because new instance of the inline entry is created each time the inline entry definition is
evaluated.

The problem is solved by a convention of automatically list-linking (see “12.8.3 Linking”,
p332) inline instances:

• If an inline entry incorporates a global entry and does not define any content in addition
to the global entry’s content, the inline instance is linked to the global entry.

• Otherwise, a special permanent instance of the inline entry is kept within the scripting
language; all instances of the inline are linked to this special instance.

These conventions let us use the shorthand for defining lists as demonstrated in the exam-
ple. They also give us a way of overriding list attributes for sublisting.

When a sublist is created (using, for example, the Sublist() function), the list attributes
of the sublist are the same as the attributes of the parent list. Through the automatic linking
of inline entries to global entries, you can set the list attributes of a sublist to be different
from the parent list by: creating an inline entry which incorporates the parent list, and then
specifying list attributes within the inline entry.

For example:

List:: a b c d
AccessType: Random

PartOfList:: Row(List[AccessType: Sequential] 2 2)

The Row() function in “PartOfList” creates a sublist of the original “List”, but overrides the
“AccessType” attribute. Evaluating Access(@PartOfList) will perform a sequential ac-
cess on the second half of “List”.

12.9.5 Token Reference Inline Entries

The square brackets of an inline entry definition can be replaced by parentheses; this chang-
es the way in which the defined inline entry is used for evaluation.

In the simple case, replacing square brackets with parentheses is the same as apply the @
operator to the reference returned by evaluating the square-bracket definition.

For example, consider this entry definition:

EntryWithInline:: [a b c]

Evaluating @EntryWithInline will return a reference to an instance of an inline. Changing
the square brackets to parentheses:

EntryWithInline:: (a b c)
339

 Part 4: Scripting Reference
has the same effect as:

EntryWithInline:: @[a b c]

In either of these two cases, evaluating @EntryWithInline will return a b c.

If you consider what this means in a expression like (2 + 3) * 4, the results are exactly
what you would expect: the expression 2 + 3, owned by the inline entry, is evaluated first
and returned; the returned value is then multiplied by 4 to get 20. In fact, this is not the way
most parentheses are implemented, but it is conceptually consistent to assume that this is
how computations are performed.

The complete meaning of parenthesis-form inline entries is more complex. Evaluation of a
parenthesis-form inline always starts by creating an inline instance — just as with square
brackets — but the value that is extracted from the reference follows these rules:

• If the inline entry has a “Result” attribute, return the value of the attribute.

• If the inline entry has an “ExtResult” attribute, invoke the specified ‘XRES’.

• Otherwise, return the content values of the inline entry.

The first rule is the one which allows script-defined functions (see “12.9.6 Function Defi-
nitions”, p340). The second rule allows externally-defined extensions to the scripting lan-
guage. The last rule makes the standard usage of parentheses consistent with inline
definitions (as discussed above); it also has applications for attribute inheritance (see
“12.11.1 Inheritance and Token Reference Inline Entries”, p346).

12.9.6 Function Definitions

Consider the following example script definitions:

StandardSize::
Result: 12

TextSize:: StandardSize()

The expression StandardSize() in “TextSize” is a token reference inline definition which
incorporates the “StandardSize” global entry. According to the rules in “12.9.5 Token Ref-
erence Inline Entries”, p339, the value of StandardSize() will be taken from the “Result”
attribute of “StandardSize”, so that @TextSize evaluates to 12.

Of course, it is no accident that StandardSize() looks like a function call. Functions are
defined in the scripting language by exploiting the properties of inline entries and the THIS
keyword.
340

12.9.6 Function Definitions
12.9.6.1 THIS and Inline Entries

The THIS keyword was introduced in “12.2.4.1 THIS and OWNER”, p324. THIS has a spe-
cial property related to inline entries: When an inline entry incorporates a global entry,
THIS keywords incorporated from the global entry will now refer to the inline entry.

For example:

EntryWithThis:: b c
X: @THIS

EntryWithInline:: EntryWithThis[a]

Evaluating EntryWithThis->X will return b c. Evaluating (@EntryWithInline)->X uses
the same “X” attribute definition from “EntryWithThis”, but THIS has been re-scoped, so
that the result is a b c.

Note, however, that THIS statements in the inline entry declaration still refer to the global
entry in which the inline entry is defined. For example:

EntryWithThis:: b c
X: @THIS
Y: d

EntryWithInline:: EntryWithThis[THIS->Y]
Y: a

Evaluating (@EntryWithInline)->X will still return a b c, because THIS in the inline def-
inition still refers to “EntryWithInline”.

12.9.6.2 Using THIS to Define a Function

Putting together token reference inline entries and the special scoping of THIS, we can now
write a function that returns the “head” (first element) of an input list:

ListHead::
Result: (@THIS).1

ExampleList:: a b c d e

When ListHead(ExampleList) is evaluated, an inline instance of “ListHead” is built,
with a reference to “ExampleList” as its content and incorporating the attributes of the
“ListHead” global entry. According to the rules of token reference inline entry evaluation
(see “12.9.5 Token Reference Inline Entries”, p339), the “Result” attribute is read. The val-
ue of @THIS will be the reference to “ExampleList”, and then applying the .1 will get the
first item of the list. Thus, evaluating ListHead(ExampleList) will return a.

Here is a less trivial example that takes a list reference and creates a sublist that is the re-
verse of the given list (see also “12.8.7 Sublisting”, p334):

ReverseList::
Result: Sublist(@THIS 2~ListSize(@THIS) -1)
341

 Part 4: Scripting Reference
Functions may be called recursively, though the effective stack for PsyScript is only about
50 calls deep (depending on the size of the heap given to PsyScope). The factorial function
can be implemented by the following:

Factorial::
Result: if(@THIS == 0 1 @THIS * Factorial(@THIS - 1))

This function will work up to about 35! = 1040; larger numbers cannot be represented in
PsyScript. (The special handling of if() is important to the operation of this example; see
“12.6.2.1 Exceptions to the Rules”, p327.)

12.9.6.3 Parameter Tags

Writing functions using only the THIS keyword can be difficult, and the resulting definition
may be difficult to understand. One last facility is provided for function-writing: parameter
tags.

A parameter tag is an expression of the form ̀ name (` is the backquote; name cannot contain
blanks or be quoted). Evaluating a tag directly returns no value. The way in which tags are
intersperse with other expressions is not important. All that matters is the relative ordering
of tags among themselves.

For example:

AbsDiff:: `a `b
Result: if(a - b > 0 a - b b - a)

In this entry definition, there are two tags: “a” and “b”.

When, in the course of evaluating expressions, the script interpreter encounters an unquot-
ed literal, it does not immediately return the literal value as the result. First, it checks the
content of the entry that the OWNER keyword would refer to; if a tag is found in the content
which is named the same as the literal expression, then the result value for the literal will
be taken from the content. If no tag is found, the search continues up the OWNER hierarchy
until a global entry (not just an incorporation) is reached.

The value that is taken from the content line depends on the tag’s position in the list of tags;
if it is the first tag, then the first value of the content is returned, and so on. If there are too
few values in the content, and error is given to the user.

Using the previous example of “AbsDiff”, consider evaluating AbsDiff(5 10). This will
create an instance of an “AbsDiff” inline entry, incorporating the “AbsDiff” global entry.
When the “Result” attribute is being evaluated and the expression a - b is reached, the “a”
and “b” tags will be found. a will be replaced with the first value of the content — 5 — and
b will be replaced by the second value — 10. The result of the function call will be 5.

Parameter tags provide a surprisingly powerful scoping system.Using tags, it is possible to
write functions that return functions as their value.

 For example:
342

12.10 Using a File as an Entry
MakeAdder:: `n
Result: [`m Result: m + n]

The result of evaluating MakeAdder(2) is a function that will add 2 to a single input. Thus,
(MakeAdder(2))(4) will return 6.

“MakeAdder” could not have been written so easily without tags. If we had tried use THIS,
how could the “n” and “m” parameters be distinguished?:

MakeAdderTry::
Result: [Result: @THIS + @THIS]

This “MakeAdderTry” is really a “MakeDoubler” which ignores its input values. In fact,
“MakeAdder” could still be written:

MakeAdder::
Result: [@THIS Result: THIS.1 + THIS.2]

It is left as an exercise for the reader to figure out why this works. In any case, this definition
is clearly more difficult to understand than the “MakeAdder” which uses tags.

12.10 Using a File as an Entry

Often it is useful to keep lists of stimuli in separate text files. However, to get these stimuli
into the experiment, the list must be accessible from the scripting language. The contents
of a file can be transformed into the content of an entry by using a file reference. A file
reference is a type of reference (see “12.2.4 References”, p323), so it can be used with the
@ operator (and many others) to obtain the values from the file.

File references are created by using the FileRef() function. When a FileRef() expres-
sion is evaluated, a virtual entry is created to contain the expressions from the file; this vir-
tual entry is called a file entry.

The referenced text file can have one of two forms: literals-only or full-expressions. Liter-
als-only files can be read in more quickly and efficiently than files with non-literals, but
they are also less expressive in that they can contain only literal strings. Full-expression
files are distinguished from literals-only files by starting with the identifier #NonLiteral;
they can contain expressions of any type.

The referenced text file (literals-only or full-expression) should not have the syntax of a
script entry; it should just be a list of expressions for the content of the file entry. In a liter-
als-only file, all blank-delimited strings are treated as literals; otherwise, expressions are
read from the file just as from the content of an entry. Quotes and curly braces ({}) can be
used to delimit literals in either type of file.

Suppose we have a text file named “Fruit” (in the same directory as the current script) that
looks like this:
343

 Part 4: Scripting Reference
apple
banana
coconut

The expression FileRef("Fruit") creates a file entry with three tokens — apple, ba-
nana, and coconut — in its content. Evaluating @FileRef("Fruit") returns apple ba-
nana coconut. Access(FileRef("Fruit")) returns apple the first time it is evaluated,
banana the second time, and so on.

If the same file is referenced in more than one place in the script, the same file entry will
be used. If the referenced file is changed, the file entry will be automatically updated.

File entries will never have attributes since only the content of a file entry can be specified
in the file. However, a file reference can be incorporated into an inline entry (see “12.9 In-
line Entries”, p335), and then attributes can be defined within the inline entry. Thus, Ac-
cess(FileRef("Fruit")[AccessType: Random]) will access the items of the file
randomly.

Another way to access the file items randomly would be to create a new entry like this:

Fruit:: @FileRef("Fruit")
AccessType: Random

Then, Access(Fruit) will access the items of the file randomly. This is a little less effi-
cient for the script interpreter, but a possibly little more clear.

12.11 Inherited Attributes

Note: Attribute inheritance is a feature that is built into PsyScript; this is not exactly the
same concept as the attribute inheritance used in a factor format experiment (see
“Part 2: Graphic Environment Reference, 5.8.1.1 Attribute Inheritance”, p150).

Attributes have thus far been defined as objects owned by entries. In an experiment defini-
tion, however, it is useful to be able to assign attributes to individual tokens — which are
used as stimuli. The way in which a token can be assigned attributes is referred to as inher-
itance.

The rules of attribute inheritance give intuitive results in most cases. A complete definition,
however, is complicated and needs to be mastered only by a scripter writing very complex
scripts in one of the old scripting formats (i.e., EventList or StimList).

A token inherits attributes based on the location of its source expression(s). There are three
basic rules of inheritance:
344

12.11 Inherited Attributes
Rule 1.

A token that is the result of a particular express inherits all of the attributes of the
expression’s entry.

For example, in this entry definition:

TheEntry:: "Hello World" 2 + 3
Color: Red
Size: 14

Both tokens of “TheEntry” — "Hello World" and 5 — inherit the “Color” and
“Size” attributes.

Rule 2.

If the expression is a token reference, the token inherits all of the inherited at-
tributes of the referenced token.

The operators and functions that form token references are: @, ->, ., ?, Access(),
GetCurrent(), GetPrevCurrent(), GetToks(), and Do(). Evaluation of a script-
defined function is also a token reference.

In this example:

TheEntry:: "Hello World" 2 + 3
Color: Red
Size: 14

DefaultSize:> 12

AnotherEntry:: @TheEntry TheEntry->Size

The first two tokens of “AnotherEntry” — "Hello World" and 5 — inherit the
“Color” and “Size” attributes of “TheEntry”. The third token — 14 — inherits the
“DefaultSize” sub-attribute of “Size” in “TheEntry”.

Rule 3.

Attributes which are inherited by Rule 2 take precedence over those inherited by
Rule 1.

Expanding the example a bit more:

TheEntry:: "Hello World" 2 + 3
Color: Red
Size: 14

DefaultSize:> 12

AnotherEntry:: @TheEntry TheEntry->Size
Color: Blue

The first two tokens of “AnotherEntry” will inherit the “Color” attribute of “TheEn-
try”, in accordance with Rule 2. The third token will also inherit a “Color” attribute,
but the one from “AnotherEntry”, in accordance with Rule 1.
345

 Part 4: Scripting Reference
Inheritance in this way establishes a kind of hierarchy of attributes. The pattern of token
referencing is always direct; the last entry referenced — the one in which a literal or non-
referencing expression was finally located — takes highest precedence because it is the
most “specific” entry for the token. The top-level entry is the most general.

Attributes are inherited by Rule 2 are taken only from the referenced token, i.e., the token
which is the result of evaluating the expression. Attributes inherited by parameters of the
expression are not used.

For example:

AddingNumber:: 3
Minimum: 2

Addition:: @AddingNumber + 7

The first token of “Addition” does not inherit the “Minimum” attribute of “AddingNum-
ber”. While the result of @AddingNumber does inherit this attribute, the inheritance does not
pass through the + operator.

12.11.1 Inheritance and Token Reference Inline Entries

Calls to script-defined functions (see “12.9.6 Function Definitions”, p340) are considered
token references, but inheritance in this case deserves some discussion. Consider this ex-
ample:

Double:: `n
Result: n * 2

Even:> True
Odd: False

DoubledValue:: Double(9)

The token of “DoubledValue” — 10 — will inherit the “Even” sub-attribute of “Result” in
“Double”; it will not inherit the “Odd” attribute. This is because the result of a function call
is taken from the “Result” attribute.

On the other hand, consider this example:

StandardText::
Size: 9
Font: Monaco

TextValue:: StandardText("Hello World")

Here, the “function” entry “StandardText” does not have a “Result” attribute. By the rules
of token reference inline entries, the value of StandardText("Hello World") is taken
from the content, which gives "Hello World". Because “StandardText” was incorporated
into the inline entry, this token does inherit the “Size” and “Font” attributes.

The previous example suggests a way to use inline entries so that tokens are assigned at-
tributes with a very simple syntax. For example, suppose an experiment had a list of word
346

12.12 Crossing Lists
stimuli, each of which was to be displayed in a different but pre-assigned color. The list
could be implemented like this:

Stimuli:: man
 hat
 (cat Color: blue)
 cow
 (dog Color: red)
 (tree flower Color: green)
 truck
Color: black

The default color for each stimulus is black, from the “Color” attribute of “Stimuli”. But
the cat token has been assigned blue, dog has been assigned red, and tree and flower
have been assigned green.

12.12 Crossing Lists

PsyScript provides a primitive facility for crossing lists together as factors. The crossing
facilities of Factor format are built on top of this.

When a number of lists are crossed, a current item is selected for each list so that all of the
unique combinations of items from each list are obtained. For example, there are six such
combinations when crossing of a list with two items and a list with three items. Setting the
current items in the lists which make up a combination constitutes selecting the combina-
tion.

The crossing function is Cross(), which takes as its arguments references to lists. It sets a
current item for each list, and returns nothing.

A checklist is created by the Cross() function to keep track of which combinations have
been selected (see below, “12.12.2 Checklist Storage”, p349). Each time the Cross() func-
tion is evaluated, the combination is chosen by this algorithm:

• Decide which items from the first list can make a new combination.

• Modify the checklist of the first list, so that those items which do not make new combi-
nations are marked off.

• Access the first list.

• Decide which items from the second list can make new combinations, given the item
selected from the first list.

• Modify the checklist of the second list…

an so on, until an item has been selected in all of the lists.

For example, consider the crossing of these two lists:
347

 Part 4: Scripting Reference
List1:: a b

List2:: 1 2

CrossEm:: Cross(List1 List2) GetCurrent(List1 List2)

The first evaluation of @CrossEm will return a 1. The next evaluation will return b 2, then
a 2, then b 1.

The crossing sequence can be modified by assigning “Access” attributes to the lists, since
the crossing algorithm calls Access(). However, some special features of crossing can be
obtained through a “Crossing” sub-attribute of the “AccessType” attribute. The possible
values for “Crossing” — and how they modify the basic crossing algorithm — are:

Force – This is the usual crossing mode, as described above.

Static – If the item that was selected for this list in the last Cross() can still be used,
re-use that item.

Independent – Try to access the list independently of the Cross() algorithm, but still
follow obey the constraint of generating unique combinations. Algorithmically, this
means that the checklist is not modified if all of the unchecked items can be used in
new combinations.

Least – Select from the set of list items that have so far been used the least in combina-
tions.

For example, if we change “List2” above to

List2:: 1 2
AccessType: Seq

Crossing:> Static

then evaluations of @CrossEm will return a 1, then b 1, then a 2, then b 2.

12.12.1 Mapped Crossings

A variation of the Cross() function is the MappedCross() function. MappedCross() also
takes references to lists, but the first list should be a special “mapping list” of combination
specifications.

Each specification is a reference to a list of numbers, one number for each list to be crossed,
designating the item from that list to be used the combination. Combinations may be re-
peated in the mapping list, and the order in which the combinations are selected in based
on the access type of the mapping list. (Here, “mapping list” is used differently than it was
used in “12.8.7 Sublisting”, p334.)

Mapped crossing are usually best implemented with inline entries. In this example of the
mapping function
348

12.12.2 Checklist Storage
List1:: a b

List2:: 1 2

MapCrossEm:: MappedCross([[1 2] [2 1]] List1 List2)
 GetCurrent(List1 List2)

evaluations of @MapCrossEm will return a 2, then b 1.

12.12.2 Checklist Storage

For lists, the checklist is stored with the list itself, so that multiple references can be made
to the list, and all of the references will use the same list.

For Cross() and MappedCross(), the checklist is stored with the expression. (This is
somewhat like inline entries, where the checklist is stored with some special instance of the
entry; see “12.9.4 Inline Entries and Lists”, p338.) Thus, two different expressions will
keep separate checklists, even if they cross the same factors.

However, when Cross() or MappedCross() is evaluated, the checklist and current item of
the crossed lists are modified. This is independent of the expression itself.

12.13 Optimizations

Here are a few tips to make your script more easily and quickly read by the interpreter:

Use the #noinherit and #inherit modifiers in your experiment entries to block out at-
tributes not used by the events. See “12.4.3 #inherit and #noinherit”, p325.

When you have a complex expression that evaluates to only one literal, use single token
referencing functions and operators (such as the item reference operator: .) instead of
multiple-token referencing (such as @ and ->). For example, instead of writing
(SomeEntry->X/@Multiplier)*4, use (SomeEntry>>X.1/Multiplier.1)*4.

Try to access lists directly, rather than through another entry that refers to the entire list
through a token reference. This is especially faster when the list is a file entry. For
example, instead of declaring MyList::@(FileRef("filename")) and using Ac-
cess(MyList), just use Access(FileRef("filename")). See also “12.10 Using a
File as an Entry”, p343.

12.14 Script Operators and Functions Summary

In the below summaries,
349

 Part 4: Scripting Reference
ref, list may be any reference
n, x, y may be any numerical value
attrib may be any name of an attribute in the relevant entry
string may be any string
bool may be any boolean value (see “12.6.1 Literals”, p326)
func may be any ref that is a script-defined function
token may be any value
NULL is the empty list of values, counting as 0 tokens

Functions which are marked with [PsyScopeTools] are not built-in functions; these are script-
defined functions that are available to you through PsyScopeStdLib. Since they are script-
defined functions, they do not automatically distribute over arguments, but the ** and *!
operators can be used with them.

12.14.1 Operators and Functions

12.14.1.1 Reference Operations

^string - creates a reference to the entry named by string. When a reference is used
with an operator in a function that takes a reference as a parameter, the ̂ is understood
and may be left out. Thus @entry is the same as @^entry. (In practice, ̂is never
used; it could be useful if you needed to force a string to be a reference.)

@ref -returns all of the tokens in the content of the references entry. See also “12.2.4 Ref-
erences”, p323.

ref.n - returns the nth list item in the referenced entry.

ref->attrib - returns all of the tokens of the attribute named attrib in the referenced
entry. If attrib is not an attribute of ref, NULL is returned.

THIS may be used as a reference to the global entry in which it is used in the script. If the
global entry is incorporated in to an inline entry, the scoping of THIS will be changed
to refer to the inline entry. (See “12.2.4.1 THIS and OWNER”, p324.)

OWNER may be used as a reference to the entry (not necessarily global) owning the entry
in which the keyword is used. (See “12.2.4.1 THIS and OWNER”, p324.)

FileRef(string) creates and returns a reference to a virtual entry containing the tokens
in the file named by string. See “12.10 Using a File as an Entry”, p343.

f^string is synonymous with FileRef(string).

GetToks(ref) is synonymous with @ref.
350

12.14.1 Operators and Functions
12.14.1.2 Math Operations

+, -, *, /, and % are supported as the standard operators (n % m is n modulo m). +=, -=, etc.
combine the math operators with the assignment operator (see below) like the stan-
dard C operations.

x//y returns the integer part of x/y.

Div(x, y) returns the integer part of x/y. See also “12.6.2.1 Exceptions to the Rules”,
p327.

Power(x, y) returns x raised to the power y. See also “12.6.2.1 Exceptions to the Rules”,
p327.

Exp(x) returns e (Euler’s number) raised to the power x.

Log(x) returns the natural logarithm of x.

Sin(x), Cos(x), Tan(x), and Arctan(x) perform the standard trigonometric operations
on x.

Sum(x1, x2, ... xn) returns the sum x1 + x2 + ... xn.

Product(x1, x2, ... xn) returns the product x1x2 ... xn.

GCD(x1, x2, ... xn) returns the greatest common divisor of the x’s.

LCM(x1, x2, ... xn) returns the least common multiple of the x’s.

<, >, ==, !=, <=, >= compare two numerical values and return True or False.

bool1 && bool2 returns True if both bool1 and bool1 are equivalent to True, or False
otherwise.

bool1 || bool2 returns True if either bool1 or bool1 is equivalent to True, or False
otherwise.

!bool returns True if bool is equivalent to False, or False if bool is equivalent to True.

Or(x1, x2, ... xn) returns True if at least one of x1, x2, ... xn is equivalent to
True (see “12.6.1 Literals”, p326), or False otherwise. (Or(NULL) returns False.)

And(x1, x2, ... xn) returns True if none of x1, x2, ... xn are equivalent to False
(see “12.6.1 Literals”, p326). (And(NULL) returns True.)

TruthVal(x1) [PsyScriptTools] returns 1 if x1 is equivalent to True, 0 otherwise.

Max(x1, x2, ... xn) [PsyScriptTools] returns the maximum value among x1, x2, … xn.
351

 Part 4: Scripting Reference
12.14.1.3 String Operations

Strlen(string) returns the number of characters in string.

$string is synonymous with Strlen(string).

Strcat(string1, string2, ..) returns a new string which is string1 followed by
string2 etc. No extra spaces are added between the concatenated strings.

string1$+string2 is synonymous with Strcat(string1, string2).

StripFrontChars(string, n) returns string without the first n characters. If a char-
acter is passed instead of a number in n, characters will be stripped from string up
to and including the first occurrence of the character in string. See also “12.6.2.1
Exceptions to the Rules”, p327.

StripEndChars(string, n) returns string without the last n characters. If a character
is passed instead of a number in n, characters will be stripped from string after and
including the last occurrence of the character in string. See also “12.6.2.1 Excep-
tions to the Rules”, p327.

string$-n and string-$n are synonymous with StripFrontChars(string, n) and
StripEndChars(string, n), respectively.

NthChar(string, n) returns the nth character in string. See also “12.6.2.1 Exceptions
to the Rules”, p327.

<, >, ==, !=, <=, >= compare two strings (using dictionary ordering) and return True or
False. The string comparisons are case-insensitive.

12.14.1.4 List Operations

ListSize(list) returns the number of items in list.

ListWeight(list) returns the total weight of the of items in list.

Access(list) chooses and returns a new current item based on the list’s attributes. See
also “12.8.1 Accessing a List”, p330.

AccessAll(list) [PsyScopeTools] calls Access() on list ListWeight(list) times,
thus exhausting the list once.

Next(list) chooses a new current item for list, but returns list’s entry name instead
of the new current item.

list? is synonymous with Next(list).

GetCurrent(list) returns the current item for list.

?list is synonymous with GetCurrent(list).
352

12.14.1 Operators and Functions
?ref? is synonymous with Access(list).

GetPrevCurrent(list, n) returns the nth previous current item for list, with n = 1
being the current item. The definition of list must include a “SaveCurrents” at-
tribute. See also “12.8.6 SaveCurrents”, p334.

SetCurrent(list, n) accesses the list choosing the nth item, thus making it the current
item.

CurrentIndex(list) returns the index number for the current item in list.

PrevCurrentIndex(list, n) returns the index number for the nth previous current item
in list, with n = 1 being the current item. The definition of list must include a
“SaveCurrents” attribute. See also “12.8.6 SaveCurrents”, p334.

Column(list, n1, n2) creates an accessible sublist of list by taking the n2th of n1
columns. See also “12.8.7 Sublisting”, p334.

Row(list, n1, n2) creates an accessible sublist of list by taking the n2th of n1 rows.
See also “12.8.7 Sublisting”, p334.

Sublist(list, n1, n2, n3) creates an accessible sublist of list starting at the n1th
item and n2 items long. The n3 parameter is optional; if it is present, the n2 items
are not chosen sequentially, but n3 items apart. See also “12.8.7 Sublisting”, p334.

Map(list1, list2) creates an accessible sublist of list by mapping list2 onto list1.
See “12.8.7 Sublisting”, p334.

ref1|ref2 is synonymous with Map(ref1, ref2)

Diag(list) returns the same thing as Sublist(list, 2, root, root + 1), where
root is the square-root of the length of list. Then, if list has root rows and root
columns, the sublist is the items along the diagonal.

AllExcept(list, n1, n2) [PsyScopeTools] returns a sublist of list, omitting n2 items,
starting with the n1th item. n2 defaults to 1.

AccessSome(list, n1, n2, n3) [PsyScopeTools] accesses all of the items from a sublist
of list. The parameters are the same as for Sublist().

GetSome(list, n1, n2, n3) [PsyScopeTools] returns all of the items from a sublist of
list. The parameters are the same as for Sublist().

ListSum(list) [PsyScopeTools] returns the weighted sum of all elements in the given list.
This is like Sum(list), but taking into account the weights on the items of list.
ListSum() calls AccessAll().

ResetList(list) resets list to its pre-accessed state. Multiple references may be
passed to the function. The return value is NULL.

ResetAll() resets all lists in the script that have been accessed. The return value is NULL.
353

 Part 4: Scripting Reference
Cross(list1, list2, ...) sets the current item in each of the lists to produce a unique
combination. See “12.12 Crossing Lists”, p347.

MappedCross(mapping_list, list1, list2, ...) sets the current item in each of
the lists based on the specifications in mapping_list. See “12.12 Crossing Lists”,
p347.

Head(list) [PsyScopeTools] returns the first item in list.

Tail(list) [PsyScopeTools] returns a sublist containing all items except the first item in
list.

12.14.1.5 Other Operations

n~value returns n copies of value.

tok_ref = string sets the token referred to by tok_ref to the value string. (The @ op-
erator is the most common token reference operator).

start .. end returns all of the integers from start to end (inclusive). start may be
less than or greater than end.

func**(value1, value2, ...valuen) evaluates func(value1), func(value2),
... func(valuen). Built-in function names cannot be used for func, only script-de-
fined functions.

func*!(ref1, ref2, ...refn) evaluates func(@ref1), func(@ref2), ...
func(@refn). Built-in function names cannot be used for func, only script-defined
functions.

Inherited(string or ref, attrib) returns a reference to the attribute named attrib
inherited by string or ref. If the attribute is not found, NULL is returned. See also
“12.11 Inherited Attributes”, p344.

EntryName(ref) returns the full name of the entry referred to by ref.

Evaluate(string) evaluates string as an expression.

If(bool token1 token2) returns token1 if bool is equivalent to True, or token2 if it
is equivalent to False. token2 may be NULL. See also “12.6.1 Literals”, p326 and
“12.6.2.1 Exceptions to the Rules”, p327.

Null(token1, ...) ignores the tokens and returns NULL.

Time(n) returns a string for the time at which the call is made. The parameter n specifies
the style of the string:

 0: “1:00 PM”
 1: “13:00”
 2: “13:00:00”
354

12.14.1 Operators and Functions
-1: <integer representing the date and time>

Date(n) returns a string for the date on which the call is made. The parameter n specifies
the style of the string:

 0: “01/01/90”
 1: “January 1, 1990”
 2: “01JAN90”
-1: <integer representing the date and time>

Random(n) generates a random integer from 0 to n-1.

Run(ref, attrib) performs user input for the entry referenced by ref and using the
dialog or function specified in the attrib attribute of the referenced entry. Run() re-
turns the tokens of the referenced entry after the dialog/function has been executed.
If attrib is not specified, a default dialog attribute (“Dialog”, “Function”, or
“DCOD”) will be used. DoDialog, DoFunction, and Do are synonyms for Run. See
also “Chapter 17. Dialog and Function Extensions”, p467.

Iterate(start_ref, test_ref, loop_ref) is a function for performing iterative op-
erations, always returning NULL. Iterate begins by evaluating all of the tokens of
start_ref. Then, while evaluating all of the tokens of test_ref give true boolean
values, all of the tokens of test_ref are evaluated. The values of test_ref are
checked once before loop_ref is ever evaluated. Do not use an inline entry for the
test condition (see “12.9.1 Inline Entries vs. Regular Entries”, p336).

AppendTok(ref, token1, …) appends the tokens to the content line of the referenced
entry. The number of tokens may be arbitrary.

DeleteTok(ref, n) deletes the nth token from the content of the referenced entry.

DeleteAllToks(ref) deletes the all tokens from the content of the referenced entry.

AddAttrib(ref, attrib) adds an attribute named attrib to the attribute block of the
referenced entry.

Match(func, list) [PsyScopeTools] calls func on each item in list; Match() returns all
items for which func returned a True value.

IsItemInList(list, string) [PsyScopeTools] calls Match() on list with a function
that returns True when the list item matches string. Thus, the result will be string
if it is found in list, or NULL otherwise.

PosIfItemInList(list, string) [PsyScopeTools] returns the position of the first item
in list which matches string.

RemoveMatching(list, string) [PsyScopeTools] removes the first item in list which
matches string.

RemoveDups(list) [PsyScopeTools] removes items from list so that no item value is du-
plicated.
355

 Part 4: Scripting Reference
CopyContent(list1, list2) [PsyScopeTools] copies all of the tokens from the content
of list2 to the content of list1. The number of expressions in the content of list1
may be changed, if necessary.

StartWatchCursor() and EndWatchCursor() [PsyScopeTools] changes the user’s cursor
to a spinning watch or changes it back to the arrow. Each call to StartWatchCur-
sor() should be balanced by a call to EndWatchCursor(). The calls can be nested
arbitrarily.

12.14.2 Operator Precedence

From highest precedence to lowest:

{ }
() and [] inline entry (and function) constructs
^
@, f@
..
>>, ->
**, *!
|
.
!
$
*, /, //, %
+, -, $+, $-, -$
>, <, >=, <=, ==, !=, ||, &&
=
ref?
?ref

The highest precedence operators will be evaluated first in a expression.

12.15 The Evaluator

The Evaluator in PsyScope allows you to type valid PsyScript expressions and evaluate
them immediately. The evaluator does this by temporarily creating a temporary entry, mak-
ing the entered expression(s) the token(s) of the entry, and then evaluating all of the tokens
of the entry. The “TempEntry” entry is destroyed after each evaluation and recreated. An
expression is re-parsed and compiled each time it is re-evaluated.

Expressions to be evaluated are typed into the evaluator window; when Evaluate is select-
ed from the menu (or the Evaluate button is hit). If a range of text is selected, the range is
used as the expression to be evaluated; otherwise, the expression to be evaluated is taken
as all lines preceding the caret position and following the last commented line.

See also “Part 2: Graphic Environment Reference, 7.4 The Evaluator”, p263.
356

Ψ
Chapter 13. Experiment Scripting Reference

Part 4: Scripting Reference

13.1 Experiment Scripting Basics

13.1.1 Introduction

By “scripting”, we refer to the task of using PsyScript to describe an experiment for Psy-
Scope to execute. All experiments are ultimately defined in PsyScript; even experiments
built in the graphic environment are scripted — the graphic environment merely builds the
script for you. When you become the scripter, you gain more control over the implementa-
tion of your experiment.

13.1.2 Script Interpretation

An experiment is executed in the following way:

• First, PsyScope reads the script and finds all experiment-wide information (e.g., the in-
put devices to be monitored). All of the timing and scheduling structures are set up to
run the experiment. An initial calculation is made for the trial count, i.e., number of
trials to be executed.

• Then, for each trial:

• PsyScope gets all of the information needed to run the trial; this is the com-
piling phase.

• After the trial is compiled, it is sent to the Trial Manager for execution, i.e.
running the trial in real time.

• Once the trial ends, data for the trial is recorded into the data file.

• The trial count is re-calculated. The trial count can change if block dura-
tions are used or if the script has been changed during an earlier compi-
lation (see below), but usually the trial count is fixed.

• When the number of trials that have been executed is the same or greater than the trial
count, then the experiment is over.

 Part 4: Scripting Reference
13.1.2.1 Self-Modifying Scripts

While compiling and executing a experiment, the script usually remains a static description
of the experiment. However, the script can change in a few ways as trials are compiled and
executed:

• In the compiling phase, side-effect script operations can alter the information in the
script, affecting the way the rest of the trial or futures trials are compiled.

• In the execution phase, polling of the ScriptWhen[] condition and execution of the
ScriptEval[] action can modify the script by causing side-effect script operations
to be evaluated.

• At the end of executing a trial, trial variable values can written back to the script.

The side-effect script operations are the assignment operators (=, +=, -=, etc.), Append-
Tok(), DeleteTok(), DeleteAllToks(), and AddAttrib().

Any of these script-modifying features may be used in complex scripts to execute elaborate
calculations. Usually, however, a static description of an experiment is possible and desir-
able.

13.1.3 Script Formats

The exact way in which an experiment is described in PsyScript depends on which script
format is used. There are currently three experiment formats: StimList, EventList, and Fac-
tor.

All formats define an experiment using the same PsyScript constructs: entries, attributes,
and values. They use the same specific attribute names to specify features of stimuli or the
experiment as a whole. However, the formats differ in how the high-level structure of an
experiment is defined (i.e., groups, blocks, templates, and factors).

PsyScope’s graphic environment produces scripts using Factor format, which is the pre-
ferred format. In Factor format, structural information — groups, blocks, templates, and
factors — are defined explicitly using a hierarchy of entries; this hierarchy corresponds di-
rectly to the object hierarchy of the graphic environment (see “Part 2: Graphic Environment
Reference, 5.2.1 Objects and the Experiment Hierarchy”, p107).

StimList and EventList are primitive formats that are no longer in common use; they rely
more heavily on the scripter to perform all structural manipulations. For example, Factor
format implements groups, blocks, etc. for you based on your scripted description, but you
must implement any such concepts directly for StimList and EventList formats by using the
functional aspects of PsyScript.

All formats overlap in that:
358

13.1.4 The ‘Experiments’ Entry
• The experiment description begins with an experiment entry that is listed in the script’s
“Experiments” entry (see below).

• There are standard experiment, trial, and event attributes; however, different formats re-
quire these attributes to be defined at different places (i.e., within different entries) in
the script.

13.1.4 The ‘Experiments’ Entry

All scripts must contain an “Experiments” entry, which contains the names of all experi-
ments defined in the script.

The “Experiments” entry has one attribute (which PsyScope will add for you if it is not
present) called “Current”; “Current” specifies which of the various experiments in the
script is currently active, i.e., which one will be executed when the script is run.

For example, here is an “Experiments” entry in a script which contains two experiments:
“Acuity” and “2-D Acuity”; “Acuity” is the current experiment:

Experiments:: "Acuity" "2-D Acuity"
Current: 1

In practice, you will usually only want one experiment per script, so that your scripts will
be smaller and easier to manipulate. However, the multiple-experiment facility is useful for
experiments that are small, extremely similar, or that use shared data resources or routines.

13.1.5 Experiment Entries

For each experiment name listed in the “Experiments” entry, there should be an entry in the
script with that name; each of these entries is an experiment entry. (Note that each experi-
ment entry is different from — and not to be confused with — the “Experiments” entry.)

The definition of an experiment always begins at an experiment entry; how the description
proceeds from this entry depends on the experiment’s format.

Different experiments within the same script are not required to used the same experiment
definition format. The format for an experiment is specified in the experiment entry, in a
“Format” attribute; the possible values for this attribute are Factor, StimList, and
EventList.
359

 Part 4: Scripting Reference
13.1.6 Standard Attributes

13.1.6.1 Standard Experiment Attributes

There are a standard set of attributes which define properties of the experiment as a whole,
such as the format of the script, the name of the data file, the background color to be used
for screen stimuli, etc. These attributes are specified in the experiment entry, regardless of
the experiment’s format.

The complete list of experiment built-in attributes is given here. There are other experiment
attributes which are specific to various output devices; see “14.2 Stimulus Types Refer-
ence”, p424 and the documentation for any PsyScope Extensions which you are using.

Format: Factor/StimList/EventList
Default: Factor
Graphic: always Factor

This is the format of the experiment description; see “13.1.3 Script Formats”, p358.

Title: string
Default: Name of experiment entry
Graphic: not available

This is the title of the experiment that will appear in the log entry, and in the data
file. It can be different from the name of the experiment entry in the script, but de-
faults to the experiment entry name.

InputDevices: device-name-list
Default: NULL

This attribute determines which input devices should be active during the experi-
ment; every input device whose name is in the list will be active. (An input device
name is the same as the name used for action conditions.)

Note: Conditions for actions are noticed only if the corresponding device has been activat-
ed.

Timer: timer-name
Default: Macintosh

This attribute determines which timer device should be used to run the experiment.
timer-name is the name of a timing device (a ‘TIMR’ PsyScope Extension).
360

13.1.6 Standard Attributes
Flags: NO_CLEAR_BY_DEFAULT and/or STORE_AT_END
and/or NO_SHOW_INSTRUCTIONS and/or NO_SAVE_SCREEEN
and/or NO_DRAW_STIM_PORTS and/or ONSET_REF_START_BY_DEFAULT
and/or ODEV_DEBUG_MODE_ON and/or EVENT_DRAW_STIM_PORTS
and/or PRELOAD_ALL_STIMULI and/or BEEP_AT_REST_BREAKS

Default: NULL
Graphic: Special

This attribute contains a number of flags that modify how the experiment is execut-
ed:

NO_CLEAR_BY_DEFAULT: this flag changes the default “ClearType” event at-
tribute value from FORCE_CLEAR to NO_CLEAR.

STORE_AT_END: Experiment data is usually stored after the completion of
each trial. This flag causes all data to be stored instead at the end of the ex-
periment.

DONT_HIDE_CURSOR: The cursor is usually turned off during an experiment
run. This flag keeps the cursor turned on.

NO_SHOW_INSTRUCTIONS: If this flag is on, the instructions and debriefing
message are skipped, even if they are defined.

NO_SAVE_SCREEEN: If this flag is not on, the current screen is saved before
rest periods (or error messages) are displayed. This flag is generally turned
on due to memory constraints.

NO_DRAW_STIM_PORTS: This flag turns off the automatic drawing of port
borders. this flag overrides EVENT_DRAW_STIM_PORTS.

ONSET_REF_START_BY_DEFAULT: This flag changes the way unspecified
startrefs should be interpreted. With the flag off, the default startRef is 0 af-
ter the end of the previously specified event; with the flag on, the default
startRef is 0 after the start of the previous event.

ODEV_DEBUG_MODE_ON: This flag makes the experiment window smaller and
turns off some interrupts.

EVENT_DRAW_STIM_PORTS: When NO_DRAW_STIM_PORTS is not on, each
event’s stimulus port is drawn at the beginning of the event, rather than at
the start of the trial.

PRELOAD_ALL_STIMULI: When the experiment is precompiled, this flag
causes stimuli to be loaded at precompile time rather than at run time. This
can cause some memory problems; see “Part 2: Graphic Environment Ref-
erence, Preloading All Stimuli”, p250.

BEEP_AT_REST_BREAKS: When this flag is on, a beep is sounded when a rest
period occurs.

UNSUAL_SCREEN_PRESENT: Some very unusual screens (usually on the Pow-
361

 Part 4: Scripting Reference
erBook) do not generate retrace interrupts; this hangs PsyScope when it is
trying to draw flicker-free. This flag is not for general use, but may be used
in an attempt to make PsyScope run with a non-standard video device.

BBOX_IN_ONLY: An error in old button box cables caused problems with but-
ton box output (turning the lights on and off). This flag disables button box
output.

Also, specific input and output devices can define flags; consult the device docu-
mentation.

DataFile: file
Default: NULL

This attribute contains the name of the file in which the data from the experiment
will be stored. It is read at the beginning of the experiment.

DataHeader:entry-list
Default: no entries
Graphic: not available

This attribute should contain a list of references to entries in the script; the content
of each referenced entry is then written on a separate line at the beginning of the
data file.

Whether or not the information specified is actually written is controlled by the
DATA_FILE_HEADER keyword in the “DataFields” experiment attribute (see below).

RunLabel: entry-list
Default: no entries
Graphic: not available

This is similar to the “DataHeaders” experiment attribute, except that the entry con-
tents will appear in every record of the data file. The contents of all referenced en-
tries are concatenated together and printed as a field in the data file.

Whether or not the information specified is actually written is controlled by the
RUN_LABEL keyword in the “DataFields” experiment attribute (see below).

DataFields:RUN_LABEL and/or STIMULUS and/or EVENT and/or EVENT_TAG
and/or PUT_UP_BY and/or REMOVED_BY and/or DURING
and/or RELATIVE_TO and/or RESPONSE_LABEL and/or ONSETS
and/or TIMING_STATS and/or NO_HEADER

Default: no entries
Graphic: Data Info

The following keywords, when included in the “DataFields” attribute of an experi-
ment, designate which information about each response should be saved in the data
file:

RUN_LABEL: includes the run label specified in the “RunLabel” experiment
attribute as a field in the data file.
362

13.1.6 Standard Attributes
STIMULUS: reports the name of the stimulus of the event with which the data
were stored.

EVENT: reports the event with which the response data were stored by the
RT[] action.

EVENT_TAG: reports the event tag that was specified for the event the data
were stored with.

PUT_UP_BY: reports the event that owned the RT[] action.

REMOVED_BY: reports the value of the “ActiveUntil” parameter of the RT[]
action.

DURING: reports the event during which the RT[] action was executed. How-
ever, because several events may be running at one time, DURING reports
only the event that was most recently begun. If all events have ended, then
DURING has the value SCHED_END (this occurs when FORCE_ONE or
FORCE_ALL response actions are still active).

RELATIVE_TO: reports the event relative to whose start the time of the re-
sponse was measured.

RESPONSE_LABEL: reports the response label stored with the RT informa-
tion.

NO_HEADER: inhibits reporting of the information specified in the “Data-
Header” attribute of the experiment. This information is listed at the top of
the data file, just after the title and time of the experiment.

MOUSE_POS: reports the position of the cursor (even if it was hidden) at the
time of the response.

KEY_SEQUENCE: reports the contents of the KEYSEQUENCE input device buff-
er, filled by the most recent KEYSEQUENCE event.

ONSETS: reports the onset time of any event listed, measured relative to the
start of the trial.

TIMING_STATS: reports summary statistics concerning the timing of individ-
ual events, averaged over all of the trials in the experiment.

FULL_TIMING_STATS: reports the onset and duration of every event in every
trial, segmented by condition.
363

 Part 4: Scripting Reference
NumTrialsPerRest or NumRestPeriods: number
Default: no rests

One or the other of these two attributes should be used to set the number of rest pe-
riods to be given during the experiment run. Use “NumTrialsPerRest” to make rest
periods always occur after a certain number of trials. Use “NumRestPeriods” to set
a fixed number of rests to be given during the entire experiment; these will be di-
vided evenly across the total number of trials in the experiment.

RestPeriod:rest-msecs
Default: 0
Graphic: Rest Duration

This attribute specifies a minimum duration (in msec) of the rest period. After this
period, a “Press any key to continue…” message will be displayed. This value is
only used if a rest period count is specified with “NumTrialsPerRest” or “NumRest-
Periods”.

Instructions:file
Default: no instructions

This attribute specifies a file to be displayed before running trials. The file will be
displayed in a window before any trials are run, and the words “Hit any key to con-
tinue” will appear at the bottom. Then when the subject hits a key, the window will
close and the trials will be run.

If trials are precompiled, the instructions will be displayed first, and the trials will
be compiled in the background. If the subject finishes reading the instructions and
hits a key before the all the trials have been compiled, a timebar will appear indi-
cating the continuing progress of compilation, and trials will be run when the com-
pilation is finished.

The same formatting commands are available for instructions as for paragraph and
document stimuli.

Instructions will not be displayed if NO_SHOW_INSTRUCTIONS is included in the
“Flags” experiment attribute.

Debrief: file
Default: no debriefing message

This attribute specifies a file to be displayed after running all trials. The file will be
displayed in a window before any trials are run, and the words “Hit any key to con-
tinue” will appear at the bottom.

The same formatting commands are available for debriefing as for paragraph and
document stimuli.

A debriefing message will not be displayed if NO_SHOW_INSTRUCTIONS is included
in the “Flags” experiment attribute.
364

13.1.6 Standard Attributes
DataRecordSeparator:string
Default: newline

This attribute specifies a string that will be used to separate the records in the data
file.

Resources:file-list
Default: no files

This attribute designates a list of resource files that should be opened before the ex-
periment is executed. This attribute is useful for opening resource files containing
‘PICT’ and ‘snd ’ resources.

Precompile:number
Default: 0

This attribute specifies the number of trials to always compile before running the
experiment; the rest of the trials are compiled on a trial-by-trial basis, unless the pre-
compile option is turned on. The keyword ALL may be used to precompile all trials.

ExpVariables: variable-list
Default: no variables

This attribute specifies a list of variables to be used in running the experiment. Each
variable has an entry which defines the type and initial value of the variable. Built-
in variables should not be included in this list.

DataVariables: variable-list
Default: no variables

This attribute specifies a list of variables that should be recorded with each line in
the data file.

RunMode: Run/Practice/Check
Default: not applicable

The value of this attribute is automatically set when the experiment is run or
checked. This can be used in PsyScript expressions to vary how aspects of the ex-
periment are run in the different modes.

The value of this attribute is ignored by the experiment compiler after it is automat-
ically set.
365

 Part 4: Scripting Reference
Reset: references
Default: ResetAll()
Graphic: not available

This attribute functions like an execution entry (see “16.6.2 Execution Entries”,
p460) for when the experiment is over. When trials are executed with the Trial
Monitor (see “Part 2: Graphic Environment Reference, 6.3 The Trial Monitor”,
p238) this attribute is used only when the Reset button is hit (or when the experi-
ment is automatically reset).

13.1.6.2 Standard Trial Attributes

There are a standard set of attributes which define properties of a trial, such as the condition
name or actions which are active for the whole trial. Where these attributes are defined de-
pends on the experiment’s format; see “13.2.1.1 Trial Attributes in StimList Format”, p370
or “13.3.5 Scripting Templates”, p381. The complete list of standard trial attributes is given
here.

ConditionName:format
Default: depends on format
Graphic: Condition Name

This attribute specifies the format of the condition name to be recorded in the data
file.In a StimList or EventList experiment, format is simply used as the condition
name; “” is the default. In a Factor experiment, format can have the form:

prefix<serparator>suffix

in which case the resulting condition name will include the names of the current lev-
els and items of factors and lists relevant to the trial. The condition name will have
the form:

prefixLevel1separatorLevel2separator…LevelNsuffix

where Level1, Level2, … LevelN are the names of the current levels and items.

If no angle brackets appear in format, then format is simply used as the condition
name. The default value is < >.

ITI: msecs
Default: 0
Graphic: Minimum ITI

This attribute specifies the minimum amount of time that should be allotted in ad-
vance to load this trial, including compile time in non-precompiled experiments.
The default is 0. See also “Part 2: Graphic Environment Reference, 6.5.2 Loading
Stimuli”, p247.
366

13.1.6 Standard Attributes
TrialActions:condition_action_pairs
Default: no actions
Graphic: Actions

This attribute specifies condition-action pairs for actions that may remain active the
duration of the trial; see also “13.4.1 Action Lists”, p409.

13.1.6.3 Standard Event Attributes

There are a standard set of attributes which define properties of an event, such as start time,
duration, or actions. Where these attributes are defined depends on the experiment’s for-
mat; see “13.2.1 StimList Format”, p368 or “Part 4: Scripting Reference, 13.3.6 Scripting
Events”, p383. The complete list of standard event attributes is given here, although most
event types recognize a number of additional type-specific event attributes (see “14.2 Stim-
ulus Types Reference”, p424).

EventName: name
Default: depends on format
Graphic: not available

This attribute sets the name of the event for the purposes of data recording, start ref-
erences, and event specification in action parameters. The default depends on the
format; see “13.2.4 StimList/EventList Event Names”, p373 or “13.3.6 Scripting
Events”, p383. This attribute is usually not used.

EventTag: tag
Default: ""
Graphic: Tag

This attribute assigns a tag to the stimulus for use with analysis; it is ignored by the
Trial Manager, aside from being recorded in the data file.

EventType: type
Default: Text
Graphic: not set as an attribute

This attribute sets the type of the event, such as Text or SoundLabel. The list of all
built-in types is in “14.2 Stimulus Types Reference”, p424. More types may be
made available by using PsyScope Extensions (see “Part 2: Graphic Environment
Reference, 6.1.3.1 PsyScope Extensions”, p216).

Duration: duration
Default: depends on event type

This attribute sets the duration of the event; see “13.4.3 Duration”, p411 for details.
367

 Part 4: Scripting Reference
StartRef: start_reference
Default: 0 milliseconds after the end of the “previous” event
Graphic: not set as an attribute

This attribute specifies the start reference of the event (i.e., when the event starts
relative to the start of the trial or another event in the trial). See “13.4.2 Start Ref-
erence”, p411 for details.

