MBT: Memory-Based Tagger
version 3.1

Reference Guide

ILK Technical Report — ILK 07-09

Walter Daelemans* Jakub Zavrel® Antal van den Bosch
Ko van der Sloot

Induction of Linguistic Knowledge Research Group
Department of Communication and Information Sciences

Tilburg University

(*) CNTS - Language Technology Group
University of Antwerp

(1) Textkernel B.V.

P.O. Box 90153, NL-5000 LE, Tilburg, The Netherlands
URL: http:/ /ilk.uvt.nl'

December 11, 2007

This document is available from http:/ /ilk.uvt.nl/downloads/pub/papers /ilk.0709.pdf. All rights re-
served Induction of Linguistic Knowledge, Tilburg University and CNTS Research Group, University of
Antwerp.

Contents

1 GNU General Public License 1
2 Installation 2
3 Tutorial and Reference 4
3.1 Mdtg,thetaggergenerator. L 4
3.1.1 Defining featurepatterns L oL 5

3.1.2 Running the tagger-generator 6

3.1.3 Using data with user-provided features 8

32 Mot,thetagger 9
321 Runningthetagger 9

322 Serveroptions. 11

3.2.3 Tagging texts with user-provided features. 11

33 Timbloptions 11

Preface

Part-of-Speech (POS) tagging is a process in which a morpho-syntactic class is assigned to each
word in a text on the basis of the characteristics of the word and of the context in which it occurs.
It is a first level of abstraction in text analysis, and is used in many language technology applica-
tions such as (shallow) parsing, information retrieval, spelling error correction, speech synthesis,
and text mining.

POS tagging is a prototypical instance of the more general sequence tagging task, in which a
sequence of words is mapped to any same-length sequence of tags, with a one-to-one mapping
between words and tags. This setup can apply to diverse tasks such as syntactic base-phrase
chunking (Tjong Kim Sang and Buchholz, 2000), named-entity recognition, and information ex-
traction.

Memory-Based Tagging is an approach to sequence tagging based on Memory-Based Learning
(MBL). As an adaptation and extension of the classical k-Nearest Neighbor (k-NN) approach
to statistical pattern classification, MBL has proven to be successful in a large number of tasks
in Natural Language Processing (Daelemans and Van den Bosch, 2005). Since 1998, we have
made available TIMBL, a flexible software tool incorporating an extensive and growing family of
memory-based learning algorithms and associated metrics (Daelemans et al., 2007). The most re-
cent version of software and documentation are available under the GNU General Public License
fromhttp://ilk.uvt.nl/tinbl.To use this software for POS Tagging is not entirely trivial,
however. We want to be able to use previous tagger decisions as input for current decisions, we
want to build separate case bases for known and unknown words, allow global sentence-level
optimization, etc. The software you will find here implements this specific tagging functionality
by wrapping software around TiMBL while keeping most of the flexibility of TIMBL intact.

Memory-Based Tagging was originally proposed in (Daelemans, 1995). The most complete de-
scription to date is contained in the union of (Daelemans and Van den Bosch, 1996) and (Zavrel
and Daelemans, 1999). As is the case for TIMBL, the main effort in the development and main-
tenance of this software was invested by Ko van der Sloot. The system started as a rewrite of
code developed by Peter Berck and adapted by Jakub Zavrel. The code has benefited substan-
tially from trial, error and scrutiny by past and present members of the ILK and CNTS groups
in Tilburg and Antwerp. This software was written in the context of projects funded by the
Netherlands Organization for Scientific Research (NWO), Tilburg University’s Faculty of Arts,
the Flemish National Science Foundation (FWO), and the University of Antwerp Research Coun-
cil

The current release (version 3.1) uses TIMBL version 6.1, and will not work with older versions
of TiMBL. Note that you have to download and install TIMBL 6.1 separately to be able to compile
the tagging software. Seehttp://il k. uvt.nl/tinbl.

