
Introduction Distributional learning Learnability

Efficient, correct, unsupervised learning of
context-sensitive languages

Alexander Clark

Department of Computer Science
Royal Holloway, University of London

alexc@cs.rhul.ac.uk

CoNLL, July 2010

Introduction Distributional learning Learnability

Classic CoNLL Problem

Unsupervised learning of syntax
Ultimate goal:

Input: a large unannotated corpus
Output: a grammar

Motivation
Understanding linguistics and language acquisition

Not just crude constituent structure
A generative grammar for the whole language –
agreement, movement etc.

Introduction Distributional learning Learnability

Non-standard methodology

Typical CoNLL method:
50-year old representation
new ML techniques
Heuristic approach
Empirical evaluation
Test on 1-3 languages
Strong learning

Introduction Distributional learning Learnability

Non-standard methodology

Typical CoNLL method:
50-year old representation
new ML techniques
Heuristic approach
Empirical evaluation
Test on 1-3 languages
Strong learning

This paper:
A new representation
An old symbolic learning model
Correct algorithm
Proof
A very large class of languages
Weak learning

Introduction Distributional learning Learnability

Two problems of grammar induction

Information theoretic problems
Absence of negative data (Gold, 1967)
VC-dimension (Vapnik, 1998)
Sparsity, noise etc.

Many solutions: capacity control, regularisation, smoothing . . .

Computational problems
Complexity of finding the best hypothesis

Kearns and Valiant (1989), Abe and Warmuth (1992) . . .
Specific to certain classes of representation

In NLP these are largely ignored.

Introduction Distributional learning Learnability

Some research strategies

Solve them both together
Too hard at the moment.

Only positive random samples
But we have unlimited computational power

Horning (1969)
Angluin (1988), Chater and Vitanyi (2007) . . .

Only polynomial computation
But we have a good source of information:

Positive examples
Membership queries: we can ask whether w ∈ L

Goal: given some L ⊆ Σ∗: learn exactly which sentences are
grammatical.

Introduction Distributional learning Learnability

Distributional learning
Zellig Harris

Natural algorithmic idea:

Look at the doggy
Look at the car
Look at the biscuit
Look at the blue car
the doggy is over there
the biscuit is over there
. . .

Question: what classes of languages can be learned using this
approach?

Introduction Distributional learning Learnability

Distributional learning

Several reasons to take distributional learning seriously:
Cognitively plausible (Saffran et al. 1996, Mintz, 2002)
It works in practice: large scale lexical induction (Curran, J.
2003)
Linguists use it as a constituent structure test (Carnie, A,
2008)
Historically, PSGs were intended to be the output from
distributional learning algorithms.

Chomsky (1968/2006)
“The concept of "phrase structure grammar" was explicitly
designed to express the richest system that could reasonable
be expected to result from the application of Harris-type
procedures to a corpus.”

Introduction Distributional learning Learnability

Distribution

Classic idea from structuralist linguistics:

Context (or environment)

A context is just a pair of strings (l , r) ∈ Σ∗ × Σ∗.
(l , r) combines with u to give lur
λ is the empty string; special context (λ, λ)

Given a language L ⊆ Σ∗:

Distribution of a string

CL(u) = {(l , r)|lur ∈ L}
Clearly (λ, λ) ∈ CL(u) iff u ∈ L

“Distributional Learning” models/exploits the distribution of
strings;

Introduction Distributional learning Learnability

Observation table
K a set of strings and F a set of contexts

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Introduction Distributional learning Learnability

Observation table
K a set of strings and F a set of contexts

λ

a

b

ab

(λ, λ) (a, λ) (λ, b)

Introduction Distributional learning Learnability

Unrealistic assumption
We can fill in the table

λ

a

b

c

ab

aabb

abc

bc

bbcc

aab

bcc

(λ, λ)
(aaabb, bccc)

(aaabbc, λ)
(λ, abbccc)

(aaab, bccc)
(aa, bbc)

(aa, bbbc)
(abb, cc)

(abbb, cc)

Introduction Distributional learning Learnability

Rearrange rows and columns
Some structure

a

b

c

bc

bbcc

λ

ab

aabb

abc

aab

bcc

(aa, bbc)
(λ, λ)

(abb, cc)
(aaabb, bccc)

(aaabbc, λ)
(λ, abbccc)

(aaab, bccc)
(aa, bbbc)