ClearType: NO_CLEAR | FORCE_CLEAR and/or MASK
Default: ""
Graphic: Tag

This attribute sets whether and how the event is to be cleared; either NO_CLEAR or
FORCE_CLEAR can be specified to override the default clear type set in the “Flags”
experiment attribute (see “13.1.6.1 Standard Experiment Attributes”, p360 for in-
formation on the NO_CLEAR_BY_DEFAULT value).

If MASK is specified, the stimulus is “cleared” by drawing the mask rather than by
erasing the stimulus. This feature applies primarily to Text stimuli.

EventActions:condition_action_pairs
Default: no actions
Graphic: Actions

This attribute specifies condition-action pairs for actions that are to be posted by
this event; see also “13.4 Complex Attribute Formats”, p409.

13.2 StimList and EventList Formats

The StimList and EventList formats are the most flexible and terse formats for writing an
experiment. The difference between StimList and EventList formats is small; this section
will first document StimList format and then indicate how EventList format differs from
StimList.

13.2.1 StimList Format

In StimList format, the way in which a trial is generated is conceptually simple: the values
in the content of the experiment entry are the stimuli for the trial; each stimulus corresponds
to one event, and the attributes for each event are read from the inherited attributes of its
stimulus. Writing a non-trivial experiment from this simple rule requires a deep under-
standing of PsyScript.

Stimlist format can be very terse. Here is the script for an experiment that presents “Hello
World” and waits for the user to press a key:

#PsyScope 1.0

Experiments:: "Hello World Experiment"
368

13.2.1 StimList Format
Hello World Experiment:: "Hello World"
Format: StimList
InputDevices: Mouse
Timer: Macintosh
Duration: Mouse[Click]

Every trial will have one event with the stimulus "Hello World". The duration
Mouse[Click] is picked up through attribute inheritance (see “13.2.3 Attribute Inheritance
in StimList/EventList Format”, p372). The event is a Text event because the “EventType”
attribute defaults to Text. Only one trial is executed because there is not “TrialCount” at-
tribute.

The first step in creating non-trivial StimList script is to use lists and the Access() function
(see “12.8.1 Accessing a List”, p330). In this experiment, three different messages are
shown in three trials:

#PsyScope 1.0

Experiments:: "Hello World Experiment"

Hello World Experiment:: Access(Hellos)
Format: StimList
InputDevices: Mouse
Timer: Macintosh
TrialCount: 3
Duration: Mouse[Click]

Hellos:: "Hello World" "Hi World" "Howdy World"
AccessType: Random

Here, the “TrialCount” attribute is set to 3, so three trials will be run.

“Templates” can also be implemented using Access() to create trials with completely dif-
ferent structures. In this example, the first trial shows a greeting in blue and is terminated
by clicking the mouse; the second trial shows a parting message in red and is terminated by
a key press:

#PsyScope 1.0

Experiments:: "Hello World Experiment"

Hello World Experiment:: @Access(["Hello Trial" "Goodbye Trial"])
Format: StimList
InputDevices: Mouse Key
Timer: Macintosh
TrialCount: 2
Duration: Mouse[Click]

Hello Trial:: Access(Hellos)
Color: Blue

Goodbye Trial:: Access(Goodbyes)
Duration: Key[Any]
Color: Red

Hellos:: "Hello World" "Hi World" "Howdy World"
AccessType: Random
369

 Part 4: Scripting Reference
Goodbyes:: "Goodbye World" "Bye World" "Adios World"
AccessType: Random

13.2.1.1 Trial Attributes in StimList Format

In StimList format, trial attributes are read by searching the inherited attributes of all stim-
uli in the trial (see “13.2.3 Attribute Inheritance in StimList/EventList Format”, p372). In
the case of trial actions, the values are combined from of all “TrialActions” attributes which
are found.

13.2.1.2 Block Mode in StimList Format

StimList format does provide one level of built-in structural description: blocks. StimLists
scripts run in either Direct mode (as described above) or Block mode. Direct mode is the
default; Block Mode is specified by setting the “BlockMode” attribute of an experiment to
True.

In Block mode, a list of blocks is given in the experiment entry’s content instead of a list
of stimuli; each block is used for a the number of trials indicated in the block.

The list of blocks in the experiment entry are references to block entries; block entries are
analogous to experiment entries, which are referenced in the content of the “Experiments”
entry. Trials within a block are built from a block entry in the same way that trials are built
from the experiment entry in Direct mode.

For example, here is a script that runs three greeting trials, and then three parting trials:

#PsyScope 1.0

Experiments:: "Hello World Experiment"

Hello World Experiment:: "Hello Trials" "Goodbye Trials"
Format: StimList
InputDevices: Mouse Key
Timer: Macintosh
BlockMode: True
Duration: Mouse[Click]

Hello Trials:: Access(Hellos)
TrialCount: 3

Goodbye Trials:: Access(Goodbyes)
TrialCount: 3

Hellos:: "Hello World" "Hi World" "Howdy World"
AccessType: Random

Goodbyes:: "Goodbye World" "Bye World" "Adios World"
AccessType: Random

Sometimes it is useful to scale the number of trials within all blocks by changing a single
value in the experiment entry. Do do this, use the “BlockCount” attribute in the blocks, and
set the “BlockMult” attribute in the experiment entry.
370

13.2.2 EventList Format
In this example, only two trials are executed within each block, but this can be changed by
varying only the “BlockMult” experiment attribute:

#PsyScope 1.0

Experiments:: "Hello World Experiment"

Hello World Experiment:: "Hello Trials" "Goodbye Trials"
Format: StimList
InputDevices: Mouse Key
Timer: Macintosh
BlockMode: True
BlockMult: 2
Duration: Mouse[Click]

Hello Trials:: Access(Hellos)
BlockCount: 1

Goodbye Trials:: Access(Goodbyes)
BlockCount: 1

Hellos:: "Hello World" "Hi World" "Howdy World"
AccessType: Random

Goodbyes:: "Goodbye World" "Bye World" "Adios World"
AccessType: Random

Note that the “BlockCount” block attribute allows trial count scaling, while the “Trial-
Count” attribute does not.

13.2.2 EventList Format

The format name “StimList” is derived from the fact that trials are created by reading the
experiment entry (or block entry) content as a list of stimuli; this implies the rule: “one
event, one stimulus”.

In “EventList” format, the experiment entry (or block entry) content is read as a list of ref-
erences to event entries; each event entry defines one event in the trial, but each event can
have multiple stimuli (if the event’s type allows). In particular, EventList format must be
used to create Pasteboard events, since multiple stimuli are what makes a Pasteboard
event useful.

In this example, a Pasteboard event is used to show “Hello World” and “Goodbye World”
simultaneously:

#PsyScope 1.0

Experiments:: "Hello World Experiment"

Hello World Experiment:: HelloGoodbye
Format: EventList
InputDevices: Mouse
Timer: Macintosh
Duration: Mouse[Click]

HelloGoodbye:: ("Hello World" Position: 25%)
371

 Part 4: Scripting Reference
("Goodbye World" Position: 75%)
EventType: Pasteboard
StimType: Text

13.2.3 Attribute Inheritance in StimList/EventList Format

The mechanism by which attributes are collected for trials, events, and stimuli in the Stim-
List and EventList formats is inheritance, as described in “12.11 Inherited Attributes”,
p344.

Inheritance completely defined is a difficult topic, but in generally it works in the way one
would expect. Basically, attributes are inherited top-down: an attribute can be specified
starting at the experiment level, or at the block level, and so on down to the entry in which
the stimulus actually is specified.

For example, consider the most recent example:

#PsyScope 1.0

Experiments:: "Hello World Experiment"

Hello World Experiment:: HelloGoodbye
Format: EventList
InputDevices: Mouse
Timer: Macintosh
Duration: Mouse[Click]

HelloGoodbye:: ("Hello World" Position: 25%)
("Goodbye World" Position: 75%)

EventType: Pasteboard
StimType: Text

Here, the Pasteboard event inherits the “Duration” attribute value Mouse[Click] from the
experiment entry. Both the “Hello World” and “Goodbye World” sub-stimuli inherit the
“StimType” attribute value Text from “HelloGoodbye”.

If an attribute is set at multiple levels, the value that is used is the one defined “closest” to
the stimulus. This means that attribute values specified in the stimulus’s entry override val-
ues specified in the experiment entry.

Consider this earlier example:

#PsyScope 1.0

Experiments:: "Hello World Experiment"

Hello World Experiment:: @Access(["Hello Trial" "Goodbye Trial"])
Format: StimList
InputDevices: Mouse Key
Timer: Macintosh
TrialCount: 2
Duration: Mouse[Click]

Hello Trial:: Access(Hellos)
Color: Blue
372

13.2.4 StimList/EventList Event Names
Goodbye Trial:: Access(Goodbyes)
Duration: Key[Any]
Color: Red

Hellos:: "Hello World" "Hi World" "Howdy World"
AccessType: Random

Goodbyes:: "Goodbye World" "Bye World" "Adios World"
AccessType: Random

Here, the greeting events inherit the “Duration” attribute value Mouse[Click] from the ex-
periment entry, but the parting events use the “Duration” value Key[Any] from “Goodbye
Trial”.

The most common misunderstanding about inheritance relates to function calls. The pa-
rameters of functions could possibly have inherited attributes, but these attributes will not
be passed on to the result of the function.

For example, in this fragment:

ConcatenatedWord:: Strcat(@ConPart @CatenatePart)

ConPart:: "con"
Color: Blue

CatenatePart:: "catenate"
Color: Red

the resulting “concatenate” value of “ConcatenatedWord” inherits the color black (by de-
fault); the “con” inherits a blue color and the “catenate” part inherits a red color, but this is
not passed on to the result of the Strcat() function.

This function-calling rule appears in some cases to be violated by script-defined functions;
this is because script-defined “functions” are actually shorthand for other referencing con-
structions and can therefore pass on certain inheritances. See “12.11.1 Inheritance and To-
ken Reference Inline Entries”, p346 for details.

13.2.4 StimList/EventList Event Names

In StimList format, the default event name is taken as the name of the entry where the most
specific (i.e., most overriding) attributes can be defined.

In EventList format, the default event name is the name of the event entry.

13.2.5 StimList/EventList Optimization

By default, the StimList and EventList experiment compilers attempt to optimize by skip-
ping script-reads which appear unnecessary. In particular, when the compiler reads a set of
attributes for an event or trial, it remembers where the attributes came from; when future
373

 Part 4: Scripting Reference
trials are compiled, it checks to see if any of these attributes could have changed before it
re-reads them.

If assignment statements are used in you script, optimization is not likely to help. Thus, to
keep your script optimizable, you should avoid using the assignment operators (which is a
good practice in general).

If the “SaveCurrents” attribute of a list is too high (see “12.8.6 SaveCurrents”, p334), the
optimizer may be unable to properly track whether attributes have changed; if this is the
case, the script interpreter will warn you when the list is initialized.

If your script turns out to be non-optimizable for either of the above reasons, it is best to
turn optimization off with the “Optimization” experiment attribute (see below), since at-
tempted optimization will take up extra memory and processing time.

13.2.6 Summary of Attributes for EventList and StimList Formats

Special experiment entry attributes:

BlockMode: Determines the mode in which the experiment is defined. Defaults to
“FALSE.”

TrialCount or Cycles: Number of trials in experiment. The default is the value in Tri-
als console.

PracticeTrialCount or Practice: Number of practice trials. The default is the value
in Trials console.

BlockMult and PracticeBlockMult or ScaleBlocks and PracticeScaleBlocks:
For use with Block Mode, the number sets to run of each block that has a “Block-
Count” attribute. The default is 1, or “TrialCount” if defined.

OptimizeEvents, OptimizeTrials: Specifies whether the builder should attempt to
optimize the building process at the event and trial levels. The default for both is
“TRUE”.

Optimize: If neither “OptimizeEvents” or “OptimizeTrials” are specified, this attribute
may be used to turn optimization on or off at both levels. The default is “TRUE”.

Block entry attributes (for use with Block Mode):

BlockCount, PracticeBlockMult: The number of trials in a set for this block; multi-
plied by the value of “BlockMult”, the number of trials of this block to run. The de-
fault is 1.

TrialCount, PracticeTrialCount: Number of trials in this block. (Default uses
“BlockCount”).
374

13.2.7 StimList/EventList Compilation Details
13.2.7 StimList/EventList Compilation Details

This section addresses in more detail how a script is compiled into an experiment. It is op-
tional reading, and may be skipped with little sacrifice of sagacity. Also, it is not quite right
if optimization is on, although the results should be the same. This information is provided
because scripters may find it useful to know exactly what the compiler is doing for perform-
ing side-effects in the right order or playing other tricks.

1) All the standard experiment attributes are read in.

2) The “BlockMode” attribute of the experiment is checked; if it is True, the list of
block references is read and the number of trials in each block calculated.

3) For each trials:

3.1) In block mode, the list of block references is used to determine which
block should be used.

3.2) The expressions in the experiment/block entry are evaluated from first
to last to obtain the stimulus values. As each value is resolved, a list of ref-
erences to the value’s inherited attributes is maintained.

3.3) The events are taken one at a time to obtain the event attributes:

3.3.1) The event name is read.

3.3.2) The event tag is read.

3.3.3) The start reference is read.

3.3.4) The clear type is read.

3.3.5) The event’s type is read, and all of the attributes associated
with the event type are read.

3.3.6) The duration is read.

3.3.7) The event actions are read.

3.5) The condition name and minimum ITI are read by searching the inher-
ited attributes of each event, starting with the inherited attributes of the first
event; once a value is found, the search stops.

3.4) Trial actions are read by searching the inherited attributes of each event,
starting with the inherited attributes of the first event; the search combines
the trial actions found from all events.
375

 Part 4: Scripting Reference
13.3 Factor Format

Factor format is the highly-structured scripting format used by the graphic environment. In
Factor format, you define the structure of you experiment using the concepts of groups,
blocks, templates, factors, and events. (These concepts are defined fully in “Part 2: Graphic
Environment Reference”.) An understanding and careful use of these structures can greatly
facilitate your design process.

13.3.1 Scripting the Experiment Hierarchy

“Part 2: Graphic Environment Reference, 5.2.1 Objects and the Experiment Hierarchy”,
p107 describes the basic structure of a Factor format experiment. The objects of the graphic
environment translate directly into entries in PsyScript, and the attributes of graphic ob-
jects are implemented as PsyScript attributes of these entries.

Linking a child object to a parent object translates into using a reference to the child entry
inn attribute of the parent entry; for example, group entries are linked to the experiment en-
try by referencing the groups in the experiment’s “Groups” attribute.

The example below shows a Factor format script that implements all of the objects in Factor
format. Later sections of the manual will refer back to this example to illustrate aspects of
the experiment hierarchy:

#PsyScope 1.0
Script template, Version 1.0

Experiments:: "Contrived Hello World"
Current: 1

#> ExperimentDefinitions

Contrived Hello World::
Format: Factor
InputDevices: MOUSE KEY
Timer: Macintosh
Flags: NO_SAVE_SCREEN
DataFile: "Contrived Hello World Data"
ScaleBlocks: 1
Groups: Group1 Group2

Current:> 1

#> GroupDefinitions

Group1::
Blocks: Superblock1

Group2::
Blocks: Superblock1

#> BlockDefinitions

Superblock1::
Blocks: Block1 "Pause Block" Block2
Factors: "Word Features"
376

13.3.1 Scripting the Experiment Hierarchy
ScaleBlocks: 5

Block1::
Templates: "Hello-Goodbye Template"
Cycles: 1

Block2::
Templates: "Hello-Goodbye Template"
Cycles: 1

Pause Block::
Events: "Pause Event"
FixedCycles: 1

#> FactorDefinitions

Word Features::
Levels: Level1 Level2 Level3

#> LevelDefinitions

Level1::
Color1: Red
Color2: Cyan
Face: ""

Level2::
Color1: Green
Color2: Magenta
Face: "Bold "

Level3::
Color1: Blue
Color2: Yellow
Face: "Italic "

#> TemplateDefinitions

Hello-Goodbye Template::
Events: "Hello Event" "Goodbye Event"

#> EventDefinitions

Pause Event::
EventType: Text
Duration: Key[RETURN]
Stimulus: "Take a break. Press Return to Continue..."

Hello Event::
EventType: Text
Duration: 500
Stimulus: "Hello World"
Color: FactorAttrib("Word Features", "Color1")
Face: FactorAttrib("Word Features", "Face")

Goodbye Event::
EventType: PasteBoard
Duration: 500
Stimuli: "Goodbye Stimulus" "Smiley Stimulus"

#> StimulusDefinitions

Goodbye Stimulus::
StimType: Text
377

 Part 4: Scripting Reference
Stimulus: "Goodbye World"
Face: FactorAttrib("Word Features", "Face")
Color: FactorAttrib("Word Features", "Color2")

Smiley Stimulus::
StimType: Text
Stimulus: ":-)"

In Factor format, the content of an entry is always ignored (unless a PsyScript expression
specifically refers to some entry’s content); attributes are used to define all of the details of
an experiment.

13.3.2 Scripting the Factor Format Experiment Entry

An Factor format experiment definition starts with an experiment entry (see “13.1.5 Exper-
iment Entries”, p359).

The following attributes are recognized in the experiment entry:

• The standard experiment attributes, as listed in “13.1.6.1 Standard Experiment At-
tributes”, p360.

• The “Groups” attribute if the experiment has groups. (See also “13.3.3 Scripting
Groups”, p379.)

• The “Blocks” attribute if the experiment has blocks, but no groups. (See also “13.3.4
Scripting Blocks”, p380.)

• The “Templates” attribute if the experiment has templates, but no blocks or groups. (See
also “13.3.5 Scripting Templates”, p381.)

• The “Events” attribute if the experiment has no templates, blocks, or groups. (See also
“13.3.6 Scripting Events”, p383.)

• The “Factors” attribute. (See also “13.3.7 Scripting Factors”, p387.)

• Trial counting attributes if the experiment has no groups. (See “13.3.10 Scripting Factor
Format Trial Counts”, p401.)

• The “Optimization” attribute. (See “13.3.11.3 Factor Format Optimization”, p404.)

• Attributes referenced by RunModeAttrib(). (See “13.3.6.3 Linking Event Attributes to
the Run Mode”, p385.)

• Any inheritable attributes recognized by a template or event entry. (See “13.3.5 Script-
ing Templates”, p381 and “13.3.6 Scripting Events”, p383.)

An experiment should have one, and only one, of the “Groups”, “Blocks”, “Templates”, or
“Events” attributes. (This corresponds to the graphic environment’s constraint that only
378

13.3.3 Scripting Groups
one type of object can be connected to the experiment object; see “Part 2: Graphic Envi-
ronment Reference, 5.2.1.1 Linking Objects”, p108.)

In the example of “13.3.1 Scripting the Experiment Hierarchy”, p376, the “Groups” at-
tribute is used in the “Contrived Hello World” experiment entry.

13.3.2.1 Factoring and Linking Experiment Attributes

All of the standard experiment attributes are structural (see “13.3.11.1 Structural vs. Non-
structural Attributes”, p402), so that experiment attributes are not usually factored or oth-
erwise varied. However, such operations can be preformed on experiment attributes which
are inherited by a template or event, or which are referred to through a RunModeAttrib()
function call (see “13.3.6.3 Linking Event Attributes to the Run Mode”, p385). See
“13.3.11.2 Attribute Inheritance in Factor Format”, p403 for more information on factoring
and linking these attributes.

13.3.3 Scripting Groups

To define a group, you must use a “Groups” attribute in the experiment entry; the value of
this attribute should be a list of references to entries representing the groups, called group
entries.

Only one group will be used in a single experiment run; this is the current group. The “Cur-
rent” sub-attribute of the “Groups” attribute specifies which group will be used when the
experiment is executed; the value of the “Current” sub-attribute is a number which is the
index of the current group in the list. (See also “Part 2: Graphic Environment Reference,
6.2.4 Automatic Grouping”, p233.) If the value of the “Groups” attribute or the “Current”
sub-attribute changes during experiment execution, the original group will still be used.

In the example of “13.3.1 Scripting the Experiment Hierarchy”, p376, the “Groups” at-
tribute is used in “Contrived Hello World”, and “Group1” is the current group.

Groups can be nested within a group (a.k.a. supergroup), but this structure is not supported
by the graphic environment.

The following attributes are recognized in group entries:

• The “Blocks” attribute if the group has blocks. (See also “13.3.4 Scripting Blocks”,
p380.)

• The “Templates” attribute if the group has templates, but no blocks. (See also “13.3.5
Scripting Templates”, p381.)

• The “Events” attribute if the group has no templates or blocks. (See also “13.3.6 Script-
ing Events”, p383.)

• The “Factors” attribute. (See also “13.3.7 Scripting Factors”, p387.)

• Trial counting attributes. (See “13.3.10 Scripting Factor Format Trial Counts”, p401.)
379

 Part 4: Scripting Reference
• Attributes referenced by GroupAttrib(). (See “13.3.6.2 Linking Event Attributes to
Template, Block, and Group Attributes”, p385.)

• Any inheritable attribute recognized by a template or event entry. (See “13.3.5 Scripting
Templates”, p381 and “13.3.6 Scripting Events”, p383.)

A group should have one, and only one, of the “Blocks”, “Templates”, or “Events” at-
tributes.

In the example of “13.3.1 Scripting the Experiment Hierarchy”, p376, both “Group1” and
“Group2” use the “Blocks” attribute to include a superblock.

13.3.3.1 Factoring and Linking Group Attributes

All of the standard attributes of a group are structural (see “13.3.11.1 Structural vs. Non-
structural Attributes”, p402), so that group attributes are not usually factored or otherwise
varied. However, such operations can be preformed on group attributes which are inherited
by a template or event, or which are referred to through a GroupAttrib() function call (see
“13.3.6.2 Linking Event Attributes to Template, Block, and Group Attributes”, p385). See
“13.3.11.2 Attribute Inheritance in Factor Format”, p403 for more information on factoring
and linking these attributes.

13.3.4 Scripting Blocks

To define blocks, you must use a “Blocks” attribute in the experiment, group, or superblock
entry (to which the block should be linked); the attribute’s value should be a list of refer-
ences to entries representing the blocks, called block entries.

All of the blocks of an experiment, group, or superblock are executed. The “Blocks” at-
tribute is accessed as a PsyScript list (see “12.8 Lists”, p329), so that the order in which the
blocks are executed depends on the “AccessType” and other sub-attributes of the “Blocks”
attribute.

In the example of “13.3.1 Scripting the Experiment Hierarchy”, p376, the superblock
“Superblock1” owns “Block1”, “Pause Block”, and “Block2”. These blocks are executed
sequentially. “Superblock1” is itself linked to “Group1” and “Group2”.

In a pass through the blocks, the “Blocks” list is accessed once for each item in the list (re-
gardless of list weights) and the block returned by the access is executed. By default, one
pass is performed. A “Cycles” attribute can be defined in the experiment/group entry (the
one that has the “Blocks” attribute) to specify the number of passes to performed.

Note: For the purpose of determining how many trials should be run for the whole experi-
ment, the Factor format compiler assumes that every block will be run once in each
pass. (This may not be the case if the RRandom access type is used.)
380

13.3.5 Scripting Templates
When a block is executed, all of the block’s trials will be executed together. Each block
specifies for itself how many trials are to be run within the block, using the “Cycles” or
“FixedCycles” attribute. See “13.3.10 Scripting Factor Format Trial Counts”, p401 for
more information on trial counting.

The following attributes are recognized in block entries:

• The “Blocks” attribute if the block is a superblock (owning other blocks).

• The “Templates” attribute if the block has templates and no blocks. (See also “13.3.5
Scripting Templates”, p381.)

• The “Events” attribute if the block has no templates or blocks. (See also “13.3.6 Script-
ing Events”, p383.)

• The “Factors” attribute. (See also “13.3.7 Scripting Factors”, p387.)

• Trial counting attributes. (See “13.3.10 Scripting Factor Format Trial Counts”, p401.)

• Attributes referenced by BlockAttrib(). (See “13.3.6.2 Linking Event Attributes to
Template, Block, and Group Attributes”, p385.)

• Any inheritable attribute recognized by a template or event entry. (See “13.3.5 Scripting
Templates”, p381 and “13.3.6 Scripting Events”, p383.)

A block should have one, and only one, of the “Blocks”, “Templates”, or “Events” at-
tributes.

In the example of “13.3.1 Scripting the Experiment Hierarchy”, p376, both “Block1” and
“Block2” use the “Templates” attribute to include a template, but “Pause Block” is linked
directly to an event with the “Events” attribute. “Superblock1” is a superblock because it
includes other blocks with the “Blocks” attribute; it also is linked to the factor “Word Fea-
tures”.

13.3.4.1 Factoring and Linking Block Attributes

All of the standard attributes of a block are structural (see “13.3.11.1 Structural vs. Non-
structural Attributes”, p402), so that block attributes are not usually factored or otherwise
varied. However, such operations can be preformed on block attributes which are inherited
by a template or event, or which are referred to through a BlockAttrib() function call (see
“13.3.6.2 Linking Event Attributes to Template, Block, and Group Attributes”, p385). See
“13.3.11.2 Attribute Inheritance in Factor Format”, p403 for more information on factoring
and linking these attributes.

13.3.5 Scripting Templates

To define a template, you must use a “Templates” attribute in the experiment, group, or
block entry (to which the template should be linked); the attribute’s value should be a list
381

 Part 4: Scripting Reference
of references to entries representing the templates, called template entries. See also “13.3.9
Scripting Factor Tables”, p395.

For each trial, one of the templates listed in the “Templates” attribute will be used. The
“Templates” attribute is accessed as a PsyScript list (see “12.8 Lists”, p329) and the select-
ed template is executed. The order in which the templates are executed thus depends on the
“AccessType” and other sub-attributes of the “Templates” attribute.

In the example of “13.3.1 Scripting the Experiment Hierarchy”, p376, the template “Hello-
Goodbye Template” is linked to both “Block1” and “Block2”.

The following attributes are recognized in template entries:

• The standard trial attributes (inheritable), as listed in “13.1.6.2 Standard Trial At-
tributes”, p366.

• The “Events” attribute. (See also “13.3.6 Scripting Events”, p383.)

• The “Factors” attribute. (See also “13.3.7 Scripting Factors”, p387.)

• Attributes referenced by TrialAttrib(). (See “13.3.6.2 Linking Event Attributes to
Template, Block, and Group Attributes”, p385.)

• Any inheritable attribute recognized by an event entry. (See “13.3.6 Scripting Events”,
p383.)

A template entry should always have an “Events” attribute with a list of references to event
entries (see “13.3.6 Scripting Events”, p383).

In the example of “13.3.1 Scripting the Experiment Hierarchy”, p376, the template “Hello-
Goodbye Template” is linked to two events: “Hello Event” and “Goodbye Event”.

13.3.5.1 Factoring and Linking Template Attributes

Most of the standard template attributes are non-structural (see “13.3.11.1 Structural vs.
Non-structural Attributes”, p402); these attributes can be:

• Factored using the FactorAttrib() function call; this corresponds to using Vary by
List in the graphic environment. FactorAttrib() is described in “13.3.6.1 Factoring
Event Attributes”, p384.

• Linked to a block attribute with BlockAttrib(); this corresponds to using Vary by
Block in the graphic environment. BlockAttrib() is described in “13.3.6.2 Linking
Event Attributes to Template, Block, and Group Attributes”, p385.

• Linked to a group attribute with GroupAttrib(); this corresponds to using Vary by
Group in the graphic environment. GroupAttrib() is described in “13.3.6.2 Linking
Event Attributes to Template, Block, and Group Attributes”, p385.
382

13.3.6 Scripting Events
• Varied by the run mode using RunModeAttrib(); this corresponds to using Vary by
Run Mode in the graphic environment. FactorAttrib() is described in “13.3.6.3
Linking Event Attributes to the Run Mode”, p385.

Also, such operations can be preformed on template attributes which are inherited by an
event, or which are referred to through a TrialAttrib() function call (see “13.3.6.2 Link-
ing Event Attributes to Template, Block, and Group Attributes”, p385). See “13.3.11.2 At-
tribute Inheritance in Factor Format”, p403 for more information on factoring and linking
these attributes.

13.3.6 Scripting Events

To define events, you must use a “Events” attribute in the experiment, group, block, or tem-
plate entry (to which the event should be linked); its value should be a list of references to
entries representing the events, called event entries. Event entries are required in any ex-
periment design.

In the example of “13.3.1 Scripting the Experiment Hierarchy”, p376, “Hello Event” and
“Goodbye Event” are events linked to the “Hello-Goodbye Template”.

The event entry is where a stimulus and its properties are finally specified. The stimulus for
the event (or stimuli, for certain event types) is taken from the value of the “Stimulus” at-
tribute; the “Stimulus” attribute cannot be inherited (see “13.3.11.2 Attribute Inheritance in
Factor Format”, p403). The type of the stimulus is specified in the “EventType” attribute;
it defaults to Text (and may be inherited). The name of an event defaults to the name of the
event entry.

By default, events are executed within the trial in the same order as they are listed in the
“Events” attribute; this order can be changed by using “StartRef” attributes with the event
entries. (See “13.4.2 Start Reference”, p411.)

Note: Event entries are not accessed from the “Events” attribute as a PsyScript list; the
default ordering comes from the way “StartRef” defaults.

For event types which contain sub-stimuli (i.e., Pasteboard events), you will need to use
the “Stimuli” attribute instead of the “Stimulus” attribute. The “Stimuli” attribute should
contain a list of references to sub-stimulus entries. These sub-stimuli entries are similar to
event entries, except that they use a “StimType” attribute instead of an “EventType” at-
tribute. Also, the standard event attributes are not recognized; only stimulus type-specific
attributes are read.

In the example of “13.3.1 Scripting the Experiment Hierarchy”, p376, “Hello Event” is a
simple Text event. “Goodbye Event” is a Pasteboard event linked to Text sub-stim-
uli “Goodbye Stimulus” and “Smiley Stimulus” (the two sub-stimuli are presented simul-
taneously).

The following attributes are recognized in event entries:
383

 Part 4: Scripting Reference
• The standard event attributes; see “13.1.6.3 Standard Event Attributes”, p367. These are
inheritable.

• The “Stimulus” attribute or “Stimuli” attribute; “Stimulus” overrides “Stimuli” if both
are specified.

• The “Constant” attribute. (See “13.3.6.5 Constant Events in Factor Format”, p387.)

• Stimulus type-specific attributes (inheritable); these are listed by stimulus type in “14.2
Stimulus Types Reference”, p424.

• Any inheritable attribute recognized by a sub-stimulus entry.

The following attributes are recognized in sub-stimulus entries:

• The “Stimulus” attribute.

• Stimulus type-specific attributes (inheritable); these are listed by stimulus type in “14.2
Stimulus Types Reference”, p424.

13.3.6.1 Factoring Event Attributes

Attribute values can be set based on a factor by using the FactorAttrib() function in
place of a literal value. This is analogous to using Vary by List in the graphic environment.
(Vary by List is implemented in the script by using FactorAttrib()).

Factors in PsyScript are described below in “13.3.7 Scripting Factors”, p387. FactorAt-
trib() only works with free factors; you cannot use FactorAttrib() with factors in a
factor table.

Note: The the graphic environment reserves the term “factor” for the built-in factors of a
factor table. The “free factors” of PsyScript are called “lists” in the graphic environ-
ment.

FactorAttrib() takes two parameters: the name of a factor and the name of a field within
the factor. The factor name must be specified, but the field name defaults to the name of the
attribute owning the FactorAttrib() call.

In this event entry, for example, the stimulus value is varied with a “Words” factor using
its “Noun” field:

Noun Event::
EventType: Text
Stimulus: FactorAttrib(Words Noun)
Font: Geneva
Size: 12

The factor-linking requirements for FactorAttrib() are the same as for Vary by List in
the graphic environment; i.e., in order to use FactorAttrib(), the specified factor must be
384

13.3.6 Scripting Events
connected to some “ancestor” of the event entry in the experiment hierarchy. This require-
ment is explained in detail in “Part 2: Graphic Environment Reference, Linking Lists to
the Hierarchy”, p135.

13.3.6.2 Linking Event Attributes to Template, Block, and Group Attributes

Attribute values in an event entry can be set based on an attribute in the current template,
block, or group using the TrialAttrib(), BlockAttrib(), and GroupAttrib() func-
tions, respectively. These correspond to using Vary by Template, Vary by Block, and
Vary by Group in the graphic environment.

TrialAttrib(), BlockAttrib(), and GroupAttrib() each take one parameter: the name
of an attribute in the template, block, or group entry. Like the field parameter of Factor-
Attrib(), this parameter defaults to the name of the attribute owning the function call. The
function call is replaced by the contents of the referenced attribute in the template, block,
or group that is being used to compile the current trial.

When superblocks are used in the experiment hierarchy, the lowest-level block is checked
first for an attribute referenced by BlockAttrib(); if the attribute is not found, the search
continues up to the highest-level superblock.

For example, the color of the stimulus in this “Hello Event” is varied by template; it will
be red in trials compiled through “Red Template”, and blue in trials compiled with “Blue
Template”:

Red Template::
Events: "Hello Event"
StimColor: Red

Blue Template::
Events: "Hello Event"
StimColor: Blue

Hello Event::
Stimulus: "Hello World"
Color: TrialAttrib(StimColor)

13.3.6.3 Linking Event Attributes to the Run Mode

Attribute values in an event entry can be set based on whether the experiment is being ex-
ecuted in Run or Practice mode. This is done by specifying attributes in the experiment en-
try with names that start with “Run” and “Practice”, and then using the RunModeAttrib()
function in the event entry attribute. This corresponds to using Vary by Run Mode in the
graphic environment.

The RunModeAttrib() function takes one parameter: a “base” attribute name. This name
is prefixed with “Run” or “Practice” — depending on which mode the experiment is exe-
cuted in — and then the experiment entry is searched for that attribute; the RunModeAt-
trib() function call is replaced with the attribute’s contents. Like the field parameter of
FactorAttrib(), RunModeAttrib()’s parameter defaults to the name of the attribute
owning the function call.
385

 Part 4: Scripting Reference
For example, suppose the experiment entry were defined as follows, with “RunColor” and
“PracticeColor” attributes:

Hello World::
Format: Factor
InputDevices: MOUSE KEY
Timer: Macintosh
DataFile: "Hello World Data"
ScaleBlocks: 1
Events: "Hello Event"
RunColor: Blue
PracticeColor: Red

Hello Event::
EventType: Text
Stimulus: "Hello World"
Color: RunModeAttrib(Color)

Then, “Hello Event” would print “Hello World” in blue when the experiment is run nor-
mally, but it would be in red for practice trials.

13.3.6.4 Factor Format Tags

A tag allows you to record — separate from the script — a value or list of values and asso-
ciate it to a tag name. Tags are a feature of Factor format which is not available to the graph-
ic interface.

Tags are defined with the SetTag() function. The first parameter to SetTag() is the tag
name; the rest of the parameters are recorded as the value of the tag. SetTag() returns the
tag value(s) as its result.

The tag value may be used subsequently with the GetTag() function call; GetTag() takes
one parameter — the tag name — and returns the value(s) previously recorded with the tag.
Its is an error to give GetTag() a tag name that has not yet been associated to any values.

For example, consider the compilation of these two events (and assume that “Hello Event”
is listed before “Goodbye Event” in the “Events” attribute):

Hello Event::
Stimulus: "Hello World"
Style: SetTag(EventStyle Geneva 12 "bold italic")

Goodbye Event::
Stimulus: "Goodbye World"
Style: GetTag(EventStyle)

“Goodbye World” will be printed in the same text style as “Hello World”; the style for
“Hello World” is recorded in the tag “EventStyle” and then retrieved for “Goodbye
World”.

Tags should be used sparingly since they depend on compilation order, and make the ex-
periment compilation process less optimizable (see “13.3.11.3 Factor Format Optimiza-
tion”, p404).
386

13.3.7 Scripting Factors
13.3.6.5 Constant Events in Factor Format

The Factor format compiler performs special optimizations to avoid unnecessary process-
ing of the script (see “13.3.11.3 Factor Format Optimization”, p404). The “Constant” at-
tribute lets you hand-optimize the compilation by specially marking events which you
know are the same from trial to trial.

When an event entry contains a “Constant” attribute with a True value, then the event de-
scription is only read once from the entry, and all trials which use that event will use the
same compilation.

Instead of True, you can specify Trial or Block in the “Constant” attribute; this indicates
that the event is constant whenever it is used through the same template or block, although
it may be different when it is used different templates or blocks.

Whenever you specify the “Constant” attribute, the Factor format compiler does not check
to make sure that the event really would be constant; it simply uses the first instance it com-
piles for all instances of the event.

13.3.7 Scripting Factors

In the graphic environment, factors are usually represented in a factor table; however, a fac-
tor table has a very complex syntax in PsyScript, so scripted experiments generally use free
factors (a.k.a. lists in the graphic environment) instead. Although factor tables can be
scripted (with significant effort), free factors become much more flexible and powerful
when combined with the expressiveness of PsyScript.

To define a free factor, include a “Factors” attribute in the experiment, group, block, or
template entry (to which the factor should be linked); its value should be a list of references
to entries representing the factors, called factor entries.

In the example of “13.3.1 Scripting the Experiment Hierarchy”, p376, the “Word Features”
factor is linked to “Superblock1”.

Each factor entry should have a “Levels” attribute with a list of references to entries repre-
senting the factor’s levels; these are level entries. The level entries will store the actual val-
ues for the factor’s fields. (Compact factors are different; see “13.3.8 Scripting Compact
Factors”, p394.)

Factor entries (for non-compact factors) should contain only a “Levels” attribute (although
the “Levels” attribute can have many different sub-attributes related to the order in which
levels are selected; see “13.3.7.3 Scripting Access Types”, p391). The fields of a factor are
not explicitly defined within a factor entry; they are implicit from values stored in the level
entries.

Level entries have one attribute for each field of the factor (the name of each attribute is the
same as the field it represents); The value of each attribute determines the field value for
the level. (Levels can also have a “Factors”; see “13.3.7.5 Scripting Nested Factors”, p393.)
387

 Part 4: Scripting Reference
In the example of “13.3.1 Scripting the Experiment Hierarchy”, p376, the “Word Features”
factor contains three levels — “Level1”, “Level2”, and “Levekl3” — and three fields —
“Color1”, “Color2”, and “Face”.

How factors are crossed for each trial depends on a number of sub-attributes of the “Fac-
tors” attribute (in the template, block, group, or experiment entry). These sub-attributes
control:

• How the factors are grouped into sets. This is set by the “Sets” sub-attribute. (See
“13.3.7.1 Scripting Factor Sets”, p388.)

• The access type of each set. This is set by the “AccessTypes” sub-attribute and other
attributes within the factor entries. (See “13.3.7.3 Scripting Access Types”, p391.)

• The crossing type of each set. This is set by the “Types” sub-attribute. (See “13.3.7.2
Scripting Crossing Types”, p389.)

• How the cells are weighted. This is controlled by the “BaseCellWeight” sub-attribute
and other attributes within the factor or level entries. (See “13.3.7.4 Scripting Cell
Weights”, p393.)

13.3.7.1 Scripting Factor Sets

Factor sets determine how factors that linked to the same entry are crossed together. Only
factors in the same set are crossed; factors in different sets are independent of each other —
i.e. levels are selected from one factor without regard to the current level in the other factor.
(Factors linked to different entries will never be crossed together because they cannot be in
the same set.)

By default, all factors which are together in the same “Factors” attribute are also in the same
set. Explicit factor sets are specified by creating a “Sets” sub-attribute of the “Factors” at-
tribute (in the template, block, group, or experiment entry owning the factors).

The “Sets” sub-attribute should contain a list of numbers — one number for each set of fac-
tors. The first number in the list is the number of factors to be crossed together in the first
set, the second number is the number of factors for the second set, and so on. (The sum of
numbers in the “Sets” sub-attribute should equal the number of factors listed in the “Fac-
tors” attribute.) Sets are then made by partitioning the list of factors in the “Factors” at-
tribute: if the first set has n factors, then the first n factors are used for the first set, and so on.

For example, in this template entry, “Factor1” and “Factor2” are in the first set, and
“Factor3”, “Factor4”, and “Factor5” are in the second set:

Template1::
Events: Event1 Event2 Event3
Factors: Factor1 Factor2 Factor3 Factor4 Factor5

Sets:> 2 3
388

13.3.7 Scripting Factors
Scripting Factor Set Names

By default, factor sets are named “1”, “2”, etc. Factor sets can be given different names us-
ing a “SetNames” sub-attribute of the “Factors” attribute; this attribute should contain a list
of names in parallel with the numbers in the “Sets” sub-attribute. Currently, the set name
is only used when defining Latin square partitions (see “ Scripting Latin Square Partitions”,
p390).

For example, we can assign the names “FirstSet” and “SecondSet” to the two sets from the
previous example:

Template1::
Events: Event1 Event2 Event3
Factors: Factor1 Factor2 Factor3 Factor4 Factor5

Sets:> 2 3
SetNames:> FirstSet SecondSet

13.3.7.2 Scripting Crossing Types

By default, factors in the same set are fully crossed, and a new crossing of levels is selected
at the beginning of each trial. These two aspects of a set (which crossings are used and when
a new crossing is selected) can be changed by specifying a crossing type for the factor set.

The crossing type of a set is configured with a “Types” sub-attribute of the “Factors” at-
tribute (in the template, block, group, or experiment entry); the values of the “Types” sub-
attribute are in parallel with the “Sets” sub-attribute (i.e. there is one value in the “Types”
list for each number in the “Sets” list).

All of the possible crossing types are described for the graphic environment in “Part 2:
Graphic Environment Reference, 5.7.2.2 Table Info Dialog”, p140; their translations to val-
ues in the “Types” sub-attribute are:

Normal – Same as Within in the graphic environment.

Between – Same as Between in the graphic environment.

Latin – Same as Latin Square in the graphic environment.

List – Same as List Access in the graphic environment.

Use – Same as Use Access in the graphic environment.

UseReset – Same as Use/Reset Access in the graphic environment.

Static – Same as Fixed in the graphic environment.
389

 Part 4: Scripting Reference
Note: The Omit crossing type may show up in scripts built by the graphic environment.
This is used to import free factors into a factor table; the graphic environment has to
add the imported factor to the standard “Factors” list for bookkeeping purposes. Fac-
tor sets with crossing type Omit are ignored.

For example, the two sets here are set to crossing types Normal and Latin:

Template1::
Events: Event1 Event2 Event3
Factors: Factor1 Factor2 Factor3 Factor4 Factor5

Sets:> 2 3
Types:> Normal Latin

Scripting Indices

The Between, Static, and Latin crossing types require index parameters; these are set
though a “Indices” sub-attribute of the “Factors” attribute. The “Indices” sub-attribute
should contain a list of number in parallel with the “Sets” (and “Types”) sub-attribute. (The
index is ignored for crossing types other than Between, Static, and Latin.)

The keyword DEFAULT can be used instead of a number as an index; this value is replaced
with the number found in a “SubjectNumber” global entry, or 1 if no such entry is found.
This feature is available because the index is commonly linked to the subject number. (See
also “Part 2: Graphic Environment Reference, 6.2 Subject Info”, p224.)

If the “Indices” sub-attribute is not found or no value is specified, a value of 1 is always
used (contrary to what you might expect, considering the meaning of the DEFAULT key-
word).

For example, we can use the DEFAULT index for the Latin set from the previous example:

Template1::
Events: Event1 Event2 Event3
Factors: Factor1 Factor2 Factor3 Factor4 Factor5

Sets:> 2 3
Types:> Normal Latin
Indices:> 0 DEFAULT

Note that we had to include an index for the Normal set; this index will be ignored, but we
had to include it to stay in parallel with the “Types” sub-attribute.

Scripting Latin Square Partitions

The Latin crossing type requires a second level of partitioning within the factor set; this
partitioning specifies which factors are fully crossed together, and which are crossed using
a Latin square subset of the full crossing. See “Part 2: Graphic Environment Reference,
Latin Squares”, p133 for a detailed explanation of these Latin square partitions.

Latin square partitions are specified through a “SetName_LatinSets” sub-attribute of the
“Factors” attribute, where SetName is the name of the factor set (which has the Latin cross-
ing type).
390

13.3.7 Scripting Factors
Unlike the “Sets” sub-attribute, a “SetName_LatinSets” sub-attribute contains a list of all
of the factors in the set with semi-colons separating factors into partitions.

For example, we can put “Factor3” and “Factor5” together, leaving “Factor4” separate
(from the previous example):

Template1::
Events: Event1 Event2 Event3
Factors: Factor1 Factor2 Factor3 Factor4 Factor5

Sets:> 2 3
Types:> Normal Latin
Indices:> 0 DEFAULT
2_LatinSets:> Factor3 Factor5 ; Factor4

The Latin square partition list also affects the access ordering of the set (see below,
“13.3.7.3 Scripting Access Types”, p391); the effect is as if the order of the factors in the
“Factors” attribute was changed to the order of the factors in the Latin square partition list
(in the “Set_LatinSets” sub-attribute).

13.3.7.3 Scripting Access Types

The order in which cells are selected from a factor set depends on the access type of the set.
The access type is configured through an “AccessTypes” sub-attribute of the “Factors” at-
tribute (in the template, block, group, or experiment entry); the values of the “Ac-
cessTypes” sub-attribute are in parallel with the “Sets” sub-attribute (i.e. there is one value
in the “AccessTypes” list for each number in the “Sets” list).

All of the possible access types are described for the graphic environment in “Part 2:
Graphic Environment Reference, 5.7.2.2 Table Info Dialog”, p140; their translations to val-
ues in the “AccessTypes” sub-attribute are:

Sequential – Same as Sequential in the interface

Random – Same as Random in the interface

RRandom – Same as Random with Replacement in the interface

CRandom – Same as Cycle Random in the interface

LRandom – Same as Least-Used Random in the interface

BRandom – Same as Blocked Random in the interface

Factor – Same as By Factor in the interface

For example, using the previous example and setting the first set’s access type CRandom and
second set’s access type to Random:

Template1::
Events: Event1 Event2 Event3
Factors: Factor1 Factor2 Factor3 Factor4 Factor5
391

 Part 4: Scripting Reference
Sets:> 2 3
Types:> Normal Latin
AccessTypes:> CRandom Random

Scripting the Factor-based Access Type

When the “AccessTypes” value for a set is Factor, then the access type is determined by
attributes in the factor entries — through the “AccessType” (singular) sub-attribute of the
“Levels” attribute in each factor entry.

You can learn about the Factor access type in two ways: by understanding the Cross()
PsyScript function (discussed in “12.12 Crossing Lists”, p347), or by translating the graph-
ic environment’s level access types (discussed in “Part 2: Graphic Environment Reference,
5.7.2.2 Table Info Dialog”, p140) to PsyScript values.

The Cross() PsyScript function is essentially used to order cell-selections; references to
the “Levels” attributes of the factor entries are passed to Cross(). Cross() is discussed in
“12.12 Crossing Lists”, p347.

The graphic environment’s level access types translate to PsyScript by mapping level ac-
cess types to: 1) values of the “AccessType” sub-attribute of a “Levels” attribute, and 2)
values of the “Crossing” sub-sub-attribute of “AccessType” sub-attribute:

Sequential – “AccessType” is Sequential, “Crossing” is Always (default)

Random – “AccessType” is Random, “Crossing” is Always (default)

Random with Replacement – “AccessType” is RRandom, “Crossing” is Always (de-
fault)

Blocked Sequential – “AccessType” is Sequential, “Crossing” is Force

Blocked Random – “AccessType” is Random, “Crossing” is Force

Cycle Random – “AccessType” is Random, “Crossing” is Independent

Least-Used Random – “AccessType” is Random, “Crossing” is Least

For example, consider the following script fragment:

Template1::
Events: Event1 Event2 Event3
Factors: Factor1 Factor2

Sets:> 2
AccessTypes:> Factor

Factor1::
Levels: Red Green Blue

AccessType:> Random
Crossing:>> Force

Factor2::
Levels: Large Medium Small

AccessType:> Sequential
392

13.3.7 Scripting Factors
“Template1” owns a factor set made up of “Factor1” and “Factor2”, where “Factor1” is
blocked random and “Factor2” is sequential. Because “Factor1” is listed first, a random
level of “Factor1” will be selected (“Red”, “Blue”, or “Green”), and then all of the levels
of “Factor2” will be used in order (“Large” then “Medium” then “Small”).

13.3.7.4 Scripting Cell Weights

The effect of cell weights on cell-selection is described in “Part 2: Graphic Environment
Reference, Cell Weights”, p133. Weights can be assigned to cells in a factor set by:

• Using the “BaseCellWeights” sub-attribute of the “Factors” attribute (in the template,
block, group, or experiment).

• Using the “Weights”, “Mult”, and “Grip” list sub-attributes on the “Levels” attribute in
a factor entry.

Values are specified in the “BaseCellWeights” sub-attribute in parallel with the “Sets” sub-
attribute (i.e. there is one value in the “BaseCellWeights” list for each number in the “Sets”
list). A “BaseCellWeight” value multiplicatively increases the weight on every cell in the
factor set. The default “BaseCellWeight” value for a set is 1.

The “Weights”, “Mult”, and “Grip” attributes assign weights to levels in a factor; when the
factor is crossed with other factors, each resulting cell is weighted according to the product
of the weights on the cell’s levels. The way which “Weights”, “Mult”, and “Grip” weight
levels is explained in “12.8.4 Weights, Multiple, Grip”, p332.

The interaction of cell weights with the set’s access type and crossing type is more fully
explained in “Part 2: Graphic Environment Reference, Cell Weights”, p133.

13.3.7.5 Scripting Nested Factors

Level entries can contain a “Factors” attribute, which has the same syntax as the “Factors”
attribute in a template, block, group, or experiment entry. Factors in a set owned by a level
care called nested factors.

Nested factors behave somewhat differently then regular factors:

• A new crossing is selected in a nested factor set only when the owning level is the cur-
rent level of its factor.

• Field values of a nested factor are available only to attributes within the owning level;
i.e., a FactorAttrib() function call can only address a nested factor from within the
nested factor’s owner.

Factors can be nested arbitrarily deeply; i.e, levels of nested factors can own other nested
factors, and so on.
393

 Part 4: Scripting Reference
13.3.8 Scripting Compact Factors

There is an alternate format for the factor entry which does use level entries; this kind of
factor is called a compact factor.

Note: The standard list object in the graphic environment is implemented as a compact fac-
tor.

The structure of a compact factor differs from a regular factor in that:

• The values in the “Levels” attribute are simply read as strings (for the level name), in-
stead of references to level entries.