This reference guide is structured as follows. In Chapter 1 you can find the terms of the license
according to which you are allowed to use, copy, and modify MBT. The subsequent chapter gives

ii

instructions on how to install the software on your computer. Next, Chapter 3 offers a tutorial
and information about the different parameters of the system. Readers who are interested in the
theoretical and technical details of Memory-Based Tagging should consult (Daelemans and Van
den Bosch, 1996; Zavrel and Daelemans, 1999; Daelemans and Van den Bosch, 2005). The first
two papers are also included in the software distribution.

This document does not contain information about the TiIMBL software package. In order to make
the best use of this tagging software, it is strongly advised to get acquainted with the functionality
of TIMBL, as explained in the reference guide that accompanies the software (Daelemans et al.,
2007).

iii

Chapter 1

GNU General Public License

MBT is free software; you can redistribute it and /or modify it under the terms of the GNU Gen-
eral Public License as published by the Free Software Foundation; either version 3 of the License,
or (at your option) any later version.

MBT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with MBT. If not, see
<http:/ /www.gnu.org/licenses/>.

In publication of research that makes use of the Software, a citation should be given of: “Walter
Daelemans, Jakub Zavrel, Antal van den Bosch and Ko van der Sloot (2007). MBT: Memory-Based Tagger,
Reference Guide. ILK Technical Report 07-09,

Available from ht t p: / /i | k. uvt. nl / downl oads/ pub/ papers/il k. 0709. pdf ”

For information about commercial licenses for the Software, contact t i nbl @vt . nl, or send
your request to:

Prof. dr. Walter Daelemans

CNTS - Language Technology Group

Department of Linguistics / University of Antwerp
Universiteitsplein 1

B-2610 Wilrijk (Antwerp)

Belgium

Email: walter.daelemans@ua.ac.be

Chapter 2

Installation

You can get the MBT package as a gzipped tar archive from:
http://ilk.uvt.nl/nbt

Following the links from that page, you can download the file nbt - 3. 1. t ar . gz. This file con-
tains the complete source code (C++) for the MBT program, a sample data set, the license and the
documentation. The installation should be relatively straightforward on most UNIX systems.

To install the package on your computer, unpack the downloaded file:

> tar zxf nbt-3.1.tar.gz

This will make a directory nbt - 3. 1 under your current directory.
Alternatively you can do:

> gunzip nmbt-3.1.tar.gz

and unpack the tar archive:

> tar -xvf nmbt-3.1.tar

Change directory to the mbt-3.1 directory and configure the package by typing
> cd nbt-3.1

> ./configure --prefix=<tinbl_ocation>

the prefix should be the directory where Timbl is installed previously. Mbt will be installed there
also.

Note: It is possible to install Mbt in a different location, but there is no need, and it makes things
more complicated. It involves using the - - wi t h-ti bl = option in configure.

Anyway: after conf i gur e you can build Mbt:
> make

and (as recommended) install:

> make install

If the process was completed successfully, you should now have executable files named Mot g
and Mot in the installation directory <ti mbl _| ocat i on>/ bi n, and a static library | i bMot . a

CHAPTER 2. INSTALLATION 3

in the directory <t i bl _| ocati on>/1i b.

Within the <t i bl _| ocat i on> directory a subdirectory is also created: shar e/ doc/ bt where
the Mbt3.1 documentation can be found, and which in turn contains a subdirectory exanpl es
with example data files.

Mbt should now be ready for use. If you want to run the examples and demos from this manual,
you should act as follows:

e Be sure to add <t i mbl _| ocati on>/ bi n to your PATH. (you probably already did that
when installing Timbl.)

e copy all the files from <t i nbl _| ocati on>/ shar e/ doc/ bt / exanpl es to some work-
ing location.
e and test:
cd to the working location, and then
Generate a tagger for the eindhoven corpus.
Motg -T ei ndh.data
This will create some datafiles and a settingsfile, eindh.data.settings
And then tag the testset:
Mot -T eindh.test -s eindh.data.settings

That’s all!

