Understanding the Yarowsky Algorithm

Steven Abney University of Michigan

Bootstrapping

- Co-training
- well understood
- view independence
- Yarowsky algorithm
- Suggestion: precision independence $p(j|f, \mathrm{unlabeled}) = p(j|f, \mathrm{labeled})$
- Precision: density of label j
- But: not well supported in the data

Different Approach

- No independence assumption
- Optimization of objective function
- -H (negative of likelihood)
- -K (upper bound on H)
- Variants of Yarowsky algorithm
- Y-1/DL-EM (L, LU)Y-1/DL-1 (R, VS)
- YS (P, R, FS)

Generic Yarowsky Algorithm Y-0

- Given: labeled examples Λ_0 , unlabeled examples V_0
- $-Y_j$: set of examples labeled j
- Train classifier $o \pi_x(j)$ prediction distribution
- Yarowsky: [j = j*]
- Label examples
- Set $Y(x) = \hat{y}$ if $\pi_x(\hat{y}) > \zeta$
- where \hat{y} is most-probable label $rg \max_j \pi_x(j)$
- and ζ is labeling threshold
- Stop if no change

Decision List Induction

- Rules f o j with weight $heta_{fj}$
- We assume $0 \leq heta_{fj} \leq 1$ and $\sum_j heta_{fj} = 1$
- Prediction distribution
- Point distribution $\pi_x(j) = \llbracket j = j * \rrbracket$
- Mixture distribution $\pi_x(j) = rac{1}{m} \sum_{f \in F_x} heta_{fj}$
- Update rule
- Raw precision: $\theta_{fj} = q_f(j)$
- Fixed smoothing: $heta_{fj} = ilde{q}_f(j;\epsilon) \quad \epsilon = 0.1$
- Other update rules: variable smoothing, peaked, EM, EM \pm variable smoothing
- Update threshold: change $heta_f$ only if precision $> \eta$

Differences from Original Yarowsky Algorithm

- ullet Prediction distribution: use mixture distribution, not point distribution
- Labeling
- Minimal labeling threshold: $\zeta=rac{1}{L}$
- No "unlabeling" once labeled always labeled, though label may change
- No update threshold
- Original algorithm: parallel update (all $heta_{fj}$)
- We also consider sequential update (single best f)
- Original algorithm: smoothed precision as update
- We consider a variety of update rules

Objective Function

Maximize log likelihood

$$l = \log \prod_{x} \pi_{x}(Y(x))$$

$$= \sum_{x} \log \pi_{x}(Y(x))$$

$$= \sum_{x} \sum_{j} [[j = Y(x)]] \log \pi_{x}(j)$$

$$= \sum_{x} \phi_{xj} \log \pi_{x}(j)$$

$$= -\sum_{x} H(\phi_{x} || \pi_{x})$$

Minimize cross entropy

$$H = \sum_{x} H(\phi_x \| \pi_x)$$

Extension to Unlabeled Data

ullet Labeling distribution ϕ , prediction distribution π

$$\phi_x(j) = \begin{cases} [j = Y(x)] & \text{if } x \text{ is labeled} \\ \frac{1}{L} & \text{otherwise} \end{cases}$$

$$\phi_x(j) = [x \in Y_j] + [x \in V] \frac{1}{L}$$

To Minimize H

$$H = \sum_{x} H(\phi_x || \pi_x) = \sum_{x} H(\phi_x) + \sum_{x} D(\phi_x || \pi_x)$$

- Assign labels to unlabeled examples: $\sum_x H(\phi_x) o 0$
- Make prediction dist agree with label dist: $\sum_x D(\phi_x \| \pi_x) \to 0$
- Equal to maximum likelihood if all examples are labeled

Modified Generic Yarowsky Algorithm Y-1

- Given: labeled examples Λ_0 , unlabeled examples V_0
- Train classifier $o \pi_x(j)$
- Label examples

— Set $Y(x)=\hat{y}$ if previously labeled or $\pi_x(\hat{y})>1/L$

- Stop if no change
- "Generic" does not specify base learning algorithm

Theorem 1

If the base learner reduces

$$D = \sum_{x} D(\phi_x \| \pi_x)$$

or

$$D_{\Lambda} = \sum_{x \in \Lambda} D(\phi_x \| \pi_x)$$

then Y-1 converges to a local minimum of H.

