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Recent Advances in Memory-Based Part-of-Speech TaggingJakub Zavrel & Walter Daelemans�ILK / Computational LinguisticsTilburg UniversityP.O. Box 90153, NL-5000 LE, Tilburg, The NetherlandsURL: http://ilk.kub.nlfzavrel,walterg@kub.nlAbstractMemory-based learning algorithms are lazy learners. Examples of a task are storedin memory and processing is largely postponed to the time when new instances of thetask need to be solved. This is then done by extrapolating directly from those remem-bered instances which are most similar to the present ones. Using memory-based learningfor Part-of-Speech tagging has a number of advantages over traditional statistical POStaggers: (i) there is no need for an additional smoothing component for sparse data,(ii) even low-frequent or exceptional patterns can contribute to generalization, (iii) theuse of a weighted similarity metric allows for an easy integration of di�erent informationsources, and (iv) both development time and processing speed are very fast (in the or-der of hours and thousands of words/sec, respectively). In recent work, we have appliedthe Memory-Based tagger (MBT) to a number of di�erent languages and corpora (En-glish, Dutch, Czech, Swedish, and Spanish). Furthermore, we have performed a controlledexperimental comparison of MBT with several other POS tagging algorithms.1 IntroductionIn Part-of-Speech (POS) tagging, the problem is to assign to each word in a sentencethe most appropriate morphosyntactic category from among those listed in the lexicon,given the context. Annotating a text with POS tags is useful for many subsequent ma-nipulations of the text. First, the tags provide a useful abstraction from the actual wordsthemselves if we want to process all words that belong to a certain class in some specialway (e.g. extract all the nouns from a text). Second, the tagger provides a super�cial de-gree of disambiguation which might either be bene�cial for following levels of processing(such as e.g. parsing) or useful in itself (e.g. the same word with di�erent tags might havedi�erent pronunciations or di�erent meanings).The general solution of the POS tagging problem requires full understanding of thesentence, but fortunately a fairly accurate solution can be reached by training a sys-tem on the patterns of tag usage in a large annotated corpus. The earliest statisticalapproaches (Church, 1988; DeRose, 1988) which make use of Hidden Markov Models(HMM) and related techniques have focused on building probabilistic models of tag tran-sition sequences in sentences. Although these systems have achieved a reasonable level of�This research was performed in the context of the \Induction of Linguistic Knowledge" research pro-gramme, partially supported by the Foundation for Language Speech and Logic (TSL), funded by the Nether-lands Organization for Scienti�c Research (NWO). 1



performance (usually around 95 to 96 % correct1), they tend to su�er from a number ofproblems. The most notable among these are i) the problems associated with sparse dataand ii) the limits on the types of information that they can take into account.The sparse data problem is the fact that events that have not been observed in thetraining data get a probability of zero, and hence cannot be dealt with in the test data.A related problem is the fact that the test data also contains words that are not in thelexicon (which is usualy constructed from the training data). To deal with both types ofsparse data, a practical tagger must use some sort of smoothing strategy (see Chen andGoodman (1996) for an overview) to estimate the probabilities for unseen events, and aseparate guesser for the lexical probabilities of unknown words (Weischedel et al., 1993).The second main problem with HMM-type taggers is that the features of the contextare represented as states in the model and hence the incorporation of richer feature-setsof the context will lead to an explosion of the number of states, leading to an even moresevere version of the sparse data problem.In recent years it has been shown (see e.g. Ratnaparkhi (1996)) that the remaining4 % or so of errors can be reduced considerably when richer models of the context areused. In these approaches, the POS tagger is usualy seen as a classi�er, rather than asa model of the sequence structure of sentences. The context can then be represented interms of a rich set of features (e.g. surrounding words, tags, and word-form features suchas su�xes and pre�xes). The construal of the POS tagging task as such a classi�cationproblem allows one to use many existing machine learning algorithms.In our own work, we have advocated the use of Memory-Based Learning (MBL) tech-niques for POS tagging (Daelemans et al., 1996), and for classi�cation tasks in NaturalLanguage Processing in general (Daelemans et al., 1998). MBL provides a solution toboth the sparse data problem, via an implicit similarity-based smoothing scheme, and thechallenges of a rich feature set, via automatic feature-weighting. In this paper we will �rstreview the basic techniques of Memory-Based Learning (Section 2). Next, in Section 3,we describe the architecture of the tagger. Section 4 reports experimental