• There is an “IsList” attribute in the factor entry, which must have the value True.

• There is one attribute of the factor entry for each field of the factor. Each of these at-
tributes contains values in parallel with the “Levels” attribute (i.e., there is one value
in the “Levels” list for each number in the “Levels” list).

For example, the “Word Features” factor from the example in “13.3.1 Scripting the Exper-
iment Hierarchy”, p376 could be implemented as a compact factor:

Word Features::
IsList: True
Levels: Level1 Level2 Level3
Color1: Red Green Blue
Color2: Cyan Magenta Yellow
Face: "" "Bold" "Italic"

If a single field value can have more than one token, a special format must be used for that
field’s attribute:

• The field attribute must have a “Multiple” sub-attribute with the value True.

• Each value in the content of the attribute should be a reference; the value of the field for
each level will be the content of the referenced entry. (Usually, this is implemented
by placing square brackets ([]) around each level’s values, thus using inline entries;
see also “12.9 Inline Entries”, p335.)

For example, suppose “Word Features” had a “Style” field instead of a “Face” field:

Word Features::
IsList: True
Levels: Level1 Level2 Level3
Color1: Red Green Blue
Color2: Cyan Magenta Yellow
Style: [Geneva 12 ""] [Geneva 12 "Bold"] [Geneva 12 "Italic"]

Multiple: True

Nested factors cannot be used with the levels of a compact factor.
394

13.3.9 Scripting Factor Tables
13.3.9 Scripting Factor Tables

Factor tables are a common way of implementing factors in the graphic environment. In
PsyScript, however, their implementation becomes very complex; usually, free factors are
used for scripting, instead (see “13.3.7 Scripting Factors”, p387 and “13.3.8 Scripting
Compact Factors”, p394).

A factor table set entry has the same format as a template entry, with the addition of “Fac-
torTable” and “CrossingValues” attributes. The “FactorTable” attribute defines the struc-
ture of the included tables, and the “CrossingValue” attribute stores all of the attribute
values dependent on the tables.

Note that a factor table set entry does not look at all like a factor entry. In fact, a factor table
set entry can include free factors using the “Factors” attribute, just like a template entry. In
the experiment hierarchy, factor tables entries are used in the place of template entries. (For
example, they are connected to an owner object though the “Templates” attribute.)

13.3.9.1 Scripting Factor Table Structures

The value of the “FactorTable” attribute has the same form as a “Factors” attribute, with
the exception that the factors which are listed are not usually references to separate factor
entries; instead, most factors in a table are built-in factors; each built-in factor is defined
through a sub-attribute of the “FactorTable” attribute.

Built-in factors are distinguished from free factors through a “FactTypes” sub-attribute of
the “FactorTable” attribute. The “FactType” sub-attribute has values in parallel with the
content of the “FactorTable” attribute (i.e., there is one value in the “FactType” list for each
number in the “FactorTable” list). Each value in “FactTypes” should be one of:

External – the corresponding item in the “FactorTable” list is a free factor imported into
the table (i.e., the factor name in the “FactorTable” attribute is a reference to a factor
entry).

Normal – the corresponding item in the “FactorTable” list is a built-in table factor (i.e.,
the factor is described in a sub-attribute of the “FactorTable” attribute). This is the de-
fault.

For each built-in factor, there should be a sub-attribute of “FactorTable” (the factor’s name
is used for the sub-attribute’s name). The value of each of these sub-attributes should be a
list the factor’s levels. (These level names never refer to separate level entries.)

For example, here is a factor table entry with two factors, “Color” and “Face”:

Hello Table::
Events: "Hello Event"
FactorTable: Color Face

FactTypes:> Normal Normal
Color:> Red Green Blue
Face:> Plain Bold Italic

CrossingValues:
…

395

 Part 4: Scripting Reference
There are no fields or values associated to built-in factors; the way in which other values
depend on the factor is encoded in the “CrossingValues” attribute of the factor table entry
(see below, “13.3.9.2 Scripting Factor Table Crossing Values”, p396).

Like the “Factors” attribute, the “FactorTable” attribute can specify a number of distinct
factor sets. All of the sub-attributes which apply to the “Factors” attribute — for defining
factor sets and setting crossing types, access types, etc. — also apply to the “Factor Table”
attribute. (See “13.3.7 Scripting Factors”, p387.)

Scripting Nested Factors in a Factor Table

Although the levels of a built-in factor are never represented by separate level entries, fac-
tor tables can be nested within built-in levels.

To do this, the sub-attribute for the built-in factor should have a sub-sub-attribute with the
same name as the nesting level; this sub-sub-attribute has the same format as the “FactorT-
able” attribute; in this way, tables can be nested recursively to any depth.

For example, we could nest a “Shade” factor within the “Red” level of the “Color” factor
from the previous example:

Hello Table::
Events: "Hello Event"
FactorTable: Color Face

FactTypes:> Normal Normal
Color:> Red Green Blue

Red:>> Shade
FactTypes:>>> Normal
Shade:>>> Standard Pink

Face:> Plain Bold Italic
CrossingValues:

…

A new crossing for a nested factor is only selected when the owning level is current (as with
nested factors of free factor sets).

13.3.9.2 Scripting Factor Table Crossing Values

When free factor sets are used, the normal attributes in the template, event, and sub-stimuli
entry reference the factors by using FactorAttrib() (see “13.3.6.1 Factoring Event At-
tributes”, p384). When a factor table is used, however, a different method is used for link-
ing an attribute to its table-dependent value.

All of the attribute values which are determined by the table are stored in the “CrossingVal-
ue” attribute of the factor table entry. There is no explicit link to a factor within the tem-
plate, event, or sub-stimulus entry to which the attribute belongs.

For each entry linked to the factor table set entry, there is a sub-attribute of the “Cross-
ingValue” attribute. This sub-attribute has the same name as the entry it represents (i.e., the
table set entry itself as a template or an event or sub-stimulus entry owned by the template).
Within each of these sub-attributes, the attribute structure of the “actual” entry is mimicked
by sub-sub-attributes. Finally, the values for the attribute in a particular cell are listed as
396

13.3.9 Scripting Factor Tables
sub-sub-sub-attributes; these sub-sub-sub-attributes are the value attributes, and the cell
combination that owns the value is encoded in this value attribute’s name.

For example, here is a factor table set entry which owns a single event entry. The color of
the event stimulus depends on the cell which is current in the factor table:

Hello Table::
Events: "Hello Event"
FactorTable: Color Face

Color:>
Levels:>> Red Green Blue

Face:>
Levels:>> Plain Bold Italic

CrossingValues:
"Hello Table":>
"Hello Event":>

Stimulus:>>
Color:>>

1_Red___:>>> Red
1_Green___:>>> Green
1_Blue___:>>> Blue

Hello Event::
Stimulus: "Hello World"

The value attributes “1_Red___”, “1_Green___”, and “1_Blue___” contain final values for
the “Color” attribute of the “Hello Event” entry; these values apply when different cells are
currently selected from the “Color” x “Face” table (as described in the next section).

Value Attribute Names

A single value attribute can correspond to one cell or to many. However, for each factor, it
must correspond to either all of the levels of the factor, or just one. (This means that the
cells represented by a value attribute must form a “hyper-column” in the factor table.)

A value attribute’s name starts with a table name (factor set name; see “13.3.7.1 Scripting
Factor Sets”, p388). The rest of the name is built by combining the names of the levels
which determine the value’s cell(s). When the value applies to all of the levels in a factor,
an underscore (“_”) is used as a placeholder for that factor in the value attribute name. All
of the level names and placeholders are concatenated together using the underscore as a
separator. A trailing underscore is always present

Thus, the value attribute name “1_Red____” is derived from using the “Red” level from
the “Color” factor, and the placeholder “_” for the “Face” factor. Extra underscores are in-
terspersed as separators and the set name “1” is used to give “1_Red___” (three trailing un-
derscores). This names the two cells in the “Red” column of the factor table.

An attribute value that only applied when both “Red” and “Bold” are current (the cell in
“Red”’s column and “Bold”’s row) would have the name “1_Red_Bold_”.

The order in which the level names are concatenated must match the order in which their
factors are listed in the “FactorTable” attribute. This is why “Red”, “Green”, and “Blue”
always appear before “Bold” or “Italic’ in the current set of examples.
397

 Part 4: Scripting Reference
If an attribute value does not depend on any factor — i.e., it is the default for all cells — it
is usually stored in the regular attribute location (within the event entry, for example, in-
stead of in the hierarchy below “CrossingValues”); however, it can also be specified with
the other table values by using the cell name “_”. A set name followed by underscores for
all of the factors is not allowed.

Multiple Factor Tables

Each value attribute only applies to a single table within a factor table set. Consider this
example:

Hello Table::
Events: "Hello Event"
FactorTable: Color Face Size Font

Sets:> 2 2
Color:> Red Green Blue
Face:> Plain Bold Italic
Size:> 12 24
Font:> Pretty Ugly

CrossingValues:
"Hello Table":>
"Hello Event":>

Stimulus:>>
Color:>>

1_Red___:>>> Red
1_Green___:>>> Green
1_Blue___:>>> Blue

Font:>>
2___Pretty_:>>> Geneva
2___Ugly_:>>> Chicago

Hello Event::
Stimulus: "Hello World"

This factor table set entry contains two factor tables: “Color” x “Face” and “Size” x “Font”.
These tables are specified the same way that separate factor sets are specified: by using the
“Sets” sub-attribute (see “13.3.7.1 Scripting Factor Sets”, p388).

In the “CrossingValues” attribute, there are value attributes with names like “1_Red___”
and “2___Pretty_”. No value attribute could have a name like “?_Red_Pretty_”, because
the “Color” and “Font” attributes are not crossed with each other (i.e., they are not in the
same factor table).

Factor Table Value-Finding Algorithm

Using a factor table, it is possible that more than one value could be specified for the same
cell. For example, consider this factor table:

Hello Table::
Events: "Hello Event"
FactorTable: Color Face

Color:> Red Green Blue
Face:> Plain Bold Italic

CrossingValues:
"Hello Table":>
"Hello Event":>

Stimulus:>>
398

13.3.9 Scripting Factor Tables
Color:>>
1_Red___:>>> Red
1_Blue___:>>> Blue
1_Blue_Bold_:>>> Purple
1____Italic:>>> Yellow

Hello Event::
Stimulus: "Hello World"
Color: Black

When we are in the “Blue”-“Bold” cell, there are three possible values that could apply for
the color of the stimulus: Blue from the “1_Blue___” value attribute, Purple from the
“1_Blue_Bold_” value attribute, and “Black” from the “Color” attribute in “Hello Event”.

In such cases, the most specific attribute value is used. The most specific value is the one
that depends on the level-selection of the greatest number of factors (as opposed to default-
ing across all levels in factors). Thus, Purple value will be used because “1_Blue_Bold_”
is constrained by levels in two factors, while “1_Blue___” depends on level-selection in
only one factor and “Color” in “Hello Event” depends on zero factors.

This means that you can supply defaults for large collections of cells, and then refine the
value for smaller collections. In most cases, a default value is put in the template, event, or
sub-stimulus entry and then it is overridden in certain cells by value attributes.

In some cases, there may be no most specific attribute. For example, there is no most spe-
cific color in the previous example for the “Blue” x “Italic” cell; both “1_Blue___” and
“1____Italic” depend on one factor. In this case, the result is undefined (one of the values
will be picked “randomly”). Such a situation generally implies an incorrect or incomplete
design.

13.3.9.3 Nested Factor Values in a Factor Table

When a value attribute name contains a level that owns nested tables, then an additional
string must be inserted into the value attribute name. This additional string specifies a cell
in the nested table in the normal way; it is inserted in the value attribute name right after
the owning level’s name.

For example, consider this factor table:

Hello Table::
Events: "Hello Event"
FactorTable: Color Face

FactTypes:> Normal Normal
Color:> Red Green Blue

Red:>> Shade
FactTypes:>>> Normal
Shade:>>> Standard Pink

Face:> Plain Bold Italic
CrossingValues:

"Hello Table":>
"Hello Event":>

Stimulus:>>
Color:>>

1_Red_____:>>> Red
399

 Part 4: Scripting Reference
1_Red_Pink___:>>> Magenta
1_Green___:>>> Green
1_Blue___:>>> Blue

The “1_Red_____” (five trailing underscores) value attribute applies when “Red” is the
current level of “Color” regardless of the cell selected in “Shade”. “1_Red_Pink___” (three
trailing underscores) applies only when “Red” is the current level of “Color” and “Pink” is
the current level of “Shade”.

13.3.9.4 Scripting the Factor Set Scope

When a factor table set is linked to multiple owning entries, its tables have an independent
access history for each owner. Further, when there is more than one “path” of links back to
the experiment entry, each path produces an independent table access history. This property
— called the scope of a factor set — is explained more fully in “Part 2: Graphic Environ-
ment Reference, Factor Set Scope”, p136.

The scope of a factor set in a table can be controlled by using the “SetScopes” sub-attribute
of the “Factors” attribute (in the template, block, group, or experiment entry); values are
specified in the “SetScopes” sub-attribute in parallel with the “Sets” sub-attribute (i.e. there
is one value in the “SetScopes” list for each number in the “Sets” list). The “SetScopes”
attribute does not work for sets of free factors.

The possible values for the “SetScopes” attribute are:

Template – This is the default value. Every set from a different entry or different path
keeps an independent access history.

Block – The access history is common for every set (containing the same factors) with a
path that goes through this set’s block (the lowest-level block, when multiple levels
of blocks are used).

Group – The access history is common for every set (containing the same factors) with a
path that goes through this set’s group.

For example, in this script fragment, “Factor1” is crossed with “Factor2” in trials for both
“Block1” and “Block2”, but the access histories are different:

Experiment::
…
Blocks: Block1 Block2
…

Block1::
Templates: Table1
…

Block2::
Templates: Table1
…

Table1::
…

400

13.3.10 Scripting Factor Format Trial Counts
FactorTable: Factor1 Factor2
Sets:> 2

…

The access histories can be merged by changing “Table1”:

Table1::
…
FactorTable: Factor1 Factor2

Sets:> 2
SetScopes:> Group

…

13.3.10 Scripting Factor Format Trial Counts

The intricacies of trial counting in Factor format are explained in “Part 2: Graphic Environ-
ment Reference, 5.12.2 Trial Counting”, p211. Here, we specify which attributes are used
to hold the numbers described there.

• If an experiment has groups, no trial counting attributes appear in the experiment entry.

• When an experiment, group, or superblock entry owns blocks, it can have the following
attributes:

• “Cycles” – This attribute specifies how many times to pass through the en-
tire list of blocks. The default is 1.

• “PracticeCycles” – Like “Cycles”, but this attribute will override “Cycles”
when the experiment is executed in Practice mode.

• “ScaleBlocks” – Specifies the scaling factor to be applied to scalable
counts in the owned blocks.

• “PracticeScaleBlocks” – Like “ScaleBlocks”, but this attribute will over-
ride “ScaleBlocks” when the experiment is executed in Practice mode.

• Superblock entries can have a “FixedCycles” (and “PracticeFixedCycles”) attribute in-
stead of a “Cycles” attribute, to make the number of passes through its blocks unscal-
able. (I.e., a “ScaleBlocks” attribute in an entry owning the superblock will have no
effect.)

• When an experiment, group, or block entry owns trials or events, it can have the follow-
ing attributes:

• “Cycles” – This attribute specifies how many trials to execute in the ex-
periment or block. The default is 1. In a block entry, this value can be
scaled by a “ScaleBlocks” attribute in the block’s owner.

• “PracticeCycles” – Like “Cycles”, but this attribute will override “Cycles”
when the experiment is executed in Practice mode.
401

 Part 4: Scripting Reference
• “BlockDuration” – This attribute can be used instead of “Cycles”; it spec-
ifies how long trials should be executed (in seconds). When a trial ends
after this many seconds, no more trials will be executed within the ex-
periment or block. The “Cycles” attribute overrides this attribute. Block
durations are never scaled.

• “PracticeBlockDuration” – Like “BlockDuration”, but this attribute will
override “BlockDuration” when the experiment is executed in Practice
mode. “PracticeCycles” overrides this attribute.

• Block entries which own templates or event can have a “FixedCycles” (and “Practice-
FixedCycles”) attribute instead of a “Cycles” attribute, to make the number of trials
to be executed in the block unscalable. (I.e., a “ScaleBlocks” attribute in an entry
owning the block will have no effect.)

13.3.11 Technical Details of Factor Format Scripting

13.3.11.1 Structural vs. Non-structural Attributes

In discussing the use of special attribute tools — such as FactorAttrib(), BlockAt-
trib(), and inheritance — it is sometimes necessary to distinguish between structural at-
tributes and non-structural attributes. The effective difference is that these tools cannot be
used with structural attributes, only with non-structural attributes.

Structural attributes define the structure of the experiment as a whole; this structure must
be read in from the script before the special attribute tools can be used for other attributes.
The following attributes are structural:

• All standard experiment, block, and group attributes, including the “Groups”, “Blocks”,
“Templates”, and “Factors” attributes.

• The “Factors” attributes of a template entry.

• The “FactorTable” attribute of a factor table set entry, and any attribute below it.

• Any factor attributes, except field-value attributes in a compact factor.

• The “Factors” attribute of a level entry (for nested factors).

• Any list-access specifications, such as “AccessType”.

• Any factor set attributes, including “Sets”, “Types”, and “AccessTypes”, etc.

• Any trial counting attributes.

All other attributes in an experiment definition are non-structural attributes. This includes
the standard trial attributes, all event and stimulus attributes, and factor field values.
402

13.3.11 Technical Details of Factor Format Scripting
The “Events”, “Stimulus”, and “Stimuli” attributes are special in that they can be factored
or linked to template, block, or group attributes, but they cannot be inherited.

13.3.11.2 Attribute Inheritance in Factor Format

Attribute inheritance for Factor format is explained in “Part 2: Graphic Environment Ref-
erence, 5.8.1.1 Attribute Inheritance”, p150. For the most part, there is nothing special that
needs to be said about inheritance in the translation to PsyScript. However, with respect to
the interaction of FactorAttrib() et al. and inheritance, Factor format actually allows
more flexibility than the graphic environment.

In the graphic environment, you are never allowed to link to a list with Vary by List when
the list is not connected to the object or not in all of the object’s paths back to the experi-
ment object (see “Part 2: Graphic Environment Reference, Linking Lists to the Hierarchy”,
p135). This insures that no run-time errors will occur due to an out-of-context reference to
a factor.

However, it is possible for such a reference to be made which does not cause any run-time
errors; consider this example script fragment:

Block1::
Templates: "Hello Template" "Goodbye Template"
Color: FactorAttrib(WordColors Color)

Hello Template::
Factors: WordColors
Events: "Hello Event"

Hello Event::
Stimulus: "Hello World"

Goodbye Template::
Events: "Goodbye Event"

Goodbye Event::
Stimulus: "Goodbye World"
Color: Black

This script fragment could not have been generated by the graphic environment, because
“Block1” references the “WordColors” factor, but the “WordColors” factor is below
“Block1” in the hierarchy. The “WordColors” factor is not always available during
“Block1” (specifically, when “Goodbye Template” is used for the trial).

However, this is a perfectly legal script. The reason is that “Color” is evaluated only when
it is inherited by “Hello Event”, in which case the “WordColors” factor is available through
“Hello Template”.

Similar cases can happen with other interactions among inheritance, TemplateAttrib(),
BlockAttrib(), GroupAttrib(), and FactorAttrib(). Since an attribute will only be
evaluated when it is used, an expression is valid when it valid in all states for which it is
relevant.
403

 Part 4: Scripting Reference
When the TemplateAttrib(), BlockAttrib(), or GroupAttrib() function call is used,
the attribute that is referenced must be defined directly in the template, block, or group; it
cannot be inherited.

13.3.11.3 Factor Format Optimization

The Factor format compiler performs special optimizations to avoid unnecessary process-
ing of the script. The degree to which the compiler tries to optimize can be controlled
through the “Optimization” experiment attribute; it can have any of the following values:

False – No optimizations are performed. (This is the same as No optimization in the
graphic environment.)

Constant – This is the default. Only events which are marked as constant will be opti-
mized (see “13.3.6.5 Constant Events in Factor Format”, p387). (This is the same as
Optimize constant-declared events only in the graphic environment.)

Standard – Full optimization. (This is the same as Standard optimization in the
graphic environment.) A compiled event can be reused when:

• The script has not been modified (during compilation) in a way which can
affect any value read for the event, and

• The factors which are used by the event’s attributes (not counting the
“Stimulus” attribute) have the same current levels, and

• The same hierarchical path was used to reach the event (i.e., the same
blocks and template are used), and

• No Access(), etc. list-based function calls are made when compiling the
event, and

• No tag values are set or used, through SetTag() or GetTag() function
calls.

Optimized events can be re-used even if the stimulus changes (it is the non-“Stimu-
lus” attributes which are optimized).

13.3.11.4 Factor Format Compilation Order

The elements of a Factor format script are compiled in the following order:

• The experiment structure is read, starting with the experiment entry and working down
to the templates. Factor sets are read at each hierarchical level along the way. The hi-
erarchy is followed depth-first in the order which links are listed in the linking at-
tributes (“Groups”, “Blocks”, “Factors”, etc.). Groups which are not used are not
compiled.

• The experiment attributes are read.
404

13.3.12 Summary of Factor Format
• For each trial:

• The block and template are selected, and then the crossing is selected for
all of the relevant factor sets.

• The trial attributes are read.

• All of the event’s stimuli are read.

• For each event, the stimulus attributes are read, and then the event at-
tributes.

• The trial is executed and trial variables may be written back to the script.

13.3.12 Summary of Factor Format

The following is a brief summary of the structure of a Factor format experiment. First, the
different entry types are listed, sometimes referring to groups of object attributes (e.g., Ex-
perimentAttribs) or ownership attributes (e.g., OwnedGroupsDescription); afterwards,
the object and ownership attribute groups are detailed.

13.3.12.1 Factor Format Entry Types Summary

Experiment Entry Definition

Experiment1::
ExperimentAttribs
TrialAttribs
EventAttribs

OwnedGroupsDescription
or

OwnedBlocksDescription
or

OwnedTemplatesDescription
or

CycledOwnedEventsDescription

OwnedFactorsDescription

Group Entry Definition

Group1::
ExperimentAttribs
TrialAttribs
EventAttribs

OwnedGroupsDescription
or

OwnedBlocksDescription
or

OwnedTemplatesDescription
or
405

 Part 4: Scripting Reference
OwnedCycledEventsDescription

OwnedFactorsDescription

Block Entry Definition

Block1::
TrialAttribs
EventAttribs

OwnedBlocksDescription
or

OwnedTemplatesDescription
or

OwnedCycledEventsDescription

OwnedFactorsDescription

Template Entry Definition

Template1::
TrialAttribs
EventAttribs

OwnedEventsDescription

OwnedFactorsDescription

Factor Table Entry Definition

Table1::
FactorTableDesription

CrossingValues:
owned entry name>:>

attribute of owned entry:>>
name of cell of attribute dependence:>>>
…

…
…

TrialAttribs
EventAttribs

OwnedEventsDescription

OwnedFactorsDescription

Event Entry Definition

Event1::
Stimulus: …

or
Stimuli: list of stimulus entries

Constant: True, Block, Trial, or False (defaults to False)

OwnedEventsAttribs
406

13.3.12 Summary of Factor Format
Factor Entry Definition

Factor1::
Levels: list of level entries or level names (in compact form)

AccessType:> access type
Crossing:>> always, force, indep, or least

IsList: True or False

other attribs for fields (in compact form)

Level Entry Definition

Level1::
field attributes

OwnedFactorsDescription (for nested factors)

13.3.12.2 Factor Format Summary Object Attribute Groups

ExperimentAttribs
Title: …
Format: …
InputDevices: …
Timer: …
Flags: …
DataFile: …
Instructions: …
DataHeader: …
DataFields: …
RunLabel: …
DataRecordSeparator: …
Resources: …
NumTrialsPerRest or NumRestPeriods: …
RestPeriod: …
Precompile: …
ExpVariables: …
DataVariables: …
Instructions: …
Debrief: …
Reset: …
RunMode: …
Optimization: …
other device type-specific attributes

TrialAttribs
ConditionName: <condition name template>
MinLoadTime: …
TrialActions: …

EventAttribs
EventName: …
EventType: …
EventTag: …
Duration: …
StartRef: …
EventActions: …
other stimulus type-specific attributes
407

 Part 4: Scripting Reference
13.3.12.3 Factor Format Summary Description Attribute Groups

OwnedGroupsDescription
Groups: current group entry name

Current:> index of current group

OwnedBlocksDescription
Blocks: list of block entries

AccessType:> access type
Cycles or FixedCycles: number of repetitions of the block list
ScaleBlocks: number of repetitions of the block

OwnedFactorsDescription
Factors: list of factor entries

FactorSetSubattributes

FactorSetSubattributes
Sets:> set counts
SetNames:> names of sets
Types:> crossing type for each set
Indices:> indices used by some crossing types
SetName_LatinSets:> for each set with Latin crossing type
AccessTypes:> access type for each set
SetScopes:> Template, Block, or Group for each set
BaseCellWeights:> multiplying weight for all cells in set

FactorTableDesription
FactorTable:

FactorSetSubattributes
FactTypes:> list of Normal or External for each factor
built-in factor name:>

Levels:>> levels for built-in
built-in level name:

FactorTableDesription (for nested)
…

…

OwnedTemplatesDescription
Cycles: exact number of trials for block

or
FixedCycles: scalable number of trials for block

or
BlockDuration: number of seconds to run trials

Templates: list of template and factor table entries
AccessType:> access type

OwnedEventsDescription
ConditionName: condition name template
Events: list of event entries

CycledOwnedEventsDescription
Cycles: exact number of trials for block

or
FixedCycles: scalable number of trials for block

EventDescription
408

13.4 Complex Attribute Formats
13.4 Complex Attribute Formats

13.4.1 Action Lists

Actions are explained in “Part 2: Graphic Environment Reference, 5.9 Conditions and Ac-
tions”, p192. Although this description is geared towards Factor format and the graphic en-
vironment, the ideas are the same regardless of format.

Trial actions are specified in an “TrialActions” attribute; the placement of the “TrialAc-
tions” attribute depends on the script format that is used; see “13.2.1.1 Trial Attributes in
StimList Format”, p370 and “13.3.5 Scripting Templates”, p381.

Event actions are specified in an “EventActions” attribute; the placement of the “EventAc-
tions” attribute depends on the script format that is used; see “13.2.1 StimList Format”,
p368, “13.2.2 EventList Format”, p371, and “13.3.6 Scripting Events”, p383.

13.4.1.1 Specifying Action Lists

The value of an “EventActions” or “TrialActions” attribute consists of a list of conditions-
actions pairs. Each pair consists of a list of conditions — such as input device states — and
a list of actions that will be triggered when/if any of these conditions becomes true.

A condition is described by an inline entry named the same as the condition type — Start,
End, When, ScriptWhen, or an input device name — and with the condition parameters as
its content. (Such an inline entry has the following form: a condition type followed — with-
out spaces — by square brackets containing the condition parameters. See also “12.9 Inline
Entries”, p335.) The format of the parameters depends on the condition type; see “14.3
Conditions and Inputs”, p437 for parameters of each type.

An action is described by an inline entry named after the action name and with the action
parameters as its content. (Such an inline entry has the following form: an action name fol-
lowed — without spaces — by square brackets containing the action parameters. See also
“12.9 Inline Entries”, p335.) The list of all possible actions and the parameters that each
takes are listed in “14.1 Actions Reference”, p419.

A condition-action pair is made up of a reference for the list of conditions, an equals-great-
er-than arrow (“=>”), and a reference for the list of actions. Usually, inline entries are used
to contain the conditions and actions list, so that the condition-action pair looks like this:

[Condition1[params…] Condition2[params…] …] =>
[Action1[params…] Action2[params…] …]

Within

For example, this event entry specifies that “correct beep” should be sounded when the
mouse button is clicked, and “incorrect beep” should be sounded when a key is pressed:
409

 Part 4: Scripting Reference
Hello Event::
Stimulus: "Hello World"
EventActions: [Mouse[Clicked]] => [Beep["correct beep"]]

 [Key[Any]] => [Beep["incorrect beep"]]

When the graphic environment creates condition-action pairs, it names the conditions ref-
erence “Conditions” and actions reference “Actions”, like this:

Hello Event::
Stimulus: "Hello World"
EventActions: Coonditions[Mouse[Clicked]] => Actions[Beep[]]

These names are ignored, however; they simply provide extra guidance for someone look-
ing at the script.

13.4.1.2 Instances and ActiveUntil

The instances and active until settings of an action are described in “Part 2: Graphic Envi-
ronment Reference, 5.9 Conditions and Actions”, p192. The instances setting is defined by
using an “Instances” attribute in the action-describing inline entry. Similarly, the active un-
til setting is defined by using an “ActiveUntil” attribute in the action-describing inline en-
try.

The value of the “Instances” attribute is a number. The value of “ActiveUntil” should be
one of:

• Blank; this implies the default, which is to remain active until the end of the posting
event. (This is the same as End of This Event in the graphic environment)

• The name of any event; the action will remain active until the end of that event. (This is
the same as End of [Event] in the graphic environment)

• The TRIAL_END keyword; the action will remain active until the end of the trial. (This
is the same as End of Trial in the graphic environment)

• the FORCE_ONE keyword; the action will remain active until at least one instance of the
action are triggered. (This is the same as At Least One Instance in the graphic en-
vironment).

• the FORCE_ALL keyword; the action will remain active until all of the allowed instances
of the action are triggered. (This is the same as All Instances in the graphic environ-
ment)

For example, we can force the subject to click the mouse five times for five beeps in “Hello
Event”:

Hello Event::
Stimulus: "Hello World"
EventActions: [Mouse[Clicked]] =>

 [Beep["correct beep"
 Instances: 5 ActiveUntil: FORCE_ALL]]
410

13.4.2 Start Reference
Because they are attributes in the inline entry, both “Instances” and “ActiveUntil” must
come after the regular parameters, but their relative ordering does not matter.

13.4.2 Start Reference

13.4.2.1 Start Reference Format

A start reference defines a point of time during the execution of a trial. Usually, a start ref-
erence is used in the “StartRef” event attribute to specify the starting time of an event; how-
ever, start references are also used by various built-in actions.

A start reference will have on of the following forms:

• "msecs after start of event"

• "msecs after end of event"

• "msecs after start"

where msecs is a number representing a time in milliseconds and event is the name of an
event in the trial (see “13.2.4 StimList/EventList Event Names”, p373 or “13.3.6 Scripting
Events”, p383). A start reference should be quoted in the script, since it always contains
spaces. (A “StartRef” attribute can be read even if the start references is not quoted, but it
will be incompatible with the graphic environment.)

An event is allowed to have a “StartRef” value relative to itself, but it will never be execut-
ed unless it is started with a RunEvent[] action (see “ RunEvent[Event]”, p419).

13.4.3 Duration

Event durations are described in “Part 2: Graphic Environment Reference, Duration”,
p179. In the script, an event duration is assigned through the “Duration” attribute; it’s value
should have one of the following forms:

• msecs, where msecs is a number representing a fixed duration in milliseconds

• Self_Terminate

• Trial_End

• A conditions list — specified the same as a list of action conditions (see “13.4.1.1 Spec-
ifying Action Lists”, p409) — plus an optional Time[msecs] specification for a tim-
eout.

For example, this “Hello Event” lasts until the mouse button is clicked, or until five seconds
pass:
411

 Part 4: Scripting Reference
Hello Event::
Stimulus: "Hello World"
Duration: Mouse[Click] Time[5000]

13.5 Trial Manager Variables

Trial Manager Variables (or trial variables) are named variables defined by entries in the
script. Trial variable values can be used and changed by the Trial Manager while it is exe-
cuting an experiment (independently of the compiling process). Trial variables allow data
collected during the run of an experiment to be written to the script and used in subsequent
trials or later runs of the experiment. See also “Part 2: Graphic Environment Reference,
5.10 Trial Manager Variables”, p205.

13.5.1 Declaring Variables

Before the Trial Manager can use a variable, it must be declared in the script. The declara-
tion tells the Trial Manager the type, initial value, and update type of the variable.

13.5.1.1 Variable Types

Each variable has a type, which the Trial Manager uses to determine how to interpret the
value of the variable. There are three built-in primitive types:

Integer: an integer in the range -215 to 215– 1

Long_integer: an integer in the range -231 to 231– 1

Float: a rational number

These types can be assigned to a variable, or they can be used to define any more compli-
cated composite types, as described in “13.5.1.3 Composite Types”, p413. There are other
predefined types which are composites; these are described in “ Built-in Composite Types”,
p416.

13.5.1.2 Variable Declaration Entries

A variable is defined through an entry of the form

VariableName:: value
Type: type
Init: initial-value
Update: update-between

Where:

VariableName is the name of the variable.
412

13.5.1 Declaring Variables
value is the current value(s) of the variable. When the variable definition is read in, this
value is used for the variable’s initial value, or it can be overridden with the “Init”
attribute. If the value of “Update” is True, the current value of the variable is written
here after each trial is executed. The variable value is always updated at the end of an
experiment run.

type is the type of the variable — one of the built-in types, Array for an array (see
“13.5.1.3 Composite Types”, p413), Record for a record (see “13.5.1.3 Composite
Types”, p413), or a type defined in the script (see “13.5.1.4 Type Declarations”,
p415).

initial-value is a value(s) to which the variable is set at the beginning of each exper-
iment run. If the “Init” attribute is omitted, value is used instead. See also “ Initializ-
ing Composite Types”, p414.

update-between is True if the variable value should be written back to the script after
each trial is executed.

VariableName and type are required; the rest of the form is optional.

For each variable, a reference to its defining entry must be placed in the “ExpVariables”
experiment attribute. Variable definitions which are not referenced in the “ExpVariables”
attribute will be ignored.

13.5.1.3 Composite Types

By combining primitive types, more complicated variable types can be defined in the
script; these are called composite types. The two kinds of composite types are arrays and
records.

An array is a numbered list of variables having the same data type; any item of the list —
or element — can be retrieved using its position — or index — in the list.

A record is a collection of variables of several different types. Each part of a record —
called a field — is identified by a name.

Array variables are defined by using the Array keyword in the “Type” attribute of the vari-
able’s definition. The “Type” attribute should then have sub-attributes “Type” and
“Count”, which specify the type of the elements of the array and the number of elements of
the array, respectively.

The following example specifies a variable called “MyArray” which is an array of 10 inte-
gers.

MyArray::
Type: Array

Type:> Integer
Count:> 10

Record variables are defined by using the Record keyword in the “Type” attribute of the
variable’s definition. The “Type” attribute should then have one sub-attribute for each field
413

 Part 4: Scripting Reference
in the record; the name of the sub-attribute should be the same as the name of the field, and
the value of the attribute should be the field’s type.

The following example defines a record variable called “MyRecord”, with fields “I”, “N”,
and “X” whose types are Integer, Long_Integer, and Float, respectively.

MyRecord::
Type: Record

I:> Integer
N:> Long_Integer
X:> Float

It is possible to compose variables of arbitrary complexity in this manner. Array elements
can be other arrays or records, and record fields can be arrays or other records. To create
multi-dimensional arrays (matrices) simply create arrays of arrays, as many levels deep as
necessary.

In this example, “ComplicatedVar” is a 3x4 matrix of records, where each record contains
an array and another record.

ComplicatedVar::
Type: Array

Count:> 3
Type:> Array

Count:>> 4
Type:>> Record

AField:>>> Array
Count:>>>> 10
Type:>>>> Integer

RField:>>> Record
X:>>>> Float
Y:>>>> Long_Integer

Initializing Composite Types

To initialize a scalar value, you place the value in the content of the variable declaration
entry or in the “Init” attribute. With composite types, however, there is more than one value
which has to be assigned, so the syntax is more complex.

Arrays of scalars are initial by simply specifying a list of values instead of a single value.

Records are initialized by giving attributes to the variable declaration entry or sub-at-
tributes to the “Init” attribute, where each field is represented by an attribute with its name
and the value for the field is in the attribute’s content.

Arrays of non-scalars (records or other arrays) are specified by a list of references; each ref-
erence should contain initialization values in the format appropriate to the item type.

For example, “Coordinates” is a record with X and Y positions, initialized to (0,1):

Coordinate::
Type: Record

X: Integer
Y: Integer

X: 0
Y: 1
414

13.5.1 Declaring Variables
In this example, “CoordinateArray” is an array of X-Y coordinates; it is initialized to the
list (0,1), (2,3), (3,4) using the “Init” attribute:

CoordinateArray::
Type: Array

Count:> 3
Type:> Record

X:>> Integer
Y:>> Integer

Init: [X:0 Y:1] [X:2 Y:3] [X:3 Y:4]

In this example, scripting tricks are used to initialize the 10x10x10 array “BigArray” to all
1’s:

BigArray::
Type: Array

Count:> 10
Type:> Array

Count:>> 10
Type:>> Array

Count:>>> 10
Type: Integer

Init: 10 ~ [10 ~ [10 ~ 1]]

13.5.1.4 Type Declarations

It is possible to define your own composite types, so that variable definitions can be given
a simple type name, rather than given a complete composite definition. This is especially
useful when you have multiple variables with the same composite type.

The format of a type declaration is the same as the format of a variable declaration, without
the value, update state, or initialization information (i.e., without content values, the “Up-
date” attribute, or the “Init” attribute). Type declaration entries must be referenced in an
“ExpTypes” experiment attribute.

For example, suppose in your script you have a 10x10x10 matrix of integers, and several
variables that keep track of positions in that matrix by keeping x, y, and z coordinates. Sec-
tions of your script could look like this:

MyExperiment::
.
.
.

ExpTypes: MatrixType CellType
ExpVariables: MatrixA MatrixB CellArrayM CellArrayN

TempCell

.

.

.

#
#10x10x10 Matrix of Integers
#
MatrixType:: Array

Count: 10
415

 Part 4: Scripting Reference
Type: Array
Count:> 10
Type:> Array

Count:>> 10
Type:>> integer

#
A Cell

CellType:: Record

x: integer
y: integer
z: integer

.

.

.

MatrixA::
Type: MatrixType

MatrixB::
Type: MatrixType

TempCell::
Type: CellType

CellArrayA::
Type: Array

Type:> CellType
Count:> 5

CellArrayB::
Type: Array

Type:> CellType
Count:> 7

Built-in Composite Types

A common use of Trial Manager Variables is making data collected during the run of the
experiment available in the script for building new trials. For this purpose, there are three
built-in composite variable types: Point, Input, and Response.

Point

The Point type stores vertical and horizontal coordinates.It is defined as follows:

Point:: Record
v: Integer # Vertical
h: Integer # Horizontal

Input

The Input type stores information about the current state of the input devices. It is
defined as follows:

Input:: Record
InputType: Integer # Type of input
Time: Long_Integer # Time of input
state: Integer # BBox state on input
416

13.5.2 Using Trial Manager Variables
key: Integer # Key pressed on input
keymap: Array # [used internally]

type:> Long_Integer
count:> 4

where: Point # Mouse position
button: Integer # whether button was pressed

Response

The response type stores response information collected by an RT[] action. Vari-
ables of this type can be used with RT[] (see “ RT[Label, RelativeToEvent, Stora-
geVariable, Flag]”, p421). It is defined as follows:

Response:: Record
PutUpByEvent: integer # Event that Put up RT[]
DuringEvent: integer # Event response occurred in
RemovedByEvent: integer # Event that would remove RT[]
RelativeEvent: integer # Event response is Relative to
Label: Integer # Not currently supported
Input: Input # Input information

13.5.1.5 Built-in Variables

The following variables are already defined when you run any experiment. They are auto-
matically maintained by the Trial Manager.

TrialNum — This is the number of the current trial. The first trial is numbered 1.

RTData — This is an array of all of the data collected by RT[] so far. The items are of
type Response and the size of the array is dynamically adjusted to hold all of the re-
sponses. You can pass a variable of integer type to RT[] to get the index into RTData
of the last filled-in record.

13.5.2 Using Trial Manager Variables

Variable declarations and initial values are read in at the beginning of an experiment run.
After the variables are read in, their values can only be changed by using the AddToList[],
NewListItem[], RemoveFromList[], or Set[] actions (or RT[] action for Response vari-
ables). See “14.1.1.5 Trial Variable Actions”, p422.

A variable’s value can be used from PsyScript to build each trial if the “Update” attribute
is set to True. Otherwise, variables are used in variable expressions for parameters to cer-
tain actions, or as parameters to the Start[], End[], and When[] conditions.

13.5.3 Variable Expression Syntax

Variable expressions are strings of variables, values and operators that can be evaluated by
the Trial Manager. Variable expressions are written as string literals within PsyScript; the
417

 Part 4: Scripting Reference
expressions are passed intact as action for condition parameters to the Trial Manager,
where they are evaluated at run time.

For example, the Beep[] action is triggered in this event for the first trial only:

AnEvent::
Stimulus: "Hello World"
EventActions: [Start[{TrialNumber == 1}]] => [Beep[]]

The Start[] condition takes as its parameter a trial variable expression which must be
True for the condition to trigger at the start of the event or trial. Notice that the expression
TrialNumber == 1 is placed within curly braces; this shelters the expression from Psy-
Script, so that it is not evaluated, and the string “TrialNumber == 1” is passed on as the pa-
rameter to Start[], to be evaluated at run time.

All trial variable expressions are evaluated to numbers. For logical expressions, 0 is False,
and anything else is True.

Within an expression, sub-expressions within parentheses are evaluated first, followed by
constants and variable names, then operations in descending order of precedence. Opera-
tions of equal precedence are taken from left to right, unless otherwise stated.

Here are the operators in descending order of precedence:

record->selector: selects the field on the right from the record on the left. (Right as-
sociative)

array.n: returns the nth element of array.

a*b, a/b, a%b: returns the product, quotient, or modulo of a and b.

a+b, a-b: returns the sum or difference of a and b.

a=b, a==b, a>b, a<b, a>=b, a<=b: returns the logical value — 0 or 1 — of the order rela-
tionship of a and b.

!a: returns the logical negation of a: 0 if a is True, 1 if a is False.

a&&b: returns 1 if a and b are both True, 0 otherwise.

a||b: returns 1 if either a or b is True, 0 otherwise.
418

Ψ
Chapter 14. Actions and Devices Reference

Part 4: Scripting Reference

14.1 Actions Reference

14.1.1 Standard Actions

14.1.1.1 Trial Termination Actions

QuitTrial[]

This action ends the current trial. Any trial actions which execute on the End[] con-
dition will be performed.

14.1.1.2 Event Scheduling Actions

RunEvent[Event]

This action initiates the specified event, just as if it had been started by a regular
“StartRef”-based scheduling.

If the specified event has already been run and has ended, it will be run again. If the
event is currently running, then RunEvent[] does nothing.

EndEvent[Event]

This action ends the specified event, just as if its “Duration” condition had been
met.

AbortEvent[Event]

This action aborts the specified event, clearing the stimulus, if appropriate. It also:

• deactivates any actions that are linked to the event.

• marks the time the event ended, and computes the event's duration.

 Part 4: Scripting Reference
ScheduleEvent[Event, StartRef]

This action schedules the specified event to be run at the specified starting time, just
as if its “StartRef” attribute had been assigned the given StartRef value. See also
RunEvent[].

UnscheduleEvent[Event]

This action removes an event from the run schedule; the event may have been
scheduled with a “StartRef” attribute value or with the ScheduleEvent[] action. If
the event has already been executed, UnscheduleEvent[] does nothing.

ChanceEvent[Event, Chance]

This action is like RunEvent[], except that the event is run only with the probability
given in Chance. Chance can be a number between 0 and 1, or a trial variable ex-
pression that evaluates to a number.

14.1.1.3 Unscheduled Stimulus Display Actions

ShowStim[Event, AttributesEvent]

This action presents the stimulus for the specified event, without actually executing
the event (i.e., its duration conditions are not watched, actions are not posted, etc.)

Usually, you will not specify AttributesEvent. If you specify two different
events, the “Stimulus” value for the Event is combined with the non-“Stimulus” at-
tributes from AttributesEvent.

This action also marks the time at which the stimulus began, and records this as the
onset time for Event; it does not, however, perform the scheduling operations of
RunEvent[] and ScheduleEvent[].

ClearStim[Event]

This action clears the stimulus associated with the specified event. It also marks the
time at which this occurs, and computes the actual duration for the associated event.

It does not perform the scheduling operations of EndEvent[]; these will be per-
formed when the event actually ends (if it is currently running).

MaskStim[Event, Mask, AttributesEvent]

This action masks the stimulus associated with the specified event.

By default, MaskStim[] uses the mask stimulus specified as the “Mask” attribute
for the event; however, an optional a mask stimulus (for Text stimuli, this is a char-
acter) can be specified as the second argument.
420

14.1.1 Standard Actions
An optional AttributesEvent can be specified for non-“Stimulus” attributes, just
as with ShowEvent[].

14.1.1.4 Miscellaneous Actions

RT[Label, RelativeToEvent, StorageVariable, Flag]

This action records the state of all input devices and stores this either: a) in the data
file, or b) in a specified variable of type Response, or c) in both the data file and a
variable. Where the information is stored depends on the values of the StorageV-
ariable and Flag parameters; the default is to the data file.

The Label string is stored along with the regular response time information; this la-
bel is used by the experiment designer to annotate the recorded data and is mean-
ingless to PsyScope. The default label is “”.

The RelativeToEvent parameter changes which event is used to calculate re-
sponse time; the recorded response time will be the difference between start time of
this event and the time at which a response was received. The default RelativeTo-
Event is the one owning the action.

The StorageVariable optional parameter specifies a variable with either a numer-
ical or Response type. If the variable’s type is Response, the response data is cop-
ied into this variable.If the variable’s type is numerical (Integer, Long_Integer,
etc.), the variable is filled in with an index into the standard response list — RTData
— when the response was recorded.

The Flag optional parameter is used when a variable of type Response is specified
for StorageVariable; its only non-default value is VAR_ONLY, which indicates that
the response information should not be written to the data file (only to the variable).

BBoxOut[Value, Mode]

This is an action which sends bbox output codes directly to the box, without the
need for a BBox event. The syntax is:

Value an integer value in [0..255] representing the decimal value of the bi-
nary lines to be manipulated

Mode (optional: defaults to copy_mode)

"copy_mode" - change the bbox output state to Value.

"assert_mode" - turn on the bits that are on in Value.

"deassert_mode" - turn off the bits that are on in Value.

"xor_mode" - exclusive-or the current state with Value.
421

 Part 4: Scripting Reference
Beep[SND_ResourceName]

This action plays the sound stored in the specified ‘snd ’ resource. If no sound name
is specified, "correct beep" is used.

The resource must be in an open resource file – either one that was placed in the
“PsyScope Extensions” folder, or that was listed in the “Resources” attribute of the
experiment.

CancelAction[Action, Event, Condition]

This action removes either a specified action or all actions (controlled by Action),
from the action list of either a specified event or all events (controlled by Event),
and triggered by either a particular condition or any condition (controlled by Con-
dition).

If an action name is specified in Action, only actions with that name will be re-
moved.

If an event name is given in Event, only actions within that event will be removed.

If a condition name is given in Condition, only actions that depend on the given
condition will be removed.

Note: CancelAction[] can only remove actions that have not yet been executed.

ScriptEval[entry]

This action is used to directly evaluate the entry named entry. Usually, evaluating
the entry will change some value in the script, and that value will be used for com-
piling future trials.

14.1.1.5 Trial Variable Actions

Set[List, Value]

Given a trial variable expression that resolves to a variable reference in List, the
variable’s value is set to the result of evaluating Value. (See also “13.5 Trial Man-
ager Variables”, p412.)

AddToList[List, Value]

This action is used to add a value to a trial variable of List type. List should be a
variable expression that evaluates to a list variable, and the result of evaluating Val-
ue is appended to this list. (See also “13.5 Trial Manager Variables”, p412.)
422

14.1.1 Standard Actions
RemoveFromList[List, Index]

Given a trial variable of type List in List and an index into this list in Index, the
indexed item is removed from the list. The list is indexed starting with 1. (See also
“13.5 Trial Manager Variables”, p412.)

NewListItem[List]

This action extends the size of the trial variable list given in List; the value of the
new item in the list is undefined. (See also “13.5 Trial Manager Variables”, p412.)

14.1.1.6 Factor Format Actions

QuitBlock[Block, AccessLists]

This action is used to skip any remaining trials in the current block. The current trial
continues to execute normally.

If there are multiple levels of blocks in the experiment hierarchy, then QuitBlock[]
quits within the lowest-level block by default, continuing within that block’s owner
(if there are more blocks to execute). To quit a higher-level block, you can specify
which block to quit in Block. Alternatively, you can specify which block to quit as
a number; this number specifies how many hierarchical levels of blocks to quit
(thus, the default behavior is equivalent to specifying 1 in Block).

By default, when trials in the block are skipped, any lists connected to the blocks
are left unaccessed for the trials which are not executed. If AccessLists is set to
True, then for each factor set connected to the block and its owners, a cell is selected
for each trial that is not executed; this insures that cells are assigned to trials consis-
tently, whether or not they are run.

QuitBlock[] does not terminate the current trial; see also “ QuitTrial[]”, p419.

RerunTrial[TrialNumber, When, Order]

This action tags the specified trial, or the current trial if none is specified, to be run
again. A trial is specified using its absolute trial number; this specification can be
in the form of a variable expression.

The When parameter specifies when the trial should be re-run; the possible values
are Mix and End. Mix specifies that the trial re-run should be mixed in with the re-
maining first-run trials, while End specifies that the re-run should be delayed until
all of the first-runs are done. If a trial is re-re-run with End, the second-time re-runs
will be performed after the first-time re-runs are complete.

The Order parameter specifies an order within the two When types; the possible val-
ues are Start, End, and Random. Start specifies that the trial should be re-run be-
fore any other trials currently scheduled for re-run in its set (Mix or End). End
specifies that it should be re-run after the other re-run trials. Random specifies that
it should be rescheduled at a random position within its re-run set.
423

 Part 4: Scripting Reference
NextCrossing[Factor]

This action causes a new cell to be selected in a factor set — whichever set includes
Factor. The new cell will be used for the next trial.

This action is intended for use on factor sets with crossing type Static (see
“13.3.7.2 Scripting Crossing Types”, p389).

14.1.2 Type-specific Actions

Various stimulus types include type-specific actions. These actions can generally be exe-
cuted by any event, but may sometimes require as a parameter the name of an event with a
particular type. The type-specific actions are listed with each type in “14.2 Stimulus Types
Reference”, p424.