The e-mail address for problems with the installation, bug reports, comments and questions is
tinbl @vt.nl.

Chapter 3

Tutorial and Reference

Memory-based tagging is based on the idea that words occurring in similar contexts will have the
same tag. The idea is implemented using the memory-based learning software package TiMBL
(http://ilk.uvt.nl/software. htm). The MBT software package makes use of TiIMBL to
implement a tagger—generator. The software consists of two executables: Mot g to generate a
tagger, and Mot to use a generated tagger on text data. Given as input an annotated (tagged)
corpus, Mot g generates a lexicon, and case bases for known words (words in the corpus, hence
also in the lexicon), and unknown words (in order to guess the tag of words not in the corpus).
The lexicon associates words with their ambiguous tag, henceforth referred to as ambitag: a sym-
bol representing all the POS tags a word can have according to the corpus. The Mot executable
takes a tagger constructed by Mot g as input and can be used to tag text with it. For theoretical
background, see (Daelemans and Van den Bosch, 1996; Zavrel and Daelemans, 1999).

This document exemplifies how to use the MBT package. As an example data file, we have
added a small part of the part-of-speech tagged “Eindhoven Corpus” of Dutch written text (Uit
den Boogaard, 1975) to the distribution, a Dutch POS-tagged corpus. The data consists of only
about 100,000 words, so the quality of taggers trained with this data will not be high. It is meant
as a toy corpus. The tag set used consists of 10 broad-category POS tags.

3.1 Mot g, the tagger generator

The input file containing the material for generating a tagger must consist of two whitespace-
separated columns. The first column contains a word or punctuation mark with in the corre-
sponding position of the second column its POS tag. A line may also contain only the sym-
bol <ut t > to mark the end of a sentence. The following are the two first sentences of the file
ei ndh. dat a, present in this distribution of MBT.

Dit Pron

in Prep

ver band N
met Prep

de Art

gem ddel d Adj
| anger e Adj

| evensduur N
van Prep

de Art

vrouw N

CHAPTER 3. TUTORIAL AND REFERENCE 5

Punc
<utt>
De Art
ver zeker i ngsmaat schappi j en N
verhelen V
ni et Adv
dat Conj
ook Adv
de Art
rentegrondsl ag N
van Prep
vier Num
procent N
nog Adv
een Art
rui me Adj
marge N
laat V
ten Prep
opzichte N
van Prep
de Art
t hans Adv
gel dende V
rentestand N
Punc
<utt>

3.1.1 Defining feature patterns

In generating the tagger, information has to be provided to the tagger generator about the context
and the form of the words to be tagged. This is done by the parameters - p (feature pattern for
known words), and - P (feature pattern for unknown words). Patterns are built up as combina-
tions of the following symbols:

For -p and -P

d Left context (tag)
a Right context (ambitag)
w Left or right context (word)

For -p only (known words)

f Focus (ambitag for known words)
W Focus (word)

For -P only (unknown words)

Focus (position of the unknown word)

The focus contains capitalized characters

The focus word contains a hyphen

The focus word contains numerical characters
Character at the start of the word

Character at the end of the word

wWoT ST Oom

CHAPTER 3. TUTORIAL AND REFERENCE 6

The symbols d, a, w, p, and S can occur more than once to indicate the scope of the context.
Symbols to the left of the focus symbols indicate left context, and symbols to the right of the
focus symbols indicate right context.

For example, for known words, the following are a few possible patterns:

df a focus ambitag with one disambiguated tag on the left and one ambitag to the right
ddf a focus ambitag with two disambiguated tags to the left and one ambitag to the right
ddf va as previous, plus the focus word (note that Wcan be declared only immediately after f)

dwdwi Waw as previous, plus for each context tag the corresponding word (two left, one right)

For unknown words:

dFa one disambiguated tag to the left and one ambitag to the right
psdFa as previous, plus the first and last letter of the unknown word to be tagged
psssdFa as previous, plus the three last letters of the word to be tagged

psssdwFaw as previous, plus the left and right neighboring words

The default values for - p and - P are ddf a and dFapsss respectively.

