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Abstract

Creating large amounts of manually annotated
training data for statistical parsers imposes
heavy cognitive load on the human annota-
tor and is thus costly and error prone. It
is hence of high importance to decrease the
human efforts involved in creating training
data without harming parser performance. For
constituency parsers, these efforts are tradi-
tionally evaluated using the total number of
constituents (TC) measure, assuming uniform
cost for each annotated item. In this paper, we
introduce novel measures that quantify aspects
of the cognitive efforts of the human annota-
tor that are not reflected by the TC measure,
and show that they are well established in the
psycholinguistic literature. We present a novel
parameter based sample selection approach
for creating good samples in terms of these
measures. We describe methods for global op-
timisation of lexical parameters of the sam-
ple based on a novel optimisation problem, the
constrained multiset multicover problem, and
for cluster-based sampling according to syn-
tactic parameters. Our methods outperform
previously suggested methods in terms of the
new measures, while maintaining similar TC
performance.
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SRL (Toutanova et al., 2005). These often oper-
ate over the highly variable Web, which consists of
texts written in many languages and genres. Since
the performance of parsers markedly degrades when
training and test data come from different domains
(Lease and Charniak, 2005), large amounts of train-
ing data from each domain are required for using
them effectively. Thus, decreasing the human efforts
involved in creating training data for parsers without
harming their performance is of high importance.

In this paper we address this problem through
sample selection: given a parsing algorithm and a
large pool of unannotated sentenc¢gselect a sub-
setS; C S for human annotation such that the hu-
man efforts in annotating; are minimized while
the parser performance when trained with this sam-
ple is maximized.

Previous works addressing training sample size
vs. parser performance for constituency parsers
(Section 2) evaluated training sample size using the
total number of constituentg¢). Sentences differ
in length and therefore in annotation efforts, and it
has been argued (see, e.g, (Hwa, 2004)) ticate-
flects the number of decisions the human annotator
makes when syntactically annotating the sample, as-
suming uniform cost for each decision.

In this paper we posit that important aspects of
the efforts involved in annotating a sample are not
reflected by therc measure. Since annotators ana-

State of the art statistical parsers require larggze sentences rather than a bag of constituents, sen-
amounts of manually annotated data to achieve godence structure has a major impact on their cognitive

performance.

Creating such data imposes heagfforts. Sizeable psycholinguistic literature points

cognitive load on the human annotator and is thu® the connection between nested structures in the
costly and error prone. Statistical parsers are mayntactic structure of a sentence and its annotation
jor components in NLP applications such as Q-Aefforts. This has motivated us to introduce (Sec-

(Kwok et al., 2001), MT (Marcu et al., 2006) andtion 3) three sample size measures, the total and av-



erage number of nested structures of degraethe baseline). We thus argue that PBS provides a way to
sample, and the average number of constituents psglect a sample that imposes reduced cognitive load
sentence in the sample. on the human annotator.

Active learning algorithms for sample selection
focus on sentences that are difficult for the parsing Related Work

algorithm when trained with the available trainingPrevious work on sample selection for statistical

data (Section 2). In Section 5 we show that active . . .

. . . parsers applied active learning (AL) (Cohn and Lad-

learning samples contain a high number of comple )

) . . ner, 1994) to corpora of various languages and syn-

structures, much higher than their number in a rar%— . . .
A actic annotation schemes and to parsers of different

domly selected sample that achieves the same parser

. . (performance levels. In order to be able to compare
performance level. To avoid that, we introduce (Se = ur results to orevious work targeting hiah parser
tion 4) a novelparameter based sample selection P geting high p

(PBS) approach which aims to select a sample thg{arformance, we selecteql the corpus and parser
enables good estimation of the model paramete used by the method reporting the best results (Hwa,

r T
without focusing on difficult sentences. In Section §O|(_)|4), V\lzi‘éjnd C(zjlllns pe;rs.etr. i ith th
we show that the methods derived from our approach wa ( ) used uncertainty sampling wi €

select substantially fewer complex structures tha}qee entropy () selection functiohto select train-

active learning methods and the random baseline. mgt.sampleshforf Eﬂe Collllgs”pgrser.l n teach 't'.
We propose two different methods. bhuster eration, €ach ot the uniabelied pool sentences IS

based sampling (CBS), we aim to select a sample parsed by the parsing model, which outputs a list