14.2 Stimulus Types Reference

14.2.1 Text

14.2.1.1 Text and Screen Attributes

Stimulus: stimulus-string
Defaults: none

The “Stimulus” attribute should contain a single sting to display.

Port: LEFT/RIGHT/CENTER/x-value width value
TOP/BOTTOM/CENTER/y-value height value border_width

AlignmentPoint:> h-pos-spot v-pos-spot
BorderWidth:> border-width
Shape:> shape

Defaults: CENTER 100% CENTER 100% 0
AlignmentPoint:> (Depends on port position)
BorderWidth:> 1
Shape:> RECTANGULAR

This attribute describes the position and size of the port in which the stimulus is to
be presented. All of the sub-attributes and parameters have defaults, but you cannot
skip a parameter if you which to define any that follow it.

The first and fourth tokens specify the position of the port relative to the screen.
They can be:

 A keyword: LEFT, RIGHT, or CENTER for the x-position, and TOP, BOTTOM,
or CENTER for the y-position; the (hot spot of the) port is justified in the
specified way to the screen; e.g., CENTER centers the box on the screen
424

14.2.1 Text
(horizontally or vertically), and TOP aligns the box so that the top end is
against the top of the screen.

An integer; this specifies a number of pixels by which the (hot spot in the)
port should be offset from the top left of the screen.

A percentage; this specifies that the port should be offset to a point some
percentage of the screen away from the top and left edges of the screen.

Each of the second and fifth tokens — the width and height values — can be:

 An integer; this specifies the width or height of the port in pixels.

A percentage; this specifies that the width or height of the port should be a
certain percentage of the size of the screen.

The seventh token — border_width — specifies the width of the port’s border in
pixels.

The “AlignmentPoint” sub-attribute specifies the position of the hot spot, relative
to the port. It is the hot spot that is actually positioned by the x-position and y-po-
sition information, and then the port is positioned to obtain the right relationship
with the hot spot. If the hot spot is not specified, the default is Center for percent-
age- or pixel-based positionings, and the same as the port positioning for other
alignments (e.g. Right h-pos-spot for Right x-value).

This “Shape” sub-attribute specifies the shape of the port. The possible shapes are
RECTANGULAR, ROUNDED, and OVAL. Rectangular produces a rectangular port
whose dimensions and positions are specified as shown above. Rounded produces
a rounded-corner rectangle with the same dimensions. Oval will produce an oval in-
scribed in the rectangle of the given dimensions.

Note: All drawing within a port is clipped to remain within the borders of the shape of the
port.

X: LEFT/RIGHT/CENTER/x-value SCREEN/PORT RIGHT/LEFT/CENTER
Defaults: CENTER PORT CENTER
Graphic: not available

Note: The graphic environment uses Position instead of X.

This attribute specifies the horizontal position and alignment of the text on the
screen. All of the parameters have defaults, but you cannot skip a parameter if you
which to define any that follow it. “X” attributes override values in the “Position”
attribute.
425

 Part 4: Scripting Reference
The first value specifies the position: left margin, right margin, centered, an integer
value for the position in pixels, or a percentage value.

The second value specifies whether the position (and possibly percentage) is rela-
tive to the screen or the port. If the point is relative to the port, a percentage in the
position specification is taken as percentages of the port width; if it is relative to the
screen, the width of the screen is used.

The third value specifies the justification of the stimulus on the point specified by
the position value (e.g. RIGHT means that the text is drawn to the right of the posi-
tion).

If either FOLLOW or STAY_PUT is used as a value of the “Feature” attribute (see be-
low), then the position of the stimulus is computed relative to the prior stimulus. In
either of these cases, the second (relative-to) value of the “X” attribute is ignored,
and the first (position value) is used as the horizontal offset (in pixels) between the
prior stimulus and the current one.

Y: TOP/BOTTOM/CENTER/y-value SCREEN/PORT TOP/BOTTOM/CENTER
Defaults: CENTER PORT CENTER
Graphic: not available

Note: The graphic environment uses Position instead of Y.

This attribute specifies the vertical position and alignment of the text on the screen.
All of the parameters have defaults, but you cannot skip a parameter if you which
to define any that follow it. “Y” attributes override values in the “Position” at-
tribute.

The first value specifies the position: top margin, bottom margin, centered, an inte-
ger value for the position in pixels, or a percentage value.

The second value specifies whether the position (and possibly percentage) is rela-
tive to the screen or the port. If the point is relative to the port, a percentage in the
position specification is taken as percentages of the port height; if it is relative to
the screen, the height of the screen is used.

The third value specifies the justification of the stimulus on the point specified by
the position value (e.g. TOP means that the text is drawn just above the position).

If either FOLLOW or STAY_PUT is used as a value of the “Feature” attribute (see be-
low), then the position of the stimulus is computed relative to the prior stimulus. In
either of these cases, the second (relative-to) value of the “Y” attribute is ignored,
and the first (position value) is used as the horizontal offset (in pixels) between the
prior stimulus and the current one.
426

14.2.1 Text
Position: LEFT/RIGHT/CENTER/x-value SCREEN/PORT RIGHT/LEFT/CENTER
TOP/BOTTOM/CENTER/y-value SCREEN/PORT TOP/BOTTOM/CENTER

Defaults: CENTER PORT CENTER CENTER PORT CENTER

This attribute is the concatenating of “X” and “Y” formats. If “X” and/or “Y” is
present, its values override “Position” values.

Font: name
Default: 0 (Chicago on most systems)

This attribute specifies the font name or 'FOND' resource number (which must be
in Macintosh System file or in one of the resources opened by PsyScope; see also
“Part 2: Graphic Environment Reference, 6.1.3 Resources”, p216).

Size: Size
Defaults: 12

The “Size” attribute is the point size of the stimulus text.

Face: Bold and/or Italic and/or Underline and/or Outline
and/or Shadow and/or Extended and/or Condensed

Defaults: NULL (Plain text)

Any and all of these values can be used; combine text faces as you wish, but the face
specifications must all be together in one string, i.e., the list of faces should be quot-
ed together.

Mode: COPY/OR/XOR/ERASE/INVCOPY/INVOR/INVXOR/INVERASE
Default: COPY

This attribute is the QuickDraw transfer mode. This determines how new stimuli in-
teract with the background and other stimuli already present in the port at the des-
tination location.

COPY simply replaces anything in the destination location with the text stim-
ulus, writing over that location without regard for what was already there.

OR draws the text without affecting pixels except where the pixels for a letter
is placed, thus “overlaying” the destination with the text.

XOR draws the text without affecting pixels except where the pixels for a let-
ter is placed; pixels here which are off will be turned on, and pixels which
are on are turned off.

ERASE inverts the text before it draws it. In black-and-white, it essentially
writes in white instead of black.

INVCOPY, INVOR, and INVXOR perform similar operations, but invert the text
first. These are not recommended modes.

(You can also use the Macintosh toolbox numerical value, if you really want to.)
427

 Part 4: Scripting Reference
Color: RED/GREEN/BLUE/YELLOW/MAGENTA/CYAN/WHITE/rgb-string
Default: BLACK

This attribute specifies the color of the text. The color value can be specified using
a keyword or the “Red Green Blue” system.

For the RGB system, three integers are specified, each in the range 0 to 32677, and
representing the amount of red, green and blue to be used, respectively; these three
number should be together in one string.

If no color attribute is given, the stimulus will be drawn in the default foreground
color for the screen device. This color is initially black, but can be changed by the
Experiment attribute “DefaultColor”, or by the screen functions SetDefaultColor
and ReverseVideo (see “ SetDefaultColor[Color]”, p431 and “ ReverseVideo[]”,
p431).

Style: “Font” + “Size” + “Face” + “Mode” + “Color”

This attribute may be used to set many attributes of the text stimulus as described
above all at once; its format is the concatenation of the formats of the attributes list-
ed above. If present, the individual attributes override the “Style” attribute.

Mask: mask-char
Defaults: " "

This attribute contains a character used to mask the stimulus when MaskStim[] is
executed from the script, or the “ClearType” event attribute (see “13.1.6.3 Standard
Event Attributes”, p367) is set to MASK.

Feature: FOLLOW and/or STAY_PUT and/or MASKED
Defaults: NULL
Graphic: Special

This attribute contains a list of special stimulus features. The values of this attribute
are specified as keywords, which are described below.

FOLLOW causes the stimulus to be positioned after the end of the prior stimulus. The
first (position) value of the X specifies how much space (in pixels) should be left
between the end of the prior stimulus and the beginning of the current one. If the
positioning of the stimulus will cause it to extend beyond the right margin of the
port, then it is begun at the left edge of the next “line” (i.e., down an amount deter-
mined by the SIZE attribute). That is, lines of stimuli that use the FOLLOW feature are
“wrapped” within the port.

STAY_PUT causes the stimulus to be positioned at the same place as the prior stim-
ulus, offset horizontally by an amount (in pixels) specified in the first (position) val-
ue of the X attribute, and vertically by an amount (in pixels) specified in the first
(position) value of the Y attribute.
428

14.2.1 Text
MASKED causes the stimulus to be drawn in its masked form when it is originally
displayed. If there is no mask character specified for the stimulus, it will not be
drawn.

Degradation:(2 decimal values, each between 0.0 and 1.0)
Defaults: 0.0 0.0

This attribute is used to delete pixels from the text display and/or add pixels to the
whitespace around the text (presumably to make it harder to recognize). The first
value specifies the probability with which each pixel of the stimulus is deleted, and
the second value specifies a corresponding probability for adding pixels to the back-
ground.

Flip: HORIZONTAL and/or VERTICAL
Default: NULL

This attribute specifies whether to flip the bitmap horizontally and/or vertically be-
fore displaying.

14.2.1.2 Text and Screen Experiment Attributes

These attributes apply to all screen stimulus types, including Text, Document, Paragraph,
PICT, and Pasteboard.

DefaultColor or ForeColor:color
Default: BLACK

This experiment attribute is used to determine the default (foreground) color of
screen stimuli. The color is specified in the same way as in the color Text attribute.

BackColor: color
Default: BLACK

This experiment attribute specifies the background color of the screen when run-
ning an experiment. The color is specified in the same way as in the color Text at-
tribute.

Origin: MenuBar/UpperLeft/Top/Left/co-ordinates
Default: UpperLeft

This attribute specifies the point on to be used as (0,0) for positioning stimulus ports
and stimuli. Most useful on systems with multiple screens. Possible values are:

MenuBar — the upper left corner of the screen with the menu-bar

UpperLeft — the upper left corner of the smallest rectangle enclosing all
the screens

Top — horizontally as with MenuBar, vertically as with UpperLeft
429

 Part 4: Scripting Reference
Left — horizontally as with UpperLeft, vertically as with MenuBar

Horizontal and vertical coordinates may also be specified, in pixels down and to the
right from the top left corner of the menu bar screen.

MonitorOrder:Random/Sequential/Rotating/sequence
Default: Random

This attribute specifies the order in which a stimulus spanning multiple monitors
will have its parts drawn to the different monitors. The monitors are numbered the
same way as they are in the system software’s “Monitors” control panel. Possible
values are:

Random — drawn in random order

Sequential — drawn in increasing order of monitor number

Rotating — drawn in order of monitor number, but with the starting point
increasing each time

A sequence of monitor numbers may also be given to define your own order.

14.2.1.3 Text and Screen Actions

ClearScreen[]

This action erases the screen, using the global background color. (See also “ Back-
Color: color”, p429.)

DrawAllPortBorders[]

This action draws the borders of all stimulus ports that are used by screen events in
the experiment.

If different trials use different stimulus ports, then this action can only draw ports
that it knows are going to be used. If the experiment is precompiled (see “6.5.1 Pre-
compiling”, p246), then all ports will always be known at runtime. Otherwise, the
only ports that can be drawn are those used by events which have been compiled so
far.

DrawPortBorder[Event]

This action draws the border for the stimulus port of the specified event.

RemovePortBorder[Event]

This action removes the border for the stimulus port of the specified event.
430

14.2.2 Document
ClearPort[Event]

This action clears the contents of the stimulus port for the specified event. It does
not erase the border of the port.

SetDefaultColor[Color]

This function changes the default drawing color. This value can also be set once
with the experiment attribute “DefaultColor” or “ForeColor” (see “ DefaultColor or
ForeColor: color”, p429).

SetBackColor[Color]

This function changed the default background color. This value can also be set once
with the experiment attribute “BackColor” (see “ BackColor: color”, p429).

ReverseVideo[]

This function switches the default foreground and background colors. See also “
DefaultColor or ForeColor: color”, p429 and “ BackColor: color”, p429. If no col-
ors have been set, then text stimuli will appear white against a black background,
as opposed to the Macintosh’s usual black-against-white.

14.2.2 Document

14.2.2.1 Formatting characters

You can create Document files by using the PsyScope text editor, or any editor (such as
MacWrite or Microsoft Word) and specifying that the file be saved as “Text Only”. Make
sure that the files do not contain any tabs.

You can specify different text faces within a text document with a standard set of text for-
matting characters: @b, @i, @u, @e. The @b character is placed at the beginning of any
string of text that you want to display in bold. The @i character is placed at the beginning
of any string of text that you want to display in italics. The @u character is placed at the
beginning of any string of text that you want to display in underline. The @e character is
used to turn off any of these faces.

14.2.2.2 Document Attributes

Stimulus: document
Defaults: none
Graphic: File

The “Stimulus” attribute should contain the name of the file to display. See “Part 2:
Graphic Environment Reference, 6.1.2 Path Names”, p215 for information on path
name conventions.
431

 Part 4: Scripting Reference
Font, Size, Face, Mode, Color, and Style

These attributes work like the standard Text attributes. They apply to all of the text;
the formatting characters are applied afterwards.

Port

This attribute work like the standard Text attribute.

14.2.3 Paragraph

The Paragraph stimulus type is identical to the Document stimulus type, except that it gets
its text from the script itself instead of from a file specified in the script.

14.2.3.1 Paragraph Attributes

Stimulus: paragraph-text
Defaults: none
Graphic: Paragraph

The “Stimulus” attribute contains the text to display. This text can contain linefeeds
and formatting characters, just the text of a Document stimulus.

Font, Size, Face, Mode, Color, and Style

These attributes work like the standard Text attributes. They apply to all of the text;
the formatting characters are applied afterwards.

Port

This attribute work like the standard Text attribute.

14.2.4 KeySequence

A KeySequence event is a Paragraph-like event that accepts keyboard input from the sub-
ject until the event ends.

Note: KeySequence is not an input type; the input string is recorded in the data file by
using the KEY_SEQUENCE flag in the “DataFields” experiment attribute and record-
ing an RT[] at the end of the event.
432

14.2.5 PICT
14.2.4.1 KeySequence Attributes

Stimulus: paragraph-text
Defaults: none
Graphic: Prompt

The “Stimulus” attribute contains the text to display as a prompt. This text can con-
tain linefeeds and formatting characters, just the text of a Document stimulus.

Font, Size, Face, Mode, Color, and Style

These attributes work like the standard Text attributes. They apply to all of the text,
including the subject’s input; the formatting characters are applied afterwards.

Port

This attribute work like the standard Text attribute.

14.2.5 PICT

14.2.5.1 PICT Attributes

Stimulus: pict-resource-name-or-file-name
Defaults: none
Graphic: Picture

The “Stimulus” attribute should contain either the name of a ‘PICT’ resource, or the
pathname of a PICT file to display (see “Part 2: Graphic Environment Reference,
6.1.2 Path Names”, p215 for information on path name conventions). The search
starts by looking for the resource.

Port, Mode, and Degradation

These attributes are specified in exactly the same manner as for Text.

Feature: KEEP_PICT & DEFAULT_COLORS & PICT_ACTUAL_SIZE
Defaults: NULL
Graphic: Special

This attribute contains a list of special stimulus features. The values of this attribute
are specified as keywords, which are described below.

KEEP_PICT specifies that the picture should stay in memory after it has been loaded
from the disk. This may use a lot of memory, but it can greatly reduce the delay be-
tween trials. (See “Part 2: Graphic Environment Reference, Keeping Stimuli in
Memory”, p251.)
433

 Part 4: Scripting Reference
DEFAULT_COLORS: If the default drawing colors have been changed, colors PICTs
may need this flag to display in reasonable colors (by ignoring the foreground and
background color settings).

PICT_ACTUAL_SIZE: If this flag is on, the PICT will be drawn in its native size, cen-
tered in its port. PICTs are usually scaled to fit in their ports.

Depth: 1/2/4/8/32
Defaults: current screen depth

This specifies the pixel depth (the number of bits used for one pixel) of the offscreen
buffer used to hold the picture in memory. It can be any accepted Macintosh screen
depth that is less than or equal to the current depth of the screen. If the picture is
monochromatic, it is advisable to use a depth of 1 for reasons of space conservation.
(See “Part 2: Graphic Environment Reference, Loading PICTs”, p248).

14.2.6 Pasteboard

14.2.6.1 Pasteboard Attributes

All pasteboard attribute names have the prefix “PBoard” to distinguish them from the at-
tributes of the stimuli that are contained within the pasteboard. (Without this distinction,
attribute inheritance would cause problems.)

Stimuli: stimuli-list
Defaults: none

The “Stimuli” attribute should contain the names of the entries defining its constit-
uent stimuli. There is no restriction of the number of stimuli that can be in a Paste-
Board.

The stimuli of a PasteBoard will look just like events, except that they should have
a “StimType” attribute in place of an “EventType” attribute.

PBoardMode, PBoardDepth, and PBoardDegradation

These attributes are used in exactly the same manner as the “Mode”, “Depth”, and
“Degradation” attributes of Text and PICT stimuli, and have the same meaning.

PBoardPort

This attribute specifies the stimulus port in which the pict is to be displayed, speci-
fied in the same fashion as the Port attribute for other screen stimuli. Each of the
sub-stimuli of a pasteboard also have ports (specified relative to the screen), and
their port defaults to the pasteboard port.
434

14.2.7 SoundLabel
Aside from the default, sub-stimuli port are defined independently of the Paste-
Board port; their drawing will be clipped to the region in which their ports intersect
the pasteboard port.

14.2.6.2 Pasteboard Experiment Attributes

PBoardNameDelimiter:separator
Default: "+"

This experiment attribute specifies a character that will be used to separate the
names of the different stimuli in the stimulus data field of the data file.

14.2.7 SoundLabel

The SoundLabel type is for playing SoundEdit™ and SoundDesigner II™ sound files.

14.2.7.1 SoundLabel Attributes

Stimulus: label
Defaults: NULL
Graphic: Sound

The “Stimulus” attribute should contain a label string to be found and played in the
SoundEdit™ file. NULL specifies that the whole file should be played.

SoundFile:file-name
Defaults: none
Graphic: File

This is the file from which the labelled sound is to be taken. If there is no such file
or the file does not contain the specified label, an error will result. (See “Part 2:
Graphic Environment Reference, 6.1.2 Path Names”, p215 for more information on
path name conventions.)

Volume: (integer value between 0 and 255)
Defaults: 255

This specifies the volume of the sound, where 0 indicates silence and 255 indicates
full volume. This attribute is only available on Macintoshes running system version
6.0.5 or later.

For systems 6.0.7 and later, the absolute maximum volume is the volume set in the
“Sound” Control Panel.
435

 Part 4: Scripting Reference
Channel: LEFT/RIGHT
Defaults: NONE

This specifies the stereo channel the sound should be played on. It is ignored for
two-channel sounds. It is only available using Macintosh system software 6.0.7 or
later.

Warning! Use of the channel attribute may cause some delay in the start of the sound be-
cause of higher Sound Manager overhead, and some loss of volume or fidelity in the
sound may also result.

Feature: KEEP_SOUND
Defaults: NULL

The “Feature” attribute contains a list of special stimulus features. The values of
this attribute are specified as keywords, which are described below.

KEEP_SOUND specifies that the sound be kept in memory across trials and only un-
loaded at the end of the experiment. This is useful if the sound is used in every trial,
and the scripter would like to prevent it from being reloaded (causing a disk-access)
every trial. It means that the memory used by the sound won’t be released until the
experiment has ended, however. (See “Part 2: Graphic Environment Reference,
Keeping Stimuli in Memory”, p251.)

14.2.8 BBox

The BBox type is for controlling the output lights on the button box.

14.2.8.1 .BBox Attributes

Stimulus: line-switches
Defaults: NULL

The “Stimulus” attribute specifies which line-outs (or lights) on the button box to
change and how to change then. Lines which are not mentioned are not affected. At
the end of the event, the lines are changed to the opposite of the “Stimulus” speci-
fication, regardless of their initial state.

The format of each the line-switches is one of:

LINEX or LINEX_ON, where X is an number from 1 to 8; this turns on the line
output at the beginning of the event, and then off at the end. If X is between
1 and 3, a light on the button box is also turned on and off.

LINEX_OFF, where X is an number from 1 to 8; this turns off the line output
at the beginning of the event, and then on at the end. If X is between 1 and
436

14.3 Conditions and Inputs
3, a light on the button box is also turned off and on.

LIGHTX or LIGHTX_ON, where X is an number from 1 to 3; this is the same as
LINEX_ON.

LIGHTX_OFF, where X is an number from 1 to 3; this is the same as
LINEX_OFF.

14.2.8.2 BBox Experiment Attributes

BBoxInitialState:line-switches
Default: NULL

This attribute specifies and initial output state for the button box using the same list
of keywords used for the BBox “Stimulus” attribute. Unlike BBox events, the initial
state turns off all lines that are not specified in the “BBoxInitialState” attribute.

BBoxPort: A or B
Default: A

This attribute specifies which serial port the button box is connected to. Port A is
the modem port; B is the printer port.

14.3 Conditions and Inputs

The following keywords can be used to specify conditions required to trigger an action. Ex-
cept for START and END, they can also be used in duration specifications.

Start[variable-expression]

This condition matches the start of the event or trial that owns it. If an optional vari-
able expression is given, the condition will match only if the expression is true.

End[variable-expression]

This condition matches the end of the event or trial that owns it. If an optional vari-
able expression is given, the condition will match only if the expression is true.

When[variable-expression]

This condition matches when the given variable expression becomes true.

ScriptWhen[entry-name]

This condition matches when the value of the referenced entry is True. Only one
entry name can be specified.
437

 Part 4: Scripting Reference
Key[ANY/key-list]

Given the ANY parameter, this condition matches when any non-modifier key is hit
on the standard Macintosh keyboard.

Otherwise, a list of key combinations is specified; the condition will match when
any one of the specified combinations is hit.

A key combination is made up of any number of modifiers keys and a base (non-
modifier) key. The base key can be specified as:

• the letter, number, or symbol that appears on the key on the keyboard. If a
letter is specified, the case (uppercase/lowercase) of the letter is ignored. If
a symbol is given that requires the shift key to be typed, the shift key will be
required for a match (but the SHIFT- prefix should not be used – see below).

• the ASCII- keyword followed by a number. The condition will match
when the correct combination of keys is pressed to type the character with
the given ASCII value. Only the shift key may be used to generate the
ASCII character; characters generated by using the option key can not be
matched this way.

• the CODE- keyword followed by a number which corresponds to a unique
key on the keyboard; key code numbers are defined in Macintosh program-
ming documentation. This method of specifying is key is somewhat key-
board-specific, but allows you to use all keys on the keyboard. Modifier
keys cannot be matched this way.

• the SPACE keyword, representing the space bar.

• the RETURN keyword, representing the return key.

To specify a key combination containing modifiers, prefixes are added to one of the
base forms described above. The CMD- prefix matches only when the command key
is held down at the same time as the base key. Similarly, CTL- matches with the con-
trol key and OPT- matches with the option key. SHIFT- matches with the shift key
only when it is not already represented in the base character (e.g.: SHIFT-* can nev-
er match, since * – which is the same as SHIFT-8 – already contains SHIFT).

Note: Uppercase letters are translated to lowercase letters in the matching process; thus,
A matches the “a” key without shift, while SHIFT-A matches with the shift key.

Note: Be sure to quote a modified, ASCII-, or CODE- combination, since “-” is a script-
ing operator.
438

14.3 Conditions and Inputs
Mouse[CLICK/CLICK_DOWN/CLICK_UP/MOVE]

This condition matches when a mouse action is made; the relevant action depends
on the parameter:

CLICK, CLICK_DOWN — matches when the mouse button is pressed

CLICK_UP — matches when the mouse button is released

MOVE — matches when the mouse is moved

BBox[button-list]

With the ANY parameter, this condition matches when any button is hit (or any input
line is activated, including the voice key) on the C.M.U. button box; with the
ANY_UP parameter, it matches when any button is released (or any input line is de-
activated, or voice input ends). The ANY_BOTH parameter can be used for ANY and
ANY_UP combined.

Otherwise, a list of button/line states are specified, and the condition will match
when one of the states occurs. States can have the following forms:

BUTTONX, BUTTONX_DOWN, BUTTONX_UP, or BUTTONX_BOTH where X is 1
(red), 2 (yellow), or 3 (green); these refer to the three regular buttons on the
top of the button box.

VOICE, VOICE_END, VOICE_BOTH; these refer to the standard microphone in-
put on the button box.

LINEX, LINEX_ON, LINEX_OFF, or LINEX_BOTH where X is between 1 and 8;
LINEs 1-3 are the same as BUTTONs 1-3, and LINE7 is the same as VOICE. The
other lines refer to hardware inputs on the back of the button box.

The BUTTONX, BUTTONX_DOWN, VOICE, LINEX, and LINEX_ON parameters match
when the corresponding inputs are turned “on” (a button is pressed, a sound is de-
tected, or an input line is activated). BUTTONX_UP, VOICE_END, and LINEX_OFF
match when the corresponding inputs are turned “off” (a button is released, no more
sound is detected, or an input line is deactivated). BUTTONX_BOTH, VOICE_BOTH, and
LINEX_BOTH match both “on” and “off” states.
439

 Part 4: Scripting Reference
440

Ψ
Chapter 15. Trial Manager Technical Reference

Part 4: Scripting Reference

A PsyScope trial is simply a set of events scheduled to run in some known temporal or con-
ditional relationship with one another, and a set of actions associated with these events set
to run dependent on certain conditions:

To prepare for running the events, stimuli must be loaded into memory by various output
devices.

When event are run, stimuli must be displayed by the output devices.

As a result of running the events and executing the actions, data are collected and must
be stored.

Throughout the trial, input devices must be polled to determine whether the necessary
conditions to execute an action have been satisfied.

The Trial Manager is the part of PsyScope responsible for managing these functions, as
well as managing the functions of the various input and output devices.

Some topic which are appropriate to this chapter have been covered elsewhere in this man-
ual. Where that is the case the appropriate chapter and section have been cross-referenced.
For more general information regarding running experiments, see “Part 2: Graphic Envi-
ronment Reference, 6.5 Space and Speed”, p246.

15.1 Running Trials

15.1.1 Loading Stimuli

Loading Stimuli is discussed in “Part 2: Graphic Environment Reference, 6.5.2 Loading
Stimuli”, p247.

 Part 4: Scripting Reference
15.1.2 Running Events and Actions

15.1.2.1 The START Event

The first event in every trial is the START event. This event is automatically defined by
PsyScope to have the event name START, and event number 0. All trial preparatory activ-
ities are done during the start event.

The START event begins at the end of the previous trial (for the first trial, it begins when
the experiment is initialized), and lasts until all trial preparation is completed, or until the
number of milliseconds specified in the “ITI” trial attribute has passed, whichever is long-
er. See “Part 2: Graphic Environment Reference, 6.5.2.2 Controlling The Load Procedure”,
p249.

During the START event the following things are done:

• Any data that were collected during the trial are stored to disk, unless the
STORE_DATA_AT_END flag has been set.

• The upcoming trial is compiled by the script interpreter, unless the trials were pre-com-
piled.

• Internal memory structures needed to run the trial are set up.

• All stimuli needed for the trial are loaded, except those explicitly set to be loaded later.
See “Part 2: Graphic Environment Reference, Load Time”, p180.

• The event dependencies are analyzed.

• Trial actions are posted, and those with START[] conditions are triggered.

Because of the special nature of the START event, no other events may run concurrently
with it, and thus, no events may be scheduled relative to the start of the START event. In
other words, no event may have a “StartRef” of the form milliseconds after start of
START. The proper form for events schedule relative to the start of the trial is milliseconds
after end of START (or even milliseconds after START), which will schedule the
event to begin the given number of milliseconds after the end of the START event. Thus
the end of the start event, is the time at which all other events may start running.

15.1.2.2 The Life of an Event

Every event is started by a RunEvent[] action, and ended by an EndEvent[] action. For
the vast majority of events, these actions are implicit—scheduled automatically by the Trial
Manager after the event dependencies of the trial have been analyzed

Starting an Event

When RunEvent[] starts an event, it does the following things, in this order:
442

15.1.2 Running Events and Actions
• If the event’s “LoadTime” attribute is set, the stimulus is loaded. (See “Part 2: Graphic
Environment Reference, Load Time”, p180.)

• Put all of the event’s actions on the action queue, and trigger any actions based on
Start[] conditions (which have no parameters or a trial variable expression param-
eter whose value is True).

• Call ShowStim[] to display the stimulus and mark the actual onset time for the event.

• For events with timed durations, schedule the EndEvent[] action that will end the event.

• Schedule the start of any other events which depend on the start of the current event,
i.e., any events with “StartRef” values of the form millisecs after start of
event.

The Life of the Stimulus

Generally, running an event is linked with displaying a stimulus. In most cases, the stimulus
lasts for the duration of the event. It is possible, however, for the stimulus to be cleared be-
fore or after the end of the event.

The ClearStim[] action will clear the stimulus of an event. If it is called before the end of
the event, it will clear the stimulus, and mark the end time of the event for calculation of
the actual duration. The event itself will not end until an EndEvent[] action for it is exe-
cuted — as defined in the “Duration” attribute of the event.

If the event has a “ClearType” attribute of NO_CLEAR, the stimulus will not be cleared at the
end of the event, and will continue to be displayed indefinitely, until ClearStim[] is called
for that event. In this case, the actual end time of the event that will be recorded is the time
at which the event was ended, not the time at which the stimulus was cleared. See below
(“15.1.2.4 Event Statistics”, p444) for more information.

Ending an Event

When EndEvent[] is called to end an event, it performs the following functions:

• If the stimulus has not already been cleared, and the “ClearType” of the event is not
NO_CLEAR, call ClearStim[] to clear the stimulus and mark the end time of the event.
Otherwise, if the “ClearType” of the event is NO_CLEAR, just mark the end time of the
event.

• Remove any actions on the action queue that are active until the end of this event, and
trigger any actions based on End[] conditions (which have no parameters or a trial
variable expression parameter whose value is True)

• Calculate the actual duration of the event from the actual onset and the end time.

• If the “LoadTime” attribute of the event is set, unload the stimulus for the event.
443

 Part 4: Scripting Reference
• Schedule the start of any other events which are dependent on the end of the current
event, i.e., any events with “StartRef” values of the form millisecs after end of
event.

15.1.2.3 Running an Event More than Once Per Trial

It is possible to run an event more than once in a single trial. This can be done through the
event schedule, or the RunEvent[] or ScheduleEvent[] actions. The only restriction is
that only one “instance” of an event may be running at any one time.

Frequently it is useful to have an event re-schedule itself. There are two ways to do this.
The first is to give the event a “StartRef” that references itself. For example, an event called
EventA could have a “StartRef” 100 after end of EventA. This would cause EventA to
run again 100ms after it ends. In order for this event to run the first time, it would have to
be run by a RunEvent[] or ScheduleEvent[] action attached to another event.

Another way for an event to re-schedule itself would be to use the ScheduleEvent[] ac-
tion. For example, EventA it could have ScheduleEvent[EventA] as an action with the
condition END[]. This would cause EventA to continually run again as soon as it has ended.

ScheduleEvent[] vs. RunEvent[]

It is important, in the latter example above that ScheduleEvent[] and not RunEvent[] be
used. Unlike RunEvent[], which immediately runs an event, ScheduleEvent[] simply
puts the event on the schedule to be run. In the latter example above, this allows EventA to
end before the trial manager attempts to run it again. Had RunEvent[] been used instead
of ScheduleEvent[] nothing would have happened, because at the time RunEvent[]
would have been called, EventA was already running, and the Trial Manager would not
have attempted to start it running again.

15.1.2.4 Event Statistics

Each event stores its actual onset and actual duration. The actual onset of an event is the
actual time at which the stimulus was displayed, which could be different from the time that
it was scheduled to be displayed because of overhead or latency within the output device
(e.g. screen refresh latency) or other factors. Similarly, the actual duration is the actual
number of milliseconds from the time the stimulus was displayed until the time it was
cleared, or the event ended, whichever came first.

Each event stores only one actual onset and actual duration, so if an event is run more than
once, it will only store the last recorded onset and duration.

15.1.2.5 The Life of an Action

The Trial Manager maintains an action queue, in which it keeps track of all active actions.
When an event is run, it puts all of its actions on the action queue, where it is monitored by
the Trial Manager, and eventually executed or removed.
444

15.2 Screen Stimulus Display
Each action on the action queue has a set of conditions, which may become true and cause
it to be executed, a number of instances, which determines the maximum number of times
it can be executed, and an active-until value, which determines when the action can no
longer be executed, no matter how many instances are remaining.

When an action is put on the queue, its conditions are immediately checked. If it has a
Start[] condition (with no parameters or a trial variable expression parameter whose val-
ue is True), the action is immediately executed and its instances value is decremented by 1.
After the event that put up the action has started, it is repeatedly checked to see if any of its
conditions have become true. If so, it is executed and it’s instances value is decremented by
1.

When an action’s instances reach 0, or the event that it was specified to be active until ends,
it is removed from the queue. Actions that are set active until TRIAL_END will remain on
the queue until all their instances are exhausted, or until the trial ends.

15.1.2.6 Ending a Trial

A trial ends when there are no events currently scheduled to run or end, and the only actions
remaining on the action queue are set to be active until TRIAL_END. A trial can be ended
prematurely only by calling the QuitTrial[] action, which will abort all currently running
events, and remove all actions except trial actions schedule to execute upon the end of the
trial.

15.2 Screen Stimulus Display

15.2.1 Screen Stimulus Loading

Loading of screen stimuli is covered in “Part 2: Graphic Environment Reference, Loading
Text”, p247 and “Part 2: Graphic Environment Reference, Loading PICTs”, p248.

15.2.2 How a Screen Stimulus is Drawn and Cleared

Screen stimuli can be divided into two categories: bitmapped, and non-bitmapped. Event
types Text, PICT, and PasteBoard are bitmapped stimulus types. Document, Paragraph,
and KeySequence are non-bitmapped stimulus types.

Bitmapped Stimuli

Bitmapped stimulus types are drawn into an off-screen bitmap when they’re loaded, and
this bitmap is drawn to the screen when the stimulus is displayed, for the fastest possible
drawing time.
445

 Part 4: Scripting Reference
When a bitmapped stimulus is drawn, PsyScope first sets the foreground and background
colors, then waits for the next screen-refresh signal (see below, “15.2.2.1 Screen Timing”,
p446) and then copies the bitmap to the screen using the copy-mode specified in the
“mode” attribute for that event (see “14.2.1 Text”, p424).

The stimulus is cleared by the same process, except that the foreground color is set to be
the same as the background color and the mode is set to COPY.

Non-bitmapped Stimuli

Non-bitmapped stimulus types were designed for situation in which millisecond timing is
either non-critical, or in the case of the KeySequence type, impossible. They are drawn di-
rectly to the screen, text form, and depending on variables such as their size and what font
they are in, could take a considerable amount of time to draw (see “Part 2: Graphic Envi-
ronment Reference, Loading Text”, p247 for more information on fonts and font loading).
To clear non-bitmapped stimuli, the entire port containing the stimulus is cleared.

15.2.2.1 Screen Timing

The biggest problem when drawing stimuli on the Macintosh screen tachistoscopically is
that the image on a CRT screen is only refreshed periodically, generally on the order of 16
milliseconds, or less depending on the hardware.

The screen is refreshed by a beam of electrons within the CRT which sweeps across each
line of the screen from left to right, starting with the top line and ending with the bottom.
The time that it takes to do this is the refresh rate. Each time the electron beam returns to
the upper left corner of the screen, the computer receives a signal, known as the retrace sig-
nal, or simply retrace.

In order to provide accurate timing within the constraints of this system, PsyScope employs
a method known as retrace synching to reduce the error involved. When a bitmapped
screen stimulus is to be drawn, PsyScope waits until it receive the retrace signal, and then
draws the bitmap to the screen. The time at which the retrace signal is received is recorded
as the actual onset time. This way the amount of error is constant and calculable for a par-
ticular position on the screen and doesn't depend on the size of the stimulus. (This assumes
the drawing is done before the next retrace)

Timing on Multiple Screens

On systems with multiple screens drawing screen stimuli is somewhat more complicated,
because each screen may have its own retrace rate, and even in the case that all the screens
have the same retrace rate, it is highly unlikely that they will be in phase.

When a bitmapped stimulus is drawn on a system with multiple screens, it is broken up into
the various parts that intersect each screen, and the parts are drawn sequentially, each one
synched to the retrace of the screen it is being drawn on. In order to prevent experimental
bias caused by the parts of the image always being drawn in the same order, it is possible
to use the “MonitorOrder” experiment attribute to control the order in which stimuli are
drawn to the monitors (see “13.1.6.1 Standard Experiment Attributes”, p360).
446

15.3 Playing Sound Stimuli
15.3 Playing Sound Stimuli

15.3.1 Loading Sounds

Loading sounds is covered in “Part 2: Graphic Environment Reference, Loading Sounds”,
p249.

15.3.2 Sound Timing

15.3.2.1 Actual Duration vs. Recorded Duration

Sound stimuli in PsyScope have the advantage of playing asynchronously and having an
inherent duration, thus not depending on the Trial Manager to clear them when they have
finished. Unfortunately, PsyScope still must schedule and EndEvent[], and a
ClearStim[] action for each sound event, and record an actual duration for the sound when
the ClearStim[] action is executed.

The duration of the sound is known when the sound is loaded, and the EndEvent[] is
scheduled to run at that time, but if screen stimuli are being displayed concurrently with the
sound, it is possible for the drawing or clearing of a screen stimulus to delay the execution
of the ClearStim[] action, and thus cause the reported duration of the event to be longer
than expected.
447

 Part 4: Scripting Reference
448

Ψ
Chapter 16. Configuring the User Environment

Part 4: Scripting Reference

For each experiment, there will be a number of variables you may want to adjust each time
the experiment is run, e.g., duration, intertrial intervals, stimulus appearance. Besides de-
fining the experiment to run, the script can be used to define menus and display information
for the Console.

16.1 Setting up the Menus

PsyScope allows you to design your own menus that will appear in the menu bar when the
experiment is run. (These will appear along with the standard PsyScope menus — File, Ed-
it, Run, Utilities, and Windows.)

To define your own menus, you must:

1. Create an entry named “Menus” that specifies all of the user-defined menus that will
appear in the menu bar (this entry is already there in the standard script template). The
content of the “Menus” entry should be a list of references to other entries; these en-
tries — called menu entries — will define the individual menus.

For example, a menu bar that has Subject and Stimulus menus (in addition to the
standard PsyScope menus) would be defined like this in the script file:

Menus:: Subject Stimulus

and the menu bar would look like this when the experiment is run:

2. Create a separate menu entry for each individual menu. The content of each menu entry
should be a list of references to item entries; each item entry defines a single item in
the menu.

For example, the “Subject” entry in the example below defines a menu with contain
five items:

Menus:: Subject Stimulus

Figure 197 – Example menu bar

 Part 4: Scripting Reference
Subject:: "Subject Number" "Subject Name" Age Group Handedness

The five items that will be under the Subject menu are: Subject Number, Subject
Name, Age, Group, and Handedness:

3. Create each item entry. The content of an item entry will vary, depending on what kind
of information is represented by the entry.

Note: Normally, you would use the Subject Info facilities of the graphic environment to set
up your subject info items. This chapter uses subject information items as examples —
independent of the standard Subject Info system — because it makes a good example.
Nevertheless, you can use the information in this chapter to integrate items created in
the standard Subject Into system into the menu system. See also “6.2 Subject Info”,
p224.

16.1.1 Item Entries

Menu items are used for changing the parameters of your experiment and for obtaining in-
formation about your subjects. Usually, each item in a menu is associated with a single di-
alog.

When a menu item is selected, PsyScope looks in the script file for the matching entry.
Thus, if a user selected Subject Name from the Subject menu above, PsyScope would
search the script file for an entry named “Subject Name”, which might look like this:

Subject Name:: "George the Subject"
Dialog: Standard
Type: String

The “Dialog” attribute tells PsyScope how to go about getting new information from the
user (i.e., what type of dialog to present so that the value of the entry can be changed). In
this example, the script tells PsyScope to use a standard dialog box (made up of an editable
text field, an OK button, and a Cancel button).

Figure 198 – Example script menu
450

16.1.1 Item Entries
Input methods that can be specified in the “Dialog” attribute are called dialog extensions.
The “Function” attribute can be used instead of the “Dialog” attribute, in which case the
method is called a function extension. Some other dialog and function extensions include
Check, Buttons, Checkboxes, Picture, FileLists, and LogInfo. These are all listed in
“Chapter 17. Dialog and Function Extensions”, p467

The content of an item entry contains the current value of the menu item; in this example,
the current value is the string George the Subject. This value will be placed in the text
field of the dialog, which the user can then edit.

The “Type” attribute of the entry tells PsyScope that the expression that goes into the text
field is Sting; i.e., it can be anything. If the input is not of the specified type, an error mes-
sage to the user says so.

Remember that, in the script, a string that contains spaces must be enclosed in quotes. If the
content of the menu item entry contained no quotes, like this:

Subject Name:: George the Subject
Dialog: Standard
Type: String

the content field would be treated as three strings instead of one; the Standard dialog would
then display three edit text boxes, one for “George”, one for “the”, and one for “Subject”.
Quotes insure that strings are treated as one expression. (If the original name had no spaces,
but the user changed the name to one with spaces, quotes would be automatically placed by
PsyScope.)

The “Type” attribute is specific to the Standard dialog extension. There are many other
dialog- and function-specific attributes, all described in “Chapter 17. Dialog and Function

Figure 199 – Standard dialog

Figure 200 – Standard dialog with three fields
451

 Part 4: Scripting Reference
Extensions”, p467. In this section, we will describe other item entry attributes which are
independent of the dialog or function extension.

16.1.1.1 Checkmarks

If a checkmark should be placed beside a menu item, the item entry should have an attribute
“Check” with the value True.

The Check function can be used for item entries that store a True or False value. When
Check is set as the function for a menu item entry (in the “Function” or “Dialog” attribute),
the value of the “Check” attribute will be toggled each time the menu item is selected. Ad-
ditionally, if the entry content has a True or False value, it will also be set to match the
“Check” attribute. When the Check function is run, no dialog appears.

The menu handler looks for a “Check” attribute for any item entry and puts a check mark
if the value of the attribute is True; this is independent of the dialog or function that is used
for the item. The Check function is provided as a simple “dialog” that toggles the value of
the “Check” attribute.

See also “ Function: Check”, p476 for more information.

16.1.1.2 Range Checking

In some situations, you may want the dialog to accept only a certain range of values. For
instance, suppose you defined the “Age” menu item as:

Age:: 21
Dialog: Standard
Type: Integer
Range: (@Age>=16) && (@Age<=65)
RangeFailMsg: "Age must be between 16 and 65"

Choosing Age from the menus produces a Standard dialog box with “21” in the text field.
The “Type” attribute specifies that only integers may be typed into the text field.

The “Range” attribute specifies — through a PsyScript expression — that the dialog should
only accept values that satisfy both of the following conditions:

• greater than or equal to 16: (@Age>=16)

• less than or equal to 65: (@Age<=65)

In other words, the dialog will only accept age values from 16 to 65. If the user types a value
into the text field that is outside of the specified range (such as “14”), an error message will
pop up, notifying the user that a range violation has occurred.

Whenever the user hits OK in a dialog, the “Range” attribute is checked for a True or False
value; if the value is False, the use sees an error message and the dialog does not close.
452

16.1.1 Item Entries
You can specify the error message that you want to pop up by using the “RangeFailMsg”
attribute. In the example entry, the “RangeFailMsg” attribute specifies the error message
“Age must be between 16 and 65”.

16.1.1.3 Open/Close Alert

Sometimes, it is useful to check something in the script and possibly alert the user before
or after a particular dialog is opened. This can be done by defining in the item entry an
“OpenAlert” or “CloseAlert” attribute with a corresponding “OpenAlertMsg” or “CloseA-
lertMsg” attribute.

These attributes are use in the same way as the “Range” and “RangeFailMsg” attributes.
For example, if the value of the “OpenAlert” attribute is False at the time the dialog is
about to be opened, the “OpenAlertMsg” is given (and the dialog is not opened).

16.1.1.4 Menu Disabling

Sometimes, you will want a menu item to be enabled or disabled based on the value of other
items. This is accomplished by using the “Enabled” item entry attribute.

For example, in the following menu, the Hospitalization item displays a dialog box with
two buttons: one labelled InPt (for “Inpatient”) and one labelled OutPt (for “Outpatient”).
(The Buttons dialog used for “Hospitalization” is described in “ Dialog: Buttons”, p472.)

Medical Info::
Hospitalization Medication
"Months Since Hospitalization"

Hospitalization:: InPt
Dialog: Buttons
Buttons: InPt OutPt

Months Since Hospitalization:: 3
Type: Integer
Enabled: @Hospitalization == OutPt

The Months Since Hospitalization item should only be enabled if the response to Hos-
pitalization is OutPt — that is, the subject is an outpatient; thus, the content of the “En-
abled” attribute of the “Months Since Hospitalization” entry specifies the condition
@Hospitalization == OutPt. Until the subject chooses the OutPt button in the Hospi-
talization dialog, the Months Since Hospitalization item will remain disabled.

“Enabled” may be an attribute of a menu entry also; if the value of the “Enabled” attribute
is False, the entire menu is disabled.

16.1.1.5 ‘MenuName’ and ‘ItemName’

Sometimes, you may want a menu or a menu item to display a different name from the one
that you use to refer to it in the script (since convenient entry names often are not nice menu
item names). This is accomplished with the “MenuName” and “ItemName” attributes.
453

 Part 4: Scripting Reference
In the following example, the menu name displayed on the menu bar will be Personal In-
fo, even though the menu entry is named “Subject” in the script.

Menus:: Subject Stimulus Duration

Subject:: "Subject Number" "Subject Name" Subject_Age Group
Handedness "Medical Info"

MenuName: "Personal Info"

The “ItemName” attribute is used to set the name of an individual menu item. In the exam-
ple below, the item name in the menu will be Age, even though the item entry is named
“Subject Age”.

Subject:: "Subject Number" "Subject Name" "Subject Age" Group
Handedness

"Medical Info"
MenuName: "Personal Info"

Subject Age:: 21
ItemName: Age
Dialog: Standard

16.1.1.6 Title

Most dialogs will have a title to let the user know what information is being set by the dia-
log. The title of the dialog defaults to the name of the menu item that it is attached to, but
it can be specified though a “Title” attribute.

Subject:: "Subject Number" "Subject Name" "Subject Age" Group
MenuName: "Personal Info"

Subject Number:: 1
Dialog: Standard
Type: Integer

Subject Name:: George
ItemName: Name
Dialog: Standard
Type: String
Title: "Subject Name"

Subject Age:: 21
ItemName: Age
Dialog: Standard
Type: Integer
Title: "Subject Age"

Group:: High
Dialog: Buttons
Buttons: High Low

In the example above, the menu will be named Personal Info in the menu bar, and will
have four items: Subject Number, Name, Age, and Group. The dialog titles for each di-
alog, respectively, will be Subject Number, Subject Name, Subject Age, and Group.
454

16.1.2 Submenus
16.1.2 Submenus

Submenus (menus under menus) can be created through the script. Submenu entries are
used in the same place as item entries (i.e., in the content of a menu entry), but they are rec-
ognized as submenu entries by having a “Submenus” attribute. The content of a “Sub-
menus” attribute is the same as the content of a menu entry; the content and other attributes
of a submenu entry are ignored (except the “Enabled” attribute; see “16.1.1.4 Menu Dis-
abling”, p453).

For example:

Menus:: Subject Stimulus

Subject:: "Subject Number" "Subject Name" Age Group Handedness
"Medical Info"

Medical Info::
SubMenus: Hospitalization Medication
"Months Since Hospitalization"

The submenu created from the example entries above would look like this:

16.2 The Console

The information that is displayed in the console can be configured in the script through a
“Console” entry. The content of the “Console” entry should contain a list of references to
other entries; the names of the referenced entries will appear with their values in the console
window.

Items attached to the console are directly analogous to menu items. The “ItemName” and
“Title” attributes may be used just as in the menu system. (The “Enabled” attribute is not
supported, however.)

Figure 201 – Example script submenu
455

 Part 4: Scripting Reference
For example, the following Console entry:

Console:: "Subject Name”

links “Subject Name” to the console:

16.3 Custom Options

Items can be attached to the Options submenu of the Edit menu by using the “Options”
entry.

The Options submenu automatically displays a number of items that are discussed in
“Part 2: Graphic Environment Reference, 7.6 Options”, p265. However, the Options sub-
menu also displays a Custom item, which is a sub-submenu with user-defined items. Item
entries referenced from the “Options” entry will appear in this submenu.

For example:

Options:: Cycles

Cycles:: 2
Dialog: Standard
Type: Integer

16.4 File Names

When files are needed by the script (e.g., input files for instructions or the output data file),
the user can set the location and name of the file though a menu item. This can be done by
including a menu item that uses the FileLists dialog.

The FileLists dialog can be used in several modes, described in “ Dialog: FileLists”, p480.
Here, we use the most elaborate mode, in which several sets of file names are handled by
the dialog (and each set can contain multiple file names).

Figure 202 – Console window with item
456

16.4 File Names
Menus:: Subject Stimulus

Subject:: "Subject Number" "Subject Name" Age Group Handedness
"Medical Info"

Stimulus:: "Set Files"

Set Files:: "Sound Files" "Data File"
Dialog: FileLists

Sound Files:: "My Disk:Sounds:Bloop" "My Disk:Sounds:Beep"
Type: Locked
Mode: Get

Data File:: "My Disk:Data Folder:Experiment Data”
Type: Single
Mode: Put

The content field of the “Set Files” contains a references to other entries; each of these en-
tries represents a single set of files.The content of each set entry contains one or more file
names.

This “Set Files” entry refers to two sets of files: “Sound Files” and “Data File”. The “Sound
Files” set has two file names: “Bloop” and “Beep”. The “Data File" set has just one file:
“Experiment Data”.

Files are always listed with their paths, although this path can be a partial path. See “Part 2:
Graphic Environment Reference, 6.1.2 Path Names”, p215 for more details.