3.1.2 Running the tagger-generator

An example command line for tagger generation is the following (“>" is the command line
prompt):

> Motg -T eindh.data -p ddfa -P dFapsss

This will generate a tagger based on information about the previous two predicted tags and the
following ambitag for the known words, and about the first and three last letters of the word,
the previous predicted tag, and the following ambitag for the unknown words. Supposing the
annotated corpus you use to construct the tagger is in the two-column file ei ndh. dat a, Mot g
will generate the following output to standard output:

Menory Based Tagger Generator Version 3.1
(c) ILK and CNTS 1998 - 2007.
I nduction of Linguistic Know edge Research G oup, Tilburg University
Centre for Dutch Language and Speech, University of Antwerp

Based on Tinbl version 6.1 (rel ease)

Constructing a tagger from eindh. data
Creating |l exicon: eindh.data.lex of 17040 entri es.

The first data structure created by the tagger is a frequency-sorted lexicon ei ndh. dat a. | ex
with for each word the different tags it was assigned, along with its frequency in the training
corpus.

Creating anbitag | exi con: eindh.data.lex.anbi.05

An ambitag is a symbolic label defining for a word the different tags it can have according to
the corpus. In the ambitag lexicon, each word is associated with its corresponding ambitag,

CHAPTER 3. TUTORIAL AND REFERENCE 7

represented in two forms: a letter code generated by the tagger, and a string of tags separated
by hyphens. Some frequency-based smoothing is implemented in this approach: whenever a
word-tag combination occurs less than a given percentage (5% by default) of the word’s total
frequency, it is not included in the ambitag. The parameter - %< percentage > can be used to
modify this threshold.

Creating list of nost frequent words: eindh. data.topl00

Next, the tagger generator creates a list with (by default) the 100 most frequent words in the
corpus. Only words in this list will be used when the symbols w, W are used in the - p, - P pat-
terns. The number of most frequent words can be modified with the parameter - M< number >.
All words not in the most-frequent-words list are transformed into special symbols: HAPAX- <
code >, where < code > is either 0, or a combination of H, C, and N. H indicates that the word
contains a hyphen, C denotes that the word is capitalised, and Nindicates that the word contains
a number. HAPAX- HCNwould for example be the transformed code for the word “B-52".

Create known words case base
Tinbl options: ' -a |IGTREE -FColums +vS'’
Al gorithm = | GTREE

Processing data fromthe file eindh.data............
ready: 95566 words processed.

Creating case base: eindh.data. known. ddf a

Del eted internediate file: eindh. data. known.inst.ddfa

In this part of the tagger generation process, the case base for known words is generated. To
do this, TIMBL is used, by default with the options shown above (IGTREE algorithm for known
words). The process consists of two steps. First, instances are created using the specified infor-
mation sources for known words (as indicated in - p), then the case base is generated from that
(which may imply a significant storage reduction, depending on the TIMBL options used). Finally,
the intermediate file with instances is deleted — this can be overruled with the option - X.

Creat e unknown words case base
Tinbl options: ' -a IBl -FColums +vS '’
Al gorithm= |B1

Processing data fromthe file eindh.data............
ready: 95566 words processed.

Creating case base: eindh. data. unknown. dFapsss

Del eted internediate file: eindh. data.unknown.inst. dFapsss

This part of the screen log describes the process of the creation of the case base for unknown
words (for which no ambitag is available, and for which the inclusion of the word itself in the
input is pointless). It is parallel to the procedure for known words, but it uses information sources
specified in the - P pattern, and uses as default TIMBL settings the 1B1-1G algorithm (the overlap
metric with gain ratio feature weighting).

