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Bootstrapping

e Co-training
— well understood
— view independence

e Yarowsky algorithm

— Suggestion: precision independence p(j|f, unlabeled) = p(j|f, labeled)
— Precision: density of label j

— But: not well supported in the data




Different Approach

e No independence assumption
e Optimization of objective function

— H (negative of likelihood)
— K (upper bound on H)

e Variants of Yarowsky algorithm
—Y-1/DL-EM (L, LU)
—Y-1/DL-1 (R, VS)

- YS (P, R, FS)




Generic Yarowsky Algorithm Y-0

e Given: labeled examples Aj, unlabeled examples V|
— Y: set of examples labeled j

e Train classifier — 7, (7) prediction distribution
— Yarowsky: [j = j7%]

e Label examples
—Set Y(z) =g if m.(9) > ¢
— where ¢ is most-probable label arg max; m,(7)
— and ( is labeling threshold

e Stop if no change




Decision List Induction

e Rules f — j with weight 0¢;
— We assume 0 < 0;; <1and X;0f =1

e Prediction distribution

— Point distribution 7,(5)

|
=
<.

|

*
=i

— Mixture distribution 7,(7) =
e Update rule

— Raw precision: 07, = q¢(J)

— Fixed smoothing:  0;; = q;(j;¢) €=0.1

— Other update rules: variable smoothing, peaked, EM, EM —+ variable smoothing

— Update threshold: change 6 only if precision > 7




Differences from Original Yarowsky Algorithm

Prediction distribution: use mixture distribution, not point distribution

Labeling

— Minimal labeling threshold: ¢ = w

— No “unlabeling” — once labeled always labeled, though label may change
No update threshold

Original algorithm: parallel update (all 6¢;)
— We also consider sequential update (single best f)
Original algorithm: smoothed precision as update

— We consider a variety of update rules




Objective Function

e Maximize log likelihood
L = log[[m(Y(x))
= X logmy(Y(2))
= M%?Hi% log 7.:(5)
= 2 dujlogma())
= — 2 H(¢alm)

e Minimize cross entropy

H = MU mmﬂ&__ﬁ.&v

X




Extension to Unlabeled Data

e Labeling distribution ¢, prediction distribution 7

sy — 4 U= Y@ if o is labeled

w otherwise

[+ € V] + [z € VI

0(J)




To Minimize H

H=Y H(¢,|mn) = H(¢,) + > D(¢.|72)

T T i

e Assign labels to unlabeled examples: >, H(¢,) — 0
e Make prediction dist agree with label dist: >, D(¢,|m,) — 0

e Equal to maximum likelihood if all examples are labeled




Modified Generic Yarowsky Algorithm Y-1

Given: labeled examples Ay, unlabeled examples V
Train classifier — m,(7)

Label examples

— Set Y (x) = g if | previously labeled or 7,.(y) > 1/L

Stop if no change

“Generic” — does not specify base learning algorithm




Theorem 1

If the base learner reduces

D =¥ D(¢ul.)

or

Dy = ) D(¢z|ms)

rEA

then Y-1 converges to a local minimum of H.
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Proof Sketch

e Training step

— Hold ¢ constant, change 7

— Case 1: base learner reduces D, hence H

e Labeling step

— Hold 7 constant, change ¢

EAE__Q.QV — M.UN@. log \\QA v

— Reduce H by placing all mass in 7 that

arg min log
j

1

T (

J

)
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J

minimizes the log

= argmax m;(j)
J

=Y
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Case 2

e |f base learner reduces Dy

reA eV
e Third term may increase

— but only if new 7w, # u

— hence x was unlabeled, becomes labeled

Hy = >j @Mm log ﬂwa = 2 QCV log %& — mAQV
Hy = ¥j¢5log o
mw — MUQ @M@é MOW ﬂ%oé — #OW 3.:%@ < mmﬁv

Dmnmm|mp+mp|moA©
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Base Learner

e Yarowsky decision list learner does not maximize likelihood

e A learner that does: DL-EM
m(flz) =1/m

T(jlf) = 0y,

. 1
m(f,jlz) = Nmb.

T(jlx) = > : —0y

geF, m

(fled) = s (05

m(j|w
1

0y =— > m(flz,J)
A zeY.

J
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Theorem 2

DL-EM decreases Dy

e Corollary

Algorithm Y-1 with DL-EM as base learner converges to a local minimum of
H (a local maximum of likelihood)
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Proof Sketch

e Reduction in D) can be expressed as:

gain = —ADy = log ™" (j|z) — log 7(j|z)

e EM algorithm is based on nonnegativity of divergence:

0 < D(my5|my5") = gain — Ey Tom 0% — log %oi

e That is:
gain > E; Tom 0% — log QOJ

o Take expectation over j and x, and maximize Elog 0% under the constraint that
r sums to unity. Result is the DL-EM update:

H 1d g
0% = — > 7 (flz,7)

N ey
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Detail

NU A old __ ﬁ.s.wév

= Sr()los

(g ( 25 70

= Mom T (j) — logmo(5) — Ey Tom 0% — log QOJ
= gain — Ey Tom 0% — log %oj
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Maximizing D Instead of Dy

e Structure is the same. Resulting update:

1 1
Oy = - | X mE() + 7 X wh(f)

Z r€Y; L zeV

e Yarowsky variants
—1Y-1/DL-EM (L, LU)
—Y-1/DL-1 (R, VS)

- YS (P, R, FS)