Each file set entry has a “Type” attribute. The four possible values for the “Type” attribute
are:

SINGLE - This is used when only one file name is specified in the content field of the entry
and you do not want the subject to be able to add more files. With the “Type” attribute
set to SINGLE, the specified file name can be changed, but no new file names can be
added.

LOCKED - This is used when more than one file name is specified in the content field of
the entry. The type LOCKED means that the present file names can be changed, but file
names cannot be deleted from the list, and no new file names can be added to the list.
In other words, the names of file names can be changed, but the number of file names
in the list is constant.

UNLOCKED - The UNLOCKED type means that file names can be deleted from the list and
new ones added, so that the number of file names in the list is variable.

DIRECTORY - When the DIRECTORY type is chosen, the content of the entry will specify a
folder instead of a file. Lists of directories are not allowed.

Besides a “Type” attribute, each set entry also has a “Mode” attribute. The “Mode” attribute
for “Sound Files” is set to GET; this means that the dialog for “Sound Files” will only get
the names of files that already exist. The “Mode” attribute for “Data File” is set to PUT; this
means that the dialog for “Data File” will allow the user to create a new file. Put never cre-
ates a file — it just creates a file path name.
457

 Part 4: Scripting Reference
The modification of file sets may be disabled with the “Enabled” attribute. If “Enabled” is
False, the user will not be able to change, add, or remove file names in the set.

See also “ Dialog: FileLists”, p480.

16.5 Log File

Basic log file information can be found in “Part 2: Graphic Environment Reference, 6.1.5
The Log File”, p222.

The current log file is specified in the “Log File” entry of the script. If the “Log File” entry
is not present and you change the log file with Change Log FileÉ, the entry will be creat-
ed.

16.5.1 Log File Format

The log file follows the formatting convention similar to the one used by scripts. See “12.1
Components of a Script”, p319 for basic information on the scripting syntax. Information
is stored after keywords that are followed by double- or single-colons.

Every time PsyScope is launched, a new “Application” keyword — with double-colons, so
it looks like an entry — is written in the current log file, and the name of the PsyScope ap-
plication, the date and the time are entered on its “content”. By default, each subsequent bit
of information recorded in the log file is stored as an “attribute” of the “Application” entry.

Multi-line comments are placed in curly-brackets (“{}”) like string values in the scripting
language. Most other information, however, is not quoted.

The only keyword besides “Application” that is followed by double-colons is the “Subject-
Name” keyword; this has to do with how the log file is used to calculate subject and run
number (see “Part 2: Graphic Environment Reference, 6.2.3 Subject Number Calculation”,
p230).

16.5.2 Logging script information

The Log extension can be used to record the names of entries from the script followed by
their values. To use the Log extension, include a “Function” attribute in one of your script
entries, with the value Log. In the content of the entry, list the names of the other entries
that you want to be included in the log. The name of the each script entry listed will be in-
cluded in the log, followed by its content, when that entry is executed.
458

16.6 Special Entries
Note: The entry can be executed by putting it in the menus (see “16.1 Setting up the
Menus”, p449), the Console (see “16.2 The Console”, p455), or in an execution entry
(see “16.6.2 Execution Entries”, p460).

For example, consider the following set of entries:

SubjectName:: "Oscar the PsyScope Junky"

Age:: 12

Favorite flavor of ice cream:: pistachio

Log Subject Info:: SubjectName Age "Favorite flavor of ice cream"
Function: Log

When “Log Subject Info” is executed, the following will be added to the log file:

SubjectName:: "Oscar the PsyScope Junky"
Age: "Hello World"
Favorite flavor of ice cream: pistachio

Note: A single, rather than a double colon appears after each of the entry names in the log
file, except for “SubjectName” which retains its double colon. See “16.5.1 Log File
Format”, p458.

See also “Part 4: Scripting Reference, Function: LogInfo”, p482.

16.6 Special Entries

This chapter has so far described a number of special entries — including “Menus”, “Con-
sole”, and “Options” — which permit the user to customize the PsyScope environment in
various ways. In addition to these, there are a number of other special entries used by Psy-
Scope, as discussed below. The names for these entries are reserved, and should not be
used for any other purposes in a script.

16.6.1 Experiments

“Experiments” is, of course, a reserved entry name. See “13.1.4 The ‘Experiments’ Entry”,
p359.
459

 Part 4: Scripting Reference
16.6.2 Execution Entries

There are several execution entry names that you can use to automatically run dialogs or
functions associated to item entries. The content of each execution entries references a list
of item entries to run at the execution entry’s particular time. These items do not have to be
linked to the menu system of Console.

Items referenced in an execution entry are executed in the order which they are listed. If
any one of the dialogs is cancelled (i.e., the user hits the Cancel button), then the operation
associated with the execution entry (see below) is also cancelled, as well as the execution
of other entries.

The execution entries, and their execution times, are shown in the table below.

Table 3: Execution Entries

Entry Name Time Cancels

“StartUp” Script or project opened,
after the log file is opened

Opening script or project

“ExperimentStart” Script or project loading
done or switched to new
experiment, about to accept
user input

Nothing

“BuildStart” About to run, practice, or
compile experiment

Run, practice, or compile

“RunStart” About to run, after “Build-
Start”

Run

“PracticeStart” About to practice, after
“BuildStart”

Practice

“RunEnd”/“Practi-
ceEnd”

Done running or practic-
ing, didn’t break

Nothing

“RunBreak”/“Prac-
ticeBreak”

Stopped running or practic-
ing due to break

Nothing

“ExperimentClose” About to close script or
switch scripts

Closing script or switching

“Shutdown” About to close script (after
“ExperimentClose”) or
project — before “Save
changes?” alert.

Closing script or project
460

16.6.3 Resources
16.6.3 Resources

The “Resources” entry can be used to open a resource file (or files) whenever the script is
opened in PsyScope. The content of the “Resources” entry should be a list of the resource
file names (with paths; see “Part 2: Graphic Environment Reference, 6.1.2 Path Names”,
p215).

This feature can be useful for storing script-specific dialogs, beep sounds, or picts in a sep-
arate resource file. See also “Part 2: Graphic Environment Reference, 6.1.3 Resources”,
p216.

16.7 PsyScopeStdLib

“PsyScopeStdLib” is a built-in script fragment (a ‘TEXT’ resource in the PsyScope appli-
cation) that is automatically included in a script. It contains a number of entry definitions
that are commonly used in setting up an experiment and user environment.

If, for some reason, you do not want “PsyScopeStdLib” included in a script, you can sup-
press it by including the line #NoIncludeStdLib in your script; this is not recommended,
especially for Factor format scripts. See also “Part 4: Scripting Reference, 12.4.4 #NoIn-
cludeStdLib”, p326.

16.7.1 CurrentExperiment

The “Experiments” entry in each script has a “Current” attribute. This attribute is used by
“CurrentExperiment” to reference one of the experiment entries in the script. A reference
to “CurrentExperiment” is synonymous with a reference to the experiment currently select-
ed for the script. Thus, “CurrentExperiment” may be useful when more than one experi-
ment is defined in a single script and a reference to the currently selected script is desired.

16.7.2 Standard Menu Items

“PsyScopeStdLib” contains a number of pre-defined menu items, complete with their dia-
log configurations. To use them, you can include one of the pre-defined menus (see “16.7.3
Standard Menus”, p464) in your script or you can add the individual menu item you want
to use in one of your own menus.

16.7.2.1 UserLevelMenuItem

The “UserLevelMenuItem” item entry (with item name User Level) uses the Button dia-
log. Using this dialog, the level of the user can be set Programmer (all privileges), Grad-
uate (most privileges), or Research Assistant (fewest privileges). Many of the standard
menu items make themselves disabled if the user level is too low.
461

 Part 4: Scripting Reference
By default, the user level is stored within “PsyScopeStdLib”; because “PsyScopeStdLib”
is read-only, a change to the user level will not be saved when the script is changed or re-
loaded. However, if the script contains a “UserLevel” entry, the value is stored there.

The user level set up is entirely script-based; nothing in PsyScope itself depends on the user
level setting. It is there so that the user level can be used by scripters to enable or disable
custom menu items.

16.7.2.2 SettingsMenuItem

The “SettingsMenuItem” item entry (with item name Settings) uses a scrolling checkbox
dialog for setting special experiment flags, including those needed by installed extensions.
This is the dialog that is used for Special in the graphic interface; see “Part 2: Graphic En-
vironment Reference, Special”, p165.

The changes made in the “SettingsMenuItem” dialog will be reflected in the “Flags” exper-
iment entry unless the script contains a “SettingsMenuItemOutput” entry, in which case the
values are written there instead.

16.7.2.3 DataFieldsMenuItem

The “DataFieldsMenuItem” item entry (with item name Data Output) uses a checkbox di-
alog for setting the kind of information that will be recorded in the data file. This is the di-
alog that is used for Data Info in the graphic interface; see “Part 2: Graphic Environment
Reference, Data Info”, p161.

The changes made in the “DataFieldsMenuItem” dialog will be reflected in the
“DataFields” experiment entry unless the script contains a “DataFieldsMenuItemOutput”
entry, in which case the values are written there instead.

16.7.2.4 ReverseVideoMenuItem

The “ReverseVideoMenuItem” item entry (with item name ReverseVideo) uses the dialog
shown below to set the default foreground and background attributes in the experiment en-
try.

If the On button is selected, the “ForeColor” attribute is set to white and the “BackColor”
attribute is set to black. If the Off button is selected, the “ForeColor” attribute is set to
black and the “BackColor” attribute is set to white.

See “Part 4: Scripting Reference, 14.2.1.2 Text and Screen Experiment Attributes”, p429
for more details on the attributes.

16.7.2.5 InputDevicesMenuItem

The “InputDevicesMenuItem” item entry (with item name Input Devices) uses a scrolling
checkbox dialog for setting which of the available input devices will be enabled during the
experiment execution. This is the dialog that is used for Input Devices in the graphic in-
terface; see “Part 2: Graphic Environment Reference, Input Devices”, p164.
462

16.7.2 Standard Menu Items
The changes made in the “InputDevicesMenuItem” dialog will be reflected in the “Input-
Devices” experiment entry unless the script contains a “InputDevicesMenuItemOutput”
entry, in which case the values are written there instead.

16.7.2.6 TimerMenuItem

The “TimerMenuItem” item entry (with item name Timer) uses a scrolling radio button di-
alog for setting which of the available timing devices will be used during the experiment
execution. This is the dialog that is used for Timer in the graphic interface; see “Part 2:
Graphic Environment Reference, Timer”, p164.

The changes made in the “TimerMenuItem” dialog will be reflected in the “Timer” exper-
iment entry unless the script contains a “TimerMenuItemOutput” entry, in which case the
values are written there instead.

16.7.2.7 OptimizeMenuItem

The “OptimizeMenuItem” item entry (with item name Optimization) sets the kind of op-
timization that will be attempted when the experiment is compiled. The dialog that is used
depends on the experiment format.

The changes made in the “OptimizeMenuItem” dialog will be reflected in the “Optimize”
experiment entry unless the script contains a “OptimizeMenuItemOutput” entry, in which
case the values are written there instead.

(See “Part 2: Graphic Environment Reference, Optimization”, p167 and “13.2.5 StimList/
EventList Optimization”, p373 for information on optimization.)

16.7.2.8 Test BBox

The “Test BBox” item entry (with item name Test Button Box) opens the button box
mask-setting and testing dialog. Use of this dialog for testing is described in “Chapter 19.
Configuring the Button Box”, p513.

The button box mask set in the “Test BBox” dialog will be reflected in a “TempBBox-
Mask” entry in “PsyScopeStdLib” unless the script contains a “BBoxMask” entry, in which
case the mask is written there instead.

16.7.2.9 TurnOffBBox

The “TurnOffBBox” item entry (with item name DonÕt Use BBox) has no dialog; it modi-
fies the “InputDevices” experiment entry to insure that BBox is not present, and checks the
“Timer” experiment entry, changing BBox (if present) to Macintosh.
463

 Part 4: Scripting Reference
16.7.3 Standard Menus

Rather than adding individual menu items to your own menus, you can include a complete
pre-defined menu in your experiment. “PsyScopeStdLib” contains two menu definitions:
“AllStdLibMenuItems” (with menu name Configuration) and “StandardMenuItems”.

As its name implies, “AllStdLibMenuItems” contains all of the menu items described in the
previous section. The “AllStdLibMenuItems” entry can also be used as a menu item; it uses
the EntryList dialog to show all of the standard items in list form instead of menu form.

“StandardMenuItems” contains most of these menu items; a script created with the New
ScriptÉ item in the Design menu uses this item set by default.

16.8 SubjectInfoLib

Keeping track of subjects is a common need in running experiments, and — at one time —
there was no graphic environment in PsyScope to help you do things. “SubjectInfoLib”
contains a menu and set of dialogs for doing this. To use “SubjectInfoLib”, you must in-
clude the line #include "SubjectInfoLib" in your script.

16.8.1 The Subject Menu

“SubjectInfoLib” contains a Subject menu, which can be used by including Subject in
the menu list kept in the “Menus” entry. (Do not write a separate “Subject” menu entry; the
entry is defined in “SubjectInfoLib”.) PsyScope will then create a Subject menu with the
following items: Subject Info, Name, Group, Number, Run, Age, Sex, and Data File.

Figure 203 – “SubjectInfoLib” Menu
464

16.8.1 The Subject Menu
Selecting the Subject Info item opens an EntryList dialog (see “ Dialog: EntryList”,
p477) showing all of the current subject information, and allowing the user to double-click
on any of the items to change it. Double-clicking on any item in the list will open the dialog
box for that item.

Each of the items on the Subject Info list is the same as the items included in the Subject
menu.

By default, the value of each item is kept in special entries within “SubjectInfoLib”; how-
ever, this information will disappear once PsyScope is turned off. If you want to keep the
information from an item’s dialog, you must create an entry in your script; the name of the
entry to which each item will write is shown in the following table:

It is expected that much of this information will be used in conduction with the MakeFile-
Name, Log and GetSubjNum functions (see “17.2.6 Log File Related Functions”, p482).

Figure 204 – “SubjectInfoLib” Subject Info dialog

Table 4: Subject Info Item Entry Outputs

Item Menu Item Definition Entry Name

Name “Subject_Name” “SubjectName”

Group “Subject_Group” “Group”

Number “Subject_Number” “SubjectNumber”

Run “Subject_Run” “RunNumber”

Age “Subject_Age” “SubjectAge”

Sex “Subject_Sex” “SubjectSex”

Data File “Subject_DataFile” “Data File”
465

 Part 4: Scripting Reference
You can customize the default Subject menu by including a menu entry in your script ti-
tled “SubjectMenuItems”. If this entry exists in the script, the Subject menu will use the
items listed there instead of the standard items.Of course, you may also create a your Sub-
ject menu from scratch.

The items in the Subject Info dialog default to be the same as the Subject menu items.
If you customize the “Subject” menu by including a “SubjectMenuItems” entry in your
script, the Subject Info dialog will automatically be changed to match the menu. If you
want to specify different items for the Subject Info dialog than you have in the Subject
menu, you can do this by defining a “SubjectInfoDialogItems” entry.
466

Ψ
Chapter 17. Dialog and Function Extensions

Part 4: Scripting Reference

Dialog and function extensions are PsyScope Extensions that interact directly with the
scripting language; i.e., these extensions know about entries and attributes, and can read
and write tokens and expressions (see “Chapter 12. PsyScript Reference”).

Dialog extensions provide user interface dialogs so that information in the script can be
viewed or modified by a non-scripting user. For example, the Style dialog reads tokens
which represent a text style description (as in a Text event’s “Style” attribute), and allows
the user to change this style. The Standard dialog reads one or more simple string values,
and lets the user edit them.

Function extensions are similar to dialogs, except that there is no interaction with the user.
The LogInfo function, for instance, reads tokens from the script and writes them to the log
file. Functions can also modify the script; the SubjNumAndGroup function reads subject in-
formation from the script, and writes back subject number information.

Dialog and function extensions are always executed in the context of a dialog entry. This
entry usually has a “Dialog”, “Function”, or “DCOD” attribute which names the extension
to be run. An entry is executed when its dialog or function is called and given the entry as
its context.

An entry is executed when:

• The entry is referenced in a script-defined menu and the item is selected by the user.
(See “16.1 Setting up the Menus”, p449.)

• The entry is referenced in the Console and the item is selected by the user. (See “16.2
The Console”, p455.)

• The entry is referenced by an execution entry that is run. (See “16.6.2 Execution En-
tries”, p460.)

• The Run() PsyScript function is executed. (See “12.14.1.5 Other Operations”, p354.)

• The graphic environment invokes a dialog. (See the PSYXs programmer’s manual.)

From the PsyScope extension manager’s point of view, there is no difference between a di-
alog and a function; the distinction is, however, important to the user. A function extension
should be specified through a “Function” attribute as opposed to a “Dialog” attribute; this
affects only the menu configuration: no ellipses will be shown in the menu for entries using
the “Function” attribute instead of the “Dialog” or “DCOD” attribute.

 Part 4: Scripting Reference
Most dialogs look for other attributes within the dialog entry to further specify the service
that it should perform. “Msg” is a standard attribute is used by many dialogs; it is special
in that setting the “Msg” attribute is referred to as “sending the dialog a message”. (Mes-
sages are also important when dialogs are invoked by the graphic environment, rather than
through the script.)

Developer Note: Dialog and Function extensions are PSYXs of type ‘DCOD’. The “Msg”
attribute of a dialog entry is handled specially, passing it in to the DCOD as the PSYX
message rather than the usual pDialogCall message.

17.1 Calling Sequence for Dialogs

When an entry is executed, the following procedure is followed:

1) If the entry has a “RunBefore” attribute, it is used as an execution entry (see “16.6.2
Execution Entries”, p460); the dialogs/functions for the entries referenced in this at-
tribute are run.

2) If the entry has an “OpenAlert” attribute and the attribute’s value is True, then the
string value of the “OpenAlertMsg” attribute is presented in a user alert. (If there is
no “OpenAlertMsg” attribute, no alert is displayed.)

3) The extension that is specified in the “Dialog”, “Function”, or “DCOD” attribute is
loaded into memory and run.

4) The extension will have control at this point. For dialog extensions, the user’s actions
within the dialog should be immediately reflected in the script.

5) If the extension uses a modal dialog and the user closes the dialog with Cancel:

5.a1) The script is reverted to its former state and nothing else happens. The
“former state” to which the script is returned is the state of the script af-
ter the “RunBefore” entries were executed.

5.a2) If the dialog entry has a “RunFailMsg” attribute, the string value of the
attribute is presented in a user alert.

otherwise (i.e. there is no modal dialog or the user hits OK):

5.b1) If the entry has a “Range” attribute and the value is False, execution
returns to step 3. If there is a “RangeFailMsg” attribute, the string value
of the attribute is presented in a user alert.

5.b2) If the entry has a “CloseAlert” attribute and its value is True, then the
string value of the “CloseAlertMsg” attribute is presented in a user alert.
(If there is no “CloseAlertMsg”, no alert is displayed.)
468

17.2 Standard Dialogs and Functions Reference
5.b3) If the entry has a “RunAfter” attribute, it is used as an execution entry
and the entries referenced in this attribute are run.

In addition, if there is a “NoDirty” attribute of the dialog entry with a True value, then the
save state of the script will not be affected by changes made to it by the dialog (i.e. the Save
Script menu item will not be hilited, even if a change is made to the script). This feature is
available so that dialog operations that happen automatically need not force a “Save
script?” dialog on the user.

17.2 Standard Dialogs and Functions Reference

The following is a detailed list of the set of predefined dialogs available in PsyScope. Wher-
ever the term “attribute” is used below, it refers to an attribute of the dialog entry. All at-
tributes must be specified, except:

• Attribute types are followed by square brackets (“[]”). The value inside the brackets is
the default value and will be used in the absence of the attribute.

• Attributes are followed by “(optional)”. These need not be specified and have no default
values.

17.2.1 Standard Configurable Dialogs

The standard dialogs are a collection of configurable dialogs for performing commonly
needed dialog services. They include tools for setting strings or selecting from a set of radio
buttons, a set of checkboxes, a scrollable list, or a pop-up menu.

17.2.1.1 The Standard Attributes

There are certain attributes which all of the standard dialogs recognize; there are listed here.
All of these attributes are optional.

There is a special standard dialog, Custom, which is made up of standard parts rather than
being a simple standard dialog. When an asterisk below is marked with an asterisk (*), the
attributes are recognized by Custom parts, rather than by the Custom dialog itself, and
should therefore be specified in the part entry instead of the dialog entry. (See “ Dialog:
Custom”, p473 below for more details.)

EnableParts *

This attribute is a list of boolean values that determine whether each control item is enabled
or not: True means it is enabled, False means disabled. The first “EnableParts” value ap-
plies to the first item in the dialog, the second one applies to the second item, and so on.

The “EnableParts” attribute is read each time a change is made to any of the dialog items
and the enabled state of each item is updated accordingly. If fewer enable values are spec-
469

 Part 4: Scripting Reference
ified than there are items, the values that are specified are used for the first few items, and
the rest are always enabled.

Prompts *

For the Standard/Fields dialog, this attribute contains a text prompts to be placed in front
of the edit boxes. There should be one prompt for each edit box.

For the other dialog types, this is a list of names that the user will see on the buttons, check-
boxes, list items, or menu items. There should be one prompt for each item value; if there
are fewer prompts than items, the actual values are used for the items without prompts. (See
also “ Dialog: Buttons”, p472.)

Default or Defaults *

All modal standard dialogs have a Default button. If the “Defaults” attribute is present, the
button is enabled and the user can hit this button to set the items to the values in the “De-
faults” attribute. There should be one default value for each item in the dialog.

Width *

This attribute specifies the width of the controls in the dialog, specified in pixels. The de-
fault varies depending on the part type, but it is usually about 400 pixels for items that take
up a whole line in the dialog. One width is used for all of the items.

Height *

This attribute specifies the height of the controls in the dialog, specified in pixels and in-
cluding the space between items. The default height varies depending on the part type, but
it is usually about 20 pixels for items that take up a whole line in the dialog. One height is
used for all of the items.

Margin *

This attribute specifies the horizontal position in pixels from the left of the dialog at which
the item is to start. One margin value is used for all of the items.

Placement *

This attribute specifies a starting position in the dialog to place the items. The default is at
the top left for the first set of items, or below the last set of items in a Custom dialog. This
attribute overrides the “NewLine” attribute available in a Custom dialog.

Async

If this attribute has a True value, the dialog will be non-modal. The default is a modal dia-
log.
470

17.2.1 Standard Configurable Dialogs
SetUp * and TakeDown *

The expressions in “SetUp” are evaluated before item values are read from the script when
the dialog is being set up. The expressions in “TakeDown” are evaluated after item values
are written back out to the script. The values of these attributes are ignored; they can be
used for doing side-effect work on the script.

(For Custom dialogs, “SetUp” and “TakeDown” are read after the reflection operations are
performed; see also “ Dialog: Custom”, p473.)

DLOGx and DLOGy

These attributes set the position of the dialog on the screen. “DLOGx” and “DLOGy” spec-
ify the position of the top left corner of the dialog; -1 can be used to center the dialog in
either direction. The default position is (-1, 50).

DLOG and PartIDs *

These are for advanced users who wish to create their own ‘DLOG’ and ‘DITL’ resources
and assign parts to dialog items. The ‘DITL’ must have an OK button (item 1), a Cancel
button (item 2), a user item at the same position and size of the OK button for the OK border
(item 3), and a user item in which the dialog title is to be written (item 4).

The “DLOG” attribute specifies the name of a ‘DLOG’ resource to read.

“PartIDs” is a list of dialog item numbers for the parts in the dialog. If there are too few
PartIDs, new items are created in the dialog. The standard dialogs assume that the dialog
items are of the correct type.

17.2.1.2 Messages to the Standard Dialogs

Note: This feature is intended for developers and is useful only for operations outside the
script (e.g. some interactions with the graphic environment).

Messages to the standard dialogs are used in a special way: the message is used as the def-
inition for an inline entry to build on the dialog entry. Thus:

StandardValue:: 3
Dialog: Standard
Msg: "Type: Number"

is equivalent to:

StandardValue:: 3
Type: Number
Dialog: Standard
471

 Part 4: Scripting Reference
Thus, the message can contain attribute definitions that will be prefixed to the attributes that
are defined in the normal way for the dialog entry. “RunBefore” and “RunAfter” attributes
defined in the message are specially handled so that they work in the expected way.

17.2.1.3 Standard Dialog Descriptions

Dialog: Buttons
Entry Content: a single value representing the currently selected radio button
Attributes: “Buttons”

“Direction” [Vertical]
“Compact” [False]

This dialog has a list of radio buttons; the value of the entry will be a single value,
equal to the value of one of the radio buttons. The values for the buttons are speci-
fied in the “Buttons” attribute. (The value of a button may be different from the
name of the button that the user sees; see “ Prompts *”, p470.)

The “Direction” attribute determines the orientation of the list of buttons within the
dialog; its value can be Vertical or Horizontal.

If the “Compact” attribute has a True value, then the default height of the buttons
is made smaller to allow more buttons in the dialog. This attribute is overridden by
the “Height” attribute.

See also “17.2.1.1 The Standard Attributes”, p469.

Example:

ISI:: 500
Dialog: Buttons
Buttons: 500 3000
Prompts: "Short ISI" "Long ISI"

The dialog will have two buttons labeled “Short ISI” and “Long ISI”. If the user se-
lects “Short ISI”, the value of the entry “ISI” will remain 500; if the user selects
“Long ISI”, the value of “ISI” will change to 3000.

Dialog: CheckBoxes
Entry Content: a list of values representing all the currently selected checkboxes
Attributes: “CheckBoxes”

“Direction” [Vertical]
“OffValues” (optional)
“LeaveOthers” [False]
“Compact” [False]

This dialog is similar to the Buttons dialog, except that the user sees a list of check-
boxes. The number of items in the content of the entry usually depends on the num-
ber of boxes checked when the user hits OK.
472

17.2.1 Standard Configurable Dialogs
The “Checkboxes” attribute assigns a value to each checkbox in the dialog; these
are the values put in the entry’s content when the box is checked. (The name of the
checkbox that the user sees may be different if the “Prompts” attribute is used; see
“ Prompts *”, p470.)

The “OffValues” attribute can be used to assign values to the unchecked state of
each checkbox. (This attribute can be used to keep the number and location of the
output values of the dialog constant.)

The checked/unchecked values of the checkboxes are written to the entry content in
the same order that the checkboxes are listed in the “Checkboxes” attribute.

If the value of “LeaveOthers” is True, then values in the content of the entry which
are not related to any of the checkboxes will be ignored. If it is False, then unrec-
ognized tokens will be deleted.

If the “Compact” attribute has a True value, then the default height of the check-
boxes is made smaller to allow more buttons in the dialog. This attribute is overrid-
den by the “Height” attribute.

See also “17.2.1.1 The Standard Attributes”, p469.

Dialog: Custom
Entry Content: a list of references to part entries, if there is no “Parts” attribute
Attributes: “Parts” (optional if list in content)
Part entry attributes: “PartType” [Standard]

“NewLine” [True]
“Reflect” (optional)
“ReflectOut” (optional)

This dialog can be used to mix dialog item (or “part”) types. It takes a list of refer-
ences to entries which specify a set of parts; each part set contains one of the fol-
lowing:

• a set standard text fields

• a set of radio buttons

• a set of checkboxes

• a scrolling list

• a pop-up menu

Each part set is defined in a separate entry, called a part entry. The format of a part
entry is basically the same as for a dialog entry having that type of part, except that
the part set type is defined by a “PartType” attribute instead of a “Dialog” attribute.
Also, there are a few additional attributes which part entries can have.
473

 Part 4: Scripting Reference
The “Parts” attribute of the dialog entry should contain a list of references to the part
entries. The parts are added to the dialog in the same order which they are listed in
this attribute. If there is no “Parts” attribute, the dialog entry’s content is read for
the list of references.

The values manipulated by the parts of a Custom dialog are written to into the con-
tent of the part entries. However, these values can be moved in special ways be-
tween the dialog and part entries by using the “Reflect” and “ReflectOut” part entry
attributes.

For all parts with a “Reflect” value True, the Custom dialog tries to copy items from
the content of the dialog entry to the part entries. A value is moved only if it makes
sense for the part type; e.g., the value matches one of the button names for a button
part. (Standard parts always accept reflected values.)

“ReflectOut” works in the opposite way: for all of the parts with a True value for
this attribute, the values in the content of the part entry are copied back to the dialog
entry.

Note: On most cases, using token references at the content of the dialog entry works better
that “Reflect” and “ReflectOut”. These attributes are provided for advanced use.

The Custom dialog also looks for a “NewLine” attribute within each part entry; if it
is False the part set will be positioned to the right of the previous part set in the
dialog; the “NewLine” attribute defaults to True, in which case the new part set be-
gins below the previous set.

Dialog: ItemList
Entry Content: value(s) representing the currently selected list item(s)
Attributes: “ListItems”

“LineCount” [4]
“Single” [True]
“RSRCItems” (optional, overrides “ListItems”)

This dialog is very similar to the Buttons dialog, except that the user sees a scroll-
ing list of items and selects one. If the “Single” attribute is False, however, this di-
alog works more like the Checkboxes dialog, because the user may select more than
one list item.

The “LineCount” attribute can be used to set the number of items visible at once in
the list (i.e., how tall the list is, in items).

If a “RSRCItems” attribute is present, the dialog shows a list of available resources
of the specified type, and the “ListItems” attribute is ignored. For example, a value
of PICT in the “RSRCItems” attribute creates a list of all available ‘PICT’ resourc-
es.

See also “ Dialog: Buttons”, p472 and “17.2.1.1 The Standard Attributes”, p469.
474

17.2.1 Standard Configurable Dialogs
Dialog: PopUp
Entry Content: a single tokens representing the currently selected menu item
Attributes: “PopUpItems”

This dialog works just like the Buttons dialog, except that the choices are shown
in a pop-up menu, instead of a list of radio buttons.

See also “ Dialog: Buttons”, p472 and “17.2.1.1 The Standard Attributes”, p469.

Dialog: Standard or Fields
Entry Content: an arbitrary list of text values
Attributes: “Type” or “Types” [string]

“Static” [False]
“PromptWidth” (optional)
“TitleLine” [False, True overrides “Static” and “Margin”]
“Lines” [1]
“ForceCount” (optional)
“Initialize” (optional)
“VRange” (optional)
“StringLength” (optional)

This dialog lets the user modify the tokens on the content line of the entry. If there
are n tokens in the dialog entry content, the dialog will have n edit fields.

The “Types” attribute specifies a list of types (where each type is one of string,
integer, number, rational, or boolean), in parallel with the values in the content
line. The dialog makes sure that the value of the ith field has the correct form for
the ith type specified in the “Types” attribute. The default type is string, which
places no constraints on the field’s format (except possibly its length; see below).

There are some special conventions that allow the blocking of types and prompts
for the dialog. If there are less tokens in the “Types” attribute than in the content,
then the values of the “Types” attribute will be re-used (starting from the beginning
of the list) until all of the tokens are typed. The “Prompt” attribute works the same
way. Thus, if an entry has several tokens that all should be integers, integer only
needs to be specified once in the “Types” attribute.

If the “Static” attribute is present with a True value, the user will be shown the value
of fields in the dialog, but will not be able to edit them. (When it is not possible to
re-assign a field value due to the use of a PsyScript expression, that individual field
will automatically be made static.)

The “PromptWidth” attribute can be used to specify how much room to allow for a
prompt in front of each of the edit boxes. The same prompt width is used for all of
the fields.

The “Lines” attribute determines the number of visible lines of text in each edit
field. This attribute also applies for all fields.
475

 Part 4: Scripting Reference
The “ForceCount” attribute can be used to force the number of edit fields in the di-
alog, even if more or less values initially appear in the entry’s content; when OK is
hit, one token will be created for each edit field.

When “ForceCount” is used and the number of fields is greater than the number of
initial values, you can specify a list of default values in the “Initialize” attribute.
There should be one value for each field.

The “VRange” attribute can be used with the number types (integer, number, and
rational) to set a lower and upper bound on the values. The bounds are given as
a list of two numbers in “VRange”, with the lower bound first.

The “StringLength” attribute can be used with the string type to constrain the
number of characters allowed in the string to a single value. (“StringLength” is an
exact constraint, not an upper bound.)

See also “17.2.1.1 The Standard Attributes”, p469.

Example:

My Entry:: Binky 25 "3/4" Juliet 16 "2 3/8"
Dialog: Standard
Types: string integer rational
Prompts: "Name" "Age" "Favorite Fraction"

The dialog will have six edit boxes. Each set of three boxes will be labeled “Name”,
“Age”, and “Favorite Fraction”. The values in the first and fourth boxes can be any-
thing; the values in the second and fifth boxes must be integers, and the values in
the third and sixth boxes must be rational. (Note that the blocking convention is
used here to set prompts and type.)

17.2.2 Miscellaneous Dialogs and Functions

Function: Check
Entry Content: nothing or one token which is true or false
Attributes: “Check”

This function reads the value of the “Check” attribute and toggles its boolean value.
If there is a token on the content line, it sets it to True or False, as determined by
the current value of the “Check” attribute. The menu handler looks for a “Check”
attribute for all menu items; when it is True, the menu item is checked.

The “Check” function should be used with a “Function” attribute instead of a “Di-
alog” attribute; this is so that, if the entry is linked to the menu system (see “16.1
Setting up the Menus”, p449), ellipses will not appear after the item name (since no
dialog is opened).
476

17.2.3 Input Device Dialogs
Dialog: EntryList
Entry Content: a list of entry references (ignored if “EntryList” attribute is present)
Attributes: “EntryList” (optional if entries are listed in the content)

This dialog gives the user a list of entries and their values (similar to the central
Console; see “16.2 The Console”, p455); when the user double-clicks on one of the
list items, the dialog for the selected entry is run. The “EntryList” attribute is a list
of references for the displayed entries; if the attribute is not present, the content line
of the dialog entry is read for the references. If the user hits Cancel to close the En-
tryList dialog, all changes made to entries the list are canceled also.

If any of the referenced entries have an “ItemName” or “Enabled” attribute, these
will be used for the list item similar to the way that they are used for menu items.
(See “16.1.1.4 Menu Disabling”, p453 and “16.1.1.5 ‘MenuName’ and ‘Item-
Name’”, p453.)

Dialog: Editor
Entry Content: a single text value

This dialog opens a standard text editor window for editing the string in the dialog
entry’s content. This string can be any length, and may include carriage returns.
(The graphic environment uses this dialog to the set stimulus for Paragraph
events.)

17.2.3 Input Device Dialogs

Dialog: BBox
Entry Content: a list of tokens for a BBox[] event mask

This dialog can be used to test the button box, set the serial port to which the button
box is connected, and create a button box input condition parameter list. The tokens
of the content line will be something like BUTTON1 or VOICE_END which may be
used in the experiment structure to specify which responses should be recorded.
(See “14.3 Conditions and Inputs”, p437 for more information.)

If the port is set, the results are output to the “BBoxPort” experiment attribute. (See
“14.2.8.2 BBox Experiment Attributes”, p437.)

Dialog: MouseState
Entry Content: a list of tokens for a Mouse[] event mask

This dialog can be used to create a list of condition parameters for the Mouse input
device. See also “14.3 Conditions and Inputs”, p437.
477

 Part 4: Scripting Reference
Dialog: KeyState
Entry Content: a list of tokens for a Key[] event mask

This dialog can be used to create a list of condition parameters for the Key input de-
vice. See also “14.3 Conditions and Inputs”, p437.

17.2.4 Stimulus Attribute Dialogs

Dialog: Positions
Entry Content: one port/point specification or reference
Attributes: “Locked” [False]
Port entry attribs: “Shape” (optional)

“AlignmentPoint” (optional)
“Points” (optional)
“Locked” [False]

This dialog is used to specify the location and appearance of a port — and the loca-
tion of a set of associated points — to be used in an experiment. The dialog has two
modes: port mode — in which the content output is a port description — and point
mode — in which the content output is a point description. Port mode is default;
point mode is specified by using the “PointMode” message.

Ports and points are created as separate entries, independent of the dialog entry; a
list of ports defined in the script is kept in a “PortNames” entry. Each port has an
associated list of points kept in its “Points” attribute.

The output of the dialog in the content of the entry is PortName(port) or Point-
Name(point); these are PsyScript functions that simply perform GetToks(). If the
initial content of the dialog entry is not empty and not already in this form, then the
content is assumed to be an actual port or point description; an extra port/position
is shown in the user’s list representing this port/point.

In port mode, if the “Locked” attribute of the dialog entry is True, the user will not
be able to create and delete port specifications. If the value of the “Locked” attribute
in the port entry is False, the user will be able to add or remove points associated
to the port.

Each port description in the content of a port entry has this form:

h_pos width v_pos height border_thick

Each point description in the content of a point entry has this form:

h_pos h_relative_to h_alignt v_pos v_relative_to v_align
478

17.2.4 Stimulus Attribute Dialogs
The meanings of these specifications are given in “14.2.1.1 Text and Screen At-
tributes”, p424. The use of the “Shape” and “AlignmentPoint” attributes is also ex-
plained. (Both “Shape” and “AlignmentPoint” are specified as attributes of a port
entry.)

Example:

PortNames:: PortOne PortTwo
Dialog: Positions

PortOne:: Center 50% Center 50% 1
Points: PointForOne

PointForOne:: Left Box Left Center Box Center

PortTwo:: Left 50 Top 50 0
Points: PointAForTwo PointBForTwo

PointAForTwo:: Center Screen Center Center Screen Center

PointBForTwo:: Right Screen Right Bottom Screen Bottom

In this example, the first port is centered on the screen, half as wide and tall as the
screen, and has a 1-pixel border. It has one point that is aligned with the middle of
its left edge.

The second port is in the top left corner, fifty pixels wide and fifty pixels high. It
has two points associated with it: one in the center of the screen and one at the bot-
tom right of the screen.

Dialog: Style
Entry Content: a list of tokens describing a text font, size, face, etc. of the form:

font size face mode color
Attributes: “Sample” ["Stimulus"]

This dialog is used to specify a format to be used for text drawing. The output is
usually used as the value of the “Style” attribute of a text event in an experiment

font is the name of the font or a ‘FOND’ resource number.

size is the size of the text in pixels.

face is a string of face specifications; the string may be empty or contain
any combination of bold, italic, underline, outline, shadow, con-
dense, and extended as a single string.

mode determines the transfer mode of the text and should be one of copy,
or, xor, or inverse.

color can be one of the defined colors - red, blue, green, black, cyan,
magenta, yellow, or white - or a string containing three numbers be-
tween -32768 and 32767 giving the red, green, and blue components of
the color.
479

 Part 4: Scripting Reference
The dialog displays a sample string so the user can see how the text will look. The
“Sample” attribute specifies what string should be used as sample text.

Example:

My Text:: Geneva 14 "bold italic" copy black
Dialog: Style

This entry specifies a text style using 14 point Geneva in boldface italics.

17.2.5 File Name Dialogs

Dialog: FileLists
Entry Content: either a list of direct references, or file(s) with full pathname(s)
Attributes: “JustOne” [False, overrides “OnlyOneSet”]

“OnlyOneSet” [False]
File entry Attributes: “FileType” [Single]

“Mode” [Get]
“ReverseNotation” [False]
“Enable” [True]

This dialog works in three modes:

• If “JustOne” is True, the content of the entry is a single file (or directory)
name to be set by the user.

• If “OnlyOneSet” is True, the dialog entry is used as the only file entry.

• If both “JustOne” and “OnlyOneSet” are False, the content of the dialog
entry is a list of references to file entries.

A file entry is used to hold a list of file/directory names having the same type. The
names are listed in the file entry’s content. The attributes “FileType”, “Mode”, “Re-
verseNotation”, and “MacType” specify what kind of files should be listed at the
file entry. (These attributes are specified in the dialog entry for “JustOne” mode.)

The “FileType” attribute can be single, locked, multiple, or directory. If the
type is multiple, the user will be able to add or delete file names in the list. A file
type of directory specifies that the tokens in the content are directory paths rather
than file names. single and locked are synonymous: files in the list can be
changed, but not added or deleted.

The “Mode” attribute can be get or put; get mode means that the user should select
files that already exist, while put mode will request the name of a file to create. (The
dialog does not create the file in put mode; only a name is generated.) The “Mode”
attribute does not apply when the file type is directory.
480

17.2.5 File Name Dialogs
All file names are written to the script using relative paths, when possible (see
“Part 2: Graphic Environment Reference, 6.1.2.1 Relative Paths”, p215).

For get mode, a 4-letter file type can be specified in the “MacType” attribute. For
example, the value TEXT would allow the user to select only text files. Up to four
types can be specified.

By default, the file names on the token line will be output according to the usual
Macintosh convention; e.g., “My Disk:Folder A:File X”. If the “ReverseNotation”
attribute is True, the output will be of the form “File X @ My Disk:Folder A”. (See
also “Part 2: Graphic Environment Reference, 6.1.2.2 Reverse Notation”, p215.)

If the “Enable” attribute is set to False, the filename(s) can be seen, but not
changed.

The file type and modes can also be specified through the extension message. This
message can contain the keywords justone, onlyoneset, single, locked, mul-
tiple, directory, get, and put. A file type is specified with MacTypeXXXX where
XXXX is the 4-letter type (up to four types can be listed; no separator is used between
multiple types).

Function: MakeFileName
Entry Content: a single string (returned by the dialog)
Attributes: “Strings”

“UseInitials” (optional, read as token-inherited)

This function creates a new string (usually to be used as a file name) based on in-
formation provided in the “Strings” attribute. It takes the tokens listed in the
“Strings” attribute, concatenates them, and returns the resulting string in the content
of the entry.

If the “UseInitials” attribute is set to True, MakeFileName takes only the first letter
of each word (space-delimited) in a value. The “UseInitials” attribute is read as an
inherited attribute for each token, so that initialing can be restricted to only a few
values by creating inline token references which include the “UseInitials” attribute.
(See “12.11 Inherited Attributes”, p344 and “12.11.1 Inheritance and Token Refer-
ence Inline Entries”, p346.)

Example:

The Experiment:: “Who Cares”
Extension: Exp
...

SubjectName:: “William the Conqueror”

SubjectGroup:: Control

SubjectNumber:: 3

Auto Data File:: "WtC-C3.Exp Data File"
Function: MakeFileName
Strings:(@SubjectName UseInitials: TRUE) "-"
481

 Part 4: Scripting Reference
(@SubjectGroup UseInitials: TRUE)
@SubjectNumber "."
"The Experiment"->extension
"Data File"

Note that the values of the “SubjectName” and “Group” entries are initialed, while
the extension attribute of the “The Experiment” entry and the string “Data File” are
not.

Function: Picture
Entry Content: a ‘PICT’ file name or ‘PICT’ resource name

This dialog lets the user find a ‘PICT’ file using the standard file dialog, or choose
a ‘PICT’ resource from one of the open resource files (or from one of the files listed
in the “Resources” experiment attribute; see “Part 2: Graphic Environment Refer-
ence, 6.1.3 Resources”, p216).

17.2.6 Log File Related Functions

The LogInfo and GetSubjNum, and SubjectNumAndGroup functions work closely togeth-
er; using the log file, they keep track of the subjects that are run, how many times each sub-
ject has been run, and assign subject to groups in the experiment.

Function: LogInfo
Entry Content: a list of references

This function is used to record information in the current log file. For each reference
in the content of the dialog entry, it records (on a single line in the log file) the ref-
erenced entry name followed by the content of that entry. Entry names recorded in
the log file by the LogInfo function are recognized as keywords by the GetSubjNum
function.

For example:

RunStart:: LogSubjInfo

LogSubjInfo:: SubjectName SubjectNumber
Function: LogInfo

SubjectName:: "Oscar the PsyScope Junky"

SubjectNumber:: 42

In this example, at the beginning of the experiment the "RunStart" execution entry
will cause “SubjectName” and “SubjectNumber” to be logged like this:

SubjectName:: "Oscar the PsyScope Junky"
SubjectNumber: 42
482

17.2.6 Log File Related Functions
The special script-like formatting is built into LogInfo: if an entry is named “Sub-
jectName”, it is followed by double-colons; otherwise it is inset and followed by a
single colon. See also “16.5 Log File”, p458.

Dialog: GetSubjNum
Entry Content: first value is ignored, but set to True after running
Attributes: “GroupSpecs”

“Modulo (optional)
“SubjectNumber” (created if missing)
“RunNumber” (created if missing)
“SubjectCount” (created if missing)
“RunCount” (created if missing)
“GroupRunCount” (created if missing)
“RestrictAlert” (optional)
“Options” (optional)

This function assumes: 1) That the current log file contains all of the information
needed to determine how the current subject fits into the experiment group struc-
ture, and 2) there is a “SubjectName” entry that contains the name of the current
subject.

GetSubjName is given some information about the current subject (in the
“GroupSpecs” attribute); this information determines a group which — by defini-
tion — includes the current subject. The task of the GetSubjNum dialog is to deter-
mine how many other subjects have been in this group and how many times this
particular subject has been run in the experiment.

GetSubjNum calculates five numbers, returned in attributes of the dialog entry:

“SubjectNumber”: The number of the current subject within the current
group of the current experiment (starting with 1).

“RunNumber”: The number of this run for the current subject within the
current group of the current experiment (starting with 1).

“SubjectCount”: The number of the current subject within all groups of the
current experiment (starting with 1).

“RunCount”: The number of this run for all subjects within all groups of the
current experiment (starting with 1).

“GroupRunCount”: The number of this run for all subjects within the cur-
rent group of the current experiment (starting with 1).

These attributes are created if they do not already exist; if there is an entry with the
same name as the attribute, the content of the entry is set, as well.

For GetSubjNum to work properly, therefore, information about subjects that have
been run in the experiment must be recorded in the log file. PsyScope automatically
records the running of each experiment in the log file with the “ExperimentRun”
483

 Part 4: Scripting Reference
keyword; however, the LogInfo function must be used to record the rest of the in-
formation about subjects (before the experiment is run; this can be done with the
“RunStart” execution entry).

GetSubjNum searches the log file for keywords followed by values. GetSubjNum ex-
pects to find a “SubjectName” keyword for each subject that has been run, preced-
ing the “ExperimentRun” keyword; the keywords and information between
“SubjectName” and “ExperimentRun” are used to determine whether the logged
subject belongs to the current group.

The “GroupSpecs” attribute specifies the criteria that must be matched for a logged
subject to be in the current group; if no “GroupSpecs” are given, all subjects that
were run for the current experiment are placed into the same group. The value of
the “GroupSpecs” attribute is a list of pairs, where each pair is a criteria keyword to
find in the log file and the value that the keyword must have.

The keyword search is started after a “SubjectName” keyword is found and ends
when the “ExperimentRun” keyword is found for the current experiment (or is re-
started if another “SubjectName” keyword is encountered). The logged subject is
determined to be in the current group if all of the criteria keywords are found and
have the correct value.

The “Modulo” attribute can be used to modify the criteria matching procedure; it
owns a list of sub-attributes, one for each keyword listed in “GroupSpecs”. A 0 val-
ue in such an sub-attribute indicates that the corresponding criteria should match
exactly, but any other number n indicates that the given value and logged value
should match numerically modulo n. The constant Groups can be used to specify n
as the number of groups linked to the experiment.

The “RestrictAlert” attribute controls when the user is warned about duplicate sub-
ject names in the log file; its value can be:

False - Always warn about duplicate subject names.

Experiment - Warn if the previous subject name was recorded for the cur-
rent experiment.

Script - Warn if the previous subject name was recorded since the script
was opened.

Application - Warn if the previous subject name was recorded since Psy-
Scope was started.

Never - Do not warn about duplicate subject names.

The “Options” attribute can contain one or more flags:

USE_HIGHEST - By default, the value returned in the “SubjectNumber” at-
tribute is one greater than the number of subjects found; with this flag, the
value is set to be one greater than the highest “SubjectNumber” of all of the
484

17.2.6 Log File Related Functions
subjects found. The USE_HIGHEST option should be used if the log file is
missing information about subjects who have been run earlier (e.g., it has
been switched or purged) and subject numbering should continue sequen-
tially.

Note: The use_highest option requires that the “SubjectNumber” for each subject pre-
viously run has been recorded in the log file.

RESTRICT_ALERT - This flag is equivalent to setting the “RestrictAlert” at-
tribute to Experiment.

ONE_EXPERIMENT_PER_ENTRY - As described below, group matching is per-
formed by checking keywords that occur in the log file between an instance
of “SubjectName” and the “ExperimentRun” keyword. If this flag is on and
an “ExperimentRun” keyword is encountered that is not for the current ex-
periment, then the match checking starts again; otherwise, matching simply
continues until another “SubjectName” or “ExperimentRun” keyword is
found.

Example:

RunStart:: EvaluateSubjectNumber LogSubjInfo

LogSubjInfo:: SubjectName SubjectNumber
Function: Log

EvaluateSubjectNumber:: TRUE
Function: GetSubjNum
Options: USE_HIGHEST
SubjectNumber: @SubjectNumber

SubjectName:: "Oscar the PsyScope junky"

SubjectNumber:: 12

“RunStart” is an execution entry (see “16.6.2 Execution Entries”, p460) that will
call the dialogs associated with the “EvaluateSubjectNumber” and “LogSubjectIn-
fo” entries – in that order – just before the experiment is run. This will calculate the
subject number from the log file (via GetSubjNum), and then record the subject’s
name and number in the log file.

Dialog: SubjectNumAndGroup
Entry Content: ignored
Attributes: “ComputeNumbers” [True]

“AutoGroup” [True]
“Notify” [False]
GetSubjNum attributes

This function first calls GetSubjNum with the same dialog entry, unless “Compute-
Numbers” is False. If “AutoGroup” is False, it does nothing else.
485

 Part 4: Scripting Reference
Otherwise, this function assumes that the current script is in Factor format and it
sets the group in the current experiment structure; the selection is based on the in-
formation in “GroupSpecs” and criteria information defined at the group entries in
the script.

The selection works much like GetSubjNum, but instead of reading the log file a
“Criteria” attribute is checked for each group; sub-attributes of the “Criteria” at-
tribute and their values take the place of keywords. The groups are checked in order
until one of the groups matches the criteria in “GroupSpecs”. If no matching group
is found, the user is alerted.