Created settings file ’'eindh.data.settings’

Ready:
Ti me used: 10
Wor ds/ sec: 9556

CHAPTER 3. TUTORIAL AND REFERENCE 8

The tagger generation process ends with some information about the real time needed to con-
struct the tagger (total time used and number of words per second), and with the construction of
a settings file, which will be used by the Mot executable to use the tagger on new data. E.g. for
our toy corpus, the settings file looks like this:

K: -a IGTREE U -a IB1
ei ndh. data. topl100

e <utt>

| eindh. data. | ex. anbi . 05

k ei ndh. dat a. known. ddf a

u ei ndh. dat a. unknown. dFapsss
p ddfa

P dFapsss

O

L

These settings can be modified by the user to a certain extent, which is especially useful for exper-
imenting with different TIMBL options. However, this is not advised unless the user knows what
s/he is doing (not all TiIMBL options and Mot g settings can be modified given the datastructures
created).

Some Mot g parameters have remained undiscussed until now.

e In the construction of the unknown words case base, instances are created only for rela-
tively infrequent words (the basic idea being that unknown words will behave similarly
to infrequent known words). The option - n < n > determines the maximum frequency a
word can have in the training corpus to use it in its context in the creation of the unknown
words case base (the default value is 5).

e By default, the tagger generator expects the symbol <ut t > on a line to indicate the bound-
ary between two sentences. Using the option - e < string >, this default behaviour can be
modified. Special predefined values are EL and NL: with - e EL, one or more empty lines
between word-tag lines are interpreted as an utterance marker, and with NL each newline
is interpreted as an utterance marker.

3.1.3 Using data with user-provided features

Although Mot g offers various feature construction methods, there are cases in which a sequence
tagging task involves features that are not computable from the literal wordforms or from a lo-
cal contextual window. For example, in named-entity recognition, binary gazetteer features may
mark the membership of a word of a typed gazetteer list of personal names. To allow exter-
nally provided features (and thus some more flexibility), it is possible to have Mot g include such
user-provided features in the generation of the tagger. If Mot g is invoked with - E <enri ched
training fil e>instead of - T <tagged training fil e>, then the user is free to include
extra features after the first column (i.e. the word) and the second column (i.e. the tag) in the
tagged training data.

For example, the ei ndh. dat a file for training a POS tagger may be enriched with gazetteer
information that signifies the potential membership of a word in a typed gazetteer list. A line
from ei ndh. dat a may be expanded as follows:

<utt>
Engel and LOC N
hoopt --- VvV

CHAPTER 3. TUTORIAL AND REFERENCE 9

nog --- Adv
voor --- Prep
1973 TIM Num
lid --- N
te --- Prep
zijn --- vV
van --- Prep
de --- At
Euromarkt ORG N
--- Punc

In this example, the classification task thus remains the POS tagging task, but now in addition
to all the local context and wordform features (determined by the - p and - P settings), this ex-
tra feature is added to the input feature vector of all cases for both the known-word and the
unknown-word sub-taggers. The number of user-provided features is unbounded.

A consequence of using - E is that when the generated tagger is used, new texts that are to be
tagged need to include the same user-provided features. The next section describes how Mot ,
the tagger, operates in general; in Subsection 3.2.3 it is mentioned how data with user-provided
features can be tagged.

3.2 Mot, the tagger

After Mot g is used to generate data files and a settings file defining a memory-based tagger, Mot
can be used to actually tag text.

3.2.1 Running the tagger
The following commandline invokes Mot , the tagger:
Mot -s eindh.data.settings -t <tokenized text file>

This commandline makes Mot send its result, which consists of the text in the tokenized text file
argument augmented with tags attached to each token in the file, to standard output. The testfile
should be tokenized (i.e. punctuation marks should be separated from the words). Testfiles do
not need to have all words on separate lines. By default, Mot expects to find <ut t > as sentence
boundary marker, but as with Mot g, the user can specify other sentence boundary markers with
- e < string >. In the case of Mot < string > can also be EL, for empty line, or NL, for newline,
to process text in which each sentence is printed on one line, ending with a newline. E.g. we
included a short tokenized test file in the distribution (file t est . t ok). This file contains an
empty line between the two sentences:

> Mot -s eindh.data.settings -t test.tok -e EL > test. out

Menory Based Tagger Version 3.1
(c) ILK and CNTS 1998 - 2007.
I nduction of Linguistic Know edge Research Group, Tilburg University
Centre for Dutch Language and Speech, University of Antwerp

Based on Tinbl version 6.1 (rel ease)

CHAPTER 3. TUTORIAL AND REFERENCE 10

Readi ng the | exicon from eindh.data.lex.anbi.O05...ready, (17040 words).