in which the distribution of the model parameters i?qftt.retes riar(\jked by thdelr propag:lltlesa t;he sctored
similar to their distribution in the whole unlabelled'>" '° f€at€d as arandom variable and the sentences
pool. To do that we build a vector representation fo}(\/hoSe variable has the highest entropy are selected

each sentence in the unlabelled pool reflecting the' human annotation. Sample size was measured

distribution of the model parameters in this sentencd! T¢ and ranged from 100K to 700K WSJ con-

and use a clustering algorithm to divide these vectog'tuents' The Initial size of the unlabelled poql was
OK constituents (the 40K sentences of sections 2-

into clusters. In the second method we use the fa%ﬁ) . )
that a sample containing many examples of a certa of WSJ). A detailed comparison petwee_n the re-
ults of TE and our methods is given in Section 5.

parameter yields better estimation of this paramete?. The followi ks add dth K of
If this parameter is crucial for model performance € following works addresse the tas_ ot sam-
and the selection process does not harm the distple selection for statistical parsers, but in signifi-

bution of other parameters, then the selected sarﬁe-mﬂy different experimental setups. Becker and

ple is of high quality. To select such a sample wésbome (2005) addressed Iower performance lev-
introduce a reduction between this selection probe-IS of the Collins parser. Their uncertainty sam-

lem and a variant of the NP-hard muItiset-muIticoveF_’Iing protocol combined bagging with i func-

problem (Hochbaum, 1997). We call this problen’f'on’ achieving a 32%c reduction for reaching a

the constrained multiset multicover (CMM) problem parser f-score level of 85.5%. The target sample size

and present an algorithm to approximate it ' set contained a much smaller number of sentences
We experiment (Section 5) with the WSJ Pen(wSK) than ours. Baldridge and Osborne (2004) ad-

nTreebank (Marcus et al., 1994) and Collins’ gengressed HPSG parse selection using a feature based

erative parser (Collins, 1999), as in previous WorIJ.Og'“near parser, the Redwoods corpus and commit-

We show that PBS algorithms achieve good resulf€e based active learning, obtaining 80% reduction
in terms of both the traditionalc measure (signifi- In annotation cost. Their annotation cost measure

cantly better than the random selection baseline aniPs reIated_I'Eo the nurlnb%g; DOZZIUG pa(ljrses r?f Itlhe
similar to the results of the state of the art tree erccntence. Tang et al. ( ) addressed a shallow

tropy (TE) method of (Hwa, 2004)) and our novel| Parser trained on a semantically annotated corpus.
cognitively driven measures (where PBS algorithms 14 explored several functions in the experimental setup
significantly outperform bothre and the random used in the present work, ané gave the best results.



They used an uncertainty sampling protocol, where >
in each iteration the sentences of the unlabelled pool /’\
are clustered using a distance measure defined on RN =

N
parse trees to a predefined number of clusters. The TN NP v s
most uncertain sentences are selected from the clus- bastweelc IR hought NP
ters, the training taking into account the densities of totus
the clusters. They reduced the number of training Figure 1: An example parse tree.

sentences required for their parser to achieve its best
performance from 1300 to 400. _ _ _ _ _

The importance of cognitively driven measures ofNtil the processing of its children is completed. For
sentences’ syntactic complexity has been recogniz&f@mMPple, in Figure 1, when the constituent NP3 is
by Roark et al. (2007) who demonstrated their uti“t);:reated, it ste_lrts a nested structure of d_egree 2, since
for mild cognitive impairment diagnosis. Zhu et al.two levels of its ancestors (VP, S) are still processed.
(2008) used a clustering algorithm for sampling thdts parent (VP) starts a nested structure of degree 1.
initial labeled set in an AL algorithm for word sense  1he difficulty of deeply nested structures for the
disambiguation and text classification. In contrast tfuman parser is well established in the psycholin-
our cBs method, they proceeded with iterative unQuistics literature. We review here some of the vari-
certainty AL selection. Melville et al. (2005) used©Us explanations of this phenomenon; for a compre-
parameter-based sample selection for a classifier ffgnsive review see (Gibson, 1998).

a classic active learning setting, for a task very dif- According to the classical stack overflow theory
ferent from ours. (Chomsky and Miller, 1963) and its extension, the

Sample selection has been applied to many NLpcomplete syntactic/thematic dependencies theory
applications. Examples include base noun phragfibson, 1991), the human parser should track the
chunking (Ngai, 2000), named entity recognitiorPP€n structures in its short term memory. When the