results of theapplication of our Memory-Based tagger (MBT) to a number of di�erent languages andcorpora (English, Dutch, Czech, Swedish, and Spanish). For English, we have performeda controlled experimental comparison of MBT with several other POS tagging algorithms(rule-based, HMM, and maximum entropy). In Section 5 we present an analysis of thestrengths and weaknesses of the MBL approach to POS tagging. Finally, in Section 6, weconclude.2 Memory-Based LearningMemory-based learning is founded on the hypothesis that performance in cognitive tasks(in our case language processing) is founded on reasoning on the basis of similarity of newsituations to stored representations of earlier experiences, rather than on the applicationof mental rules abstracted from earlier experiences (as in rule induction and rule-basedprocessing).An mbl system2 contains two components: a learning component which is memory-based, and which is sometimes called `lazy' as memory storage is done without abstractionor restructuring, and a performance component which does similarity-based classi�cation.During classi�cation, a previously unseen test example is presented to the system. Itssimilarity to all examples in memory is computed using a similarity metric, and the1when tested on the same corpus that training was performed on, and depending on the type of corpus andtagset.2Timbl, a software package implementing several variants of memory-based learning algorithms, is is freelyavailable for research purposes from the ILK web pages; consult URL http://ilk.kub.nl. Here you can also �nddemo's of the MBT tagger. 2



category of the most similar example(s) is used as a basis for extrapolating the categoryof the test example. We will now outline the functioning of the ib1-ig and igtreealgorithms.2.1 Weighted MBL: IB1-IGib1-ig (Daelemans and Van den Bosch, 1992) is a memory-based learning algorithm thatbuilds a data base of instances (the instance base or case base) during learning. Aninstance consists of a �xed-length vector of n feature-value pairs, and an information �eldcontaining the classi�cation of that particular feature-value vector. After the instancebase is built, new (test) instances are classi�ed by matching them to all instances in theinstance base, and by calculating with each match the distance between the new instanceX and the memory instance Y . In ib1-ig, the distance metric is a weighted sum of thedistances per feature. The distance for a particular feature is zero when the values ofboth instances for this feature are equal, and one otherwise. Because not all featuresare of equal importance their contributions are weighted in the total summed distance.The weight for a feature is its Information Gain (Quinlan, 1993), a measure of how muchinformation it contributes to our knowledge of the correct class label. The InformationGain of feature f is measured by computing the di�erence in uncertainty (i.e. entropy)between the situations without and with knowledge of the value of that feature.The possibility of automatically determining the relevance of features implies thatmany di�erent and possibly irrelevant features can be added to the feature set. Theweighting factors make the integration of diverse sources of information, with di�eringdegrees of relevance to the task, relatively painless.2.2 Optimized weighted MBL: IGTREEBecause the search for the nearest neighbors in ib1-ig is computationaly expensive, andPOS tagging needs to be very fast, we use a decision tree approximation to the search.This algorithm is called igtree (Daelemans, Van den Bosch, and Weijters, 1997). Inigtree the instance memory is restructured in such a way that it contains the sameinformation as before, but in a compressed decision tree structure. Information gain isused to determine the order in which instance feature values are added as arcs to thetree, so that, during testing, search can be restricted to matching a test instance to thosememory instances that have the same feature value as the test instance at the feature withthe highest weight. Instead of indexing all memory instances only once on this feature, theinstance memory can then be optimized further by examining the second most importantfeature, followed by the third most important feature, etc. A considerable compressionis obtained as similar instances share partial paths. Furthermore, it is not necessary tofully store an instance as a path when only a few feature values of the instance make theinstance classi�cation unique.Processing an unknown input involves traversing the tree (i.e., matching all feature-values of the test instance with arcs in the order of the overall feature information gain),and either retrieving a classi�cation when a leaf is reached (i.e., an exact match wasfound), or using the most probable classi�cation on the last matching non-terminal nodeif an exact match fails.In sum, it can be said that the igtree approach chooses to invest more time in orga-nizing the instance base using information gain and compression, to obtain considerablysimpli�ed and faster processing during classi�cation, as compared to ib1-ig. The gener-alization accuracy of igtree is usualy comparable or slightly lower to that of ib1-ig.