If the dialog entry has a “Notify” attribute with a True value, the user is given a
standard alert dialog telling which group was selected by the function.
486

Part 5:
Appendices

Chapter 18. Error Messages 489

Chapter 19. Configuring the Button Box 513

Chapter 20. Creating Picture Resources 517

Chapter 21. Creating SoundEdit™ Sound Files 519

488

Ψ
Chapter 18. Error Messages

Part 5: Appendices

18.1 Error Numbers

Each error message has a number. The numbers are assigned as follows:

n – Macintosh errors

Mn – Global and memory errors; see “18.2 Global and Memory Errors”, p489.

Sn – PsyScript errors; see “18.3 PsyScript Errors”, p490.

INn – User environment errors; see “18.4 User Environment Errors”, p493.

Dn – Graphic environment errors; see “18.5 Graphic Environment Errors”, p495.

FACTn – Factor format compiler errors; see “18.6 Factor Format Errors”, p499.

TMn – Trial Manager errors; see “18.7 Trial Manager Errors”, p502.

SCRn – Screen Manager errors; see “18.8 Screen Manager Errors”, p507.

SNDn – Sound Manager errors; see “18.9 Sound Manager Errors”, p510.

BBn – Button Box errors; see “18.10 Button Box Errors”, p511.

PsyExtension errors are reported by prefixing an error number with its id; check the docu-
mentation for the particular extension for a listing of the errors it returns.

18.2 Global and Memory Errors

M1 Insufficient memory errors
Try giving your copy of PsyScope a larger Multifinder partition through the Get
Info dialog in Finder.

M2 File error
The specified file could not be located or it was already open.

 Part 5: Appendices
M98 Memory errors
There is a bug in PsyScope or some other program interfered with PsyScope. Please
send a bug report to PsyBug@serviceberry.psy.cmu.edu.

18.3 PsyScript Errors

S0 Entry or attribute not found
No entry or attribute with the given name was found. The given name is incorrect
or the entry/attribute is not in the script.

S1 Syntax errors
See “Part 4: Scripting Reference, 12.2.3 Entry Syntax”, p321 for the syntactic rules
for a script.

S2 Unknown tokens
There are extraneous characters following the closing bracket or parenthesis of an
inline entry definition (without intervening blanks) and the interpreter doesn’t know
what to do with them. See also “Part 4: Scripting Reference, 12.9 Inline Entries”,
p335.

S4 Bad access type
The valid access types are Sequential, Random, RRandom, or a number. See also
“Part 4: Scripting Reference, 12.8.2 Access Type”, p331.

S5 Wrong sizes for linking
Only lists of the same size may be linked. See also “Part 4: Scripting Reference,
12.8.3 Linking”, p332.

S8 If Conditional
There was an error reading the value for the switch (the first parameter) in an if()
function call.

S9 TRUE Value
There was no second argument (always required) in an if() function call.

S10 Iteration parameter missing
The Iterate() function requires three reference parameters; one or more are miss-
ing.

S11 Duplicator count too large
The duplication count (applied with the ~ operator) appears to be larger than Psy-
Scope can handle.

S13 Illegal use of assignment
Only the value of literal tokens may be reassigned; an assignment is being applied
to a non-reference expression.
490

18.3 PsyScript Errors
S14 Function requires different parameters
The parameters to the function are not of the correct type or count. See “Part 4:
Scripting Reference, 12.14 Script Operators and Functions Summary”, p349.

S15 Infinite loop
The interpreter encountered a very complex expression or self-referencing expres-
sion which it could not evaluate within its finite stack space. Increasing PsyScope’s
memory partition (using Get Info in Finder) can sometimes allow PsyScript to
evaluate more complex expressions. Self-referencing expressions are scripting er-
rors that cause infinite loops; for example: Bad:: @Bad.

S16 Bad index for previous current
An operation attempted to use one of the previous current items for a list (using
GetPrevCurrent(), etc.), but the given index is greater than the number of previ-
ous items remembered (as designated by the “SaveCurrents” attribute). See also
“Part 4: Scripting Reference, 12.8.6 SaveCurrents”, p334.

S17 Can’t evaluate reference
A non-string reference value was encountered where a strictly string-valued value
was expected. This can only happen if you use inline references, the ^ operator, or
one of the reference-returning functions (e.g. Column() or Inherited()).

S18 Zero-length list
An attempt was made to use an entry with no tokens as a list, but lists cannot be
empty. See also “Part 4: Scripting Reference, 12.8 Lists”, p329.

S19 Invalid sublist size
A sublist cannot be made such that it has zero or negative length, and a mapping
may not be made with the mapping list larger than the parent list. See also “Part 4:
Scripting Reference, 12.8.7 Sublisting”, p334.

S20 Lists are linked
This is an indication of circularly linked lists in your script. Make sure that if list
“A” is linked to list “B”, that list “B” is not somehow linked back to list “A”. See
also “Part 4: Scripting Reference, 12.8.3 Linking”, p332.

S21 Save currents size
If the number of previous current items to save is greater then 4, then version track-
ing of the entry internal to PsyScope will not work properly; in particular, compil-
ing StimList/EventList format scripts with optimization on will not necessarily
produce correct results. See also “Part 4: Scripting Reference, 12.8.6 SaveCur-
rents”, p334.

S22 No #PsyScope
Any file that is to be used as a script must begin with #PsyScope. See “Part 4:
Scripting Reference, 12.4.1 #PsyScope”, p324.

S23 File for ref not found
No file was found for the name given in FileRef(). See also “Part 4: Scripting Ref-
erence, 12.10 Using a File as an Entry”, p343.
491

 Part 5: Appendices
S24 Wrong version
The number following #PsyScope at the beginning of this script is not the same as
the current version of PsyScope. It is not required that the version number be cor-
rect; this is just a warning to let you know that something may be wrong. There may
be an Update button in the warning dialog; Update does not attempt to correct
your script for the new versions; it simply updates the version number at the top of
the script.

S25 Extra “:”
An extra colon was found in an unexpected context. The script may be corrupted.

S26 Extra “>”
An extra greater-than sign was found in an unexpected context. The script may be
corrupted, or the scripter may have unintentionally added too many >s when creat-
ing sub-attributes.

S27 More/Less weights than tokens
The number of weights that were specified for the list (in the “Weights” attribute)
does not match the number of tokens that there are in the list. If there were too few
weights, 1 will be assigned to the unweighted tokens. See also “Part 4: Scripting
Reference, 12.8.4 Weights, Multiple, Grip”, p332.

S28 Zero total weight
All tokens in the list were assigned weight 0; this is equivalent to an empty list,
which is illegal. The weights will be ignored. See also “Part 4: Scripting Reference,
12.8.4 Weights, Multiple, Grip”, p332.

S29 Error reading weights
There was a script error in reading the weights for a list from the “Weights” at-
tribute. All tokens will be assigned a weight of 1. See also “Part 4: Scripting Refer-
ence, 12.8.4 Weights, Multiple, Grip”, p332.

S30 Token weight too large
The maximum weight that can be assigned to a token in a list is 255; this weight is
the product of the individual weight in the “Weights” attribute, the “Mult” attribute
factor, and the “Grip” attribute factor. See also “Part 4: Scripting Reference, 12.8.4
Weights, Multiple, Grip”, p332.

S31 Not enough tokens
In evaluating a script function, there were fewer tokens than expected by the func-
tion so that a parameter tag replacement failed. See also “Part 4: Scripting Refer-
ence, 12.9.6.3 Parameter Tags”, p342.

S32 Entry has no owner
OWNER was evaluated in the content of a global entry; OWNER can only be used in the
content of attributes and inline entries. See also “Part 4: Scripting Reference,
12.2.4.1 THIS and OWNER”, p324.
492

18.4 User Environment Errors
S33 Can’t set/add/delete token in fileRef/inline
File reference and inline entry contents can not be changed with operations that set,
add, or delete token values. The error has occurred because a file reference or inline
entry was used in such a way. See also “Part 4: Scripting Reference, 12.9.1 Inline
Entries vs. Regular Entries”, p336.

S34 {} and “” in a string
Tokens in the script cannot contain both quotes and curly-braces because there is
no way to quote both at the same time in a single string. See also “Part 4: Scripting
Reference, 12.6.1 Literals”, p326.

S97 File errors
A file error was encountered which is outside the scope of the application.

S98 Memory errors
There is a bug in PsyScope or some other program interfered with PsyScope. Please
send a bug report to PsyBug@serviceberry.psy.cmu.edu.

S99 Miscellaneous
These errors should be self-explanatory.

18.4 User Environment Errors

IN0 Memory low
When memory is uncomfortably low, you should close unused windows — espe-
cially Editor and graphic environment windows — and perhaps reset the experi-
ment. When memory is critically low, you should save your work and exit
PsyScope. To give PsyScope more memory, use Get Info in the Finder and in-
crease PsyScope’s memory partition.

IN1 Project could not be opened
The project does not exist, or there was some disk or file error in opening the
project. Be sure that the project is not already open in another running copy of Psy-
Scope. If the project continues to be unopenable, you may have to trash it and create
a new project. See also “Part 2: Graphic Environment Reference, 6.1.1 Using
Projects”, p213.

IN2 “Experiments” entry not found
Every script should have an “Experiments” entry with at least one experiment. See
also “Part 4: Scripting Reference, 13.1.4 The ‘Experiments’ Entry”, p359.

IN3 Error opening Log File
The log file path is bad or there was some disk or file error in opening the log file;
specify a new one. See also “Part 4: Scripting Reference, 16.5 Log File”, p458.
493

 Part 5: Appendices
IN4 Settings file busy:
The preferences file (usually kept in the System folder) may only be opened by one
copy of PsyScope. To correct the problem, close running copies of PsyScope, or put
a copy of the preferences file in the same folder as PsyScope, and that copy will be
used instead of the one in the System Folder. See also “Part 2: Graphic Environment
Reference, 7.6 Options”, p265.

IN5 Entry not found
The reference given in the “Experiments” entry does not have an entry in the script.
See also “Part 4: Scripting Reference, 13.1.4 The ‘Experiments’ Entry”, p359.

IN6 Range check failed
The entry for the dialog that was just closed has a “Range” attribute with a False
value; presumably, the scripter wanted to alert you of some error in the entry’s in-
formation. See also “Part 4: Scripting Reference, 16.1.1.2 Range Checking”, p452.

IN7 External not found
No PsyScope Extension was found to handle a request. Probably, the extension
name has been incorrectly typed, or you need to install an Extension in your “Psy-
Scope Extensions” folder and restart PsyScope. See also “Part 2: Graphic Environ-
ment Reference, 6.1.3.1 PsyScope Extensions”, p216.

IN9 Unknown message
The specified extension does not know the message specified in the “Msg” at-
tribute. See also “, Chapter 17. Dialog and Function Extensions”.

IN10 Menu entry deleted
The entry related to the menu item has been removed from the script or otherwise
modified with the interactive editor; reinitializing will restore the menu item if it
still exists. See also “Part 2: Graphic Environment Reference, 7.1.4 Utilities
Menu”, p254.

IN11 Menu entry not found
No entry was found in the script to define the given menu item. Reinitializing may
solve the problem. See also “Part 4: Scripting Reference, 16.1 Setting up the
Menus”, p449 and “Part 2: Graphic Environment Reference, 7.1.4 Utilities Menu”,
p254.

IN12 Script disabled
The reading of the script has been disabled in the Tools menu, presumably so that
the interactive editor could be used without interruption. Re-enable the script by
checking the Script Enabled menu item. See also “Part 2: Graphic Environment
Reference, 7.3.1 Editor Menu Items”, p258.

IN13 Error loading experiment builder
There was a disk or memory error in trying to start up the appropriate extension to
build the experiment. You may need to install an extension in you “PsyScope Ex-
tensions” folder. See also “Part 2: Graphic Environment Reference, 6.1.3.1 Psy-
Scope Extensions”, p216.
494

18.5 Graphic Environment Errors
IN18 Autoload not found
The autoload file that was set in the preferences cannot be found. Autoload can be
turned off with the No Autoload checkbox in General Options (when no script or
project is loaded). See also “Part 2: Graphic Environment Reference, 7.6.1 General
Options”, p266.

IN19 Same name in project
A project cannot contain two scripts with the same name. Scripts that contain ex-
periments having the same name are allowed, but only one of the experiments can
be active (i.e. in the switching menu). See Part 3 for documentation on maintaining
projects. See also “Part 2: Graphic Environment Reference, 6.1.1 Using Projects”,
p213.

IN20 Bad XRES message
An error was encountered with an extension of type ‘XRES’. Either the wrong mes-
sage was given in the “Msg” sub-attribute of an “ExtResult” attribute in a script
function, or there is a problem with the extension (in which case you must consult
the extension’s documentation).

IN22 Help wrong version
The wrong version of Help has been opened, an incorrect version of Help is in your
“PsyScope Extensions” folder (even though the correct version may be there as
well), or your Help file has been corrupted.

IN97 File error
A file error was encountered which is outside the scope of the application.

IN98 Memory errors
There is a bug in PsyScope or some other program interfered with PsyScope. Please
send a bug report to PsyBug@serviceberry.psy.cmu.edu.

IN99 Miscellaneous
These messages should be self-explanatory.

18.5 Graphic Environment Errors

D0 Object list missing
Select Check Links from the Design menu, or open the Design window; then try
again.

D1 Factor format only
Experiments can be defined using a variety of formats in the scripting language;
only one format — Factor — is supported by the interface. See also “Part 4: Script-
ing Reference, 13.1.3 Script Formats”, p358.
495

 Part 5: Appendices
D2 Check links warning
Removing the builder data loses some non-critical information: icon and window
positioning, field type and custom attribute definitions, subject info type defini-
tions.

D3 Bad name
This name may already be in use in the script, or it may contain special reserved
keywords or symbols. See “Part 2: Graphic Environment Reference, 5.2.5 New Ob-
ject Name Dialog”, p114.

D4 Entry not found
The entry does not exist in the script. This error must be the result of a scripting er-
ror or a corrupted file.

D5 Circular references
Blocks cannot own themselves, since this leads to a circular definition.

D6 Can’t edit in trash
You must first remove the object from the trash (using the Recover button in the
View Trash window) before you can edit it. See also “Part 2: Graphic Environment
Reference, 5.2.9 View Trash Dialog”, p115.

D7 Unknown factor
In verifying the script, a reference was found in some object to a factor that either
isn’t connected to the object, or is not connected to all of the object’s potential in-
heritance paths. You can ignore this and subsequent errors, or have the offending
reference removed. See also “Part 2: Graphic Environment Reference, Linking
Lists to the Hierarchy”, p135.

D8 Attribute name in use
Attributes must have unique names within a single object.

D9 Disappearing entry
An object has been deleted from the script — probably by direct editing — that
some window had been using.

D10 Can’t remove experiment
You cannot delete an experiment by deleting it in the graphic environment. There
is no simple way to delete an experiment from the script.

D11 Too many utility submenus
The extensions list is used to build the text-inserting menus in the Tools menu; us-
ing a large number of extensions may cause the number of potential menus to ex-
ceed the number allowed, in which case the menu system is truncated.

D12 Bad Builder Data
If there is a scripting error in the “BuilderData” entry, the graphic environment can-
not recover; you will have to edit the script in text form, or select Check Links from
the Design menu with option held down to correct this problem.
496

18.5 Graphic Environment Errors
D13 Already connected
You cannot multiply connect objects through the Design window. If you need to in-
clude an object in another multiple times, you must open the owning object’s dialog
and import the object to be multiply included.

D14 Can’t preview
To preview a block or template, it must be connected to the main experiment struc-
ture.

D15 Linked to Trial End
Setting the duration of an event to End of Trial implies that nothing else will happen
in the trial after that event ends, so you cannot link the start of another event to it’s
end.

D16 Delete all or one
When a custom attribute is added to a group, block, or template, it is also added to
all objects of the same type in the hierarchy. When you delete a custom attribute,
you can delete all of these, or just the one in the object you are editing,

D17 Can’t edit as text
Certain attribute types cannot be edited in text form (by hitting Command-Right ar-
row) because their values are not simple (literal) tokens in the script.

D18 Value too large
To edit the attribute as text (by hitting Command-Right arrow), it must be less than
256 characters long.

D19 Attrib definition error
An error was encountered in reading the list of fields or custom attributes for an ob-
ject as recorded in the “BuilderData” entry. This error is essentially non-correctable
except by editing the script, but the data will be repaired when an attribute is added
or deleted.

D20 No place to put a factor
Factors must be connected to the experiment, a group, a block, or a template. If you
attempt to create a new list within an event or stimulus that is not connected to an
object higher in the hierarchy, there will be no place for the list to be automatically
connected.

D21 Standard attribute name
When creating custom attributes, it is best to avoid names of attributes that are used
by stimuli, because you may inadvertently set an incorrect default value for some
stimulus attribute.

D22 Bad condition list
The value of a conditions list has been corrupted in the script; deleting the current
state lets you reset it to the correct value.
497

 Part 5: Appendices
D23 Event doesn’t accept type
Events which can contain sub-stimuli usually accept only certain types of stimuli.
Consult the event type reference in “Part 2: Graphic Environment Reference,
5.8.7.3 Stimulus Attributes”, p181 or the manual for your custom extension.

D24 Error in action description
The value of a conditions-actions pairs list has been corrupted in the script; deleting
the current state lets you reset it to the correct value.

D25 Can’t modify factor table
Factors can be moved into or out of a factor table only through the Factor Table win-
dow.

D26 Already connected
A list cannot be both imported into a factor table and included in a separate list set
of the object. To import the list, first remove the current link to the table object.

D27 Create nested?
Creating a new factor with the level of another factor selected lets you nest the new
factor within the selected level.

D28 Subject Info setup
See “Part 2: Graphic Environment Reference, 6.2 Subject Info”, p224 for informa-
tion on how the subject tracking is handled.

D29 Group already connected
You cannot include a group in an experiment multiple times.

D30 Info item does not exist
Certain Subject Info items must be defined in order to link indices to subject infor-
mation. See “Part 2: Graphic Environment Reference, 6.2 Subject Info”, p224 for
information on how the subject tracking is handled.

D31 Experiment has no groups
There must be groups defined in the experiment to perform certain types of links.

D32 No definition
The standard text field subject info type is always a plain text box; you cannot pa-
rameterize it more. See also “Part 2: Graphic Environment Reference, Define Sub-
ject Info Item Dialog”, p229.

D33 All logs together
Because of the way that the interface handles logging information, you must do all
of the logging within a time segment together; you can rearrange the logs relative
to each other however you want, but SubjectName should usually be the first Sub-
ject Info item logged in a set. See also “Part 2: Graphic Environment Reference, 6.2
Subject Info”, p224 and “Part 2: Graphic Environment Reference, 6.2.3.1 Logging
and Scheduling Correctly”, p231.
498

18.6 Factor Format Errors
D34 Modulo
Taking the modulo of a non-number will always return 0.

D35 Incompatible for connection
Two objects are incompatible if neither object is able to own the other. See “Part 2:
Graphic Environment Reference, 5.2.1 Objects and the Experiment Hierarchy”,
p107 for information on legal hierarchies.

D36 Lose information
Because factor table attribute dependencies are stored within the factor table object,
converting a table to a template will lose all information about 1) factors defined in
the table, and 2) how attributes of objects connected to the table vary based on the
factors in the table.

D37 Transform tool
See “Part 2: Graphic Environment Reference, Template <-> Table Transform
Tool”, p111 for information on using the transform tool.

D38 Circular link
Some part of the experiment hierarchy is incorrect, and a circularity was discovered
at the link mentioned (though this may not be the incorrect link). The interface will
remove the link for display purposes, but it will not attempt to correct the script; you
must do this yourself using object dialogs, the scissors tool, or directly in the script
using a text editor.

D39 Unknown object
An object was found in the scripted experiment hierarchy that the graphic environ-
ment was unable to identify.

D97 File error
A file error was encountered which is outside the scope of the application.

D98 Memory errors
There is a bug in PsyScope or some other program interfered with PsyScope. Please
send a bug report to PsyBug@serviceberry.psy.cmu.edu.

D99 Miscellaneous
These messages should be self-explanatory.

18.6 Factor Format Errors

FACT1 No tag recorded
The tag name passed into a GetTag() call has not yet been used with a SetTag()
call. See “13.3.6.4 Factor Format Tags”, p386 for information on using tags.
499

 Part 5: Appendices
FACT2 Tag wrong format
The tag name that was passed into a GetTag() call was set in a different context
than the current one; i.e., the SetTag() call was on a list of references (or tokens)
and the GetTag() call was made for a list of tokens (or references). See “13.3.6.4
Factor Format Tags”, p386 for information on using tags.

FACT3 Error reading attribute
A script error occurred in trying to read the value of the attribute.

FACT4 Bad factor name
Somehow, a “Blocks” attribute — that was used in building the experiment struc-
ture — has disappeared.

FACT5 “Events” attribute missing
In following the experiment hierarchy to build a trial, no “Events” attribute was
found. This may be because no events were added to the template, because some
link higher in the hierarchy is missing, or because some branch of the experiment
definition structure is incomplete.

FACT6 ODEV not found
An event has an event type that was unknown; this may be because the event type
is bad, or because a special PsyScope extension needs to be placed in the “PsyScope
Extensions” folder. See also “Part 2: Graphic Environment Reference, 6.1.3.1 Psy-
Scope Extensions”, p216.

FACT7 Error getting factor name
The FactorAttrib() function — which implements Vary by List — must have at
least one parameter, specifying the factor to link to. The name was either missing,
or a script error blocked reading the name. See also “Part 2: Graphic Environment
Reference, Vary by List”, p152 or “Part 4: Scripting Reference, 13.3.6.1 Factoring
Event Attributes”, p384.

FACT8 Error getting attribute name
The attribute name parameter (the second one) of a FactorAttrib() call was a ref-
erence; it must be a string literal. See also “Part 4: Scripting Reference, 13.3.6.1
Factoring Event Attributes”, p384.

FACT9 Factor not found
The factor name passed into a FactorAttrib() call is the name of a non-existent
or unconnected factor. See also “Part 2: Graphic Environment Reference, Linking
Lists to the Hierarchy”, p135.

FACT10 Error getting tag name
The SetTag() and GetTag() functions must have at least one parameter, specify-
ing the tag name. The name was either missing, or a script error blocked reading the
name. See also “Part 4: Scripting Reference, 13.3.6.4 Factor Format Tags”, p386.
500

18.6 Factor Format Errors
FACT11 Error getting attribute name
The GroupAttrib(), BlockAttrib(), TrialAttrib(), and RunModeAttrib()
functions must have one parameter, specifying the name of the attribute to read as
a string literal. The name was either missing, the first parameter was a direct refer-
ence, or a script error blocked reading the name. See also “Part 4: Scripting Refer-
ence, 13.3.6.2 Linking Event Attributes to Template, Block, and Group Attributes”,
p385.

FACT12 Attribute missing in group, block, or template
A GroupAttrib() (Vary by Group), BlockAttrib() (Vary by Block), or Tri-
alAttrib() (Vary by Template) call failed because the specified attribute was
not found in the current group, block, or template. For graphic environment users,
the attribute should be defined and given a value as a custom group, block, or tem-
plate attribute. See also “Part 2: Graphic Environment Reference, 5.8.2.2 Custom
Attribute Sets”, p156 or “Part 4: Scripting Reference, 13.3.6.2 Linking Event At-
tributes to Template, Block, and Group Attributes”, p385.

FACT13 Attribute missing in RunMode
A RunModeAttrib() call — which implements Vary by Run Mode—failed be-
cause the specified attribute was not found in the Experiment. For scripters, the
name of the attribute that is searched for is “RunName” in run mode or “Practice-
Name”, where Name is the parameter passed to RunModeAttrib(). For graphic en-
vironment users, the attribute should be defined and given a value as a custom run
and practice attribute. See also “Part 2: Graphic Environment Reference, 5.8.3.1
Custom Run and Custom Practice Attributes”, p158 or “Part 4: Scripting Refer-
ence, 13.3.6.3 Linking Event Attributes to the Run Mode”, p385.

FACT14 Unknown Latin square factor
A factor that was specified in the “Set_LatinSets” attribute was not a factor in that
set, where Set is the name of the set. The named factor may not exist, or it may be
in a different factor set. See also “Part 4: Scripting Reference, Scripting Latin
Square Partitions”, p390.

FACT15 Error getting level reference
A script error was encountered in getting a reference to the current level of a (non-
list) factor.

FACT16 List factor attribute not found
The attribute (or field) referenced by a FactorAttrib() call — which implements
Vary by List — was not found as an attribute (field) of the factor. See also “Part 2:
Graphic Environment Reference, Vary by List”, p152 or “Part 4: Scripting Refer-
ence, 13.3.6.1 Factoring Event Attributes”, p384.

FACT17 Fee level attribute not found
The attribute (or field) referenced by a FactorAttrib() call — which implements
Vary by List — was not found as an attribute (field) of the current level. See also
“Part 2: Graphic Environment Reference, Vary by List”, p152 or “Part 4: Scripting
Reference, 13.3.6.1 Factoring Event Attributes”, p384.
501

 Part 5: Appendices
FACT18 Error getting multiple
A FactorAttrib() call — which implements Vary by List — was made to a list
factor attribute with multiple-token values, but there was a script error obtaining a
reference in the attribute parallel to the current level. Any list factor attribute with
a “Multiple” sub-attribute must have references as its values, with each set of tokens
for a value at the reference; list files with multiple-token values must include a
#NonLiterals identifier at the beginning of the file, and values in that column but
be surrounded by an extra set of square brackets. See also “Part 4: Scripting Refer-
ence, 13.3.7 Scripting Factors”, p387, “Part 4: Scripting Reference, 12.10 Using a
File as an Entry”, p343, or “Part 2: Graphic Environment Reference, List Files with
Non-literals”, p131.

18.7 Trial Manager Errors

TM01 Name is not an event name in trial n
In defining trial n, the script used the name given someplace where an event name
is needed, and that name is not the name of an event in that trial. The name is most
likely used in a “StartRef” attribute or as an action parameter.

TM03 Event number n does not exist in trial m
In defining trial m, the script refers to event number n, which doesn’t exist. The
number is most likely used in a “StartRef” attribute or as an action parameter.

TM04 Duration for event is not valid. Will default to 0 msec.
A syntax error of some sort caused the duration given for the listed event not to be
recognized. It will default to 0 milliseconds unless the run is cancelled.

TM11 Event list for trial is bad; No events depend on the START event (event 0)
Every trial must have at least one event scheduled relative to the beginning of the
trial (the start event). If every event is unscheduled or scheduled to start at some
time relative to another event in the trial, the Trial Manager will not know which
one to run first, and will give this error.

TM12 No expression given for TIME duration in event
The Time[] duration specifier takes a variable expression as its argument. This
could be a constant (e.g. Time[500]), a single variable (e.g. Time[X]), or a combi-
nation of variables (e.g Time[{X+LastRT}]); none of these were specified.

TM13 Unable to parse StartRef
The start reference that was given had some sort of syntax error and was unreadable
by the Trial Manager. See also “Part 4: Scripting Reference, 13.4.2 Start Refer-
ence”, p411.

TM14 Start Reference doesn't specify start or end of an event. End will be used.
Start references should specify whether the delay given is relative to the beginning
or end of the event referred to. This warning is given when neither start nor end is
specified. The trial manager will assume end. See also “Part 4: Scripting Reference,
13.4.2 Start Reference”, p411.
502

18.7 Trial Manager Errors
TM15 There is no event n in trial m (referenced in startref s)
A numeric reference to event n was given in a start reference for some other event,
and event n does not exist for that trial.

TM16 Invalid name … (referenced in StartRef …)
The name given is not a valid name for use in a start reference. All names used in
start references must be names of events in the current trial. Keywords such as
TRIAL_END, LAST, etc. are not valid. See also “Part 4: Scripting Reference, 13.4.2
Start Reference”, p411.

TM30 … is not a valid action name
The name given is not the name of an action available in the system. Check the
spelling of the action name. Also, if the action is one that is provided by a PsyScope
Extension, check to make sure that the extension is in the “PsyScope Extensions”
folder. See also “Part 2: Graphic Environment Reference, 6.1.3.1 PsyScope Exten-
sions”, p216.

TM32 … too many params specified for action "…"
More than the maximum number of parameters were specified for the given action.
See also “Part 4: Scripting Reference, 14.1 Actions Reference”, p419 or the docu-
mentation for PsyScope Extensions that you are using.

TM33 FORCE_ALL and instances<0 => infinite loop in action"…
Setting the number of instances for an action to a negative value indicates an infinite
number of instances. This, in combination with active until All Instances
(FORCE_ALL), will cause an infinite loop. If an action with these parameters is put
up, the trial can only be ended by an explicit call to QuitTrial[]. See also “Part 2:
Graphic Environment Reference, 5.9 Conditions and Actions”, p192 or “Part 4:
Scripting Reference, 13.4.1.2 Instances and ActiveUntil”, p410.

TM34 … in "…" should be an integer
An action required an integer parameter, but the value given wasn’t an integer. See
also “Part 2: Graphic Environment Reference, 5.9.4.1 Available Actions”, p198,
“Part 4: Scripting Reference, 14.1 Actions Reference”, p419, or the documentation
for PsyScope Extensions that you are using.

TM35 Incorrect number of parameters for action …
The wrong number of parameters were given for an action.See also “Part 4: Script-
ing Reference, 14.1 Actions Reference”, p419 or the documentation for PsyScope
Extensions that you are using.

TM36 RT referenced event … that has not yet occurred
The RT[] action must record response times relative to the actual start time of an
event. For this to occur, the referenced (relative) event must have already begun at
the time that the RT[] action is triggered. By default, this will be the case. However,
if an event is specified as the Relative To parameter of RT[], and that event has not
started at the time that RT[] triggers, then this error will occur.
503

 Part 5: Appendices
TM37 Neither action nor source event specified for CancelAction
CancelAction[] requires that you give either the name of an action to cancel, or
the name of a event whose actions to cancel, or both. Neither were specified.

TM38 Event … is already running Start action(s) not cancelled
TM39 Event … has already ended End action(s) not cancelled

CancelAction[] was unable to cancel the start or end actions for the given event
because that event has already started or ended.

TM40 Call to … requires an event reference as its first parameter
A number of actions that involve the running or scheduling of events require an
event to be specified as their first parameter. This parameter cannot be defaulted
and must be specified. See also “Part 2: Graphic Environment Reference, 5.9.4.1
Available Actions”, p198 or “Part 4: Scripting Reference, 14.1 Actions Reference”,
p419.

TM41 RT: VAR_ONLY specified, but no variable given. Data won't be stored.
The VAR_ONLY flag was specified (which tells the Trial Manager to record response
information only in a variable, and not in the data file), but no variable was specified
to store the data, so it won’t be stored. See also “Part 2: Graphic Environment Ref-
erence, RT[]”, p203 or “Part 4: Scripting Reference, 14.1.1.4 Miscellaneous Ac-
tions”, p421.

TM42 Timeout trying to play stimulus.
In playing asynchronous stimuli, such as sounds, the Trial Manager gives the output
device a maximum of 100ms to begin playing the stimulus. This error most likely
indicates a low-level problem with the output device in question.

TM43 Too few parameters for …. n given, m required.
The named action requires at least m parameters but only n were given. See also
“Part 2: Graphic Environment Reference, 5.9.4.1 Available Actions”, p198,
“Part 4: Scripting Reference, 14.1 Actions Reference”, p419, or the documentation
for PsyScope Extensions that you are using.

TM44 ChanceEvent probability … is not in the range [0.0,1.0].
The ChanceEvent[] action takes a probability between 0 and 1, inclusive. The
probability given is not in that range. See “Part 2: Graphic Environment Reference,
ChanceEvent[]”, p200 or “Part 4: Scripting Reference, 14.1.1.2 Event Scheduling
Actions”, p419.

TM45 No list specified for … action.
TM46 Argument is not a list in … action.

The action named requires a Trial Manger list variable as a parameter, and that pa-
rameter was not specified, or was not a list. See also “Part 2: Graphic Environment
Reference, 5.9.4.1 Available Actions”, p198, “Part 4: Scripting Reference, 14.1 Ac-
tions Reference”, p419, or the documentation for PsyScope Extensions that you are
using.
504

18.7 Trial Manager Errors
TM47 Index argument is not a number in … action.
The action required an index to a list or an array as one of its arguments, and the
variable expression given did not give a number as its result. See also “Part 4:
Scripting Reference, 14.1.1.5 Trial Variable Actions”, p422.

TM48 Types don't match in … action.
The action given requires two Trial Manager Variables of the same type as param-
eters (most likely to assign one to the value of the other). The parameters given wer-
en’t of matching types. See also “Part 4: Scripting Reference, 14.1.1.5 Trial
Variable Actions”, p422.

TM65 Stimulus will not be seen: it will be cleared after duration = 0
An event duration has been set to 0 milliseconds. The Trial Manager will not dis-
play the stimulus. See also “Part 2: Graphic Environment Reference, Duration”,
p179 or “Part 4: Scripting Reference, 13.4.3 Duration”, p411.

TM68 Unable to open resource file …
A resource file name was specified in the Resources (“Resources”) experiment at-
tribute, but that file could not be found or for some reason could not be opened by
PsyScope. Check to make sure that the file is available and in a folder that PsyScope
has access to. See also “Part 2: Graphic Environment Reference, Resources”, p167
and “Part 2: Graphic Environment Reference, 6.1.3 Resources”, p216.

TM69 Unable to open …
PsyScope could not find the named file or for some reason was unable to open it.

TM70 Not enough memory available for Instructions or Debriefing
There is not enough memory available for PsyScope to set up the structures neces-
sary for displaying an instruction or debriefing file.

TM98 Internal error — Program error
There is a bug in PsyScope or some other program interfered with PsyScope. Please
send a bug report to PsyBug@serviceberry.psy.cmu.edu.

TM100 Referenced variable is not an array or list in: …
A variable expression was set up using the . operator — which is used to index an
array or list — but the variable being indexed (i.e. the variable to the left of the dot)
is not an array or a list. See also “Part 4: Scripting Reference, 13.5.3 Variable Ex-
pression Syntax”, p417.

TM101 Error parsing expression: …
There was a syntax error in the Trial Manager Variable expression shown. See also
“Part 4: Scripting Reference, 13.5.3 Variable Expression Syntax”, p417.

TM102 No such variable …
The variable shown was used in a variable expression, but is not defined as a Trial
Manager variable in the current script. See also “Part 4: Scripting Reference, 13.5.1
Declaring Variables”, p412.
505

 Part 5: Appendices
TM103 Invalid field selector in expression. …
A keyword given to select a field of a record type variable was not the name of any
of the fields of that record. "->" is the selection operator. The variable to the left of
the arrow is the record, and the name to the right of the arrow is the name of the field
to be selected. See also “Part 4: Scripting Reference, 13.5.3 Variable Expression
Syntax”, p417.

TM105 Selection variable is not a record in: …
In the expression shown, an attempt is made to select a field (using the selection op-
erator "->") of a variable that is not a record, and thus has no fields. See also “Part 4:
Scripting Reference, 13.5.3 Variable Expression Syntax”, p417.

TM106 Unmatched parenthesis in expression: …
The variable expression contains one or more parentheses with no matching coun-
terpart. See also “Part 4: Scripting Reference, 13.5.3 Variable Expression Syntax”,
p417.

TM107 Cannot reset a constant.
A constant value (e.g 5, 2.03) was used in a way that would require that it’s value
be changed. For example, the action Set[5 {x+3}], would require that 5 be
changed to the value of {x+3}; this is illegal.

TM108 Cannot reset read only variable.
Most built in variables, such as TrialNum, are read-only variables; their values can-
not be changed by Set[] or other actions.

TM109 Can't change … variable "…" to type …
In the process of evaluating a variable expression, or executing an action, the Trial
Manager was asked to convert the named variable from the first type to the second
and was unable to do so. Only variables of types Integer, Long_Integer, and
Float can be converted.

TM110 Can't convert unassigned variable.
An expression contained a variable that did not yet have a type or value assigned to
it, and the trial manager was asked to convert it to another type but was unable to.

TM111 Can't convert to null type.
In evaluating an expression, the Trial Manager was asked to convert the type of a
value to NULL, and was unable to.

TM112 Type conversion error.
The Trial Manager was unable to do a type conversion, because either the source
type or destination type was not one of Integer, Long_Integer, or Float.

TM113 Unable to read "…" into … variable
While initializing variables, a variable definition was encountered that required that
the quoted string be read into the named variable, but the Trial Manager was unable
to read the string as an appropriate value for the that variable.
506

18.8 Screen Manager Errors
TM114 Unable to convert value to string
The Trial Manager was unable to write out the value of a variable to the script or
data file. Only variables of type Integer, Long_Integer, and Float can be written
to the data file.

TM130 Variable … can't be written to the data file because it doesn't exist.
One of the variables listed in the “DataVariables” experiment attribute has not been
declared. See also “Part 4: Scripting Reference, 13.5.1 Declaring Variables”, p412.

TM200 Unable to find input device … Continue without it?
The named input device — listed in Input Devices (“InputDevices”) — could not
be found; possibly, it was misspelled in the script, or the extension file for that de-
vice is not in the PsyScope Extensions folder. Clicking OK will run the script, ig-
noring references to the missing device. See also “Part 2: Graphic Environment
Reference, Input Devices”, p164 or “Part 4: Scripting Reference, 13.1.6.1 Standard
Experiment Attributes”, p360; also, “Part 2: Graphic Environment Reference,
6.1.3.1 PsyScope Extensions”, p216.

TM201 Cannot connect to … It doesn't look like an input device…
An extension was found by the given name, but it doesn’t behave like an input de-
vice and cannot be used; clicking OK will run the script, ignoring all references to
the device in question.

TM202 Unable to connect IDEV: …
An error occurred while trying to connect to the named input device, and no more
information is available. This is very likely an internal error of some sort in the ex-
tension for that ‘IDEV’.

TM260 No timer specified, Macintosh timer will be used.
No timer was specified in the Timer (“Timer”) experiment attribute. Clicking OK
will cause the default Macintosh internal timer to be used instead. See also “Part 2:
Graphic Environment Reference, Timer”, p164 or “Part 4: Scripting Reference,
13.1.6.1 Standard Experiment Attributes”, p360.

TM260 Timer … not found.
The timer named in the Timer (“Timer”) experiment attribute was not found. Make
sure the name is spelled correctly, and, if necessary, the extension file for that timer
is included in the “PsyScope Extensions” folder. See also “Part 2: Graphic Environ-
ment Reference, Timer”, p164 or “Part 4: Scripting Reference, 13.1.6.1 Standard
Experiment Attributes”, p360; also, “Part 2: Graphic Environment Reference,
6.1.3.1 PsyScope Extensions”, p216.

18.8 Screen Manager Errors

SCR01 Unable to find file: …
The named file could not be found. Make sure it’s in the search area set for the
script. See “Part 2: Graphic Environment Reference, 6.1.2 Path Names”, p215 re-
garding finding files.
507

 Part 5: Appendices
SCR02 Unable to find PICT resource or file …
The Screen Manager was trying to find a PICT resource or file and could not. The
name given could be either the name of a resource or the name of a file. If it was
intended to be a resource, make sure that the resource file is listed in the Resources
(“Resources”) experiment attribute, or is in the “PsyScope Extensions” folder. If it
was intended to be a file, make sure that the file is somewhere where psyscope will
find it. See “Part 2: Graphic Environment Reference, 6.1.2 Path Names”, p215,
“Part 2: Graphic Environment Reference, Resources”, p167 or “Part 4: Scripting
Reference, 13.1.6.1 Standard Experiment Attributes”, p360, and “Part 2: Graphic
Environment Reference, 6.1.3.1 PsyScope Extensions”, p216.

SCR03 … is not a valid depth for an offscreen bitMap or pixmap.
The depth specified for a Pasteboard or PICT stimulus — in the Depth (“Depth”/
“PBoardDepth”) attribute — was not a valid bit depth. Valid depths are 1, 2, 4, 8,
16, and 24, and are limited by the maximum depth of the deepest screen on the cur-
rent machine. See also “Part 2: Graphic Environment Reference, PICT Attributes”,
p182 and “Part 2: Graphic Environment Reference, Pasteboard Attributes”, p183
or “Part 4: Scripting Reference, 14.2.5.1 PICT Attributes”, p433 and “Part 4:
Scripting Reference, 14.2.6.1 Pasteboard Attributes”, p434.

SCR05 Not enough available memory to keep PICT … in memory.
There’s not enough memory available to use the Keep picture in memory
(KEEP_PICT) flag with the current script. If Keep picture in memory is absolutely
necessary, try to increase the memory partition for PsyScope (using Get Info in
Finder). See “Part 2: Graphic Environment Reference, 6.5 Space and Speed”, p246
regarding optimizing memory usage. See also “Part 2: Graphic Environment Ref-
erence, PICT Attributes”, p182 or “Part 4: Scripting Reference, 14.2.5.1 PICT At-
tributes”, p433.

SCR06 Error reading PICT …
There was a disk related error reading the PICT. There is some problem with the
PICT file.

SCR08 Not enough available memory to save screen
Use the DonÕt save screens (NO_SAVE_SCREEN) experiment flag in the Special
(“Flags”) experiment attribute to prevent the Screen Manager from automatically
saving the screen on breaks. See “Part 2: Graphic Environment Reference, Spe-
cial”, p165 or “Part 4: Scripting Reference, 13.1.6.1 Standard Experiment At-
tributes”, p360. See also “Part 2: Graphic Environment Reference, 6.5 Space and
Speed”, p246 regarding optimizing memory usage.

SCR12 Unable to read Origin attribute.
The “Origin” attribute was not specified correctly. See “Part 4: Scripting Reference,
13.1.6.1 Standard Experiment Attributes”, p360.

SCR13 You did not specify the proper number of monitors…
A custom monitor ordering was specified in the “MonitorOrder” attribute, but too
few or too many monitors were given. See also “Part 4: Scripting Reference,
13.1.6.1 Standard Experiment Attributes”, p360.
508

18.8 Screen Manager Errors
SCR20 Unable to open document …
There was a operating system level error while trying to open the named document
file. Make sure the file exists and that it has not been corrupted.

SCR21 … in … should be an integer.
A screen action required a parameter to be an integer, but the parameter that was
given couldn’t be read as an integer. See also “Part 2: Graphic Environment Refer-
ence, 5.9.4.1 Available Actions”, p198 or “Part 4: Scripting Reference, 14.2.1.3
Text and Screen Actions”, p430.

SCR22 … event type takes only one stimulus.
The named screen event type takes only a single stimulus, but multiple stimuli were
specified (in the “Stimulus” or “Stimuli” attribute) for a single event.

SCR23 No stimulus specified for … type event.
No stimulus was specified for some event; specify a stimulus in the event’s Stim-
ulus (Text event), Picture (PICT event), File (Document event), Paragraph
(Paragraph event), Prompt (KeySequence event) or Stimuli (Pasteboard
event) stimulus attribute (all “Stimulus” or “Stimuli” in PsyScript). See also
“Part 2: Graphic Environment Reference, 5.8.7.3 Stimulus Attributes”, p181 or
“Part 4: Scripting Reference, 14.2 Stimulus Types Reference”, p424.

SCR24 Unable to determine PasteBoard sub-stimulus type.
The type of a sub-stimulus for a Pasteboard event was ambiguously defined. Nei-
ther a “StimType” attribute nor an “EventType” attribute for the given stimulus
could be found. See also “Part 4: Scripting Reference, 14.2.6 Pasteboard”, p434.

SCR25 Incompatible Run File Version
The run file being loaded is not compatible with the current version of the Screen
‘ODEV’.

SCR26 Error opening ShowDoc file …
The ShowDoc[] action was unable to find the document to show, or there was an
error loading the document. Make sure that the document is in the right place and
that it is intact and has not been corrupted. See also “Part 2: Graphic Environment
Reference, 6.1.2 Path Names”, p215.

SCR27 Not enough memory available to keep document … in memory.
There is not enough memory available to load the document; increase the memory
partition size for PsyScope (using Get Info in Finder) or decrease memory usage.
See also “Part 2: Graphic Environment Reference, 6.5 Space and Speed”, p246 re-
garding optimizing memory usage.

SCR28 Error allocating TextEdit Record for Document or Paragraph.
There was an error allocating structures necessary to load a Document or Para-
graph stimulus. Most likely there was not enough memory available. See “Part 2:
Graphic Environment Reference, 6.5 Space and Speed”, p246 about optimizing
memory usage.
509

 Part 5: Appendices
SCR98 Internal error
There is a bug in PsyScope or some other program interfered with PsyScope. Please
send a bug report to PsyBug@serviceberry.psy.cmu.edu.

18.9 Sound Manager Errors

SND01 Sound has no SoundFile attribute
No file was specified from which to extract the sound to be played. Set the file in
the File (“SoundFile”) stimulus attribute. See also “Part 2: Graphic Environment
Reference, Sound Attributes”, p184 or “Part 4: Scripting Reference, 14.2.7.1
SoundLabel Attributes”, p435.

SND02 Unable to open sound file: …
There was a operating system level error while trying to open the named document
file. Make sure the file exists and that it has not been corrupted.

SND03 Unable to find sound file: …
PsyScope couldn’t find the sound file. Make sure it exists, it’s name is spelled cor-
rectly in the script, and it is in a folder where PsyScope will find it. See also “Part 2:
Graphic Environment Reference, 6.1.2 Path Names”, p215.

SND04 Error getting sound label … from file …
There was an error trying to get the labelled sound from the sound file. Most likely
there is no label by that name in the file.

SND05 Load Error: Unable to read sound … from file …
SND06 Load Error: Unable to get … resource from …

The sound file that was specified to contain the sound is corrupt, and the sound
could not be read from it. Restore the file from backup or recreate it.

SND07 Load Error: Unable to allocate memory for sound …
There’s not enough memory available to load the sound. See “Part 2: Graphic En-
vironment Reference, 6.5 Space and Speed”, p246 for more on optimizing memory
usage.

SND08 Sound type … not supported.
The sound file was of a type not supported by PsyScope. SoundEdit ™ and Sound-
Designer II™ are the formats currently supported. See also “Part 2: Graphic Envi-
ronment Reference, Sound Event Type”, p179.

SND09 Error … getting file info for …
There was a operating system error trying to get information about the sound file.
Make sure the file exists and can be found.

SND10 Unable to initialize sound channel, error … while loading … from file …
A sound was specified to be played with the Play in parallel (PARALLEL) feature
in the Special (“Feature”) attribute, but a new sound channel could not be set up for
it. Most likely there are already too many channels open. Each new sound to be
510

18.10 Button Box Errors
played in parallel requires a new channel. The maximum number of open channels
possible varies depending on machine configuration and system resources avail-
able. See also “Part 2: Graphic Environment Reference, Sound Attributes”, p184
or “Part 4: Scripting Reference, 14.2.7.1 SoundLabel Attributes”, p435.

SND11 System 7 is required to play Sound Designer Files
Macintosh System 7.0 or higher is required to play Digidesign™ Sound Designer
II sound files.

SND12 Unable to allocate sound channel. Error: …
SND13 Unable to initialize sound channel. Error: …

There was a problem allocating or initializing the default sound channel while ini-
tializing the PsyScope sound device. Most likely all sound resources are being used
by another application, or there’s not enough memory available to open a new
sound channel. It’s possible that a crash of an application that uses sound (including
a previous crash of PsyScope) could have left sound channels allocated, in which
case a reboot is necessary. See “Part 2: Graphic Environment Reference, 6.5 Space
and Speed”, p246 for more on optimizing memory usage.

SND14 SoundLabel event type takes only one stimulus.
More than one stimulus was specified for a SoundLabel event type in the “Stimu-
lus” attribute; only one is allowed. See also “Part 4: Scripting Reference, 14.2.7.1
SoundLabel Attributes”, p435.

SND15 Incompatible Run File Version
The version of the run file is incompatible with the current version of PsyScope.
The run file will have to be recreated.

SND98 Internal Error
There is a bug in PsyScope or some other program interfered with PsyScope. Please
send a bug report to PsyBug@serviceberry.psy.cmu.edu.

18.10 Button Box Errors

BB10 ExInit: Button box disconnected
The button box driver was unable to establish communications with the button box.
Check for the following causes: The button box is turned off; the button box is not
connected; the button box is connected to the wrong port; the power supply for the
button box is not connected, or the button box is malfunctioning.

BB11 ExInit: Timer inaccurate: …
The button box driver’s internal sanity check for the button box timer failed. The
number given is the number of button box milliseconds counted in one Macintosh
second. (Note: on some Macintosh models, this check fails spuriously, giving very
small deviations, e.g. 997 or 1002, subsequent attempts to run should produce cor-
rect results. System 7.1 with the hardware system upgrade is expected to remedy
this problem)
511

 Part 5: Appendices
BB98 Internal error.
There is a bug in PsyScope or some other program interfered with PsyScope. Please
send a bug report to PsyBug@serviceberry.psy.cmu.edu.
512

Ψ
Chapter 19. Configuring the Button Box

Part 5: Appendices

In order to use the button box with PsyScope, you need:

• A button box.

• A cable to connect the button box to the modem or printer port of a Macintosh™ com-
puter. This cable is packaged with the button box.

• The PsyScope software.

• A 6V, 150mA power supply; this plugs into a 5.0-5.5 mm jack in the back of the button
box. The outside of the plug is positive, and the inside is negative.

Note: The standard U.S. 120V power supplies are not shipped abroad, since they will not
work there. If we did not ship you a power supply, you need to purchase an appropriate
AC to DC adapter.

To set up the button box:

1. Turn your machine off.

2. Unplug any devices plugged into the modem port (or printer port).

3. Connect the button box to the modem port (or printer port) on the back of your com-
puter with the special cable provided. (The modem port has a telephone icon above
it; the printer port has a printer icon.) The little arrow on the computer end of the cable
should be facing up.

4. Hook up an AC adapter to the button box and plug it into the power outlet.

5. Turn on the button box. The switch is on the back and “up” is “on”.

6. Turn on the computer.

Whenever you start up a new experimental session, you will probably want to check the
button box to make sure that it is functioning properly. In order to do this, select Test But-
ton Box from PsyScope’s Experiment menu. This will bring up the dialog shown below.

 Part 5: Appendices
Note: If there is no Test Button Box item in the menu, you can evaluate Run("Test
BBox") in the Evaluator.

Within this dialog box, there are a few choices for you to make:

Depending on where the button box cable is connected, you need to select Modem or
Printer. It is recommended to use the modem port, unless there is some specific rea-
son to use the printer port.

If you need to use the built-in voice activated relay, you should press the button labeled
Voice Activated Relay and it will say ON. Otherwise this button should say OFF.

Click on the drawing of each button in the middle of the dialog to turn them on or off.
Buttons which are on are hilited and say ON; buttons which are off are grayed out. (in
the figure, the center button is turned off).

For testing, you can ignore the Press and Release buttons at the bottom of the dialog.