Proof Sketch

- Training step
- Hold ϕ constant, change π
- Case 1: base learner reduces D, hence H
- Labeling step
- Hold π constant, change ϕ

$$H(p||\pi_x) = \sum_j p_j \log \frac{1}{\pi_x(j)}$$

Reduce H by placing all mass in j that minimizes the \log

$$\underset{j}{\operatorname{arg \, min \, log}} \frac{1}{\pi_x(j)} = \underset{j}{\operatorname{arg \, max}} \pi_x(j)$$
$$= \hat{y}$$

Case 2

ullet If base learner reduces D_{Λ}

$$H = \sum_{x} H(\phi_x) + \sum_{x \in \Lambda} D(\phi_x || \pi_x) + \sum_{x \in V} D(\phi_x || \pi_x)$$

- Third term may increase
- but only if new $\pi_x \neq u$
- hence \boldsymbol{x} was unlabeled, becomes labeled H_0 $= \sum_{j} \phi_{xj}^{\text{old}} \log \frac{1}{\pi^{\text{old}}}$ $= \sum_{j} u(j) \log \frac{1}{u(j)}$

= H(u)

$$H_{1} = \sum_{j} \phi_{xj}^{\text{old}} \log \frac{1}{\pi^{\text{new}}}$$

$$H_{2} = \sum_{j} \phi_{xj}^{\text{new}} \log \frac{1}{\pi^{\text{new}}} = \log \frac{1}{\pi^{\text{new}}(\hat{y})} < H(u)$$

$$\Delta H = H_{2} - H_{1} + H_{1} - H_{0} < 0$$

Base Learner

- Yarowsky decision list learner does not maximize likelihood
- A learner that does: DL-EM

$$\pi(f|x) = 1/m$$

$$\pi(j|f) = \theta_{fj}$$

$$\pi(f,j|x) = \frac{1}{m}\theta_{fj}$$

$$\pi(j|x) = \sum_{g \in F_x} \frac{1}{m}\theta_{gj}$$

$$\pi(f|x,j) = \frac{1}{\pi(j|x)} \left(\frac{1}{m}\theta_{fj}\right)$$

$$\theta_{fj}^{\text{new}} = \frac{1}{Z} \sum_{x \in Y_j} \pi(f|x,j)$$

Theorem 2

DL-EM decreases D_{Λ}

Corollary

H (a local maximum of likelihood) Algorithm Y-1 with DL-EM as base learner converges to a local minimum of

Proof Sketch

Reduction in D_{Λ} can be expressed as:

gain =
$$-\Delta D_{\Lambda} = \log \pi^{\text{new}}(j|x) - \log \pi^{\text{old}}(j|x)$$

EM algorithm is based on nonnegativity of divergence:

$$0 \le D(\pi_{xj}^{\text{\tiny old}} \| \pi_{xj}^{\text{\tiny new}}) = \text{gain} - \mathsf{E}_f \left[\log \theta_{fj}^{\text{\tiny new}} - \log \theta_{fj}^{\text{\tiny old}} \right]$$

$$\operatorname{gain} \geq \mathsf{E}_f \left[\log \theta_{fj}^{\text{\tiny new}} - \log \theta_{fj}^{\text{\tiny old}} \right]$$

Take expectation over j and x, and maximize $\mathsf{E}_f \log heta_{fj}^{ ext{new}}$ under the constraint that θ_f sums to unity. Result is the DL-EM update:

$$heta_{fj}^{ ext{new}} = rac{1}{Z} \sum_{x \in Y_j} \pi^{ ext{old}}(f|x,j)$$

Detail

$$= \sum_{f} \pi_{xj}^{\text{old}}(f) \log \frac{\pi_{xj}^{\text{old}}(f)}{\pi_{xj}^{\text{new}}(f)}$$

$$= \sum_{f} \pi_{xj}^{\text{old}}(f) \log \left(\frac{\frac{1}{m} \theta_{fj}^{\text{old}}}{\pi_{x}^{\text{old}}(j)} \cdot \frac{\pi_{x}^{\text{new}}(j)}{\frac{1}{m} \theta_{fj}^{\text{new}}} \right)$$

$$= \log \pi_{x}^{\text{new}}(j) - \log \pi_{x}^{\text{old}}(j) - \mathsf{E}_{f} \left[\log \theta_{fj}^{\text{new}} - \log \theta_{fj}^{\text{old}} \right]$$

$$= \operatorname{gain} - \mathsf{E}_{f} \left[\log \theta_{fj}^{\text{new}} - \log \theta_{fj}^{\text{old}} \right]$$