Objective Function K

e Upper bounding H

H = IMUMU&SEW > |%&

geF, m

1
m |MUMU@MS MU ﬂOm%Qb
T

gek, M

= Ly s H.16,)

m =z 4cF,

e Minimize K to minimize upper bound on H:

K =2 % H(¢:|0y)

L gel,
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Rationale

e Squeeze H between K and 0

e /{ is in principle reducible to 0

K =22 [H(¢:)+ D(¢:]0,),

L ogely

— Label all examples:  H(¢,) — 0
— Each feature perfectly predicts label:  D(¢,|6,) — 0

— Initial labeling must cooperate to permit perfect prediction
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Decision List Induction DL-0, DL-1

e DL

-0: base learner used by Yarowsky

If ¢;(j;€) > 0.95 for some j

Set O = qr(Jse)

Where ¢ = 0.1

Define 7,.(7) = [j = j]

-1-VS. (DL-1-R uses raw precision instead of variable smoothing.)

No threshold

Set 0 = qr(Jse)

_ XA p(VIS)
Where € = AT

Define m,(j) = | L Sger, O,
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Theorem 3

Algorithm Y-1 using DL-1-VS or DL-1-R as base learning algorithm converges to
local minimum of K.
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Proof Sketch

e Like DL-EM proof

— Training step: hold ¢ constant, adjust 6
— Labeling step: hold 6 constant, adjust ¢

e Labeling step

K(z) = > H(.|0,)

geFl,

— Mu%,ﬁ MU ﬂom

geF, %r&

1

— Minimize K(x) by concentrating all mass in arg min; ¥ycp, log ;-
97

— If training step minimizes over just A, any increase in K on unlabeled examples
is compensated for in labeling step
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Training Step

e Minimize K as function of 8, under constraint that 3, 60¢; = 1

e Solution:

1
MU %h&

% =
\w ;;vmxﬂl Hm}vﬁw

e If ranging over A only (DL-1-R), reduces to raw precision:

XY .
% s = == =
1= XA qr(J)

e If ranging over all examples (DL-1-VS), reduces to variably smoothed precision:

Ori = p(Af)ar(d) +p(VIf)u(g)
_ 1 XeA] p(VIS)
L p(Alf)

~

= (s(j;€) where €
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Detail

e Smoothed precision is mixture of raw precision and uniform distribution

- XY +e
ar(7) = | XA+ Le
() +0 _
= T I 0 = €/| X A
1 . Lo .
= g&cfngzcv
e Mixing coefficient is p(A|f)
o (XAl p(VIS)
L p(Alf)
S\
VA T
1
= p(A[f)

1+ Lo




Sequential Variants

e Yarowsky variants
—Y-1/DL-EM (L, LU)
—Y-1/DL-1 (R, VS)

—1YS (P, R, FS)

e Somewhat like Collins & Singer “Yarowsky-Cautious”

e Algorithm YS

— Add one feature f at a time
— Label new examples that have f

— Feature weights and labels are indelible
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Three Variants

e Differ in update rule

YS-P (“peaked”)

YS-R (“raw”)
YS-FS (“smoothed”)

Or; = p(Alf)ar(5) + (VI = 5l
jt = argmax; q(j| f)
Orj = as(j)

O =Gr(jie) = im0 (d) + Togsu

e [heorem 4: All three reduce K

(7)
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Proof Sketch

gain = > > [H(67'105) — H(&5™16;™)]

L gel,

e “Training”: hold ¢ constant except for unlabeled examples. Choose f, modify 0,
set labels for unlabeled examples that have feature f.

— Unlabeled examples have ¢,; = 1/L, 0,; = 1/L

— Labeling them decreases K, include that in “training” gain

e “Labeling”: change labels for old labeled examples

— Does not increase K — same proof as for DL-EM and DL-1

27



“Training” Gain

e Special properties
— K changes only for examples that possess feature f
— Old 0; is uniform distribution
— All §, are uniform distribution for features g of unlabeled examples
— Labeling dist ¢, is either [z € Y;] or uniform

— New ¢, is [[j = jx] for previously unlabeled examples with f

e Gain:
1
[ XpA|[log L — H(qr|0f)] + | X V] log L —log 0
J*

e Maximize it, result is update for YS-P:

07 = p(Af)ar(g) + (VI = 77l
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Using Smoothed or Raw Precision

e Since log L = H(u):

| 1
gain = | XyA[[H (u) — H(qr[0f)] + [XV] | H(u) — log 0
J*

om_:nmm?\vwﬂom &w*_ mm_:_m:o::mmm&é:ﬁ”
H(u) > H(qy|0y)
— We can show this is true if 0 = g, hence YS-FS increases gain

e Since H(u) = H(qs|u), the previous condition is equivalent to:

D(qy|u) = D(qr|0y)

— This is true if 0 = g¢, so YS-R increases gain
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Summary

Y-1/DL-EM (L, LU)

Y-1 close to original

DL-EM not

optimize H

parallel update

Y-1/DL-1 (R, VS)

Y-1 and DL-1

close to original

optimize K

parallel update

YS (P, R, FS)

e Differences from original

F'S from original

— No thresholding in training or labeling

— No “unlabeling”

— Mixture prediction rather than “max” prediction

improve K

sequential update
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Connection to Co-Training

X

o If D(¢y|m) is small and H (7

/\

») is small, then H(¢,) must be small

1 1
HE) S S HO)+ o 3% D016
eF, ™ feF, geF,
e Hence:
if features are confident H(6y) is small

and they agree with each other D(6/|60,) is small
then H(m,) is small

e Find confident features that agree on unlabeled data, label them consistently with
labeled data. Minimizes H.
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