Event Linking with Sentential Features from Convolutional Neural Networks

Sebastian Krause1, Feiyu Xu2, Hans Uszkoreit3, Dirk Weissenborn4
1German Research Center for Artificial Intelligence, 2DFKI LT Lab, 3DFKI and Saarland University, 4German Research Center for Artificial Intelligence (DFKI)


Coreference resolution for event mentions enables extraction systems to process document-level information. Current systems in this area base their decisions on rich semantic features from various knowledge bases, thus restricting them to domains where such external sources are available. We propose a model for this task which does not rely on such features but instead utilizes sentential features coming from convolutional neural networks. Two such networks first process coreference candidates and their respective context, thereby generating latent-feature representations which are tuned towards event aspects relevant for a linking decision. These representations are augmented with lexical-level and pairwise features, and serve as input to a trainable similarity function producing a coreference score. Our model achieves state-of-the-art performance on two datasets, one of which is publicly available. An error analysis points out directions for further research.