
Introduction Distributional learning Learnability

Efficient, correct, unsupervised learning of
context-sensitive languages

Alexander Clark

Department of Computer Science
Royal Holloway, University of London

alexc@cs.rhul.ac.uk

CoNLL, July 2010



Introduction Distributional learning Learnability

Classic CoNLL Problem

Unsupervised learning of syntax
Ultimate goal:

Input: a large unannotated corpus
Output: a grammar

Motivation
Understanding linguistics and language acquisition

Not just crude constituent structure
A generative grammar for the whole language –
agreement, movement etc.



Introduction Distributional learning Learnability

Non-standard methodology

Typical CoNLL method:
50-year old representation
new ML techniques
Heuristic approach
Empirical evaluation
Test on 1-3 languages
Strong learning
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Non-standard methodology

Typical CoNLL method:
50-year old representation
new ML techniques
Heuristic approach
Empirical evaluation
Test on 1-3 languages
Strong learning

This paper:
A new representation
An old symbolic learning model
Correct algorithm
Proof
A very large class of languages
Weak learning
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Two problems of grammar induction

Information theoretic problems
Absence of negative data (Gold, 1967)
VC-dimension (Vapnik, 1998)
Sparsity, noise etc.

Many solutions: capacity control, regularisation, smoothing . . .

Computational problems
Complexity of finding the best hypothesis

Kearns and Valiant (1989), Abe and Warmuth (1992) . . .
Specific to certain classes of representation

In NLP these are largely ignored.



Introduction Distributional learning Learnability

Some research strategies

Solve them both together
Too hard at the moment.

Only positive random samples
But we have unlimited computational power

Horning (1969)
Angluin (1988), Chater and Vitanyi (2007) . . .

Only polynomial computation
But we have a good source of information:

Positive examples
Membership queries: we can ask whether w ∈ L

Goal: given some L ⊆ Σ∗: learn exactly which sentences are
grammatical.
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Distributional learning
Zellig Harris

Natural algorithmic idea:

Look at the doggy
Look at the car
Look at the biscuit
Look at the blue car
the doggy is over there
the biscuit is over there
. . .

Question: what classes of languages can be learned using this
approach?
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Distributional learning

Several reasons to take distributional learning seriously:
Cognitively plausible (Saffran et al. 1996, Mintz, 2002)
It works in practice: large scale lexical induction (Curran, J.
2003)
Linguists use it as a constituent structure test (Carnie, A,
2008)
Historically, PSGs were intended to be the output from
distributional learning algorithms.

Chomsky (1968/2006)
“The concept of "phrase structure grammar" was explicitly
designed to express the richest system that could reasonable
be expected to result from the application of Harris-type
procedures to a corpus.”
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Distribution

Classic idea from structuralist linguistics:

Context (or environment)

A context is just a pair of strings (l , r) ∈ Σ∗ × Σ∗.
(l , r) combines with u to give lur
λ is the empty string; special context (λ, λ)

Given a language L ⊆ Σ∗:

Distribution of a string

CL(u) = {(l , r)|lur ∈ L}
Clearly (λ, λ) ∈ CL(u) iff u ∈ L

“Distributional Learning” models/exploits the distribution of
strings;
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Observation table
K a set of strings and F a set of contexts

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
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Observation table
K a set of strings and F a set of contexts

λ

a

b

ab

(λ, λ) (a, λ) (λ, b)
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Unrealistic assumption
We can fill in the table

λ

a

b

c

ab

aabb

abc

bc

bbcc

aab

bcc

(λ, λ)
(aaabb, bccc)

(aaabbc, λ)
(λ, abbccc)

(aaab, bccc)
(aa, bbc)

(aa, bbbc)
(abb, cc)

(abbb, cc)
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Rearrange rows and columns
Some structure

a

b

c

bc

bbcc

λ

ab

aabb

abc

aab

bcc

(aa, bbc)
(λ, λ)

(abb, cc)
(aaabb, bccc)

(aaabbc, λ)
(λ, abbccc)

(aaab, bccc)
(aa, bbbc)

(abbb, cc)
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Rectangles

Context free grammar
A non-terminal N

Y (N) = {w |N ∗⇒ w}
C(N) = {(l , r)|S ∗⇒ lNr}

Rectangle

If (l , r) ∈ C(N) and w ∈ Y (N), then lwr ∈ L
N will be a rectangle in the observation table
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Substitutable
L = {ancbn|n ≥ 0}

λ

a

b

c

acb

aacbb

cb

acbb

ac

aacb

(λ, λ)

(a, b)

(λ, cb)

(ac, b)

(a, λ)

(λ, b)

(ac, λ)

(aac, b)
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Example
L = {anbncm|n, m ≥ 0} ∪ {ambncn|n, m ≥ 0}