Readi ng frequent words list from eindh.data.topl00...ready, (100 words).
Readi ng case-base for known words from eindh.data. known. ddfa... ready.

Readi ng case-base for unknown words from eindh. data. unknown. dFapsss... ready.
Sentence delimiter set to 'EL

Beam size = 1

Known Tree, Algorithm= | GTREE

Unknown Tree, Algorithm= Bl

Processing data fromthe file test.tok:

Done:
32 words processed.
Known words: 20
Unknown words: 12 (37.5 %
Tot al . 32
Time used: 1
Wor ds/ sec: 32

The file t est . out will now contain the tagged text:

Het/Art Centrum/ /N voor/Prep Nederlandse/Adj Taal//Adv en/Conj Spraak//N en/Conj de/Art In-
ductie/ /N van/Prep Linguistische// Adj Kennis/ /N onderzoeksgroep//V werken/V aan/Adv geheugenge-
baseerd//V leren/V voor/Adv taaltechnologie/ /N ./Punc

Al/Adv in/Prep 1994/ /Num werd/V er/ Adv gewerkt/V aan/Prep de/Art memory-based/ /N tagger/ /N
./Punc

In producing output, the tagger concatenates tags to words, separated by either a single slash (/)
when the word is in the lexicon, or a double slash (/ /) when the unknown words case base was
used to predict the tag.

With - T < testfile >, files in the format of the tagger generation input (one word per line,
two columns for word and corresponding tag) can be used. In that case, accuracy figures are
computed, and the output, again sent to standard output, consists of the two input columns,
separated by a / or //, and an additional column with the predicted tag. This way, a constructed
tagger can be evaluated. E.g.,

> Mot -s eindh.data.settings -T eindh.test > eindh.test. out

will send the tagged text (four columns) to ei ndh. t est . out , and compute total, known word,
and unknown word accuracies for the test data, as well as tagging speed indications.

Mermory Based Tagger Version 3.1

Done:
4424 wor ds processed.
Known words: 3730 correct from 3843 (97.0596 %
Unknown words: 466 correct from581 (80.2065 %
Tot al 1 4196 correct from 4424 (94.8463 %

Time used: 1
Wor ds/ sec: 4424

When neither - t nor - T is specified, Mot processes data from standard input.

CHAPTER 3. TUTORIAL AND REFERENCE 11

An additional parameter which can be used is the size of a beam search for the most probable
sequence of tags for a complete sentence. In this case, the tagger produces a nearest-neighbor-
based tag distribution for each word (rather than just the best one), and applies a beam search
to look for the maximally likely sequence of tags at a global sentence level, as opposed to a
deterministic decision for each word in the sentence independently. As a default, beam search is
off (i.e. set to beam size 1).

Not that in general, instead of using the settings file, it is also possible to specify each data file
separately with the parameters- | ,-r, -k, - u, and - L. These options can also be used to override
the values given in a settings file.

3.2.2 Server options

Sometimes it may take a long time to load all the data files necessary to start tagging, for instance
when 1B1 is used as the TIMBL classifier and a very large corpus was used for tagger generation.
In applications where small files of text or even individual sentences have to be tagged at different
points in time, e.g. on demand in a web demo, it is more efficient to use Mot as a server. With the
option - S < portnumber >, a tagger server can be set up. E.g.