(Tomanek et al., 2007) and multi-task annotatioRumber of these structures is too large or when the
(Reichart et al., 2008). structures are nested too deeply, the short term mem-

ory fails to hold them and the sentence becomes un-
interpretable.
While the resources, capabilities and constraints of According to the perspective shifts theory
the human parser have been the subject of extensifdacWhinney, 1982), processing deeply nested
research, different theories predict different aspecgructures requires multiple shifts of the annotator
of its observed performance. We focus on strugeerspective and is thus more difficult than process-
tures that are widely agreed to impose a high cogrg shallow structures. The difficulty of deeply
nitive load on the human annotator and on theorigsested structured has been demonstrated for many
considering the cognitive resources required in partanguages (Gibson, 1998).
ing a complete sentence. Based on these, we deriveWe thus propose the total number of nested struc-
measures for the cognitive load on the human parseres of degred( in a sample {NSK) as a measure
when syntactically annotating a set of sentences. of the cognitive efforts that its annotation requires.
Nested structures. A nested structure is a parseThe higherK is, the more demanding the structure.
tree node representing a constituent created while Sentence level resources. In the psycholinguis-
another constituent is still being processed (‘open‘}ic literature of sentence processing there are many
Thedegree K of a nested structure is the number otheories describing the cognitive resources required
such open constituents. In this paper, we enumedturing a complete sentence processing. These re-
ate the constituents in a top-down left-right ordersources might be allocated during the processing of
and thus when a constituent is created, only its agr certain word and are needed long after its con-
cestors are processedA constituent is processed stituent is closed. We briefly discuss two lines of

2 good review on node enumeration of the human parsdN€ory, focusing on their predictions that sentences
in given in (Abney and Johnson, 1991). consisting of a large number of structures (e.g., con-

3 Cognitively Driven Evaluation M easures



stituents or nested structures) require more cognititens about the human parser than those described
resources for longer periods. here. A complete survey of that literature is beyond

Levelt (2001) suggested a layered model of th#he scope of this paper. We consider the proposed
mental lexicon organization, arguing that when oneneasures a good approximation of some of the hu-
hears or reads a sentence s/he activates word forman parser characteristics.

(lexemes) that in turn activate lemma information. )
The lemma information contains information about Parameter Based Sampling (PBS

. o | and the | i , we apply our methods to the Collins
Information Is incremental and the lemma in Orma'generative parser (Collins, 1999). For any sentence

tion for a given word is used until its syntactic struc-_ -4 parse tree it assigns a probability (s, ¢),

ture is completed. The information about a word in,  fin s the tree for which this probability is maxi-

cIud(_e ‘3_1” syntactic predicti_ons, obligatgry (.., thr?nized. To do that, it writeg(t, s) as a product of the
prediction of a noun following a determiner) and 0p, o pjjities of the constituents irand decomposes

t|ongl (e.g_., oonngI grgumeqts of 'Te‘ verb, modifie he latter using the chain rule. In simplified notation,
relationships). This information might be relevanlit USES:

long after the constituents containing the word are
closed, sometimes till the end of the sentence. p(t,5) = HP<S1 — S9...Sn) = Hmsl).. . P(Sn|é(51 ... 5n))

Another line of research focuses on working @)
memory, emphasizing thactivation decay princi- We refer to the conditional probabilities as the model
ple. It stresses that words and structures perceivéarameters.
during sentence processing are forgotten over time. Cluster Based Sampling (cBs). We describe
As the distance between two related structures infere a method for sampling subsets that leads to a
sentence grows, it is more demanding to reactivafgrameter estimation that is similar to the parame-
one when seeing the other. Indeed, supported t§r estimation we would get if annotating the whole
a variety of observations, many of the theories ofinannotated set.
the human parser (see (Lewis et al., 2006) for a sur- To do that, we randomly selegt sentences from
vey) predict that processing items towards the end dfie unlabelled poolV, manually annotate them,
longer sentences should be harder, since they mdein the parser with these sentences and parse the
often have to be integrated with items further backiest of the unlabelled poold = N — M). Using
Thus, sentences with a large number of structurdBis annotation we build a syntactic vector repre-
impose a special cognitive load on the annotator. sentation for each sentenceh We then cluster