After you have finished making these settings, you should test the box. You can do this in
four steps:

First you should click on Test Button Box. This will send out initialization signals to the
button box; depending on the response it receives, the dialog will tell you if the button
box is connected properly. A message dialog will notify you if the connection test
fails. In this case, check all cables and make sure the switch on the back of the button
box is turned on.

Figure 205 – The Button Box Testing dialog
514

Chapter 19. Configuring the Button Box
To test the functioning of individual buttons, press them on the real button box and their
icons on the Macintosh should hilite.

You can test the functioning of the LED's above the buttons by clicking on their icons (in
the middle of the dialog, above the buttons) to turn toggle them on and off.

You can test the voice activated relay by talking into it with a microphone. If it is work-
ing, the microphone icon will hilite. You may need to adjust the sensitivity of the mi-
crophone by turning the knob on the back of the button box.

Press Return to Setup after testing is completed.

If you want to send an electrical signal through the output port of the button box to control
another device, you should look at the section of the button box manual that describes the
control of the output port and you should look in this manual for material on the BBoxOut
action.
515

 Part 5: Appendices
516

Ψ
Chapter 20. Creating Picture Resources

Part 5: Appendices

PsyScope can present picture stimuli that are save either as standard PICT files, or as PICT
resources. You can create picture stimuli with virtually any application you want; you can
then save the drawing to a PICT file, or you can put a number of pictures together in a single
resource file.

To save a drawing as a PICT file, you must use Save AsÉ in the drawing program. Most
programs will let you select the standard PICT format in the saving dialog.

This rest of the chapter will explain how to create resource files containing a number of pic-
tures. In addition to a drawing program, you will need ResEdit™, a standard utility avail-
able from Apple®.

First, start up a drawing application and create the picture. Make sure the illustrations are
about the same size and that they will fit on the screen. Then, select the picture. If it is the
only thing in the document, type Command-A (or choose Select All from the Edit menu).
Otherwise, use the selection tool shown in the illustration below:

Type Command-C (or select Copy from the Edit menu) to copy the picture from the doc-
ument.

Now, start up ResEdit™. Select New from the File menu to create a new picture resource
file, or open an existing one using Open. Paste the picture (using Command-V) into the re-
source window. The word PICT in the window indicates that you created a picture resource.

Double-clicking on PICT opens a new window which should show your illustration; all that
remains to be done is to give it a name that you will use in the script. Select the picture, and

Figure 206 – A Tool palette

 Part 5: Appendices
type Command-I (or select Get Info from the File menu). Fill in the proper name once the
following window appears:

Close the info box and choose Save from the File menu.

You may have as many pictures in one resource file as you need. By pasting into an existing
SoundEdit™ document, sound and picture resources can be combined into one file.

To use the pictures in PsyScope, you will need to tell PsyScope to open the resource file.
See “Part 2: Graphic Environment Reference, 6.1.3 Resources”, p216.

You may find that it is best to keep your sounds and pictures in separate files. Unfortunate-
ly, there is no method for setting folders access inside the GUI. However, you can go inside
the script and modify it using the strcat function in the following way:

PictureList:: dog cat

SoundList:: woof meow

PictureEvent:

Stimulus: Strcat(":stimuli:pictures:", FactorAttrib(PictureList))

SoundEvent:

Stimulus: Strcat(":stimuli:sounds:",FactorAttrib(SoundList))

Here there is a folder called stimuli and within that there is a folder for sounds and another
for pictures.

Figure 207 – The Set Info dialog in ResEdit
518

Ψ
Chapter 21. Creating SoundEdit™ Sound Files

Part 5: Appendices

Use the SoundEdit™ application from Farallon's MacRecorder to create sound files. Fol-
low the instructions in the MacRecorder manual to record samples, and pay particular at-
tention to sections concerned with how to “label” a segment or all of a sound sample. Under
Recording Options set the sample rate to 22 kHz. Always use monaural recording with no
compression.

The best way of recording stimuli for most experiments is to read all the sounds into a sin-
gle SoundEdit file in one pass. Use a high quality microphone with a long cord connected
to the MacRecorder. Make sure that you are in a quiet room and try to stand as far away
from the Macintosh as you can. If you have a separate hard disk and can run SoundEdit
without it, you could turn off the hard disk to cut down on noise. Try to set the recording
level as high as you can without leading to any distortion. It is quite important to choose a
high recording level, since a low recording level will yield a low single-to-noise ratio.

After you have completed the recording, use the MacRecorder playback function to locate
the beginnings and ends of individual sounds. Look for quiet “zero” level spots to begin
and end labelled sections of sound. You may convert the material between lexical items to
silences using the Silence item in the Effects menu. Make sure that at least about 1
msec— about 22 samples — of silence is present at the beginning and end of each lexical
item, so that there will not be any rapid transitions leading to bursts when the words are
strung together.

After you have surrounded a lexical item with a bit of silence, hilite just this section of
sound including the minimum 22 samples of silence at each end; give it a label — which
will be used as the stimulus in PsyScope — by simply typing the name. Be careful to write
the label name exactly (capitalization is not important). Avoid using spaces and punctua-
tion; use the _ instead of a space if you need to.

A label is limited to 30 characters. If you need to edit a label name, click on the label and
choose Edit Label from the SoundEdit menu to make your corrections. Be sure to use
Save As option from File menu to save your editing of labels.

Note: Apparently, there is a bug in SoundEdit such that it does not consider label editing
as something that has changed its file; thus, editing a few labels and quitting will lose
all your labelling work without the usual “Do you want to save?” warning.

You can use the Slice n' Splice application written by Darius Clynes to break up the large
file into many little files. Do this by setting up a folder with only the large file in it. The
Slicer will remove extra silence during the process of creating the little files. You can then

 Part 5: Appendices
correct particular lexical items or add new ones. Once you have a finished set of item pre-
pared, put them back together into one large file using the Splicer in Slice n' Splice. You
can also use the Slicer to break up large files you need to copy to diskettes.
520

Index
Symbols
! (PsyScript) 351

! (trial variable operator) 418

!= (PsyScript) 351, 352

(PsyScript) 324

#> ExperimentDefinitions, etc. markers 282

#include modifier 325

#inherit modifier 325

#NoIncludeStdLib modifier 326

#noinherit modifier 325

#NonLiteral 131, 343

#PsyScope 281

#PsyScope modifier 324

#winclude modifier 325

$ (PsyScript) 352

$- (PsyScript) 352

$+ (PsyScript) 352

% (PsyScript) 351

% (trial variable operator) 418

%= (PsyScript) 351

&& (PsyScript) 351

&& (trial variable operator) 418

(), see parentheses
* (PsyScript) 351

* (trial variable operator) 418

*! (PsyScript) 354

** (PsyScript) 354

*, see asterisk
*= (PsyScript) 351

+ (PsyScript) 351

+ (trial variable operator) 418

+= (PsyScript) 351

- (PsyScript) 351

- (trial variable operator) 418

-$ (PsyScript) 352

-= (PsyScript) 351

-> (PsyScript) 323, 350

-> (trial variable operator) 418

. (PsyScript) 350

. (trial variable operator) 418

. operator 330

.. (PsyScript) 354

/ (PsyScript) 351

// (PsyScript) 351

/= (PsyScript) 351

:: pop-up menu 261

< (PsyScript) 351, 352

< (trial variable operator) 418

<= (PsyScript) 351, 352

<= (trial variable operator) 418

= (PsyScript) 354

= (trial variable operator) 418

== (PsyScript) 351, 352

== (trial variable operator) 418

=> (PsyScript) 409

> (PsyScript) 351, 352

> (trial variable operator) 418

>= (PsyScript) 351, 352

>= (trial variable operator) 418

>> (PsyScript) 323

? (PsyScript) 352, 353

??? 126

@ (PsyScript) 350

@:, see references in attribute blocks
[], see square brackest
^ (PsyScript) 350

“_LatinSets” sub-attribute 390

` (PsyScript) 342

{}, see curly braces
| (PsyScript) 353

| (trial variable operator) 418

|| (PsyScript) 351

|| (trial variable operator) 418

~ (PsyScript) 354

◊ 41

A
AbortEvent[] action 198

scripting 419

access types 133, 141
Blocked Random 141
By Factor 141
Cycle Random 141
Least-Used Random 141
scripting 391

access types (PsyScript lists) 331

Access() function 330, 352

AccessAll() function 352

AccessSome() function 353

“AccessType” attribute 331, 392

“AccessTypes” sub-attribute 391

Action bar (of the editor) 261

actions 30, 192
active 192
active until 33, 192

scripting 410
available 198
based on event/trial start or end 197
cancelling 199
instances 33, 192

scripting 410
maximum instances, see instances
of events, see events
of trials, see trials
posted 192
running 444
run-time information 243
scripting 290, 409

for trials 295
setting beep for key press 31

Actions event attribute, see attributes under events
Actions List dialog 198

Actions submenu 260

Actions trial attribute, see attributes under templates
active until, see actions
“ActiveUntil” attribute 410

AddAttrib() function 355, 358

AddToList[] action 198, 417
scripting 422

AllExcept() function 353

PsyScope User Manual
And() function 351

AppendTok() function 355, 358

Arctan() function 351

asterisk, see columns with non-literal values in files under
lists

“Async” attribute 470

attribute blocks (PsyScript) 276, 321
referencing 329

attributes 149
block, see blocks
custom 149, 156

creating 73
default 149
Default Stimulus/Event/Trial Attribs 150, 159

Event 169, 171, 173
Stimulus 169, 171, 173
Trial 169, 171

default value 149
event 17, 149
event, see events
experiment, see experiments
factor tables and 150
group, see groups
hierarchy 149
inheritance 150
inheritance (PsyScript) 296, 325, 344

Factor format 403
inline entries and, see inline entries
StimList/EventList format 372

linking to variables, see variables
PsyScript 276, 321

@, see references in attribute blocks
naming 321

references 323
renaming 157
sets 149
setting 16, 151, 152
settings

Default 150, 152
Script 154

Access 156
Current 156
Linked 155
Multiple 156
Other 156

Set To 152
Vary By 152

Block 72, 154
Group 83, 154
List 152, 209
PsyScript analogues 384, 385
Run Mode 154
Template 154

standard 149
stimulus 17, 149
stimulus, see stimuli
structural vs. non-structural 402
Trial Chooser and 152
trial, see trials

automatic group selection, see groups
Automatic Grouping dialog 234

B
“BackColor” attribute 429

Backcolor experiment attribute, see attibutes under
experiments

background color, see colors
Balance menu item 259

“BaseCellWeights” sub-attribute 393

BBox dialog extension 477

BBox event type, see types under events
BBox Init experiment attribute, see attibutes under

experiments
BBox, see button box
BBox[] condition, see button box
“BBoxInitialState” attribute 437

BboxOut 199, 421

“BBoxPort” attribute 437

Beep[] action 199
scripting 422

beeping 199

Between crossing type, see crossing types
between-subjects design 57, 89, 133

selecting 57

blanks (PsyScript) 277, 322

Block Attributes dialog 172

Block dialog 68, 122

block entries 380
attributes

factoring and linking 381

BlockAttrib() 309

BlockAttrib() function 381, 385

“BlockDuration” attribute 402

Blocked Random access type, see crossing types
Blocked Random level order, see level orders in levels
Blocked Sequential level order, see level orders<> in

levels
blocks 65, 120

attributes 170
custom 171

configuring 121
creating 66
durations 120, 247
icon 66
linking to 120
opening 121
ordering, see sequencing
previewing 95, 209
quiting 201
renaming 122
scaling factor 211

setting 120
scripting 309

(see also block entries)
sequencing 70, 118, 120

(see also ordering under lists)
trial count 120
varying by, see Vary By in attributes
with blocks 121
with events (without templates) 121
with lists 121

“Blocks” attribute 378, 379, 381

Boolean values (PsyScript) 327

breaking (an experiment run), see experiments
Build Run File… menu item 254

“BuilderData” entry 284

“BuildStart” entry 460

button box
as input device, see also input devices
bad cable hack 166
controlling lights 436
data recording, see fields, input device states in data

Index
file
in conditions 194

scripting 439
setting parameters 195

initial light state
(see also BBox Init under experiment attributes)

initial state, see BBox Init under experiments
attributes

intial light state 437
removing use via PsyScript 463
serial port 437
setup and configuration 513
testing 196

dialog via PsyScript 463

Button Box Parameter dialog 195

buttons (in dialogs) 106

Buttons dialog extension 472

By Factor access type, see access types

C
CancelAction[] action 199

scripting 422

carriage returns (PsyScript), see blanks
Cell Chooser menu item 257

cell weight, see cells under factor tables
cells, see factor tables and factor sets under factors
ChanceEvent[] action 200

scripting 420

Change Data File… menu item 255

Change Log File… menu item 255

“Check” attribute 452

Check function extension 476

Check Links menu item 256

checkboxes (in dialogs) 106

CheckBoxes dialog extension 472

checking trials, see trials
Choose Crossing dialog 143

Clean Up menu item 113, 256

Clear menu item 254, 258

Clearing event attribute, see attributes under events
clearing the screen 200

ClearPort[] action 200
scripting 431

ClearScreen[] action 200
scripting 430

ClearStim[] action 200, 443
scripting 420

“ClearType” attribute 368, 443

Close menu item 253, 257

“CloseAlert” attribute 453, 468

“CloseAlertMsg” attribute 453, 468

“Color” attribute 428

colors
background 204

setting, see attributes under experiments
drawing, see foreground
foreground 204

setting, see attributes under experiments
Column() function 335, 353

columns (in a list file), see files under lists
commas (PsyScript), see blanks
Comment Lines menu item 260

comments (PsyScript) 278, 319, 324

compact factors, see factors
condition (of a trial), see trials
condition name pattern 175

Condition Name trial attribute, see attributes under
templates

condition-action pairs 193
scripting 409

“ConditionName” attribute 366

conditions 30, 192
(see also input devices and actions)
PsyScript evaluation 198
scripting 290, 409
terminating, see events
using variables 198

Conditions and Actions dialog 193

Conditions dialog 194

Conditions submenu 260

Connect List dialog 148

Console 3, 257
configuring through PsyScript 455, 467

“Console” entry 455

Console menu item 256

“Constant” attribute 384, 387

content (of an entry), see entries
context (from a factor table), see factor tables
conventions 2

Copy menu item 254, 258

CopyContent() function 356

Cos() function 351

Count Finds menu item 259

counterbalancing, see stimuli
“Criteria” attribute 486

Cross() function 347, 354

crossing types 132, 140
Between 140
Fixed 141
index 140, 143

(see also subject numbers)
Default 144
Group 144
Run 144
Run of Subject 144
Run within Group 144
scripting 390
Subject 144
Subject within Group 143

Latin Squares 63, 140
Latin square partition 63
Latin square partitions 134

setting 143
scripting 390
subtables 140

List Access 140
scripting 389
Use Access 140
Use/Reset Access 141
Within 140

“CrossingValues” attribute 395

curly braces (PsyScript) 326

“Current” attribute 282

current group, see groups
current script, see scripts in projects
“CurrentExperiment” entry 461

PsyScope User Manual

CurrentIndex() function 353

cursor (hiding) 166

custom attributes, see attributes
Custom dialog extension 473

Cut menu item 254

Cycle Random access type, see access types
Cycle Random level order, see level orders in levels
“Cycles” attribute 401

D
data file 79, 217

automatic naming 80, 236
fields 161, 218

default 219
input device states 220
optional 219
showing, see attributes under experiments

format 222
header 217
response data, see fields in data file
setting, see attributes under experiments
timing statistics 221
value on every data line 362
variables

decimal places, see attributes under
experiments

showing, see attributes under experiments
viewing 255
when written 166

Data File dialog 80, 236

Data File experiment attribute, see attibutes under
experiments

Data Info experiment attribute, see attibutes under
experiments

Data Variables experiment attribute, see attibutes under
experiments

“DataFields” attribute 362

“DataFieldsMenuItem” entry 462

“DataFile” attribute 362

“DataHeader” attribute 362

“DataRecordSeparator” attribute 365

“DataVariables” attribute 365

Date() function 355

“DCOD” attribute 467

DCODs
(see also PsyScope Extensions)

“Debrief” attribute 364

Debriefing File experiment attribute, see attibutes under
experiments

debriefing, see experiments
debugging, see experiments
Decimal Places experiment attribute, see attibutes under

experiments
“Default” attribute 470

Default attribute setting, see settings under attributes
default attributes, see attributes
Default Stimulus/Event/Trial Attribs attributes, see

attributes
“DefaultColor” attribute 429

definitions 2

“Degradation” attribute 429

Deiconify menu item 257

DeleteAllToks() function 355, 358

DeleteTok() function 355, 358

“Depth” attribute 434

Design menu 256
absence, see user mode

Design menu item 256

design types 1

Design window 11, 107
automatically opening 268
Notes button 114
opening 107
Show Events checkbox 114
Show Lists checkbox 114
Subject Info icon 113
tools 109

(see also tools)
trash can, see trash
Variables icon 114
Work area 107

cleaning up 113
hierarchical arrangement 268

Diag() function 353

“Dialog” attribute 450, 467

dialog entry 467

dialog extensions 451, 467
standard 469

dialogs 105, 106
scripting 450

(see also dialog extensions)
setting the title 454

diamond 41

distributivity (of a PsyScript operator), see operators
Div() function 351

“DLOG” attribute 471

“DLOGx” attribute 471

“DLOGy” attribute 471

Do Run File… menu item 254

Document event type, see types under events
DrawAllPortBorders[] action 200

scripting 430

drawing color, see foreground under colors
DrawPortBorder[] action 200

scripting 430

“Duration” attribute 287, 367, 411

Duration dialog 180

Duration event attribute, see attributes under events
duration, see events

E
Edit menu 254, 258

Edit This Script menu item 253

editor 258
(see also text tools)
auto-tab 267
interactive mode 261, 284
keyboard shortcuts 260
searching and replacing 262
wrapping text 259, 268

Editor dialog extension 477

emacs keys 260

Empty Trash menu item 115, 256

“Enabled” attribute 453

“EnableParts” attribute 469

Index

End[] condition 417, 443
scripting 437

EndEvent[] action 201, 443
scripting 419

EndWatchCursor() function 356

entries 275, 319, 320
content 276, 320
defining 321
executing 467, 468
finding in the script 261
from a file reference, see file entries
global 321

inline entries and, see global entries and under
inline

inline 335
attribute inheritance and 346
attributes 337
difference from regular entries 336
global entries and 338
lists and 338
THIS keyword and 341
token reference 339
using () 339
using [] 335

linking to from graphic environment 154
names 276

reserved 459
references 279, 323
special 459
syntax 321

EntryList dialog extension 477

EntryName() function 354

error messages 489
repeating 262
suppressing 266

Evaluate Again menu item 255

Evaluate menu item 255

Evaluate() function 354

evaluation (of a PsyScript expression) 320

Evaluator 263, 356

Evaluator menu item 257

Event Attributes dialog 16, 176

event attributes, see events and attributes
event bar 16

event entries 383
attributes

factoring 384
linking to run mode 385
linking to templates, blocks, and groups 385

Event Monitor 98, 241
step mode 245

Event Name area (of the Template window), see Template
window

Event palette 14, 109

event types 14, 177
(see also events)

“EventActions” attribute 368, 409

EventList format 368
(see also StimList format)

“EventName” attribute 367

events
aborting 198
actions 193

scripting 409
setting, see attributes under events

attributes 176

Actions 180
Clearing 180
Duration 19, 179
Load Time 180, 251
standard (PsyScript) 367
Tag 180

clearing 166
(see also clearing in stimuli)
setting clear type, see attributes under events

constant (Factor format) 387
creating 15, 112
creating (PsyScript) 285
default name in StimList/EventList format 373
duration 19, 127, 411

calculating 443, 444
Sound events 447

changing 127
setting to until mouse click 20
setting, see attributes under events

duration (PsyScript), see “Duration” attribute
ending 201, 443
event bar 126
load time 180

setting, see attributes under events
loading, see loading under stimuli
masking 201
masking, see clearing
offset 127
ports, see ports
renaming 126
running 200, 203, 204, 442
running multiple times 444
scheduling 127, 204
scheduling dependency 127
scripting 285

(see also event entries)
sequencing 22, 411
sequencing (PsyScript) 287
showing 204
starting 442
statuses (run-time) 243
tags

setting, see attributes under events
terminating condition, see duration
timeline 126

moving 126
types 177

Button Box
attributes

scripting 436
Document 177

attributes 182
scripting 431

icons 112
Key Sequence 178

attributes 184
scripting 432

Paragraph 178
attributes 183

scripting 432
icon 67

Pasteboard 178
attributes 183

scripting 434
PICT 177

attributes 182
scripting 433

Sound 179
attributes 184

scripting 435
Sounds

PsyScope User Manual
creating sounds 519
Text 177

attributes 181
scripting 424

icon 15
position, see positions under ports
setting constant stimulus 18

Time 177
attributes 181
icon 23

unscheduled 127
unscheduling 204

“Events” attribute 378, 379, 381, 382

Events palette 112

“EventTag” attribute 367

“EventType” attribute 367

execution entries 460, 467

Exp Keywords submenu 260

Exp() function 351

expanded list, see lists
Experiment Attributes dialog 160

experiment attributes, see experiments
Experiment dialog 117

experiment entries 282, 359
attributes

factoring and linking 379
finding current 461
syntax 378

Experiment menu 256

Experiment Notes menu item 255

“ExperimentClose” entry 460

experiments 116
attributes 90, 158

Backcolor 168
BBox Init 168
Data File 80, 161, 217, 236, 255
Data Info 161

dialog via PsyScript 462
Data Variables 163
Debriefing File 165
Decimal Places 168
Forecolor 168
Input Devices 164

dialog via PsyScript 462
Instructions File 165
Num Rests 165
Optimization 167

dialog via PsyScript 463
Precompile 167
Resources 167, 216
Rest Duration 165
scripting 299
Special 165

dialog via PsyScript 462
standard 161
standard (PsyScript) 360
Timer 164

dialog via PsyScript 463
Trials per Rest 165

breaking 92
comments, see notes
compiling 246

(see also precompiling)
algorithm 357
Factor format 404
quickly 246
statistics 241
suppressing time bar count, see time bar

configuring 116
creating 10
current 257

PsyScript 282
debriefing 91

setting, see attributes under experiments
debugging 238, 241
hierarchy,see hierarchyexperiment hierarchy, see

hierarchy
instructions 91

creating 91
setting, see attributes under experiments
suppressing 165
via blocks 66

notes 114, 255
number of trials, see trial counting
opening 116
renaming 117
running 4, 19, 92, 238, 441
scripting 281

(see also experiment entries)
special flags

setting, see attributes under experiments
title for data logging 360
verifying the structure 256
with groups 116
with lists 116
without groups 116

“Experiments” entry 282, 359, 459

“ExperimentStart” entry 460

expressions (PsyScript) 320
evaluating 263
function calls, see function calls (PsyScript)
literals, see literals (PsyScript)

expressions (variable), see variables
“ExpTypes” attribute 415

“ExpVariables” attribute 365, 413

extensions, see PsyScope extensions and dialog
extensions

“ExtResult” attribute 340

F
f^ (PsyScript) 350

“Face” attribute 427

Factor format 376
compilation details 404
optimization 387, 404

setting, see attributes under experiments
script summary 405
technical details 402

Factor Set dialog 147

factor set, see factor set under factors
Factor Table floating window 144

factor table set entries 395

factor table sets 58, 130

Factor Table window 36, 138

factor tables 36, 129
access types, see access types
accessing cells

sequential 51
and lists 132
built-in 130
cell navigation 41
cell selection 41
cells

current 130, 135
ordering 139

Index
(see also access types)
(see also ordering under lists)

selecting 139
weight 54, 133

setting 54
context 139, 144, 150

scripting values 396
creating 37
creating new within a factor table set 138
crossing type, see crossing types
deleting from a factor table set 138
icon 4
ordering cells 49
renaming 138
scripting 309

(see also factor table set entries)
transforming 111

FactorAttrib() function 384

factors 36, 129
(see also factor tables and lists)
compact 303
creating in factor table 37
crossing 36, 37, 135
crossing factors 129
factor set 129

cells 129
scripting weights 393

scope 136
scripting 400

scripting 306, 388
set names 389

free
scripting 301

in a factor table
creating 138
nested, see nested under factors
ordering 139
renaming 138
scripting 395

in a table
ordering 52

nested 132
in a factor table

creating 138
scripting 396

owning level 132
scripting 307, 393

ordering 143
scripting 299

referencing 384

“Factors” attribute 378, 379, 381, 382

“FactorTable” attribute 395

“FactTypes” sub-attribute 395

“Feature” attribute 428, 433

fields (of a list), see lists
Fields dialog extension, see Standard dialog extension
file entries 343

optimizing 349
with expressions 343
with literals only 343

File menu 253

file name paths, see paths
file references (PsyScript), see file entries
FileLists dialog extension 456, 480

FileRef() function 350

files
getting names from PsyScript 456
resource, see resources

saving (safe saves) 224
using as a list (PsyScript), see file entries
using as a list, see files under lists 131

Find Again menu item 259

Find dialog 262

Find… menu item 258

Fixed crossing type, see crossing types
“FixedCycles” attribute 401

“Flags” attribute 361

“Flip” attribute 429

folder icon 217

“Font” attribute 427

“ForeColor” attribute 429

Forecolor experiment attribute, see attibutes under
experiments

foreground color, see colors
“Format” attribute 360

free factors, see factors
“Function” attribute 451, 467

function calls (PsyScript) 280, 320, 327
exceptions to rules 327

function extensions 451, 467
(see also dialog extensions)

functions (PsyScript) 326
(see also function calls)
built-in 327
creating 340
listing 349

G
GCD() function 351

Get [Object]… menu item 115, 254

GetCurrent() function 334, 352

GetPrevCurrent() function 353

GetSome() function 353

GetSubjNum function extension 483

GetTag() function 386

GetToks() function 350

Graeco-Latin square 133

graphic environment 1, 9

“Grip” attribute 332

Group Attributes dialog 170

Group Criteria dialog 235

group criteria, see grouping criteria under groups
Group dialog 119

group entries 379
attributes

factoring and linking 380

GroupAttrib() 312

GroupAttrib() function 380, 385

groups 118
attributes 169

custom 169
configuring 119
current 88, 116, 379

setting manually 88
grouping by subject info values 82
grouping criteria 82, 233

linking to 84
modulo comparison 234

icon 83
linking to 118

PsyScope User Manual
opening 119
renaming 119
scripting 311

(see also group entries)
selecting for a run 118

automatically 233, 485
varying by, see Vary By in attributes
with blocks 118
with lists 118
without blocks 118

“Groups” attribute 378

H
Head() function 354

“Height” attribute 470

help 264
searching for, see Help Search dialog

Help Search dialog 264

Help… menu item 257

hierarchy 107
attributes and, see hierarchy under attributes
lists and, see hiearchy under lists
skipping levels 108

hot spot (of a port), see ports
hyperdiagonal 134

I
Iconify menu item 257

IDEVs
(see also PsyScope Extensions)

If() function 354

Import List… menu item 115, 132

index (for a factor set), see crossing types
index (user manual), see index (user manual)
“Indices” sub-attribute 390

inheritance (of attributes), see attributes
Inherited() function 354

“Init” attribute 412

inline entries, see entries
input devices

(see also button box, mouse, and keyboard)
activating, see attributes under experiments
available 1
in conditions 194

Input Devices experiment attribute, see attibutes under
experiments

“InputDevices” attributes 360

“InputDevicesMenuItem” entry 462

“Instances” attribute 410

instances, see actions
“Instructions” attribute 364

Instructions File experiment attribute, see attibutes under
experiments

instructions, see experiments
Interactive Mode menu item 259

interactive mode, see editor
interrupt 4

intertrial interval 96
(see also ITI)

IsItemInList() function 355

“IsList” attribute 394

item weight, see items under lists

ItemList dialog extension 474

“ItemName” attribute 453

items (for subject info), see subject info
items (in lists), see lists
Iterate() function 355

ITI 96, 246, 250

“ITI” attribute 366

ITI trial attribute, see attributes under templates

K
Key Parameter dialog 196

Key Sequence event type, see types under events
Key[] condition, see keyboard
keyboard

as input device, see also input devices
data recording, see fields, input device states in data

file
in conditions 194

scripting 438
setting parameters 196

Key icon 28

keyboard shortcuts, see shortcuts
KeyState dialog extension 478

keywords 2, 114

L
Latin squares (general) 133

Latin Squares crossing type, see crossing types
Latin Squares dialog 142

LCM() function 351

Least-Used Random access type, see access types
Least-Used Random level order, see level orders in levels
Level dialog 147

level weight, see levels
levels 36, 129

adding to factor table 38
crossing, see crossing under factors
free 132
in a factor table

creating 138
renaming 138

moving in a table 51
ordering 132

(see also ordering under lists)
level orders 141

Blocked Random 141
Blocked Sequential 141
Cycle Random 141
Least-Used Random 142

owning nested factors 132
weight 55

setting 56

“Levels” attribute 387

linear list, see lists
Link to Entry dialog 155

link tool, see tools
linking, see objects
List Access crossing type, see crossing types
list boxes (in dialogs) 106

List dialog 145
tick marks 146

List File dialog 146

list file, see files under lists

Index
List Script Changes menu item 255

lists 36, 59, 130
accessing 60
creating 59
expanded 132
fields 130

creating 146
renaming 157

files 131
columns 131

marked with an asterisk, see with non-
literal values

with non-literal values 131, 147
graphic environment vs. PsyScript 329
hierarchy and 135
in a factor table 132
items 60, 130

adding to list 61
weight

setting 61, 146
linear 131
ordering 210
renaming 145
using 130

lists (PsyScript) 279, 329
access types, see access types (PsyScript lists)
accessing 330
checklist 330
crossing 347

by map 348
checklist storage 349

current item 330
previous 334

inline entries and, see inline entries
items 330
linking 332, 339
offset 333
resetting 330, 366
size 330, 333
sublists 334
weights 332

ListSize() function 352

ListSum() function 353

ListWeight() function 352

literals (PsyScript) 320, 326

Load Time event attribute, see attributes under events
“LoadTime” attribute 443

Log Comment menu item 255

log file 79, 222, 458
format 223, 458
logging a comment 255
logging data from PsyScript 458
setting 222, 255
subject info and, see subject info
viewing 223, 255

“Log File” entry 458

Log function extension 458

Log() function 351

LogInfo function extension 482

Lowercase menu item 260

M
magnet icon 109, 115

MakeFileName function extension 481

Map() function 335, 353

MappedCross() function 348, 354

mapping list (PsyScript) 335

“Margin” attribute 470

“Mask” attribute 428

MaskStim[] action 201
scripting 420

Match() function 355

Max() function 351

maximum instances, see actions
memory (conserving) 246, 251

(see also screen saving)
“MenuName” attribute 453

menus 253
customization through PsyScript, see script-specific
script-specific 256, 449, 467

checkmarked items 452
disabling menus/items 453
standard 461
submenus 455

“Menus” entry 449

“Mode” attribute 427

modifiers (PsyScript) 319, 324

Monitor menu item 254, 257

“MonitorOrder” attribute 430

mouse
as input device, see also input devices
data recording, see fields, input device states in data

file
icon 21
in conditions 194

scripting 439
setting parameters 197

Mouse Parameter dialog 197

Mouse[] condition, see mouse
MouseState dialog extension 477

“Msg” attribute 468

“Multiple” attribute 332

muon field, see PsyBug

N
New Attribute dialog 157

New Experiment menu item 256

New Object menu item 254

New Object Name dialog 114

New Port dialog 189

New Positions dialog 189

New Project… menu item 253

New Text File menu item 253

New/Reconfigure Info Item dialog 228

New/Rename Table Factor dialog 142

New/Rename Table Level dialog 142

newlines (PsyScript) see blanks
NewListItem[] action 201, 417

scripting 423

Next() function 352

NextCrossing[] action 201
scripting 424

“NoDirty” attribute 469

notes (for an experiment), see experiments
Notes button (in Design window), see Design window
“Notes” entry 284

NthChar() function 352

PsyScope User Manual
Null() function 354

Num Rests experiment attribute, see attibutes under
experiments

“NumRestPeriods” attribute 364

“NumTrialsPerRest” attribute 364

O
Object List dialog 115

objects 107
arranging 268
creating 112
linking 108, 110

creating multiple links 111
names 13, 114

prompting for 268
owner 107, 111
recovering from trash, see trash
renaming 151
selecting 105, 110

Objects in Script menu item 256

Objects in Script submenu 115

Objects palette 109, 112

ODEVs
(see also PsyScope Extensions)

“Offset” attribute 333

Open Selection menu item 253

Open Text File… menu item 253

Open… menu item 253

“OpenAlert” attribute 453, 468

“OpenAlertMsg” attribute 453, 468

operation sentence (PsyScript) 320, 328

operators (PsyScript) 326, 328
binary 328
distributivity 328
listing 349
precedence 356
unary 328

operators (trial variable) 417

optimization (PsyScript)
see optimizing under scripts

“Optimization” attribute 378

Optimization experiment attribute, see attibutes under
experiments

optimization, see Factor format or StimList format
“OptimizeMenuItem” entry 463

options 265
custom 269

defining 456
Design 268
editor 267
general 266
projects and 213
run 266
script-based

see custom under options
“Options” entry 456

Options submenu 254

Or() function 351

“Origin” attribute 429

output devices
available 1

owner (of an object), see objects
OWNER keyword (PsyScript) 324, 342, 350

P
palettes 109

Palettes menu item 115, 257

Paragraph event type, see types under events
parameter tags (PsyScript) 342

parameters (of actions) 32

Parameters dialog 205

parentheses (PsyScript) 320, 339

parentheses, balancing 259

“PartIDs” attribute 471

pass (through a list of blocks) 380

Paste menu item 254, 258

Pasteboard event type, see types under events
paths 215

projects and 213
relative 215

projects and 215
setting start 266

reverse notation 215

“PBoardDegradation” attribute 434

“PBoardDepth” attribute 434

“PBoardMode” attribute 434

“PBoardPort” attribute 434

PICT event type, see types under events
Picture dialog extension 482

“Placement” attribute 470

PopUp dialog extension 475

pop-up menus (in dialogs) 106

“Port” attribute 424

Port Info dialog 190

ports 187
clearing 200, 202
default 187, 434
drawing 166, 200
hot spot 187
positions 187

creating 46
setting 45

Ports/Positions dialog 187

PosIfItemInList() function 355

“Position” attribute 427

Position Info dialog 191

Positions dialog extension 478

positions, see ports
Power() function 351

practice 93
(see also run mode)

Practice menu item 254

“PracticeBlockDuration” attribute 402

“PracticeBreak” entry 460

“PracticeCycles” attribute 401

“PracticeEnd” attribute 460

“PracticeFixedCycles” attribute 401

“PracticeScaleBlocks” attribute 401

“PracticeStart” entry 460

“Precompile” attribute 365

Precompile experiment attribute, see attibutes under
experiments

precompiling 96, 166
problems 247
setting fixed count, see attributes under experiments

Index
preferences, see options
PrevCurrentIndex() function 353

previewing, see trials and blocks
priviledges 461

processes 237
scheduling 231, 237, 460

Product() function 351

progress bar, see time bar
Project Scripts menu item 254

projects 213
autoloading 266
creating 213, 253
options and, see options
paths and, see paths
scripts

adding and removing 214
current 214
start-up 214

subject info and 228

“Prompts” attribute 470

PsyScope Extensions 216

PsyScope Extensions folder 216

PsyScopeStdLib 461

PsyScript 9, 103
basic syntax rules 321
defining an experiment 357
environment configuration 312, 449
introduction 275
reference manual 319
tutorial 281

PSYXs, see PsyScope Extensions
Put in View menu item 256

Q
Quit menu item 253

QuitBlock[] action 201
scripting 423

QuitTrial[] action 202, 445
scripting 419

quotes (PsyScript) 278, 326

R
radio buttons (in dialogs) 106

Random() function 355

“Range” attribute 452, 468

“RangeFailMsg” attribute 453, 468

references (PsyScript), see entries
references (to PsyScript attribute blocks), see attribute

blocks
Reinitialize Script menu item 255

RemoveDups() function 355

RemoveFromList[] action 202, 417
scripting 423

RemoveMatching() function 355

RemovePortBorder[] action 202
scripting 430

Rename/Retype Attribute dialog 157

Replace All menu item 259

Replace and Find Again menu item 259

Replace menu item 259

RerunTrial[] action 202
scripting 423

“Reset” attribute 366

Reset() function 330

ResetAll() function 330, 353

ResetList() function 353

resources 216
files

creating PICTs 517
opening

(see also attributes under experiments)
“Resources” attribute 365

“Resources” entry 216, 461

Resources experiment attribute, see attibutes under
experiments

responses
in data file, see data file
recording 26, 203

(see also RT[] action)
Rest Duration experiment attribute, see attibutes under

experiments
rest period 92, 167

setting, see attributes under experiments
“RestPeriod” attribute 364

“Result” attribute 340

reverse notation, see paths
reverse video 92, 203

dialog for setting via PsyScript 462

ReverseVideo[] action 203
scripting 431

“ReverseVideoMenuItem” entry 462

Revert File menu item 254

Revert Script menu item 253

Row() function 335, 353

RT[] action 26, 203, 218, 417
scripting 421

run files 266

Run menu 254

Run menu item 254

run mode 93
(see also “Run Mode” attribute)
linking attributes to, see attributes under event

entries
Run() function 355, 467

“RunAfter” attribute 469

“RunBefore” attribute 468

“RunBreak” entry 460

“RunEnd” entry 460

RunEvent[] action 203, 442
scripting 419
vs. ScheduleEvent[] 444

“RunFailMsg” attribute 468

“RunLabel” attribute 362

“RunMode” attribute 158, 365

RunModeAttrib() function 378, 385

“RunStart” attribute 460

S
Save a Copy As… menu item 253, 254

Save File As… menu item 254

Save File menu item 254

Save Script As… menu item 253

Save Script menu item 253

PsyScope User Manual
enabled due to PsyScript operations 469

“SaveCurrents” attribute 334

“ScaleBlocks” attribute 401

scaling factor (of a block), see blocks
ScheduleEvent[] action 204

scripting 420
vs. RunEvent[] 444

scissors tool, see tools
screen

clearing 200
displaying stimuli 445

(see also types under events)
timing issues 446

multiple 430
timing issues 446

non-standard 166
saving 165
setting co-ordinates origin 429

Script attribute setting, see settings under attributes
Script Enabled menu item 259

Script Functions submenu 260

Script Keywords submenu 260

ScriptEval[] action 204
scripting 422

scripting, see PsyScript
scripts 9, 275

autoloading 266
auto-scrolling to background changes 259
creating (for PsyScript editing) 281
debugging, see debugging under experiments
editing, see editor
format of 358, 360
grouping, see projects
including in another script 325
opening 253, 257
optimizing 349
projects and, see projects
reinitializing 255
saving automatically 266
self-modifying 358
standard format 281
suspending interpretation 259

ScriptWhen Parameter dialog 198

ScriptWhen[] condition
scripting 437

Scroll to Changes menu item 259

section markers (PsyScript) 319, 326

Select All menu item 258

selection devices (in dialogs) 106

Selection to Search menu item 259

selection tool, see tools
Set To attribute setting, see settings under attributes
Set[] action 203, 417

scripting 422

SetBackColor[] action 204
scripting 431

SetCurrent() function 353

SetDefaultColor[] action 204
scripting 431

“SetNames” sub-attribute 389

“Sets” sub-attribute 388

“SetScopes” sub-attribute 400

SetTag() function 386

“SettingsMenuItem” entry 462

“SetUp” attribute 471

Shift Left menu item 259

Shift Right menu item 259

shortcuts 111, 157, 224, 260

Show Events checkbox (in Design window), see Design
window

Show Lists checkbox (in Design window), see Design
window

Show Trash menu item 256

ShowStim[] action 204, 443
scripting 420

Shut Up button 262

“Shutdown” entry 460

side-effect operations (PsyScript) 358

Sin() function 351

“Size” attribute 427

snooping around 9

Sound event type, see types under events
SoundEdit™ 519

SoundLabel event type, see Sound event type
spaces (PsyScript), see blanks
Special experiment attribute, see attibutes under

experiments
square brackets (PsyScript) 335

Standard Attributes dialog 151

standard attributes, see attributes
Standard dialog extension 475

START event 442

start references 411
(see also “StartRef” attribute and events sequencing)

Start/End Parameter dialog 197

Start[] condition 417, 443
scripting 437

“StartRef” attribute 289, 368, 411
default 166

“StartUp” entry 460

start-up script, see scripts in projects
StartWatchCursor() function 356

Statistics menu item 259

StimList format 368
attribute summary 374
block mode 370
compilation details 375
optimization 373
trial attributes 370

stimuli 185
attributes 181
clearing 200, 445

(see also clearing under events)
counterbalanced 63, 134, 135
keeping in memory 251
loading 247

controlling 249
preloading 166, 250
presentation 443
scripting sub-stimuli, see sub-stimulus entries
showing 204, 445
storing values and attributes 386

“Stimuli” attribute 384, 434

Stimuli dialog 185

“Stimulus” attribute 384, 424, 431, 432, 433, 436

stimulus attributes, see stimuli and attributes
Stimulus dialog 185

Index
Strcat() function 352

StripEndChars() function 352

StripFrontChars() function 352

Strlen() function 352

“Style” attribute 428

Style dialog 185

Style dialog extension 479

sub-attributes (PsyScript) 277

“Subject” entry 464

subject info 74, 224
grouping by 82
items 225

creating 76, 228
modifying 228
scheduling prompts, see processes
special 225

log file and 230, 231, 232
old PsyScript utilities 464

Subject Info dialog 226

Subject Info icon (in Design window), see Design window
Subject Info menu item 257

Subject Info Schedule dialog 237

subject numbers 75, 230
calculation 232, 483
scheduling computation, see processes

“Subject_Age” entry 465

“Subject_DataFile” entry 465

“Subject_Group” entry 465

“Subject_Name” entry 465

“Subject_Number” entry 465

“Subject_Run” entry 465

“Subject_Sex” entry 465

“SubjectInfoDialogItems” entry 466

SubjectInfoLib 464

“SubjectMenuItems” entry 466

SubjectNumAndGroup function extension 485

Sublist dialog 155

Sublist() function 334, 353

sublists (of PsyScript lists), see lists (PsyScript)
“Submenus” attribute 455

sub-stimuli, see stimuli
sub-stimulus entries 383

(see also event entries)
Sum() function 351

Superblock dialog 123

superblocks 65, 121
icon 66

supergroups 379

Switch Experiment menu item 255

Switch… menu item 253

symbols 114

system requirements 1

T
Table Info dialog 49, 140

tables, see factor tables
tabs (PsyScript), see blanks
Tag event attribute, see attributes under events
tags (Factor format) 386

Tail() function 354

“TakeDown” attribute 471

Tan() function 351

template entries 381
attributes

factoring and linking 382

template weight, see template
Template window 124

Event Name area 126
Timeline area 126

templates 13, 124
(see also trials)
attributes 172

Actions 175
Condition Name 175
custom 173
in StimList format 370
ITI 175

setting, see attributes under templates
Minimum ITI 250
standard (PsyScript) 366

built-in 130
creating 13, 122
icon 13
ordering 120, 122

(see also ordering under lists)
renaming 125
scripting 292

(see also template entries)
transforming 111
weight 120

setting 122

“Templates” attribute 378, 379, 381

“Test BBox” entry 463

text editor, see editor
Text event type, see types under events
text fields (in dialogs) 106

text tools
(see also editor)
balancing parentheses 259
changing case 260
commenting out lines 260
counting characters, words, and lines 259
counting occurrences 259
searching and replacing 262
shifting left/right 259

Text Tools submenu 259

THIS keyword (PsyScript) 324, 350
inline entries and, see inline entries

time bar 266
suppressing trial count 267

Time event type, see types under events
Time() function 354

Timeline area (of the Template window), see Template
window

timeline, see events
“Timer” attribute 360

Timer experiment attribute, see attibutes under
experiments

“TimerMenuItem” entry 463

timing
precision 2
setting source, see attributes under experiments

TIMRs
(see also PsyScope Extensions)

“Title” attribute 360, 454

PsyScope User Manual
tokens (PsyScript) 320

tools
auto-changing 268
in floating window 114
link 13, 110
scissors 83, 111
selection 110
transform 111

Tools palette 109

Tools pop-up menu 261

transform tool, see tools
trash 113, 115

trial 12, 441

Trial Chooser floating window 94, 152, 209

Trial Chooser menu item 257

trial counting 211
(see also blocks)
scripting 401

Trial Manager 441

Trial Manager Variables dialog 208

Trial Manager variables, see variables
Trial Monitor 238

reported trial count 212

Trial Template window 13

trial templates, see templates
trial variables, see variables
“TrialActions” attribute 367, 409

TrialAttrib() 297

TrialAttrib() function 382, 385

trials 124
(see also templates)
actions 193

scripting 409
setting, see attributes under templates

attributes, see attributes under templates
blocking 66
checking 98
compiling, see experiments
condition name

setting, see attributes under templates
number run in experiment, see trial counting
previewing 94, 125, 209
quiting 202, 445
rerunning 202
running, see running under experiments
run-time information 242
variables, see variables

Trials Monitor 95

Trials per Rest experiment attribute, see attibutes under
experiments

triggering actions 30

TruthVal() function 351

“TurnOffBBox” entry 463

“Type” attribute 412, 451

“Types” sub-attribute 389

U
Uncomment Lines menu item 260

Undo menu item 254, 258

UnscheduleEvent[] action 204
scripting 420

“Update” attribute 412

Uppercase menu item 260

Use Access crossing type, see crossing types
Use/Reset Access crossing type, see crossing types
user mode 266

“UserLevelMenuItem” entry 461

Utilities menu 254

V
values (of a PsyScript expression) 320

Variable Monitor 98, 245

variables 205, 412
arrays

adding items 198, 201
removing items 202

built-in 207, 417
defining

(see also Trail Manager Variables dialog)
expressions 206, 417
in actions, see using variables under actions
linking attributes to 207, 247
operational overview 206
run-time information, see Variable Monitor
scripting 412

arrays, see composite types
composite types 413

built-in 416
initializing 414

declaring 412
records, see composite types
type declarations 415
types 412

setting values 203
types 205

Variables icon (in Design window), see Design window
Vary By attribute setting, see settings under attributes
Vary by Block dialog 154

Vary by Group dialog 154

Vary by List dialog 153

Vary by Template dialog 154

View Data File menu item 255

View Log File menu item 255

View Trash dialog 115

View Trash menu item 115

W
warnings, see error messages
weights 210

cell, see cell weight
item, see item weight
level, see level weight
template, see template weight

“Weights” attribute 332

When Parameter dialog 198

When[] condition 417
scripting 437

whitespace, see blanks
“Width” attribute 470

windows 105
iconifying 269

(see also Iconify menui item)
main, see Console
remembering positions 269
startup

animating 269

Within crossing type, see crossing types

Index
Work area, see Design window
Wraparound menu item 259

X
“X” attribute 425

x-ed out folder icon 217

XRESs 340

Y
“Y” attribute 426

Z
Zoom menu item 257

PsyScope User Manual

	Overview of the PsyScope Manual
	Part�1: Introduction to�PsyScope
	Part�2: Graphic Environment Reference
	 Part�3: Scripting User�Manual
	Part�4: Scripting Reference
	Part�5: Appendices
	Overview of the PsyScope Manual
	Overview of the PsyScope Manual
	0.1 Organization
	Part�1: Introduction to�PsyScope
	Part�2: Graphic Environment Reference
	 Part�3: Scripting User�Manual
	Part�4: Scripting Reference
	Part�5: Appendices

	0.2 System Requirements
	0.3 Conventions
	Part�1: Introduction to�PsyScope
	Chapter 1. Introduction 1
	Chapter 2. Running Your First Experiment 3
	Chapter 3. Designing an Experiment 9

	Chapter 1. Introduction

	Part�1: Introduction to�PsyScope
	Chapter 2. Running Your First Experiment

	Part�1: Introduction to�PsyScope
	2.1 Open the Experiment
	Figure 1 – PsyScope Console

	2.2 Run the Experiment
	2.3 Look at the Experiment in the Design Window
	Figure 2 – Factor table icon
	Figure 3 – Factor Table window

	2.4 Change One or Two Things in the Experiment
	Figure 4 – Event Attributes dialog
	Figure 5 – Clicking on a level
	Figure 6 – Template window

	Chapter 3. Designing an Experiment
	Part�1: Introduction to�PsyScope
	3.1 A Word About Scripts and the Graphic Environme...
	3.2 Creating a New Experiment
	Figure 7 – Standard menu bar
	Figure 8 – The Console window for a new script
	3.2.1 Using the Design Window
	Figure 9 – Design window for a new script

	3.2.2 Creating a Trial Template
	Figure 10 – The Template icon
	Figure 11 – The link tool
	Figure 12 – Anatomy of the Trial Template window

	3.2.3 Creating a New Event
	Figure 13 – The Text event icon
	Figure 14 – New event name dialog
	Figure 15 – The Template window with a new event

	3.2.4 Setting Attributes Using the Event Dialog
	Figure 16 – The Event Attribute dialog
	Figure 17 – Setting an attribute
	Figure 18 – Attribute showing a constant value for...
	Figure 19 – Event in Template window with the stim...
	Figure 20 – Shortcut for setting an attribute valu...

	3.2.5 Timing and Sequencing Events
	3.2.5.1 Timing an Event
	Figure 21 – The Duration dialog in Conditions mode...
	Figure 22 – The Mouse icon
	Figure 23 – The Duration dialog with Mouse selecte...
	Figure 24 – A Text event that ends with a Mouse cl...

	3.2.5.2 Sequencing Events
	Figure 25 – Template with more than one event
	Figure 26 – The Time icon
	Figure 27 – The demagnify icon
	Figure 28 – Setting an event starting time
	Figure 29 – The link tool
	Figure 30 – Template window with a re-linked event...
	Figure 31 – Template window with delayed event

	3.2.6 Recording Responses
	Figure 32 – The Actions dialog with one empty cond...
	Figure 33 – The Conditions dialog
	Figure 34 – The Key icon
	Figure 35 – The Key dialog
	Figure 36 – Selecting a new action in the Actions ...
	Figure 37 – The Actions dialog with a new action

	3.2.7 Conditions and Actions
	Figure 38 – Actions dialog with a Beep[] action
	Figure 39 – Actions dialog with more conditions
	Figure 40 – Setting Active Until
	Figure 41 – Setting Active Until relative to anoth...