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word case representationd d f a tPierre = = np np npVinken = np np , np, np np , cd ,61 np , cd nns cdyears , cd nns jj-np nnsold cd nns jj-np , jjTable 1: Example of instances of the pos learning task (known words case base). Instancesrepresent �xed-sized snapshots of a focus (an ambiguous tag), surrounded by a left and rightcontext (of disambiguated tags on the left, and ambiguous tags on the right).3 MBT: Memory-Based Part-of-Speech TaggingThe MBT tagger (Daelemans et al., 1996) takes an annotated corpus as input, and pro-duces a lexicon and memory-based POS tagger as output. In this section we describe thearchitecture of the tagger.The construction of a POS tagger for a speci�c corpus is achieved in the followingway. Given an annotated corpus, three data structures are automatically extracted: alexicon, associating words to ambiguity classes of tags as evidenced in the training corpus,a case base for known words (words occurring in the lexicon), and a case base for unknownwords. Case Bases are compressed using igtree for e�ciency.During tagging, each word in the text to be tagged is looked up in the lexicon. If itis found, its lexical representation is retrieved and its context is determined, and the re-sulting pattern is disambiguated using extrapolation from nearest neighbors in the knownwords case base. When a word is not found in the lexicon, its lexical representation iscomputed on the basis of its form, its context is determined, and the resulting patternis disambiguated using extrapolation from nearest neighbors in the unknown words casebase. In each case, the output is a best guess of the category for the word in its currentcontext.The cases are represented by a variety of features, whose relevance is automaticallydetermined by the Information Gain weights. The reason for the split into known andunknown words is that for known words, the ambiguity class of the focus word turnsout to be the most important feature, and is therefore found at the top of the igtree.However, for unknown words we do not known the ambiguity class, and hence we wouldget a mismatch at the highest level of the tree. In the separate unknown words classi�er,we proceed directly to the context and word-form features. Below we will use the followingnotation for the features. As we go from left to right, we can assume that the words to theleft of the word to be tagged have been disambiguated already. These tags are denotedwith 'd', the position of the (ambiguity class) of the focus word is given by 'f', and theambiguous tags to the right are denoted by 'a'. Features referring to particular wordforms are denoted as 'w'. Further, there are a number of features referring to the partsof the word form: its su�x letters 's', pre�x letters 'p', a capitalization feature 'c', thepresence of a hyphen 'h', and the presence of numerals 'n'. For training cases 't' denotesthe correct target.Table 1 and 2 display example instances from the known words and the unknownwords case bases respectively.