 $D(\pi_{xj}^{ ext{old}} \| \pi_{xj}^{ ext{new}})$

Maximizing D Instead of D_{Λ}

Structure is the same. Resulting update:

$$\theta_{fj}^{\text{\tiny new}} = \frac{1}{Z} \left[\sum_{x \in Y_j} \pi_{xj}^{\text{\tiny old}}(f) + \frac{1}{L} \sum_{x \in V} \pi_{xj}^{\text{\tiny old}}(f) \right]$$

Yarowsky variants

Objective Function ${\cal K}$

ullet Upper bounding H

$$H = -\sum_{x} \sum_{j} \phi_{xj} \log \sum_{g \in F_x} \frac{1}{m} \theta_{gj}$$

$$\leq -\sum_{x} \sum_{j} \phi_{xj} \sum_{g \in F_x} \frac{1}{m} \log \theta_{gj}$$

$$= \frac{1}{m} \sum_{x} \sum_{g \in F_x} H(\phi_x \| \theta_g)$$

ullet Minimize K to minimize upper bound on H:

$$K = \sum_{x} \sum_{g \in F_x} H(\phi_x || \theta_g)$$

Rationale

- ullet Squeeze H between K and 0
- ${\cal K}$ is in principle reducible to 0

$$K = \sum_{x} \sum_{g \in F_x} \left[H(\phi_x) + D(\phi_x || \theta_g) \right]$$

- Label all examples: $H(\phi_x) o 0$
- Each feature perfectly predicts label: $D(\phi_x \| \theta_g) \rightarrow 0$
- Initial labeling must cooperate to permit perfect prediction

Decision List Induction DL-0, DL-1

- DL-0: base learner used by Yarowsky
- If $\tilde{q}_f(j;\epsilon)>0.95$ for some j
- Set $heta_{fj} = ilde{q}_f(j;\epsilon)$
- Where $\epsilon = 0.1$
- Define $\pi_x(j) = \llbracket j = j * \rrbracket$
- DL-1-VS. (DL-1-R uses raw precision instead of variable smoothing.)
- No threshold
- Set $heta_{fj} = ilde{q}_f(j;\epsilon)$
- Where $\epsilon = \left| rac{|X_f\Lambda|}{L} \cdot rac{p(V|f)}{p(\Lambda|f)}
 ight|$
- Define $\pi_x(j) = \left| rac{1}{m} \sum_{g \in F_x} heta_{gj}
 ight|$

Theorem 3

Algorithm Y-1 using DL-1-VS or DL-1-R as base learning algorithm converges to local minimum of K.

Proof Sketch

- Like DL-EM proof
- Training step: hold ϕ constant, adjust heta
- Labeling step: hold heta constant, adjust ϕ
- Labeling step

$$K(x) = \sum_{g \in F_x} H(\phi_x || \theta_g)$$
$$= \sum_j \phi_{xj} \sum_{g \in F_x} \log \frac{1}{\theta_{gj}}$$

- Minimize K(x) by concentrating all mass in $rg \min_j \sum_{g \in F_x} \log rac{1}{ heta_{gj}}$
- is compensated for in labeling step If training step minimizes over just Λ , any increase in K on unlabeled examples

Training Step

- ullet Minimize K as function of heta, under constraint that $\sum_j heta_{fj} = 1$
- Solution:

$$\theta_{fj} = \frac{1}{|X_f|} \sum_{x \in X_f} \phi_{xj}$$

ullet If ranging over Λ only (DL-1-R), reduces to raw precision:

$$\theta_{fj} = \frac{|X_f Y_j|}{|X_f \Lambda|} = q_f(j)$$

If ranging over all examples (DL-1-VS), reduces to variably smoothed precision:

$$\theta_{fj} = p(\Lambda|f)q_f(j) + p(V|f)u(j)$$

$$= \tilde{q}_f(j;\epsilon) \text{ where } \epsilon = \frac{|X_f\Lambda|}{L} \cdot \frac{p(V|f)}{p(\Lambda|f)}$$

Detail

Smoothed precision is mixture of raw precision and uniform distribution

$$\tilde{q}_f(j) = \frac{|X_f Y_j| + \epsilon}{|X_f \Lambda| + L\epsilon}
= \frac{q_f(j) + \delta}{1 + L\delta} \qquad \delta = \epsilon/|X_f \Lambda|
= \frac{1}{1 + L\delta} q_f(j) + \frac{L\delta}{1 + L\delta} u(j)$$