	3.2.8 Using Factor Tables and Lists
	3.2.8.1 Creating a Factor Table
	Figure 42 – Linking a factor table to the experime...
	Figure 43 – Anatomy of the Factor Table window
	Figure 44 – Selecting a factor in a factor table
	Figure 45 – The New Level dialog
	Figure 46 – Factor Table window with new levels
	Figure 47 – Factor table window with levels for al...

	3.2.8.2 Creating Trials from a Factor Table
	Figure 48 – Template window with more events
	Figure 49 – Template window with more parameters s...
	Figure 50 – Selecting the cells for a level
	Figure 51 – Cells are grayed when the window is in...
	Figure 52 – Attribute values depend on which cells...
	Figure 53 – Attribute window with the Cell Chooser...
	Figure 54 – The positions dialog
	Figure 55 – New Position dialog
	Figure 56 – Positions dialog with a new point
	Figure 57 – Position Info dialog
	Figure 58 – Position attribute showing new port sp...
	Figure 59 – Positions dialog with five points

	3.2.8.3 Controlling How Cells are Chosen
	Figure 60 – Opening the Table Info dialog
	Figure 61 – The Table Info dialog
	Ordering Cells
	Setting Access Type for the Table
	Figure 62 – Sequential ordering for cells in a tab...

	Rearranging Levels
	Figure 63 – Factor table with levels rearranged

	Rearranging Factors
	Figure 64 – Factor table with factors rearranged

	Cell Weights
	Setting the Cell Weight
	Figure 66 – Factor Table with Cell Weight of 2

	Setting Level Weights
	Figure 67 – The Level Rename/Set Weight dialog
	Figure 68 – Factor table with weight 3 added to La...
	Figure 69 – Factor table with weight 2 added to Ce...

	Using Crossing Type and Factor Table Sets
	Between-subjects Designs
	Figure 70 – The Choose Crossing dialog

	3.2.8.4 Lists
	Figure 71 – Create New List alert
	Figure 72 – The List dialog
	Figure 73 – Experiment hierarchy showing a list co...
	Figure 74 – Setting the weight for an item in the ...
	Figure 75 – Attribute status shows vary by the new...
	Figure 76 – The Vary by List dialog

	3.2.8.5 Counterbalancing
	Figure 77 – The Connect List dialog
	Figure 78 – Factor table with an imported list
	Figure 79 – The Latin Squares dialog

	3.2.9 Using Blocks
	Figure 80 – Block icon
	Figure 81 – Superblock icon
	3.2.9.1 Blocking Trials
	Figure 82 – Acuity experiment using blocked trials...
	Figure 83 – The Paragraph icon
	Figure 84 – Experiment hierarchy with instructions...
	Figure 85 – The Block dialog
	Figure 86 – The Experiment dialog
	Figure 87 – Reordering a block

	3.2.9.2 Varying by Block
	Figure 88 – Using the same template for both kinds...
	Figure 89 – The Create/Rename/Retype Attribute dia...
	Figure 90 – Block attributes dialog showing a cust...

	3.2.10 Using Subject Info and Groups
	3.2.10.1 The Subject Info Dialog
	Figure 91 – Subject Info icon button
	Figure 92 – The Subject Info dialog with the defau...
	SubjectNumber and RunNumber
	Adding New Subject Info Items
	Figure 93 – Creating a new numerical Subject Info ...
	Figure 94 – Setting the prompt time
	Figure 95 – Defining a numerical item
	Figure 96 – Creating Left and Right buttons for Ha...
	Figure 97 – Subject Info dialog with Age and Hande...

	Log File and Data File
	Log file
	Data file
	Figure 98 – The Data File dialog
	Figure 99 – Automatic Data File Name dialog with a...

	3.2.10.2 Groups
	Figure 100 – The Subject Info dialog with grouping...
	The Group Object and Varying By Group
	Figure 101 – The Group icon
	Figure 102 – The scissors tool
	Figure 103 – Experiment hierarchy with groups
	Figure 104 – Experiment hierarchy with groups and ...
	Figure 105 – The Group Criteria dialog
	Figure 106 – The Create/Rename/Retype Attribute di...
	Figure 107 – Group Attributes dialog showing a cus...
	Figure 108 – Selecting Vary by Group
	Figure 109 – The Actions dialog showing conditions...

	The Current Group
	Figure 110 – Group List dialog showing two groups

	Groups and Between Subject Designs

	3.2.11 Experiment Attributes
	Figure 111 – Control-clicking to get to attributes...
	3.2.11.1 Instructions and Debriefing Files
	3.2.11.2 Rest Periods
	3.2.11.3 Reverse Video

	3.2.12 Running Trials
	3.2.12.1 Running the Experiment and Breaking
	Figure 112 – The Break dialog

	3.2.12.2 Practice vs. Run Mode
	3.2.12.3 Previewing Trials and Using the Trial Cho...
	Figure 113 – The Template window with the Trial Ch...

	3.2.12.4 The Trial Monitor
	Figure 114 – The Trial Monitor
	Precompiling Trials and the Intertrial Interval
	Minimum ITI
	Precompiling Trials
	Figure 115 – The experiment compiling timebar

	Checking Trials
	The Event and Variable Monitors

	3.3 Where to Go from Here
	Part�2: Graphic Environment Reference
	Chapter 4. Introduction 103
	Chapter 5. Windows and Dialogs 105
	Chapter 6. Running and Managing Experiments 213
	Chapter 7. User Environment 253

	Chapter 4. Introduction
	Part�2: Graphic Environment Reference
	4.1 A Word About Scripts

	Chapter 5. Windows and Dialogs
	Part�2: Graphic Environment Reference
	5.1 Windows vs. Dialogs
	5.1.1 Windows
	5.1.2 Dialogs

	5.2 The Design Window
	Figure 116 – Anatomy of the Design window
	5.2.1 Objects and the Experiment Hierarchy
	5.2.1.1 Linking Objects

	5.2.2 Design Window Palettes
	5.2.2.1 The Tools Palette
	Figure 117 – The Tools palette
	Selection Tool
	Figure 118 – The selection tool

	Link Tool
	Figure 119 – The link tool

	Scissors Tool
	Figure 120 – The scissors tool

	Template <-> Table Transform Tool
	Figure 121 – The transform tool

	Keyboard Shortcuts
	The Objects Palette
	Figure 122 – The Objects palette

	5.2.2.2 The Events Palette
	Figure 123 – The Events palette

	5.2.3 Design Window Work Area
	5.2.3.1 Cleaning Up
	5.2.3.2 Trash

	5.2.4 Design Window Control Area
	Figure 124 – The Design window Control area

	5.2.5 New Object Name Dialog
	5.2.6 The Palettes Window
	5.2.7 Object List Dialog
	5.2.8 Get Object Dialog
	5.2.9 View Trash Dialog

	5.3 The Experiment Object
	5.3.1 Connecting Objects to the Experiment
	5.3.2 Experiment Dialog
	Figure 125 – The Experiment dialog

	5.4 Groups
	5.4.1 Connecting Objects to a Group
	5.4.2 Group dialog
	Figure 126 – The Group dialog

	5.5 Blocks
	5.5.1 Connecting Objects to Blocks
	5.5.1.1 Connecting Events to a Block
	5.5.1.2 Connecting Blocks to a Block
	5.5.1.3 Connecting Lists to Blocks

	5.5.2 Block Dialog
	Figure 127 – The Block dialog

	5.5.3 Superblock Dialog
	Figure 128 – The Superblock dialog

	5.6 Trials and Templates
	5.6.1 The Trial Template Window
	Figure 129 – Anatomy of the Template window
	5.6.1.1 Template Name and Buttons
	5.6.1.2 Palettes
	5.6.1.3 Event Name Area
	5.6.1.4 Timeline Area
	Timeline
	Event Bars
	Scheduling Dependencies
	Event Duration

	5.6.1.5 Event Status Area
	Figure 130 – The Event Status area
	Start at
	Duration

	5.7 Factors and Lists
	5.7.1 Definitions
	Figure 131 – Example factor table
	5.7.1.1 Factor Table Sets
	5.7.1.2 Lists
	5.7.1.3 List Files
	List Files with Non-literals

	5.7.1.4 Expanded Lists
	5.7.1.5 Nested Factors
	5.7.1.6 Lists in a Factor table
	5.7.1.7 Level Order and Crossing Types
	Cell Weights
	Latin Squares
	Figure 132 – A 3 x 3 Latin square showing the cond...
	Figure 133 – Latin square with two partitions
	Counterbalanced Stimuli

	5.7.1.8 Factors in the Hierarchy
	Linking Lists to the Hierarchy
	Figure 134 – An example hierarchy where “Event1” c...

	Factor Set Scope
	Figure 135 – Example hierarchy with a list connect...
	Figure 136 – Example hierarchy with a list connect...

	5.7.2 Factor Table Windows
	5.7.2.1 The Factor Table Window
	Figure 137 – The Factor Table window

	5.7.2.2 Table Info Dialog
	Figure 138 – The Table Info dialog

	5.7.2.3 New/Rename Table Factor Dialog
	5.7.2.4 New/Rename Table Level Dialog
	5.7.2.5 Latin Squares Dialog
	Figure 139 – The Latin Squares dialog

	5.7.2.6 Choose Crossing Dialog
	Figure 140 – Choose Crossing menu

	5.7.2.7 Factor Table Floating Window

	5.7.3 List Dialogs
	5.7.3.1 List Dialog
	Figure 141 – The List dialog

	5.7.3.2 List File Dialog
	Figure 142 – The List File dialog

	5.7.3.3 Factor Set Dialog
	5.7.3.4 Level Dialog
	5.7.3.5 Connect List Dialog
	Figure 143 – The Connect List dialog

	Part�2: Graphic Environment Reference
	5.8 Attributes
	5.8.1 Definitions
	5.8.1.1 Attribute Inheritance
	5.8.1.2 Factor Table and Attributes
	5.8.1.3 Attribute Dialogs

	5.8.2 The Standard Attributes Dialog
	Figure 144 – A Standard Attributes dialog
	5.8.2.1 Settings
	Set To
	Default
	Vary By…
	Vary by List
	Figure 145 – The Vary by List dialog

	Vary by Template
	Figure 146 – The Vary by Template dialog

	Vary by Block, Group
	Vary by Run Mode

	Script…
	Script Linked
	Figure 147 – The Link to Entry dialog
	Figure 148 – The Sublist dialog

	Script Access
	Script Current

	Multiple
	Other

	5.8.2.2 Custom Attribute Sets
	5.8.2.3 Special Keyboard Shortcuts
	5.8.2.4 New/Rename/Retype Attribute Dialog
	Figure 149 – The New/Rename/Retype Attribute dialo...

	5.8.3 Experiment Attributes
	5.8.3.1 Custom Run and Custom Practice Attributes
	The “RunMode” Attribute

	5.8.3.2 Default Stimulus/Event/Trial Attributes
	5.8.3.3 Experiment Attributes Dialog
	Figure 150 – The Experiment Attributes dialog
	Figure 151 – Experiment attribute sets menu

	5.8.3.4 Standard Experiment Attributes
	Data File
	Data Info
	Figure 152 – Data Info dialog

	Data Variables
	Input Devices
	Figure 153 – The Input Devices dialog

	Timer
	Figure 154 – The Timer dialog

	Instructions File
	Debriefing File
	Trials per Rest/Num. Rests
	Rest Duration
	Special
	Precompile
	Resources
	Figure 155 – The Resources dialog

	Optimization
	Figure 156 – The Optimization dialog

	Decimal Places
	Backcolor
	Forecolor
	BBox Init

	5.8.4 Group Attributes
	5.8.4.1 Custom Group Attributes
	5.8.4.2 Default Stimulus/Event/Trial Attributes
	5.8.4.3 Group Attributes Dialog
	Figure 157 – The Group Attributes window
	Figure 158 – Group attribute sets menu

	5.8.5 Block Attributes
	5.8.5.1 Custom Block Attributes
	5.8.5.2 Default Stimulus/Event/Trial Attributes
	5.8.5.3 Block Attributes Dialog
	Figure 159 – The Block Attributes dialog
	Figure 160 – Block attribute sets menu

	5.8.6 Trial Attributes
	5.8.6.1 Custom Template Attributes
	5.8.6.2 Default Stimulus/Event Attributes
	5.8.6.3 Trial Attributes Dialog
	Figure 161 – The Trial Attributes dialog
	Figure 162 – Trial attribute sets menu

	5.8.6.4 Standard Trial Attributes
	Condition Name
	ITI
	Actions

	5.8.7 Event Attributes
	Figure 163 – Event Attributes dialog
	5.8.7.1 Event Types
	Figure 164 – Event types menu
	Time Event Type
	Text Event Type
	PICT Event Type
	Document Event Type
	Paragraph Event Type
	Pasteboard Event Type
	Key Sequence Event Type
	Sound Event Type

	5.8.7.2 Event Attributes
	Duration
	Figure 165 – The Duration dialog

	Actions
	Clearing
	Tag
	Load Time

	5.8.7.3 Stimulus Attributes
	Time Attributes
	Text Attributes
	PICT Attributes
	Document Attributes
	Paragraph Attributes
	Pasteboard Attributes
	Key Sequence Attributes
	Sound Attributes

	5.8.8 Stimulus Attribute Dialogs
	5.8.8.1 Stimulus Dialog
	5.8.8.2 Stimuli Dialog
	5.8.8.3 Style Dialog
	Figure 166 – The Style dialog
	The Font Menu
	Text Face Checkboxes
	The Point Size
	The Color Menu
	The Mode Menu

	5.8.8.4 Ports and Positions Dialogs
	Figure 167 – The main Ports dialog
	New Port Dialog
	Figure 168 – The New Port dialog

	New Positions Dialog
	Port Info Dialog
	Figure 169 – The Port Info dialog

	Position Info Dialog
	Figure 170 – The Position Info dialog

	Hot Spot Dialog

	5.9 Conditions and Actions
	5.9.1 Conditions and Actions Dialog
	Figure 171 – The Actions dialog

	5.9.2 Conditions Dialog
	Figure 172 – The Conditions dialog

	5.9.3 Condition Parameter Dialogs
	5.9.3.1 Button Box Parameter Dialog
	Figure 173 – The Button Box Condition Parameter di...

	5.9.3.2 Key Parameter Dialog
	Figure 174 – The Key Condition Parameter dialog

	5.9.3.3 Mouse Parameter Dialog
	Figure 175 – The Mouse Condition Parameter dialog

	5.9.3.4 Start/End Parameter Dialog
	Figure 176 – The Start/End Condition Parameter dia...

	5.9.3.5 When Parameter Dialog
	5.9.3.6 ScriptWhen Parameter Dialog

	5.9.4 Actions List Dialog
	5.9.4.1 Available Actions
	AbortEvent[]
	AddToList[]
	BBoxOut[]
	Beep[]
	CancelAction[]
	ChanceEvent[]
	ClearScreen[]
	ClearPort[]
	ClearStim[]
	DrawAllPortBorders[]
	DrawPortBorder[]
	EndEvent[]
	MaskStim[]
	NewListItem[]
	NextCrossing[]
	QuitBlock[]
	QuitTrial[]
	RemoveFromList[]
	RemovePortBorder[]
	RerunTrial[]
	ReverseVideo[]
	RT[]
	RunEvent[]
	Set[]
	SetBackColor[]
	SetDefaultColor[]
	ScheduleEvent[]
	ScriptEval[]
	ShowStim[]
	UnscheduleEvent[]

	5.9.5 Parameters dialogs

	5.10 Trial Manager Variables
	5.10.1 How Trial Manager Variables Work
	5.10.2 Trial Manager Variable Expressions
	5.10.3 Built-in Variables
	5.10.4 Linking to Variable Values
	5.10.5 Trial Manager Variables Dialog
	Figure 177 – The Trial Manager Variables dialog

	5.11 Trial Chooser Floating Window
	Figure 178 – The Trial Chooser

	5.12 Additional Concepts
	5.12.1 List Ordering
	5.12.1.1 Weights
	5.12.1.2 Other Modifiers

	5.12.2 Trial Counting
	5.12.2.1 Experiments without Blocks
	5.12.2.2 Experiment with Blocks
	5.12.2.3 Block Scaling
	5.12.2.4 Superblocks
	5.12.2.5 Trial Counts and Crossing Factors
	5.12.2.6 Trial Counts Reported in the Trial Monito...

	Chapter 6. Running and Managing Experiments
	Part�2: Graphic Environment Reference
	6.1 File System
	6.1.1 Using Projects
	6.1.1.1 Creating a Project
	6.1.1.2 The Scripts Dialog
	Figure 179 – The Scripts dialog

	6.1.2 Path Names
	6.1.2.1 Relative Paths
	Relative Paths with Projects

	6.1.2.2 Reverse Notation

	6.1.3 Resources
	6.1.3.1 PsyScope Extensions
	Figure 180 – PsyScope Extensions Folder Found Icon...
	Figure 181 – PsyScope Extensions Folder Not Found ...

	6.1.4 The Data File
	6.1.4.1 Specifying the Data File
	6.1.4.2 Information in the Data File
	The Data File Header
	Response Data
	Default Data Fields
	Optional Data Fields
	Input Device Data Fields
	Table 1: Button Box State Values

	Data Variables

	Timing Statistics
	Summary Timing Statistics
	Full Timing Statistics

	6.1.4.3 Formatting the Data File

	6.1.5 The Log File
	6.1.5.1 Specifying the Log File
	6.1.5.2 Viewing and Editing the Log File
	6.1.5.3 Information in the Log File

	6.1.6 Safe Saves
	6.1.7 Start-up Shortcuts

	6.2 Subject Info
	6.2.1 Subject Info Items
	6.2.1.1 Special Items
	6.2.1.2 Subject Info Dialog
	Figure 182 – The Subject Info dialog
	New/Reconfigure Info Item Dialog
	Figure 183 – The New/Reconfigure Info Item dialog

	Define Subject Info Item Dialog
	Value Item Definition Dialog
	Figure 184 – The Value Item Definition dialog

	Buttons Item Definition Dialog
	Figure 185 – The Buttons Item Definition dialog

	Checkboxes Item Definition Dialog

	6.2.2 Subject Info and the Log File
	6.2.3 Subject Number Calculation
	6.2.3.1 Logging and Scheduling Correctly
	6.2.3.2 How the Subject Number Calculations are Pe...

	6.2.4 Automatic Grouping
	6.2.4.1 Automatic Grouping Dialog
	Figure 186 – The Automatic Grouping dialog

	6.2.4.2 Group Criteria Dialog
	Figure 187 – The Group Criteria dialog

	6.2.5 Data File Dialog
	Figure 188 – The Datafile dialog

	6.2.6 Subject Info Schedule Dialog
	Figure 189 – The Subject Info Schedule dialog

	6.3 The Trial Monitor
	Figure 190 – The Trial Monitor
	6.3.1 Trial Compilation Statistics

	6.4 The Event Monitor and Variable Monitor
	6.4.1 The Event Monitor
	Figure 191 – The Event Monitor
	6.4.1.1 Trial Information
	Trial Number
	Trial Condition
	Current Time

	6.4.1.2 Event Information
	Event Statuses
	Event Times

	6.4.1.3 Action Information
	Instances
	Put Up By
	Active Until

	6.4.2 Event Monitor Operation
	6.4.2.1 Perceived Times
	6.4.2.2 Step Mode

	6.4.3 The Variable Monitor
	Figure 192 – The Variable Monitor

	6.5 Space and Speed
	6.5.1 Precompiling
	6.5.1.1 Problems with Precompiling

	6.5.2 Loading Stimuli
	6.5.2.1 Load Time
	Loading Text
	Loading PICTs
	Loading Sounds

	6.5.2.2 Controlling The Load Procedure
	Setting the Minimum ITI
	Preloading All Stimuli
	Keeping Stimuli in Memory
	Loading Stimuli Event by Event

	Chapter 7. User Environment
	Part�2: Graphic Environment Reference
	7.1 Menus Reference
	7.1.1 File Menu
	7.1.2 Edit Menu
	7.1.3 Run Menu
	7.1.4 Utilities Menu
	7.1.5 Design Menu
	7.1.6 Script-Specific Menus
	7.1.7 Windows Menu

	7.2 The Console
	7.3 The Editor
	7.3.1 Editor Menu Items
	7.3.2 Keyboard Commands
	7.3.3 Action Bar
	Figure 193 – Editor action bar

	7.3.4 Interactive Mode
	7.3.5 The Find Dialog
	Figure 194 – The Find dialog

	7.4 The Evaluator
	7.5 The Help System
	7.5.1 The Help Search Dialog
	Figure 195 – The Help Search dialog

	7.5.2 Help Action bar Buttons

	7.6 Options
	7.6.1 General Options
	7.6.2 Run Options
	7.6.3 Editor Options
	7.6.4 Design Options
	7.6.5 Display Options
	7.6.6 Custom Options
	 Part�3: Scripting User�Manual
	Chapter 8. Introduction 273
	Chapter 9. Scripting Overview 275
	Chapter 10. Scripting an Experiment 281

	 Part�3: Scripting User�Manual
	Chapter 8. Introduction

	Chapter 9. Scripting Overview
	 Part�3: Scripting User�Manual
	9.1 A PsyScope Script
	9.2 Entries
	Figure 196 – The components of an entry
	9.2.1 Entry Name
	9.2.2 Content
	9.2.3 Attribute Blocks
	9.2.4 How Entries Are Used
	9.2.5 Spaces, Blanks, and Quotes
	Table 2: Quoting conventions

	9.3 Comments
	9.4 Entry References
	9.5 Lists
	9.6 Function Calls

	Chapter 10. Scripting an Experiment
	 Part�3: Scripting User�Manual
	10.1 Scripting a New Experiment
	10.1.1 The Standard Script Template
	10.1.2 Using the Interactive Editor
	10.1.3 Scripting a New Event
	10.1.3.1 Timing and Sequencing Events
	10.1.3.2 The ‘Duration’ Attribute
	10.1.3.3 The ‘StartRef’ Attribute

	10.1.4 Scripting Conditions and Actions
	10.1.5 Scripting Templates
	10.1.5.1 Scripting Trial Actions
	10.1.5.2 Attribute Inheritance
	10.1.5.3 TrialAttrib()

	10.1.6 Scripting Experiment Attributes

	10.2 Scripting Factors
	10.2.1 Scripting the Acuity Experiment
	10.2.2 Scripting Free Factors
	10.2.2.1 Compact Factors
	10.2.2.2 Factor Interactions
	10.2.2.3 Factor Sets
	10.2.2.4 Nested Factors

	10.2.3 Scripting Factor Tables

	10.3 Scripting Blocks and Groups
	10.3.1 Scripting Blocks and BlockAttrib()
	10.3.2 Scripting Groups
	10.3.2.1 GroupAttrib()

	10.4 Advanced Topics
	10.4.1 Linking to the PsyScope Environment
	Part�4: Scripting Reference
	Chapter 11. Introduction 317
	Chapter 12. PsyScript Reference 319
	Chapter 13. Experiment Scripting Reference 357
	Chapter 14. Actions and Devices Reference 419
	Chapter 15. Trial Manager Technical Reference 441
	Chapter 16. Configuring the User Environment 449
	Chapter 17. Dialog and Function Extensions 467

	Part�4: Scripting Reference
	Chapter 11. Introduction

	Chapter 12. PsyScript Reference
	Part�4: Scripting Reference
	12.1 Components of a Script
	12.2 Entries
	12.2.1 Entry Content and Expressions
	12.2.2 Attributes
	12.2.3 Entry Syntax
	12.2.4 References
	12.2.4.1 THIS and OWNER

	12.3 Comments
	12.4 Modifiers
	12.4.1 #PsyScope
	12.4.2 #include and #winclude
	12.4.3 #inherit and #noinherit
	12.4.4 #NoIncludeStdLib

	12.5 Section Markers
	12.6 Operators and Functions
	12.6.1 Literals
	12.6.2 Function Calls
	12.6.2.1 Exceptions to the Rules

	12.6.3 Operation Sentences
	12.6.3.1 Distributivity

	12.7 Attribute Block Reference
	12.8 Lists
	12.8.1 Accessing a List
	12.8.2 Access Type
	12.8.3 Linking
	12.8.4 Weights, Multiple, Grip
	12.8.5 Offsets
	12.8.6 SaveCurrents
	12.8.7 Sublisting

	12.9 Inline Entries
	12.9.1 Inline Entries vs. Regular Entries
	12.9.2 Attributes of Inline Entries
	12.9.3 Incorporating a Global Entry
	12.9.4 Inline Entries and Lists
	12.9.5 Token Reference Inline Entries
	12.9.6 Function Definitions
	12.9.6.1 THIS and Inline Entries
	12.9.6.2 Using THIS to Define a Function
	12.9.6.3 Parameter Tags

	12.10 Using a File as an Entry
	12.11 Inherited Attributes
	Rule 1.
	Rule 2.
	Rule 3.
	12.11.1 Inheritance and Token Reference Inline Ent...

	12.12 Crossing Lists
	12.12.1 Mapped Crossings
	12.12.2 Checklist Storage

	12.13 Optimizations
	12.14 Script Operators and Functions Summary
	12.14.1 Operators and Functions
	12.14.1.1 Reference Operations
	12.14.1.2 Math Operations
	12.14.1.3 String Operations
	12.14.1.4 List Operations
	12.14.1.5 Other Operations

	12.14.2 Operator Precedence

	12.15 The Evaluator

	Chapter 13. Experiment Scripting Reference
	Part�4: Scripting Reference
	13.1 Experiment Scripting Basics
	13.1.1 Introduction
	13.1.2 Script Interpretation
	13.1.2.1 Self-Modifying Scripts

	13.1.3 Script Formats
	13.1.4 The ‘Experiments’ Entry
	13.1.5 Experiment Entries
	13.1.6 Standard Attributes
	13.1.6.1 Standard Experiment Attributes
	Format: Factor/StimList/EventList
	Default: Factor
	Graphic: always Factor
	Title: string
	Default: Name of experiment entry
	Graphic: not available
	InputDevices: device-name-list
	Default: NULL
	Timer: timer-name
	Default: Macintosh
	Flags: NO_CLEAR_BY_DEFAULT and/or STORE_AT_END and...
	Default: NULL
	Graphic: Special
	DataFile: file
	Default: NULL
	DataHeader:entry-list
	Default: no entries
	Graphic: not available
	RunLabel: entry-list
	Default: no entries
	Graphic: not available
	DataFields:RUN_LABEL and/or STIMULUS and/or EVENT ...
	Default: no entries
	Graphic: Data Info
	NumTrialsPerRest or NumRestPeriods: number
	Default: no rests
	RestPeriod: rest-msecs
	Default: 0
	Graphic: Rest Duration
	Instructions:file
	Default: no instructions
	Debrief: file
	Default: no debriefing message
	DataRecordSeparator:string
	Default: newline
	Resources:file-list
	Default: no files
	Precompile:number
	Default: 0
	ExpVariables: variable-list
	Default: no variables
	DataVariables: variable-list
	Default: no variables
	RunMode: Run/Practice/Check
	Default: not applicable
	Reset: references
	Default: ResetAll()
	Graphic: not available

	13.1.6.2 Standard Trial Attributes
	ConditionName: format
	Default: depends on format
	Graphic: Condition Name
	ITI: msecs
	Default: 0
	Graphic: Minimum ITI
	TrialActions: condition_action_pairs
	Default: no actions
	Graphic: Actions

	13.1.6.3 Standard Event Attributes
	EventName: name
	Default: depends on format
	Graphic: not available
	EventTag: tag
	Default: ""
	Graphic: Tag
	EventType: type
	Default: Text
	Graphic: not set as an attribute
	Duration: duration
	Default: depends on event type
	StartRef: start_reference
	Default: 0 milliseconds after the end of the “prev...
	Graphic: not set as an attribute
	ClearType: NO_CLEAR | FORCE_CLEAR and/or MASK
	Default: ""
	Graphic: Tag
	EventActions: condition_action_pairs
	Default: no actions
	Graphic: Actions

	13.2 StimList and EventList Formats
	13.2.1 StimList Format
	13.2.1.1 Trial Attributes in StimList Format
	13.2.1.2 Block Mode in StimList Format

	13.2.2 EventList Format
	13.2.3 Attribute Inheritance in StimList/EventList...
	13.2.4 StimList/EventList Event Names
	13.2.5 StimList/EventList Optimization
	13.2.6 Summary of Attributes for EventList and Sti...
	13.2.7 StimList/EventList Compilation Details

	13.3 Factor Format
	13.3.1 Scripting the Experiment Hierarchy
	13.3.2 Scripting the Factor Format Experiment Entr...
	13.3.2.1 Factoring and Linking Experiment Attribut...

	13.3.3 Scripting Groups
	13.3.3.1 Factoring and Linking Group Attributes

	13.3.4 Scripting Blocks
	13.3.4.1 Factoring and Linking Block Attributes

	13.3.5 Scripting Templates
	13.3.5.1 Factoring and Linking Template Attributes...

	13.3.6 Scripting Events
	13.3.6.1 Factoring Event Attributes
	13.3.6.2 Linking Event Attributes to Template, Blo...
	13.3.6.3 Linking Event Attributes to the Run Mode
	13.3.6.4 Factor Format Tags
	13.3.6.5 Constant Events in Factor Format

	13.3.7 Scripting Factors
	13.3.7.1 Scripting Factor Sets
	Scripting Factor Set Names

	13.3.7.2 Scripting Crossing Types
	Scripting Indices
	Scripting Latin Square Partitions

	13.3.7.3 Scripting Access Types
	Scripting the Factor-based Access Type

	13.3.7.4 Scripting Cell Weights
	13.3.7.5 Scripting Nested Factors

	13.3.8 Scripting Compact Factors
	13.3.9 Scripting Factor Tables
	13.3.9.1 Scripting Factor Table Structures
	Scripting Nested Factors in a Factor Table

	13.3.9.2 Scripting Factor Table Crossing Values
	Value Attribute Names
	Multiple Factor Tables
	Factor Table Value-Finding Algorithm

	13.3.9.3 Nested Factor Values in a Factor Table
	13.3.9.4 Scripting the Factor Set Scope

	13.3.10 Scripting Factor Format Trial Counts
	13.3.11 Technical Details of Factor Format Scripti...
	13.3.11.1 Structural vs. Non-structural Attributes...
	13.3.11.2 Attribute Inheritance in Factor Format
	13.3.11.3 Factor Format Optimization
	13.3.11.4 Factor Format Compilation Order

	13.3.12 Summary of Factor Format
	13.3.12.1 Factor Format Entry Types Summary
	Experiment Entry Definition
	Group Entry Definition
	Block Entry Definition
	Template Entry Definition
	Factor Table Entry Definition
	Event Entry Definition
	Factor Entry Definition
	Level Entry Definition

	13.3.12.2 Factor Format Summary Object Attribute G...
	13.3.12.3 Factor Format Summary Description Attrib...

	13.4 Complex Attribute Formats
	13.4.1 Action Lists
	13.4.1.1 Specifying Action Lists
	13.4.1.2 Instances and ActiveUntil

	13.4.2 Start Reference
	13.4.2.1 Start Reference Format

	13.4.3 Duration

	13.5 Trial Manager Variables
	13.5.1 Declaring Variables
	13.5.1.1 Variable Types
	13.5.1.2 Variable Declaration Entries
	13.5.1.3 Composite Types
	Initializing Composite Types

	13.5.1.4 Type Declarations
	Built-in Composite Types
	Point
	Input
	Response

	13.5.1.5 Built-in Variables

	13.5.2 Using Trial Manager Variables
	13.5.3 Variable Expression Syntax

	Chapter 14. Actions and Devices Reference
	Part�4: Scripting Reference
	14.1 Actions Reference
	14.1.1 Standard Actions
	14.1.1.1 Trial Termination Actions
	QuitTrial[]

	14.1.1.2 Event Scheduling Actions
	RunEvent[Event]
	EndEvent[Event]
	AbortEvent[Event]
	ScheduleEvent[Event, StartRef]
	UnscheduleEvent[Event]
	ChanceEvent[Event, Chance]

	14.1.1.3 Unscheduled Stimulus Display Actions
	ShowStim[Event, AttributesEvent]
	ClearStim[Event]
	MaskStim[Event, Mask, AttributesEvent]

	14.1.1.4 Miscellaneous Actions
	RT[Label, RelativeToEvent, StorageVariable, Flag]
	BBoxOut[Value, Mode]
	Beep[SND_ResourceName]
	CancelAction[Action, Event, Condition]
	ScriptEval[entry]

	14.1.1.5 Trial Variable Actions
	Set[List, Value]
	AddToList[List, Value]
	RemoveFromList[List, Index]
	NewListItem[List]

	14.1.1.6 Factor Format Actions
	QuitBlock[Block, AccessLists]
	RerunTrial[TrialNumber, When, Order]
	NextCrossing[Factor]

	14.1.2 Type-specific Actions

	14.2 Stimulus Types Reference
	14.2.1 Text
	14.2.1.1 Text and Screen Attributes
	Stimulus: stimulus-string
	Defaults: none
	Port: LEFT/RIGHT/CENTER/x-value width value TOP/BO...
	Defaults: CENTER 100% CENTER 100% 0
	X: LEFT/RIGHT/CENTER/x-value SCREEN/PORT RIGHT/LEF...
	Defaults: CENTER PORT CENTER
	Graphic: not available
	Y: TOP/BOTTOM/CENTER/y-value SCREEN/PORT TOP/BOTTO...
	Defaults: CENTER PORT CENTER
	Graphic: not available
	Position: LEFT/RIGHT/CENTER/x-value SCREEN/PORT RI...
	Defaults: CENTER PORT CENTER CENTER PORT CENTER
	Font: name
	Default: 0 (Chicago on most systems)
	Size: Size
	Defaults: 12
	Face: Bold and/or Italic and/or Underline and/or O...
	Defaults: NULL (Plain text)
	Mode: COPY/OR/XOR/ERASE/INVCOPY/INVOR/INVXOR/INVER...
	Default: COPY
	Color: RED/GREEN/BLUE/YELLOW/MAGENTA/CYAN/WHITE/rg...
	Default: BLACK
	Style: “Font” + “Size” + “Face” + “Mode” + “Color”...
	Mask: mask-char
	Defaults: " "
	Feature: FOLLOW and/or STAY_PUT and/or MASKED
	Defaults: NULL
	Graphic: Special
	Degradation: (2 decimal values, each between 0.0 a...
	Defaults: 0.0 0.0
	Flip: HORIZONTAL and/or VERTICAL
	Default: NULL

	14.2.1.2 Text and Screen Experiment Attributes
	DefaultColor or ForeColor: color
	Default: BLACK
	BackColor: color
	Default: BLACK
	Origin: MenuBar/UpperLeft/Top/Left/co-ordinates
	Default: UpperLeft
	MonitorOrder: Random/Sequential/Rotating/sequence
	Default: Random

	14.2.1.3 Text and Screen Actions
	ClearScreen[]
	DrawAllPortBorders[]
	DrawPortBorder[Event]
	RemovePortBorder[Event]
	ClearPort[Event]
	SetDefaultColor[Color]
	SetBackColor[Color]
	ReverseVideo[]

	14.2.2 Document
	14.2.2.1 Formatting characters
	14.2.2.2 Document Attributes
	Stimulus: document
	Defaults: none
	Graphic: File
	Font, Size, Face, Mode, Color, and Style
	Port

	14.2.3 Paragraph
	14.2.3.1 Paragraph Attributes
	Stimulus: paragraph-text
	Defaults: none
	Graphic: Paragraph
	Font, Size, Face, Mode, Color, and Style
	Port

	14.2.4 KeySequence
	14.2.4.1 KeySequence Attributes
	Stimulus: paragraph-text
	Defaults: none
	Graphic: Prompt
	Font, Size, Face, Mode, Color, and Style
	Port

	14.2.5 PICT
	14.2.5.1 PICT Attributes
	Stimulus: pict-resource-name-or-file-name
	Defaults: none
	Graphic: Picture
	Port, Mode, and Degradation
	Feature: KEEP_PICT & DEFAULT_COLORS & PICT_ACTUAL_...
	Defaults: NULL
	Graphic: Special
	Depth: 1/2/4/8/32
	Defaults: current screen depth

	14.2.6 Pasteboard
	14.2.6.1 Pasteboard Attributes
	Stimuli: stimuli-list
	Defaults: none
	PBoardMode, PBoardDepth, and PBoardDegradation
	PBoardPort

	14.2.6.2 Pasteboard Experiment Attributes
	PBoardNameDelimiter: separator
	Default: "+"

	14.2.7 SoundLabel
	14.2.7.1 SoundLabel Attributes
	Stimulus: label
	Defaults: NULL
	Graphic: Sound
	SoundFile:file-name
	Defaults: none
	Graphic: File
	Volume: (integer value between 0 and 255)
	Defaults: 255
	Channel: LEFT/RIGHT
	Defaults: NONE
	Feature: KEEP_SOUND
	Defaults: NULL

	14.2.8 BBox
	14.2.8.1 .BBox Attributes
	Stimulus: line-switches
	Defaults: NULL

	14.2.8.2 BBox Experiment Attributes
	BBoxInitialState: line-switches
	Default: NULL
	BBoxPort: A or B
	Default: A

	14.3 Conditions and Inputs
	Start[variable-expression]
	End[variable-expression]
	When[variable-expression]
	ScriptWhen[entry-name]
	Key[ANY/key-list]
	Mouse[CLICK/CLICK_DOWN/CLICK_UP/MOVE]
	BBox[button-list]

	Chapter 15. Trial Manager Technical Reference
	Part�4: Scripting Reference
	15.1 Running Trials
	15.1.1 Loading Stimuli
	15.1.2 Running Events and Actions
	15.1.2.1 The START Event
	15.1.2.2 The Life of an Event
	Starting an Event
	The Life of the Stimulus
	Ending an Event

	15.1.2.3 Running an Event More than Once Per Trial...
	ScheduleEvent[] vs. RunEvent[]

	15.1.2.4 Event Statistics
	15.1.2.5 The Life of an Action
	15.1.2.6 Ending a Trial

	15.2 Screen Stimulus Display
	15.2.1 Screen Stimulus Loading
	15.2.2 How a Screen Stimulus is Drawn and Cleared
	Bitmapped Stimuli
	Non-bitmapped Stimuli
	15.2.2.1 Screen Timing
	Timing on Multiple Screens

	15.3 Playing Sound Stimuli
	15.3.1 Loading Sounds
	15.3.2 Sound Timing
	15.3.2.1 Actual Duration vs. Recorded Duration

	Chapter 16. Configuring the User Environment
	Part�4: Scripting Reference
	16.1 Setting up the Menus
	Figure 197 – Example menu bar
	Figure 198 – Example script menu
	16.1.1 Item Entries
	Figure 199 – Standard dialog
	Figure 200 – Standard dialog with three fields
	16.1.1.1 Checkmarks
	16.1.1.2 Range Checking
	16.1.1.3 Open/Close Alert
	16.1.1.4 Menu Disabling
	16.1.1.5 ‘MenuName’ and ‘ItemName’
	16.1.1.6 Title

	16.1.2 Submenus
	Figure 201 – Example script submenu

	16.2 The Console
	Figure 202 – Console window with item

	16.3 Custom Options
	16.4 File Names
	16.5 Log File
	16.5.1 Log File Format
	16.5.2 Logging script information

	16.6 Special Entries
	16.6.1 Experiments
	16.6.2 Execution Entries
	Table 3: Execution Entries

	16.6.3 Resources

	16.7 PsyScopeStdLib
	16.7.1 CurrentExperiment
	16.7.2 Standard Menu Items
	16.7.2.1 UserLevelMenuItem
	16.7.2.2 SettingsMenuItem
	16.7.2.3 DataFieldsMenuItem
	16.7.2.4 ReverseVideoMenuItem
	16.7.2.5 InputDevicesMenuItem
	16.7.2.6 TimerMenuItem
	16.7.2.7 OptimizeMenuItem
	16.7.2.8 Test BBox
	16.7.2.9 TurnOffBBox

	16.7.3 Standard Menus

	16.8 SubjectInfoLib
	16.8.1 The Subject Menu
	Figure 203 – “SubjectInfoLib” Menu
	Figure 204 – “SubjectInfoLib” Subject Info dialog
	Table 4: Subject Info Item Entry Outputs

	Chapter 17. Dialog and Function Extensions
	Part�4: Scripting Reference
	17.1 Calling Sequence for Dialogs
	17.2 Standard Dialogs and Functions Reference
	17.2.1 Standard Configurable Dialogs
	17.2.1.1 The Standard Attributes
	EnableParts *
	Prompts *
	Default or Defaults *
	Width *
	Height *
	Margin *
	Placement *
	Async
	SetUp * and TakeDown *
	DLOGx and DLOGy
	DLOG and PartIDs *

	17.2.1.2 Messages to the Standard Dialogs
	17.2.1.3 Standard Dialog Descriptions
	Dialog: Buttons
	Entry Content: a single value representing the cur...
	Dialog: CheckBoxes
	Entry Content: a list of values representing all t...
	Dialog: Custom
	Entry Content: a list of references to part entrie...
	Dialog: ItemList
	Entry Content: value(s) representing the currently...
	Dialog: PopUp
	Entry Content: a single tokens representing the cu...
	Dialog: Standard or Fields
	Entry Content: an arbitrary list of text values At...

	17.2.2 Miscellaneous Dialogs and Functions
	Function: Check
	Entry Content: nothing or one token which is true ...
	Dialog: EntryList
	Entry Content: a list of entry references (ignored...
	Dialog: Editor
	Entry Content: a single text value

	17.2.3 Input Device Dialogs
	Dialog: BBox
	Entry Content: a list of tokens for a BBox[] event...
	Dialog: MouseState
	Entry Content: a list of tokens for a Mouse[] even...
	Dialog: KeyState
	Entry Content: a list of tokens for a Key[] event ...

	17.2.4 Stimulus Attribute Dialogs
	Dialog: Positions
	Entry Content: one port/point specification or ref...
	Dialog: Style
	Entry Content: a list of tokens describing a text ...

	17.2.5 File Name Dialogs
	Dialog: FileLists
	Entry Content: either a list of direct references,...
	Function: MakeFileName
	Entry Content: a single string (returned by the di...
	Function: Picture
	Entry Content: a ‘PICT’ file name or ‘PICT’ resour...

	17.2.6 Log File Related Functions
	Function: LogInfo
	Entry Content: a list of references
	Dialog: GetSubjNum
	Entry Content: first value is ignored, but set to ...
	Dialog: SubjectNumAndGroup
	Entry Content: ignored Attributes: “ComputeNumbers...
	Part�5: Appendices
	Chapter 18. Error Messages 489
	Chapter 19. Configuring the Button Box 513
	Chapter 20. Creating Picture Resources 517
	Chapter 21. Creating SoundEdit™ Sound Files 519

	Chapter 18. Error Messages
	Part�5: Appendices
	18.1 Error Numbers
	18.2 Global and Memory Errors
	M1 Insufficient memory errors
	M2 File error
	M98 Memory errors

	18.3 PsyScript Errors
	S0 Entry or attribute not found
	S1 Syntax errors
	S2 Unknown tokens
	S4 Bad access type
	S5 Wrong sizes for linking
	S8 If Conditional
	S9 TRUE Value
	S10 Iteration parameter missing
	S11 Duplicator count too large
	S13 Illegal use of assignment
	S14 Function requires different parameters
	S15 Infinite loop
	S16 Bad index for previous current
	S17 Can’t evaluate reference
	S18 Zero-length list
	S19 Invalid sublist size
	S20 Lists are linked
	S21 Save currents size
	S22 No #PsyScope
	S23 File for ref not found
	S24 Wrong version
	S25 Extra “:”
	S26 Extra “>”
	S27 More/Less weights than tokens
	S28 Zero total weight
	S29 Error reading weights
	S30 Token weight too large
	S31 Not enough tokens
	S32 Entry has no owner
	S33 Can’t set/add/delete token in fileRef/inline
	S34 {} and “” in a string
	S97 File errors
	S98 Memory errors
	S99 Miscellaneous

	18.4 User Environment Errors
	IN0 Memory low
	IN1 Project could not be opened
	IN2 “Experiments” entry not found
	IN3 Error opening Log File
	IN4 Settings file busy:
	IN5 Entry not found
	IN6 Range check failed
	IN7 External not found
	IN9 Unknown message
	IN10 Menu entry deleted
	IN11 Menu entry not found
	IN12 Script disabled
	IN13 Error loading experiment builder
	IN18 Autoload not found
	IN19 Same name in project
	IN20 Bad XRES message
	IN22 Help wrong version
	IN97 File error
	IN98 Memory errors
	IN99 Miscellaneous

	18.5 Graphic Environment Errors
	D0 Object list missing
	D1 Factor format only
	D2 Check links warning
	D3 Bad name
	D4 Entry not found
	D5 Circular references
	D6 Can’t edit in trash
	D7 Unknown factor
	D8 Attribute name in use
	D9 Disappearing entry
	D10 Can’t remove experiment
	D11 Too many utility submenus
	D12 Bad Builder Data
	D13 Already connected
	D14 Can’t preview
	D15 Linked to Trial End
	D16 Delete all or one
	D17 Can’t edit as text
	D18 Value too large
	D19 Attrib definition error
	D20 No place to put a factor
	D21 Standard attribute name
	D22 Bad condition list
	D23 Event doesn’t accept type
	D24 Error in action description
	D25 Can’t modify factor table
	D26 Already connected
	D27 Create nested?
	D28 Subject Info setup
	D29 Group already connected
	D30 Info item does not exist
	D31 Experiment has no groups
	D32 No definition
	D33 All logs together
	D34 Modulo
	D35 Incompatible for connection
	D36 Lose information
	D37 Transform tool
	D38 Circular link
	D39 Unknown object
	D97 File error
	D98 Memory errors
	D99 Miscellaneous

	18.6 Factor Format Errors
	FACT1 No tag recorded
	FACT2 Tag wrong format
	FACT3 Error reading attribute
	FACT4 Bad factor name
	FACT5 “Events” attribute missing
	FACT6 ODEV not found
	FACT7 Error getting factor name
	FACT8 Error getting attribute name
	FACT9 Factor not found
	FACT10 Error getting tag name
	FACT11 Error getting attribute name
	FACT12 Attribute missing in group, block, or templ...
	FACT13 Attribute missing in RunMode
	FACT14 Unknown Latin square factor
	FACT15 Error getting level reference
	FACT16 List factor attribute not found
	FACT17 Fee level attribute not found
	FACT18 Error getting multiple

	18.7 Trial Manager Errors
	TM01 Name is not an event name in trial n
	TM03 Event number n does not exist in trial m
	TM04 Duration for event is not valid. Will default...
	TM11 Event list for trial is bad; No events depend...
	TM12 No expression given for TIME duration in even...
	TM13 Unable to parse StartRef
	TM14 Start Reference doesn't specify start or end ...
	TM15 There is no event n in trial m (referenced in...
	TM16 Invalid name … (referenced in StartRef …)
	TM30 … is not a valid action name
	TM32 … too many params specified for action "…"
	TM33 FORCE_ALL and instances<0 => infinite loop in...
	TM34 … in "…" should be an integer
	TM35 Incorrect number of parameters for action …
	TM36 RT referenced event … that has not yet occurr...
	TM37 Neither action nor source event specified for...
	TM38 Event … is already running Start action(s) no...
	TM40 Call to … requires an event reference as its ...
	TM41 RT: VAR_ONLY specified, but no variable given...
	TM42 Timeout trying to play stimulus.
	TM43 Too few parameters for …. n given, m required...
	TM44 ChanceEvent probability … is not in the range...
	TM45 No list specified for … action. TM46 Argument...
	TM47 Index argument is not a number in … action.
	TM48 Types don't match in … action.
	TM65 Stimulus will not be seen: it will be cleared...
	TM68 Unable to open resource file …
	TM69 Unable to open …
	TM70 Not enough memory available for Instructions ...
	TM98 Internal error �— Program error
	TM100 Referenced variable is not an array or list ...
	TM101 Error parsing expression: …
	TM102 No such variable …
	TM103 Invalid field selector in expression. …
	TM105 Selection variable is not a record in: …
	TM106 Unmatched parenthesis in expression: …
	TM107 Cannot reset a constant.
	TM108 Cannot reset read only variable.
	TM109 Can't change … variable "…" to type …
	TM110 Can't convert unassigned variable.
	TM111 Can't convert to null type.
	TM112 Type conversion error.
	TM113 Unable to read "…" into … variable
	TM114 Unable to convert value to string
	TM130 Variable … can't be written to the data file...
	TM200 Unable to find input device … Continue witho...
	TM201 Cannot connect to … It doesn't look like an ...
	TM202 Unable to connect IDEV: …
	TM260 No timer specified, Macintosh timer will be ...
	TM260 Timer … not found.

	18.8 Screen Manager Errors
	SCR01 Unable to find file: …
	SCR02 Unable to find PICT resource or file …
	SCR03 … is not a valid depth for an offscreen bitM...
	SCR05 Not enough available memory to keep PICT … i...
	SCR06 Error reading PICT …
	SCR08 Not enough available memory to save screen
	SCR12 Unable to read Origin attribute.
	SCR13 You did not specify the proper number of mon...
	SCR20 Unable to open document …
	SCR21 … in … should be an integer.
	SCR22 … event type takes only one stimulus.
	SCR23 No stimulus specified for … type event.
	SCR24 Unable to determine PasteBoard sub-stimulus ...
	SCR25 Incompatible Run File Version
	SCR26 Error opening ShowDoc file …
	SCR27 Not enough memory available to keep document...
	SCR28 Error allocating TextEdit Record for Documen...
	SCR98 Internal error

	18.9 Sound Manager Errors
	SND01 Sound has no SoundFile attribute
	SND02 Unable to open sound file: …
	SND03 Unable to find sound file: …
	SND04 Error getting sound label … from file …
	SND05 Load Error: Unable to read sound … from file...
	SND07 Load Error: Unable to allocate memory for so...
	SND08 Sound type … not supported.
	SND09 Error … getting file info for …
	SND10 Unable to initialize sound channel, error … ...
	SND11 System 7 is required to play Sound Designer ...
	SND12 Unable to allocate sound channel. Error: … S...
	SND14 SoundLabel event type takes only one stimulu...
	SND15 Incompatible Run File Version
	SND98 Internal Error

	18.10 Button Box Errors
	BB10 ExInit: Button box disconnected
	BB11 ExInit: Timer inaccurate: …
	BB98 Internal error.

	Chapter 19. Configuring the Button Box
	Part�5: Appendices
	Figure 205 – The Button Box Testing dialog

	Chapter 20. Creating Picture Resources
	Part�5: Appendices
	Figure 206 – A Tool palette
	Figure 207 – The Set Info dialog in ResEdit

	Chapter 21. Creating SoundEdit™ Sound Files
	Part�5: Appendices
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