We thus propose to use the number of structurdgese sentences and sample the clusters with respect
(constituents or nested structures) in a sentence atPatheir weights to preserve the distribution of the
measure of its difficulty for human annotation. Thesyntactic features. The selected sentences are man-
measures we use for a sample (a sentence set) aready annotated and combined with the group\df
average number of constituents (Ac) and theaver- sentences to train the final parser. The size of this
age number of nested structures of degree k (ANsk)  combined sample is measured when the annotation
per sentence in the set. Highet or ANsk values efforts are evaluated.
of a set imply higher annotation requiremehts Denote the left hand side nonterminal of a con-

Pschycolinguistics research makes finer observatituent by? and the unlexicalized head of the con-
- stituent byH. The domain ofP is the set of non-
3The correlation between the number of constituents angtrminals (excluding POS tags) and the domain of H

sentence length is very strong (e.g., correlation coefficient % .
0.93 in WSJ section 0). We could use the number of words, b(i the set of nonterminals and POS tags of WSJ. In

we prefer the number of structures since the latter better reflecd! the parameters of the Collins pargéandH are
the arguments made in the literature. conditioned upon. We thus u$@, H) pairs as the



features in the vector representation of each sentericead word. Since word statistics are sparse, sam-
in G. Thei-th coordinate is given by the equation: pling from clusters created according to a lexical
vector representation of the sentences does not seem

> Y F@) == L) @ promising.

c€t(s) i Another way to create a sample from which the
Qarser can extract robust head word statistics is to
select a sample containing many examples of each
word. More formally, we denote the words that oc-
cur in the unlabelled pool at leastimes byt-words,
wheret is a parameter of the algorithm. We want to
)select a sample containing at leagtxamples of as
nany t-words as possible.

Wherec are the constituents of the sentence par
t(s), @ is a function that returns théP, H) pair
of the constituent, F; is a predicate that returns 1
iff it is given pair number; as an argument and 0
otherwise, and_ is the number of modifying non-
terminals in the constituent plus 1 (for the head
counting the number of parameters that conditiof’ _
on (P, H). Following equation (2), theth coordi- To sglect such a sample we mtr_oduce a novel op-
nate of the vector representation of a sentena@ in timisation problem. Our problem is a variant of the
contains the number of parameters that will be calultiset multicover ¥im) problem, which we call
culated conditioned on thigh (P, H) pair. the constrained _multlset multicover (CMM) prob-

We use the k-means clustering algorithm, with thé€M-  The setting of theum problem is as fol-
L, norm as a distance metric (MacKay, 2002), to dilo¥s (Hochbaum, 1997): Given a sétof m ele-
vide vectors into clusters. Clusters created by thi@en,ts to be covgred eadh times, a coIIecFlon _Of
algorithm contain adjacent vectors in a EuclideafUltisetsS; < 1,j € J = {L,...,n} (amultiset is
space. Clusters represent sentences with similar feysetin which members’ multiplicity may be greater

tures values. To initialize k-means, we sample thg]aln_ 1), ar;ld weights;, f'nd a slubcolle_ctlorC Ofd
initial centers values from a uniform distribution MUltiSets that covers eacte I at leas; times, an

over the data points. such thad” ;- w; is minimized.

We do not decide on the number of clusters in ad- CMM differs from mm in that in cMm the sum
vance but try to find inherent structure in the date0f the Weights (representing the desired number of

Several methods for estimating the ‘correct’ numsentences to annotate) is bounded, while the num-

ber of clusters are known (Milligan and Cooper,ber of covered _eI(_aments (representing the t-words)
1985). We used a statistical heuristic called th&hould be maximized. In our casg,is the set of
elbow test. We define the ‘within cluster disper-WordS that occur at leagttimes in the unlabelled
sion’ W, as follows. Suppose that the data is dipool,bi = t,Vi € I, the multisets are the sentences

vided into % clustersC’ ... Cy, with |C;| points in N that poolandu; =1,vj € J.

the jth cluster.  LetD; = Y, icc, dijj Where Multiset multicover is_, NP_—hard. quever, there IS
d; ; is the squared Euclidean distance, thep := @ good greedy approximation algorithm fqr it. De-
S_t_1 5757 Di- Wi tends to decrease monotonicallyfin€ als;,i) = min([i(s;,i), d;), whered; is the
ask increases. In many cases, from soknitais de-  difference between; and the number of instances
crease flattens markedly. The heuristic is that th@f item that are present in our current sample, and
location of such an ‘elbow’ indicates the appropriatd?(5; ¢) is the multiplicity of thei-th element in the
number of clusters. In our experiments, an obviouSultisets;. DefineA(s;) to be the multiset contain-
elbow occurred for 15 clusters. ing exactlya(s;,i) copies of any elementif s; is

k; sentences are randomly sampled from eadiPt already in the set cover and the empty set if it
cluster. b — DGl whereD is the number is. The greedy algorithm repeatedly adds a set mini-
T 251G mizing %Sj)l This algorithm provenly achieves an

J
approximation ratio betwedm (m) andin(m) + 1.
Fn our case all weights are 1, so the algorithm would

of sentences to be sampled frath That way we
ensure that in the final sample each cluster is repr
sented according to its size.