• Mixing coefficient is $p(\Lambda|f)$

$$\epsilon = \frac{|X_f \Lambda|}{L} \cdot \frac{p(V|f)}{p(\Lambda|f)}$$

$$L\delta = \frac{p(V|f)}{p(\Lambda|f)} = \frac{1}{p(\Lambda|f)} - 1$$

$$\frac{1}{1 + L\delta} = p(\Lambda|f)$$

Sequential Variants

- Yarowsky variants
- Y-1/DL-EM (L, LU)
- Y-1/DL-1 (R, VS)
- YS (P, R, FS)
- Somewhat like Collins & Singer "Yarowsky-Cautious"
- Algorithm YS
- Add one feature f at a time
- Label new examples that have f
- Feature weights and labels are indelible

Three Variants

Differ in update rule

YS-P ("peaked")
$$\theta_{fj} = p(\Lambda|f)q_f(j) + p(V|f)[\![j=j\dagger]\!]$$
YS-R ("raw")
$$\theta_{fj} = q_f(j)$$
YS-FS ("smoothed")
$$\theta_{fj} = \tilde{q}_f(j;\epsilon) = \frac{1}{1+L\delta}q_f(j) + \frac{L\delta}{1+L\delta}u(j)$$

ullet Theorem 4: All three reduce K

Proof Sketch

$$\mathrm{gain} = \sum_{x} \sum_{g \in F_x} \left[H(\phi_x^{\mathrm{old}} \| \theta_g^{\mathrm{old}}) - H(\phi_x^{\mathrm{new}} \| \theta_g^{\mathrm{new}}) \right]$$

- "Training": hold ϕ constant except for unlabeled examples. Choose f, modify θ_f , set labels for unlabeled examples that have feature f.
- Unlabeled examples have $\phi_{xj}=1/L$, $heta_{gj}=1/L$
- Labeling them decreases K, include that in "training" gain
- "Labeling": change labels for old labeled examples
- Does not increase K same proof as for DL-EM and DL-1

"Training" Gain

- Special properties
- ${\cal K}$ changes only for examples that possess feature f
- Old $heta_f$ is uniform distribution
- All $heta_g$ are uniform distribution for features g of unlabeled examples
- Labeling dist ϕ_x is either $[x \in Y_j]$ or uniform
- New ϕ_x is $\llbracket j=j*
 rbracket$ for previously unlabeled examples with f
- Gain:

$$|X_f\Lambda| \left[\log L - H(q_f\|\theta_f)\right] + |X_fV| \left[\log L - \log \frac{1}{\theta_{fj^*}}\right]$$

Maximize it, result is update for YS-P:

$$\theta_{fj} = p(\Lambda|f)q_f(j) + p(V|f)[[j=j\dagger]]$$

Using Smoothed or Raw Precision

• Since $\log L = H(u)$:

$$gain = \left| X_f \Lambda \right| \left[H(u) - H(q_f \| \theta_f) \right] + \left| X_f V \right| \left| H(u) - \log \frac{1}{\theta_{fj*}} \right|$$

• Since $H(u) \geq \log \frac{1}{\theta_{fj^*}}$, gain is nonnegative if:

$$H(u) \ge H(q_f \| \theta_f)$$

- We can show this is true if $heta_f = ilde{q}_f$, hence YS-FS increases gain
- Since $H(u) = H(q_f || u)$, the previous condition is equivalent to:

$$D(q_f \| u) \ge D(q_f \| \theta_f)$$

- This is true if $heta_f=q_f$, so YS-R increases gain

Summary

	YS (P, R, FS)		Y-1/DL-1 (R, VS)		Y-1/DL-EM (L, LU)
	FS from original	close to original	Y-1 and DL-1	DL-EM not	Y-1/DL-EM (L, LU) \mid Y-1 close to original \mid op
sequential update	improve K	parallel update	optimize K	parallel update	optimize H

- Differences from original
- No thresholding in training or labeling
- No "unlabeling"
- Mixture prediction rather than "max" prediction

Connection to Co-Training

$$H = \sum_{x} \left[H(\phi_x) + D(\phi_x || \pi_x) \right]$$

ullet If $D(\phi_x \| \pi_x)$ is small and $H(\pi_x)$ is small, then $H(\phi_x)$ must be small

$$H(\pi_x) \le \frac{1}{m} \sum_{f \in F_x} H(\theta_f) + \frac{1}{m^2} \sum_{f \in F_x} \sum_{g \in F_x} D(\theta_f || \theta_g)$$

Hence:

if features are confident

 $H(\theta_f)$ is small

and they agree with each other $D(\theta_f \| \theta_g)$ is small

then $H(\pi_x)$ is small

Find confident features that agree on unlabeled data, label them consistently with labeled data. Minimizes H