Mot -s eindh.data.settings -S 1999 &

This sets up a tagger server on port 1999 of the local host. When running, the server can be
accessed via telnet to this port through a special purpose client application. To prevent too
many simultaneous clients from calling the server (e.g. in a demo environment), the option - C
< number > can be used to restrict the number of clients that can communicate with the server
at the same time (default 10).

3.2.3 Tagging texts with user-provided features

When Mot g is invoked to include user-provided features with the - E option (cf. subsection 3.1.3,
then necessarily Mot , when run on that generated tagger, will count on the user-provided features
to be present in the test data to be tagged. For this purpose Mot uses the same - E option. When
invoked with Mot - E <enriched tagged test fil e>, the test file is supposed to contain
the usual word and class columns, and in between these two columns Mot expects to find the
same number of user-provided features as given in Mdt g’s original training data. A line from an
example training file is shown in Subsection 3.1.3; the test file will need to have the same format.
If the tags in the final column of the enriched test file are yet unknown, then the final column
could simply be filled with dummy class values, such as question marks.

3.3 Timbl options

To construct a memory-based tagger and use it, TiIMBL is used. Various algorithms, parameters,
and metrics are implemented in TIMBL. By default, the memory-based learning algorithm used
to train and test a tagger is IGTREE for the known words, and 1B1 with the overlap metric with
gain ratio feature weighting, and k (the number of nearest neighbors) set to 1 for the unknown
words.

References 12

This is most likely not the best setting for the particular corpus you want to build a tagger from.
With the - O< string > parameter of Mot g, a string can be provided with settings for the TIMBL
algorithm to be used in tagger generation and tagging. The string has the following structure:

-0 "K' <known words options> U <unknown words options>"

or when the options are the same for known and unknown word tagging:
-0 "<options>"

The following is an example:

-O"K: -al -w1 U -a0 -wl -nM -k9 -dIL"

This means that IGTREE (features sorted according to information gain, and classification through
decision-tree traversal) will be used for the known words, and 1B1 with gain ratio feature weight-
ing, the modified value difference metric, 9 nearest neighbours, and inverse-linear distance weight-
ing will be used for the unknown words. Using these particular example settings increase overall
accuracy on the ei ndh. t est file from 94.8% to 95.5%.

Please consult the reference guide provided with the TIMBL package (Daelemans et al., 2007) to
experiment with other parameter settings. Note that changing some TiMBL parameter must be
accompanied by a complete regeneration of the tagger with Mot g. Also, changing the verbosity
settings of TIMBL may have the effect that more output is generated to the standard output
streams than what is documented here.

References

Daelemans, W. 1995. Memory-based lexical acquisition and processing. In P. Steffens, editor,
Machine Translation and the Lexicon, volume 898 of Lecture Notes in Artificial Intelligence. Springer-
Verlag, Berlin, pages 85-98.

Daelemans, W. and A. Van den Bosch. 1996. Language-independent data-oriented grapheme-to-
phoneme conversion. In J. P. H. Van Santen, R. W. Sproat, J. P. Olive, and J. Hirschberg, editors,
Progress in Speech Processing. Springer-Verlag, Berlin, pages 77-89.

Daelemans, W. and A. Van den Bosch. 2005. Memory-based language processing. Cambridge Uni-
versity Press, Cambridge, UK.

Daelemans, W., J. Zavrel, K. Van der Sloot, and A. Van den Bosch. 2007. TiMBL: Tilburg Memory
Based Learner, version 6.1, reference guide. Technical Report ILK 07-07, ILK Research Group,
Tilburg University.

Tjong Kim Sang, E. and S. Buchholz. 2000. Introduction to the CoNLL-2000 shared task: Chunk-
ing. In Proceedings of CONLL-2000 and LLL-2000, pages 127-132.

Uit den Boogaard, P.C. 1975. Woordfrequenties in geschreven en gesproken Nederlands. Scheltema en
Holkema, Utrecht, the Netherlands.

Zavrel, J. and W. Daelemans. 1999. Recent advances in memory-based part-of-speech tagging.
In VI Simposio Internacional de Comunicacion Social, pages 590-597.