CMM Sampling.  All of the parameters in the  4ye explored:eswith several lexical features schemes and
Collins parser are conditioned on the constituent'got only marginal improvement over random selection.



simply add the sentence that maximiz&s ;) to the
set cover.

The problem in directly applying the algorithm to
our case is that it does not take into account the de- .
sired sample size. We devised a variant of the algo-
rithm where we use a binary tree to ‘push’ upwards
the number of t-words in the whole batch of unan-
notated sentences that occurs at least t times in thgyure 2: Number of t-words for t = 5 in samples selected
selected one. Below is a detailed descriptibhde- by cmMm runs with different values of the threshold pa-
notes the desired number of items to sample. rameter t and in a randomly selected samg®m with

The algorithm has two steps. First, we iter! = 5 is significantly higher. All the lines except for the

atively sample (without replacement) multisets line for t = 5 are unified. For clarity, we do not show all t
y P P values: their curves are also similar to thg 5 lines.

(sentences) from a uniform distribution over the
multisets. In each iteration we calculate for the se-

—=
——t=8
—4—t=11
——t=14
-tz

number of t-words
8
8

0 100 200 300 400 500 600 700 800
number of training constituents (thousands)

lected multiset its ‘contribution’ — the number of Method | 86% | 865% [ 8% [ 87.5% [ 88%
) 3 TE 16.9% 27.1% 26.9% 14.8% 15.8%
items that cross the threshold ©obccurrences with (152K) | (183K) | (258K) | (414K) | (S63K)
. . . . CBS 19.6% 16.8% 19% 21.1% 9%
this multiset minus the number of items that cross (147K) | (210K) | (286K) | (382K) | (610K)
. . . . . CMM 9% 10.4% 8.9% 10.3% 14%

thet¢ threshold without this multiset (i.e. the contri- (167K) | (226K) | (312K) | (433K) | (574K)

bution of the first multiset is the number of t—words.l_able 1- Reduction in annotation Costic terms com-

occurr_ing more tha_m\ times in it). For ea<_:h multis_et pared to the random baseline for tree entrops){ syn-
we build a node with a key that holds its contribuactic clustering ¢ss) andcMm. The compared samples
tion, and insert these nodes in a binary tree. Insegre the smallest samples selected by each of the methods
tion is done such that all downward paths are sortetlat achieve certain f-score levels. Reduction is calcu-
in decreasing order of key values. lated by:100 — 100 x (T'Crnethod I Crandom-

Second, we iteratively sample (from a uniform
distribution, without replacement) the rest of the

multisets pool. For each multiset we perform tWayer of words occurring at least 5 times in the se-
steps. First, we prepare a node with a key as dgscted sample. We followed the same experimen-
scribed above. We then randomly chodséeaves 4] protocol as in Section 5. The graph shows that
in the binary tree (if the number of leaves is smallefhe number of words occurring at least 5 times in a
thanZ all of the leaves are chosen). For each leaf Weample selected by our algorithm whes 5 is sig-

find the place of the new node in the path from thificantly higher (by about a 1000) than the number
root to the leaf (paths are sorted in decreasing ordgf s,ch words in a randomly selected sample and in
of key values). We insert the new node to the highSampIes selected by our algorithm with othera-

est such place found (if the new key is not smallefameter values. We got the same pattern of results
than the existing paths), add its multiset to the set gfhen counting words occurring at leastimes for
selected multisets, and remove the multiset that cofjse other values of theparameter — only the run of
responds to the leaf of this path from the batch anghe a1gorithm with the correspondinyalue created
the leaf itself from the binary tree. We finally choose, sample with significantly higher number of words
the multisets that correspond to the highBstodes ot below threshold. The other runs and random se-
in the tree. lection resulted in samples containing significantly

An empirical demonstration of the quality of ap-jower number of words not below threshold.
proximation that the algorithm provides is given in _
Figure 2. We ran our algorithm with the threshold M Section 5 we show that the parser performance

parameter set to € [2,14] and counted the num- when it is trained with a sample selected byim
is significantly better than when it is trained with a

5We tried Z values from 10 to 100 in steps of 10 and ob-fandomly selected sample. Improvement is similar
served very similar results. We report results foe 100. across the parameter values.