λ

a

b

c

ab

aabb

abc

bc

bbcc

aab

bcc

(λ, λ)
(aaabb, bccc)

(aaabbc, λ)
(λ, abbccc)

(aaab, bccc)
(aa, bbc)

(aa, bbbc)
(abb, cc)

(abbb, cc)
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Example
L = {anbncm|n, m ≥ 0} ∪ {ambncn|n, m ≥ 0}

a

b

c

bc

bbcc

λ

ab

aabb

abc

aab

bcc

(aa,bbc)
(λ,λ)

(abb,cc)
(aaabb,bccc)

(aaabbc,λ)
(λ,abbccc)

(aaab,bccc)
(aa,bbbc)

(abbb,cc)
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Concepts
Maximal rectangles

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10



Introduction Distributional learning Learnability

Concepts
Maximal rectangles

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10



Introduction Distributional learning Learnability

Concepts
Maximal rectangles

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10



Introduction Distributional learning Learnability

Concepts
Maximal rectangles

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10



Introduction Distributional learning Learnability

Concepts
Maximal rectangles

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10



Introduction Distributional learning Learnability

Concepts
Maximal rectangles

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10



Introduction Distributional learning Learnability

Concepts
Maximal rectangles

k1
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Partial order

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
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Top and bottom

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
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Top and bottom

k1

k2

k3

k4

k5

k6

k7

k8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
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Complete Lattice
Formal Concept Analysis
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Lattice
Palindrome language over a, b

λ

a

b

aa

ab

ba

bb

aba

(λ, λ)

(a, λ)

(ab, λ)

(aa, λ)

(b, λ)

(ba, λ)

(λ, b)

(λ, a)



Introduction Distributional learning Learnability

Lattice

bb/(3,3)

b/(1,4) /(1,6)

(0,8)

(3,1)

(2,2) aba/(2,2)

ba/(1,3) a/(1,5)ab/(1,3)

(8,0)

(6,1)(4,1)(4,1) (4,1)(4,1)

aa/(3,4)(2,2)(2,2) (2,2)
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Lattice
Worst case can be exponential

a0

a1

a2

a3

a4

a5

a6

(a0, λ)

(a1, λ)

(a2, λ)

(a3, λ)

(a4, λ)

(a5, λ)

(a6, λ)
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Lattice
Cannot enumerate explicitly

(3,4)

(2,5) (2,5)(2,5)

a6/(1,6) a5/(1,6) a2/(1,6)

(3,4)

(2,5) (2,5)

a3/(1,6)

(5,2)

(4,3)(4,3)(4,3)(4,3) (4,3)

(3,4)(3,4) (3,4)(3,4) (3,4)(3,4) (3,4)(3,4) (3,4)(3,4)

(0,7)

(2,5) (2,5)(2,5)

a4/(1,6)

(5,2)

(4,3)(4,3) (4,3) (4,3)(4,3)

(3,4)(3,4) (3,4) (3,4)(3,4)(3,4) (3,4) (3,4)

(2,5) (2,5) (2,5)(2,5)(2,5)

a1/(1,6)

(5,2)

(4,3) (4,3)(4,3)(4,3)

(3,4) (3,4) (3,4) (3,4)(3,4)

(2,5)

a0/(1,6)

(2,5) (2,5)

(4,3)

(3,4) (3,4)

(2,5)

(3,4)

(2,5)

(5,2)

(4,3)(4,3) (4,3)(4,3)

(3,4)(3,4)(3,4) (3,4)

(4,3)

(3,4)

(2,5) (2,5)

(6,1)

(5,2)(5,2) (5,2) (5,2)(5,2)

(4,3) (4,3)(4,3)(4,3) (4,3)(4,3) (4,3)

(3,4)

(2,5)

(5,2)

(4,3)(4,3)

(3,4)

(5,2)

(4,3)(4,3)

(5,2)

(4,3)

(5,2)

(4,3) (4,3)

(5,2)(5,2)

(6,1)

(5,2) (5,2)(5,2)

(4,3)

(6,1)

(5,2)

(6,1)

(5,2)(5,2)

(7,0)

(6,1)(6,1) (6,1)
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Technical detail
Formal Concept Analysis

These rectangles are “concepts” which form a complete
lattice B(K , L, F )

Each concept has a set of contexts: C. This defines a set
of strings: {w |CL(w) ⊇ C}.
One concept consists of all strings in the language –
defined by the context (λ, λ)

We can define a greatest lower bound (meet) X ∧ Y .
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Given the non-terminals, the rules are fixed

Suppose we have a grammar with non-terminals N, P, Q
We have a rule N → PQ
This means that Y (N) ⊇ Y (P)Y (Q).