(abbb, cc)

Introduction Distributional learning Learnability

Rectangles

Context free grammar
A non-terminal N

Y (N) = {w |N ∗⇒ w}
C(N) = {(l , r)|S ∗⇒ lNr}

Rectangle

If (l , r) ∈ C(N) and w ∈ Y (N), then lwr ∈ L
N will be a rectangle in the observation table

Introduction Distributional learning Learnability

Substitutable
L = {ancbn|n ≥ 0}

λ

a

b

c

acb

aacbb

cb

acbb

ac

aacb

(λ, λ)

(a, b)

(λ, cb)

(ac, b)

(a, λ)

(λ, b)

(ac, λ)

(aac, b)

Introduction Distributional learning Learnability

Example
L = {anbncm|n, m ≥ 0} ∪ {ambncn|n, m ≥ 0}

λ

a

b

c

ab

aabb

abc

bc

bbcc

aab

bcc

(λ, λ)
(aaabb, bccc)

(aaabbc, λ)
(λ, abbccc)

(aaab, bccc)
(aa, bbc)

(aa, bbbc)
(abb, cc)

(abbb, cc)

Introduction Distributional learning Learnability

Example
L = {anbncm|n, m ≥ 0} ∪ {ambncn|n, m ≥ 0}

a

b

c

bc

bbcc

λ

ab

aabb

abc

aab

bcc

(aa, bbc)
(λ, λ)

(abb, cc)
(aaabb, bccc)

(aaabbc, λ)
(λ, abbccc)

(aaab, bccc)
(aa, bbbc)

(abbb, cc)

Introduction Distributional learning Learnability

Example
L = {anbncm|n, m ≥ 0} ∪ {ambncn|n, m ≥ 0}

a

b

c

bc

bbcc

λ

ab

aabb

abc

aab

bcc

(aa,bbc)
(λ,λ)

(abb,cc)
(aaabb,bccc)

(aaabbc,λ)
(λ,abbccc)

(aaab,bccc)
(aa,bbbc)

(abbb,cc)

Introduction Distributional learning Learnability

Example
L = {anbncm|n, m ≥ 0} ∪ {ambncn|n, m ≥ 0}

a

b

c

bc

bbcc

λ

ab

aabb

abc

aab

bcc

(aa,bbc)
(λ,λ)

(abb,cc)
(aaabb,bccc)

(aaabbc,λ)
(λ,abbccc)

(aaab,bccc)
(aa,bbbc)

(abbb,cc)

Introduction Distributional learning Learnability

Concepts
Maximal rectangles

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Introduction Distributional learning Learnability

Concepts
Maximal rectangles

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Introduction Distributional learning Learnability

Concepts
Maximal rectangles

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Introduction Distributional learning Learnability

Concepts
Maximal rectangles

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Introduction Distributional learning Learnability

Concepts
Maximal rectangles

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Introduction Distributional learning Learnability

Concepts
Maximal rectangles

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Introduction Distributional learning Learnability

Concepts
Maximal rectangles

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Introduction Distributional learning Learnability

Partial order

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Introduction Distributional learning Learnability

Top and bottom

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Introduction Distributional learning Learnability

Top and bottom

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Introduction Distributional learning Learnability

Complete Lattice
Formal Concept Analysis

Introduction Distributional learning Learnability

Lattice
Palindrome language over a, b

λ

a

b

aa

ab

ba

bb

aba

(λ, λ)

(a, λ)

(ab, λ)

(aa, λ)

(b, λ)

(ba, λ)

(λ, b)

(λ, a)

Introduction Distributional learning Learnability

Lattice

bb/(3,3)

b/(1,4) /(1,6)

(0,8)

(3,1)

(2,2) aba/(2,2)

ba/(1,3) a/(1,5)ab/(1,3)

(8,0)

(6,1)(4,1)(4,1) (4,1)(4,1)

aa/(3,4)(2,2)(2,2) (2,2)

Introduction Distributional learning Learnability

Lattice
Worst case can be exponential

a0

a1

a2

a3

a4

a5

a6

(a0, λ)

(a1, λ)

(a2, λ)

(a3, λ)

(a4, λ)

(a5, λ)

(a6, λ)

Introduction Distributional learning Learnability

Lattice
Cannot enumerate explicitly

(3,4)

(2,5) (2,5)(2,5)

a6/(1,6) a5/(1,6) a2/(1,6)