86% 7% 88%

Method | TNSK | TNSK | ANSK | ANSK | TNSK | TNSK | ANSK | ANSK | TNSK | TNSK | ANSK | ANSK
(1-6) (7-22) | (1-6) 722) | a6 | (722 | (1-6) (722) | (1-6) (7-22) | (1-6) (7-22)

TE A% | 36% | -8.9% | -61.3% | 42.2% | 144% | -99% | -62.7% | 25% 8.1% ~6.3% | -30%

CBS 21.3% | 186% | -05% | -3.5% | 10.6% | 242% | -03% | -18% | 8.9% 86% | 0% -0.3%

CMM 10.18% | 8.87% | -0.82% | -339% | 11% 16.22% | -0.34% | -1.8% T465% | 14.11% | -0.02% | -0.08%

Table 2: Annotation cost reductionimsk andANSK compared to the random baseline for tree entragy, (Syntactic
clustering €8s) andcMm. The compared samples are the smallest selected by eaghroéthods that achieve certain
f-score levels. Each column represents the reduction & totaverage number of structures of degree 1-6 or 7—-22.
Reduction for each measure is calculated ) — 100 x (measuremethod MeasuTerandom - Negative reduction

is an addition. Samples with a higher reduction in a certa@agare are better in terms of that measure.

T T 1 T T T
~+TE
~-CMM, =8
-CBS
= g
M, t=6) b

e85
25

f \ -& CMM(=8) - TE|
o\ ~—CBS-TE
| A —0line

TNSK (K)
i
| S
-

AC method/AC random

1 \\'\‘“‘

] 15 @ 0 1 2 3035
Fscore Number of sentences et

Average number of constituents

5

Figure 3: Left to right: First: The difference between thenter of nested structures of degi€ef cmm andTE and

of cBsandTE. The curves are unified. Thecurve is given for reference. Samples selectect iy andcss have
more nested structures of degrees 1-6 and less nestedistrunt degrees 7—22. Results are presented for the smallest
samples required for achieving f-score of 88. Similar pat@re observed for other f-score values. Second: Average
number of nested structures of degé€eas a function of” for the smallest sample required for achieving f-score of
88. Results for each of the methods are normalized by theageerumber of nested structures of degke@ the
smallest randomly selected sample required for achievsapfe of 88. The sentencesdvm andcBs samples are

not more complex than sentences in a randomly selected safnpgle samples sentences are more complex. Third:
Average number of constituentsd) for the smallest sample of each of the methods that is reddor achieving a
given f-scorecMM andcBs samples contain sentences with a smaller number of comstiuFourthac values for

the samples created by the methods (normalizeddyalues of a randomly selected sample). The sentences in
samples, but not icMM andcBs samples, are more complex than sentences in a randomlyexbomple.

5 Reaults where sentences are uniformly selected from the un-
) ] ) labelled pool for annotation. For reliability we re-
Experimental setup. We used Bikel's reimplemen- 04104 each experiment with the algorithms and the
tation of Collins’ parsing model 2 (Bikel, 2004). \anqom baseline 10 times, each time with different
Sections 02-21 and 23 of the WSJ were strippednqom selectionsi( sentences for creating syntac-
from their annotation. S_ectlons 2-21 (39832 se_r}-IC tagging and k-means initialization fass, sen-
tences, about 800K constituents) were used for tra”ﬂénce order icMm), and averaged the resullts.
ing, Section 23 (2416 sentences) for testing. No Each experiment contained 38 runs. In each run
development set was used. We used the gold stan-

dard POS t it i the test section (2 different desired sample size was selected, from
dar ags In two cases. In the 1est sec |pn( 00 onwards, in steps of 1000. Parsing perfor-
in all experiments, and in Sections 02-21 in the

) mdance is measured in terms of f-score
cBs method when these sections are to be parse
Results. We compare the performance of our

in the process of vector creation. In active learn- \
P BS andcMM algorithms to there method (Hwa,

ing methods the unlabelled pool is parsed in eac L .
iteration and thus should be tagged with POS tag .004)7’ whichis the only sample selection work ad-

Hwa (2004) (to whom we compare our results) use|nput POS tag only if it cannot tag its word using the statistics

the gold standard POS tags for the same sectiofgmed from the training set.

in her worl. We implemented a random baseline “Hwa has kindly sent us the samples selected byrbewe
- evaluated these samples with and the new measures. The
Personal communication with Hwa. Collins’ parser uses aof the minimal sample she sent us needed for achieving f-score



dressing our experimental setup. Unless otherwisgage over thes& values. We observed similar re-
stated, we report the reduction in annotation cossults for other f-score values.