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word case representationp d a s s s tPierre P = np r r e npVinken V np , k e n np61 6 , nns = 6 1 cdyears y cd jj-np a r s nnsold o nns , o l d jjTable 2: Example of instances of the pos learning task (unknown words case base). Instancesrepresent `morphological' information about the focus word (�rst letter and the three lastletters), surrounded by a left and right context (of one disambiguated tags on the left, andone ambiguous tag on the right).4 ExperimentsIn the �rst paper on MBT (Daelemans et al., 1996), we trained it on the English WallStreet Journal corpus (ACL/DCI version), tagged with the Penn Treebank tagset (Marcus,Santorini, and Marcinkiewicz, 1993). For the known words we used 'ddfa' features andfor the unknwon words 'pdFasss'3. The results are reiterated in Table 3. Since thenwe have experimented with a number of di�erent languages and corpora, and we havegradually increased the richness of our feature set. For our experiments on Dutch we usedthe WOTAN annotated Eindhoven corpus (Berghmans, 1995), with the same featureset as for the WSJ, attaining very competitive results (for more details, see Daelemans,Zavrel, and Berck (1996)). For the experiments on Czech we used an annotated corpus ofnewspaper texts obtained from the Institute for the Czech Language, Prague.4. Again thefeatures were the same as on the WSJ corpus. For Spanish, the CRATER Multi-LingualAligned Corpus was used. In this case the known words case base was constucted using'ddfWaa' features; i.e. in addition to the ambiguity class of the focus word, informationwas also provided about its identity (only for the 100 most frequent words). For unknownwords, we used the 'chndFasss' feature set. For Swedish, the Stockholm Umea Corpus(SUC) was used. Tuned on a held-out portion of the training data, we found slightlybetter performance for the known feature set ddwfwa (with word form features for thedirectly neighboring words) than for the 'ddfWaa' used for Spanish. We also found thatperformance measured solely on the unknown words, rose from 77.3% to 81.0% if theunknown words cases were constructed only from words that had �ve or less occurrencesin the training set. The results of all these experiments are summarized in Table 3. Asa practical remark, it should be noted that the whole cycle of feature-validation trainingand testing is very fast, and was usualy completed in about 8 hours of work for all of thetaggers described above.4.1 A Comparison of MBT with Alternative Tagging MethodsThe results in the previous section by themselves are di�cult to interpret in terms ofcomparison to other tagging approaches. Therefore, we also conducted some experi-ments, comparing a number of alternative tagging methods (R: rule-based (Brill, 1994),T: trigram (Steetskamp, 1995), and E: maximum entropy (Ratnaparkhi, 1996)) on thesame corpus, the tagged LOB corpus (Johansson, 1986). This work is described in moredetail in (van Halteren, Zavrel, and Daelemans, 1998). Each of these taggers uses di�erent3The F in the unknown words pattern only indicates the position of the focus, it is not included as a featurein the actual pattern.4Thanks go to Prof. Ji�r�� Kraus of the Czech Academy of Sciences for permission to use this corpus.5



Tag-set # Words � 1000 % Correct testLanguage size train test wordsEnglish - WSJ 44 2000 200 96.4English - LOB 170 931 115 97.0Dutch 13 611 100 95.7Czech 42 495 100 93.6Spanish 484 711 89 97.8Swedish 23 1156 11 95.6Table 3: Results for the pos task for di�erent languages/corpora. The size of the tag-set used,the size of train and test set and the generalization accuracy (combines known and unknown)are given. All taggers use the igtree algorithm. Details of the used corpora can be found inthe main text. Tagger accuracy (%)T 96.1R 96.5MBT 97.0E 97.4Table 4: Accuracy of di�erent taggers (T: trigram, R: Rule-Based Learner, MBT: Memory-Based, E: Maximum Entropy) on the LOB corpus.features of the text to be tagged, and each has a completely di�erent representation ofthe language model. Due to lack of space we will not go into detailed descriptions of thesesystems here. The training set consists of 80% of the data (931062 tokens), constructedby taking the �rst eight utterances of every ten. 10 % was used as a validation set totune the individual taggers. The results are given on the test set, which consists of theremaining 10% (115101 tokens).The