(3,4)

(2,5) (2,5)

a3/(1,6)

(5,2)

(4,3)(4,3)(4,3)(4,3) (4,3)

(3,4)(3,4) (3,4)(3,4) (3,4)(3,4) (3,4)(3,4) (3,4)(3,4)

(0,7)

(2,5) (2,5)(2,5)

a4/(1,6)

(5,2)

(4,3)(4,3) (4,3) (4,3)(4,3)

(3,4)(3,4) (3,4) (3,4)(3,4)(3,4) (3,4) (3,4)

(2,5) (2,5) (2,5)(2,5)(2,5)

a1/(1,6)

(5,2)

(4,3) (4,3)(4,3)(4,3)

(3,4) (3,4) (3,4) (3,4)(3,4)

(2,5)

a0/(1,6)

(2,5) (2,5)

(4,3)

(3,4) (3,4)

(2,5)

(3,4)

(2,5)

(5,2)

(4,3)(4,3) (4,3)(4,3)

(3,4)(3,4)(3,4) (3,4)

(4,3)

(3,4)

(2,5) (2,5)

(6,1)

(5,2)(5,2) (5,2) (5,2)(5,2)

(4,3) (4,3)(4,3)(4,3) (4,3)(4,3) (4,3)

(3,4)

(2,5)

(5,2)

(4,3)(4,3)

(3,4)

(5,2)

(4,3)(4,3)

(5,2)

(4,3)

(5,2)

(4,3) (4,3)

(5,2)(5,2)

(6,1)

(5,2) (5,2)(5,2)

(4,3)

(6,1)

(5,2)

(6,1)

(5,2)(5,2)

(7,0)

(6,1)(6,1) (6,1)

Introduction Distributional learning Learnability

Technical detail
Formal Concept Analysis

These rectangles are “concepts” which form a complete
lattice B(K , L, F)

Each concept has a set of contexts: C. This defines a set
of strings: {w |CL(w) ⊇ C}.
One concept consists of all strings in the language –
defined by the context (λ, λ)

We can define a greatest lower bound (meet) X ∧ Y .

Introduction Distributional learning Learnability

Given the non-terminals, the rules are fixed

Suppose we have a grammar with non-terminals N, P, Q
We have a rule N → PQ
This means that Y (N) ⊇ Y (P)Y (Q).

Backwards
Given a collection of sets of strings X , Y , Z
Suppose X ⊇ YZ
Then we add a rule X → YZ .

Introduction Distributional learning Learnability

Given the non-terminals, the rules are fixed

Suppose we have a grammar with non-terminals N, P, Q
We have a rule N → PQ
This means that Y (N) ⊇ Y (P)Y (Q).

Backwards
Given a collection of sets of strings X , Y , Z
Suppose X ⊇ YZ
Then we add a rule X → YZ .

Introduction Distributional learning Learnability

Concatenation

Concatenation
Define a concatenation operation X ◦ Y
This needs a larger table: rows are KK , columns F .

Definition
Given two rectangles with strings Sx , Sy ⊆ K

Concatenate them to get SX SY ⊆ KK
Find the set of contexts shared by all these: CZ

Return the largest concept that contains CZ

Introduction Distributional learning Learnability

Distributional lattice grammars (DLGs)
Tuple 〈K , D, F 〉

Recursive definition
φ : Σ∗ → B(K , D, F).

for all a ∈ Σ
φ(a) = C(a)

for all w with |w | > 1,

φ(w) =
∧

u,v∈Σ+:uv=w

φ(u) ◦ φ(v)

Language defined:

Goal: φ(w) has the set of contexts C iff CL(w) ∩ F = C.
Define w to be in the language if φ(w) contains (λ, λ).

Introduction Distributional learning Learnability

Learnability

Search
Language is defined by choice of K and F
How can we find suitable K and F?

Lemma 1
As we increase K the language defined by 〈K , L, F 〉 decreases
monotonically
It will always converge to a subset of L in a finite time

Lemma 2
As we increase the set of contexts F the language
monotonically increases.
Any sufficiently large set of contexts will do.

Introduction Distributional learning Learnability

Learnability

Search
Language is defined by choice of K and F
How can we find suitable K and F?

Lemma 1
As we increase K the language defined by 〈K , L, F 〉 decreases
monotonically
It will always converge to a subset of L in a finite time

Lemma 2
As we increase the set of contexts F the language
monotonically increases.
Any sufficiently large set of contexts will do.