Backwards
Given a collection of sets of strings X , Y , Z
Suppose X ⊇ YZ
Then we add a rule X → YZ .
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Concatenation

Concatenation
Define a concatenation operation X ◦ Y
This needs a larger table: rows are KK , columns F .

Definition
Given two rectangles with strings Sx , Sy ⊆ K

Concatenate them to get SX SY ⊆ KK
Find the set of contexts shared by all these: CZ

Return the largest concept that contains CZ
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Distributional lattice grammars (DLGs)
Tuple 〈K , D, F 〉

Recursive definition
φ : Σ∗ → B(K , D, F ).

for all a ∈ Σ
φ(a) = C(a)

for all w with |w | > 1,

φ(w) =
∧

u,v∈Σ+:uv=w

φ(u) ◦ φ(v)

Language defined:

Goal: φ(w) has the set of contexts C iff CL(w) ∩ F = C.
Define w to be in the language if φ(w) contains (λ, λ).
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Learnability

Search
Language is defined by choice of K and F
How can we find suitable K and F?

Lemma 1
As we increase K the language defined by 〈K , L, F 〉 decreases
monotonically
It will always converge to a subset of L in a finite time

Lemma 2
As we increase the set of contexts F the language
monotonically increases.
Any sufficiently large set of contexts will do.
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Search problem is trivial

Naive Algorithm

Start with F = {(λ, λ)}, K = Σ ∪ {λ}
If we see a string that is not in our hypothesis, the
hypothesis is too small, and we add contexts to F
Add strings to K without limit
Fill in the table with MQs

Given that the data is adversarial we have to use an inefficient
algorithm.

Add all contexts of the data seen so far.
We want it to stop changing hypotheses, so we test
whether increasing K might change the hypothesis.
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Power of Representation

Language class

Let L be the set of all languages L such that there is a finite set
of contexts F s.t. L = L(B(Σ∗, L, F ))

Learnable class includes
1 All regular languages
2 Some but not all CFLs
3 Some non context free languages
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Main result

Main Theorem
L, represented by DLGs, can be identified in the limit from
positive data and MQs
Polynomial update time

Polynomial time bound is not quite sharp enough
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Is the class large enough?

Wrong question

What CFGs are in the class?

Context free grammars

For a non-terminal N, can we find a finite set of contexts that
pick out the strings generated by N?

{(l1, r1), . . . (lk , rk )}
If w : l1wr1, . . . lkwrk ∈ L, then N ∗⇒ w

Any CFG with this property is in the learnable class.
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Context sensitivity

The lattice may have exponentially many elements in
|K |+ |F |
(Exponentially many overlapping generalisations at
different levels of generality)
We cannot construct a CFG from all of them
We can approximate parsing by taking the ∧ of all of the
elements in one slot of the chart
This means we have a CS representation but we maintain
a cubic time parsing algorithm

We are forced to move to a CS representation to solve a
computational problem.
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Nice theory, but can I build a system with it?

A few obstacles to direct implementation:
Queries can be substituted by probabilistic model
Some problems with the partition function

Two changes
Replace whole sentence context with a local window
context
Maybe: need a more refined learning argument

K could blow up
Number – case – gender explosion
Represent lattice more compactly through minimal
elements
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Conclusion

Jackendoff (2008)
1 Descriptive constraint: the class of languages must be

sufficiently rich to represent natural languages
2 Learnability constraint: there must be a way for the child to

learn these representations from the data available
3 Evolutionary constraint: it must not posit a rich,

evolutionarily implausible language faculty

Distributional Lattice Grammars potentially satisfy all three
criteria
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Summary

A generalisation of distributional learning.
By switching to a mildly CS representation we can
efficiently consider every possible generalisation at the
same time.
Clean theoretical basis in the theory of residuated lattices.
The first learning result for grammar induction that is not
obviously wrong.
There are no real alternatives to this and related results.
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Any questions?
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Not in DLG?
L = {anb|n > 0} ∪ {ancm|m > n > 0}

b

c

cc

ccc

c4

c5

c6

c7

c8

c9

(a, λ)
(aa, λ)

(aaa, λ)
(a4, λ)

(a5, λ)
(a6, λ)

(a7, λ)
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Context sensitive example

Let M = {(a, b, c)∗}, we consider the language
L = Labc ∪ Lab ∪ Lac where Lab = {wd |w ∈ M, |w |a = |w |b},
Lac = {we|w ∈ M, |w |a = |w |c},
Labc = {wf |w ∈ M, |w |a = |w |b = |w |c}.

F = {(λ, λ), (λ, d), (λ, ad), (λ, bd), (λ, e), (λ, ae), (λ, ce), (λ, f ), (ab, λ), (ac, λ)}

This is in the learnable class.
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