results, given in Table 4, show that MBT performs at state-of-the-art levels,providing better generalization accuracy than two widely-used methods (trigram taggingand transformation-based tagging), which is remarkable given the minimal language en-gineering involved and the computational e�ciency of the method (both in training andtesting). The E tagger performs signi�cantly better, which is due, in our opinion, to thefact that Maximum Entropy weighting is better able to deal with the dependecies in therich feature-set. However, E uses a slightly more elaborate feature set than MBT, anda preliminary comparison of learning algorithms on the data from Ratnaparkhi (1996)resulted in a close tie (igtree 95.5 % correct vs. Maximum Entropy 95.4 % correct).Moreover, compared to MBT, E is very slow in training.An interesting side-result for high accuracy tagging is the fact that in van Halteren,Zavrel, and Daelemans (1998), an error reduction of 19 % (to 97.9 % accuracy) wasachieved over the best tagger (E) by a combination of the results from all four taggers.5 DiscussionIn contrast to explicitly probabilistic methods, there is no need for an additional smoothingcomponent for sparse data in MBL, as this is already embodied in the similarity-basedextrapolation itself (Zavrel and Daelemans, 1997). The use of the weighted similarity6



metric allows for an easy integration of di�erent information sources (e.g. context tags,words, morphology, spelling etc.) with no clear a-priori ordering. Moreover, the fact thatonly one parameter is needed per feature (i.e. its IG weight) makes MBL more robustto over�tting than approaches which use very large numbers of parameters. The downside of this robustness is that the feature-weighting capabilitities are quite rough: i) eachfeature is weighted in isolation, so that no speci�c weights are assigned to interestingfeature interactions, and the weight estimate of conjunctions of redundant features tendsto be too large, and ii) there is no separate weight for speci�c values of a feature.A second advantage of MBL, when compared to both probabilistic and other 'eager'machine learning approaches, is that in MBL all information is stored in memory, andeven low-frequent or exceptional events are available, and useful for accurate generaliza-tion (Daelemans, Van den Bosch, and Zavrel, 1999 to appear). At present this is notentirely made use of in the tagger, because we use the igtree approximation of MBLnearest neighbor search. In the TiMBL package, however, we have implemented severaloptimizations of MBL search, and we hope to that these will turn out to be fast enoughto enable us to use ib1-ig in future work, without a too large loss of speed.Finding a good balance in the accuracy-speed trade-o� is an important issue for MBT,as at present this clearly is an important practical advantage of our system: both devel-opment time and processing speed are very fast (in the order of hours and thousands ofwords/sec, respectively).6 ConclusionWe have presented additional evidence that the Memory-Based approach to Part-of-Speech tagging quickly yields very fast and highly accurate taggers for a variety of lan-guages and corpora.AcknowledgmentsWe thank Peter Berck, the members of the ILK group in Tilburg, and the members ofthe CNTS group in Antwerp for their input and discussions.ReferencesBerghmans, J. 1995. Wotan - een probabilistische grammatikale tagger voor het Neder-lands. Master's thesis, TOSCA Research Group, University of Nijmegen, Nijmegen,The Netherlands.Brill, E. 1994. Some advances in transformation-based part-of-speech tagging. In Pro-ceedings AAAI'94.Chen, S.F. and J. Goodman. 1996. An empirical study of smoothing techniques forlanguage modelling. In Proc. of the 34th Annual Meeting of the ACL, Santa Cruz,CA. ACL, June.Church, K. W. 1988. A stochastic parts program and noun phrase parser for unrestrictedtext. In Proc. of Second Applied NLP (ACL).Daelemans, W. and A. Van den Bosch. 1992. Generalisation performance of backpropa-gation learning on a syllabi�cation task. In M. F. J. Drossaers and A. Nijholt, editors,Proc. of TWLT3: Connectionism and Natural Language Processing, pages 27{37, En-schede. Twente University.Daelemans, W., A. Van den Bosch, and A. Weijters. 1997. igtree: using trees for com-pression and classi�cation in lazy learning algorithms. Arti�cial Intelligence Review,11:407{423. 7
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