Introduction Distributional learning Learnability

Learnability

Search
Language is defined by choice of K and F
How can we find suitable K and F?

Lemma 1
As we increase K the language defined by 〈K , L, F 〉 decreases
monotonically
It will always converge to a subset of L in a finite time

Lemma 2
As we increase the set of contexts F the language
monotonically increases.
Any sufficiently large set of contexts will do.

Introduction Distributional learning Learnability

Search problem is trivial

Naive Algorithm

Start with F = {(λ, λ)}, K = Σ ∪ {λ}
If we see a string that is not in our hypothesis, the
hypothesis is too small, and we add contexts to F
Add strings to K without limit
Fill in the table with MQs

Given that the data is adversarial we have to use an inefficient
algorithm.

Add all contexts of the data seen so far.
We want it to stop changing hypotheses, so we test
whether increasing K might change the hypothesis.

Introduction Distributional learning Learnability

Power of Representation

Language class

Let L be the set of all languages L such that there is a finite set
of contexts F s.t. L = L(B(Σ∗, L, F))

Learnable class includes
1 All regular languages
2 Some but not all CFLs
3 Some non context free languages

Introduction Distributional learning Learnability

Main result

Main Theorem
L, represented by DLGs, can be identified in the limit from
positive data and MQs
Polynomial update time

Polynomial time bound is not quite sharp enough

Introduction Distributional learning Learnability

Is the class large enough?

Wrong question

What CFGs are in the class?

Context free grammars

For a non-terminal N, can we find a finite set of contexts that
pick out the strings generated by N?

{(l1, r1), . . . (lk , rk)}
If w : l1wr1, . . . lkwrk ∈ L, then N ∗⇒ w

Any CFG with this property is in the learnable class.

Introduction Distributional learning Learnability

Context sensitivity

The lattice may have exponentially many elements in
|K |+ |F |
(Exponentially many overlapping generalisations at
different levels of generality)
We cannot construct a CFG from all of them
We can approximate parsing by taking the ∧ of all of the
elements in one slot of the chart
This means we have a CS representation but we maintain
a cubic time parsing algorithm

We are forced to move to a CS representation to solve a
computational problem.

Introduction Distributional learning Learnability

Nice theory, but can I build a system with it?

A few obstacles to direct implementation:
Queries can be substituted by probabilistic model
Some problems with the partition function

Two changes
Replace whole sentence context with a local window
context
Maybe: need a more refined learning argument

K could blow up
Number – case – gender explosion
Represent lattice more compactly through minimal
elements

Introduction Distributional learning Learnability

Conclusion

Jackendoff (2008)
1 Descriptive constraint: the class of languages must be

sufficiently rich to represent natural languages
2 Learnability constraint: there must be a way for the child to

learn these representations from the data available
3 Evolutionary constraint: it must not posit a rich,

evolutionarily implausible language faculty

Distributional Lattice Grammars potentially satisfy all three
criteria

Introduction Distributional learning Learnability

Summary

A generalisation of distributional learning.
By switching to a mildly CS representation we can
efficiently consider every possible generalisation at the
same time.
Clean theoretical basis in the theory of residuated lattices.
The first learning result for grammar induction that is not
obviously wrong.
There are no real alternatives to this and related results.

Introduction Distributional learning Learnability

Any questions?

Introduction Distributional learning Learnability

Not in DLG?
L = {anb|n > 0} ∪ {ancm|m > n > 0}

b

c

cc

ccc

c4

c5

c6

c7

c8

c9

(a, λ)
(aa, λ)

(aaa, λ)
(a4, λ)

(a5, λ)
(a6, λ)

(a7, λ)

Introduction Distributional learning Learnability

Context sensitive example

Let M = {(a, b, c)∗}, we consider the language
L = Labc ∪ Lab ∪ Lac where Lab = {wd |w ∈ M, |w |a = |w |b},
Lac = {we|w ∈ M, |w |a = |w |c},
Labc = {wf |w ∈ M, |w |a = |w |b = |w |c}.

F = {(λ, λ), (λ, d), (λ, ad), (λ, bd), (λ, e), (λ, ae), (λ, ce), (λ, f), (ab, λ), (ac, λ)}

This is in the learnable class.

	Introduction
	Distributional learning
	Learnability