100 — 100 x (measuremethod measurerandom- The two rightmost graphs of Figure 3 demon-
CMM results are very similar far € {2,3,...,14},  stratesac results. The left of them shows that for
and presented far= 8. every f-score value, thec measure of the minimal

Table 1 presents reduction in annotation cost ife sample required to achieve that f-score is higher
TC terms. CBs achieves greater reduction fgr=  than theac value of PBS samples (which are very
86,87.5, TE for f = 86.5,87,83. For f = 88, TE  sjmilar to theac values of randomly selected sam-
andcMM performance are almost similar. Examin-p|es)_ The nght graph demonstrates that for every

ing the f-score vsTC sample size over the whole sample size, thec value of TE samples is higher
constituents range (not shown due to space COfhan that of PBS samples.

straints) reveals thatss, cMM and TE outperform

random selection over the. vvhole rangess and erative. In each iteration thousands of sentences
TE performance are quite similar wite being bet- 5o parsed, while PBS algorithms perform a single
ter in the ranges of 170-300K and 520-650K CONeation. Consequently, PBS computational com-
stituents (42% of the 620K constituents comparedalexity is dramatically lower. Empirically, using a

andcBsbeing better in the ranges of 130-170K antheyiym 4 2.4GHz machinemm requires about an
300-520K constituents (44% of the rangeMm hour andcesabout 16.5 hours, while thee parsing

perfor_mance is worse tharBs and_TE until 540K steps alone take 662 hours (27.58 days).
constituents. From 650K constituents on, where

the parser achieves its best performance, the perfor- .

mance ofcMM andTE methods are similar, outper- 6 Discussion and Future Work
forming cBs. . _

Table 2 shows the annotation cost reduction i¥Ve introduced novel evaluation measuresc,
ANSK and TNSK terms. TE achieves remarkable TNSK and ANsk for the task of sample selection
reduction in the total number of relatively shallowfor statistical parsers. Based on the psycholinguis-
structures tNsk K = 1-6). Our methods, in con- tic literature we argue that these measures reflect as-
trast, achieve remarkable reduction in the number §€cts of the cognitive efforts of the human annota-
deep structuresrsk K = 7-22%. This is true for tor that are not reflected by the traditiorrat mea-
all f-score values. Moreover, the average number /€ We introduced the parqmeter based sample se-
nested structures per sentence, for every degfee l€ction (PBS) approach and i8am andcBs algo-
than in sentences of a randomly selected sample. {®nces. Therefore, our intuition was that they should
samples selected by our methods, tesk values select a sample that leads to an accurate parameter
are very close to thansk values of randomly se- estimation but does not contain a high number of
lected samples. Thus, sentencesinsamples are complex structures. We demonstrated theitv and
much more complex than itBsandcmMm samples. cBsachieve results that are similar to the state of the

The two leftmost graphs in Figure 3 demonstrat&t TE method inTC terms and outperform it when
(for the minimal samples required for f-score of 88)the cognitively driven measures are considered.
that these reductions hold for eakhvalue (ANSK) The measures we suggest do not provide a full
and for eachK € [7,22] (TNSK) not just on the av- and accurate description of human annotator efforts.
In future work we intend to extend and refine our

of 88 is different from the number reported in (Hwa, 2004). We . . ;
compare ourrc results with therc result in the sample sent us Measures and to revise our algorithms accordingly.

by Hwa. We also intend to design stopping criteria for the
8We present results where the border between shallow aquS methods. These are criteria that decide when

deep structures is set to b&,,,qer = 6. FOr everyKporder € .
{7,8,...,22} TNSK reductions withces and cMM are much the selected sample suffices for the parser best per-

more impressive than withe for structures whose degree is formance and further annotation is not needed.
K e [Kborder,22]-

All AL based previous work (includinge) is it-
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