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1 Intr oduction

Our approachto multilingual namedentity (NE)
recognition in the context of the CoNLL Shared
Taskconsistsof thefollowing ingredients:

Feature engineering A humanexpert (thoughnot
necessarilya languageexpert) determinesrel-
evantfeaturesto beusedto determinewhether
or notaword is partof anamedentity.

Extraction In a first phasea conditionalMarkov
modelextractscandidateNE phrases,but does
not classifythemyet into LOC, ORG, etc.

Classification In thesecondphaseaclassifierlooks
at candidatephrasesproposedby theextractor
in their sententialcontext and labelsthem as
LOC, ORG, etc.

2 Feature engineering

Languagesdiffer widely in theconventionsthey use
to signalnamedentities. Spanish,French,andEn-
glish usethecasedistinctionof themodernRoman
alphabetto indicatepropernames,anduppercase
is a fairly good indicator of a propername. The
situationis quitedifferentin German,whereupper
caseis a poorcue. In traditionalChinesescholarly
works,certainpropernamesareindicatedby under-
lining, and without that form of annotationlocat-
ing a propernamewould seemquite challenging.
In light of thediversity foundacrosslanguagesand
orthographicconventions,it is unclearwhetherany
effective multilingual namedentity extractionsys-
tem will ever be built that doesnot rely on human
expertisefor customizingit to aparticularlanguage
anddomain.

Sincewe startedby building a Spanishsystem
withoutknowing whatotherlanguageit wouldhave
to beappliedto, thefeatureswe endedup usingare
all rathersimpleandgenericin nature.No language

expertswere consulted. In the extraction compo-
nent,we look at the orthographicstring of a word
with accentsremoved (sincetherearesomeincon-
sistenciesregardingthe presenceor absenceof ac-
cents),andwe determinewhetherit startswith an
uppercasecharacter. For theclassificationcompo-
nent we look at entire candidatephrases,and de-
terminethe length of the phrase,its position in a
sentence,the immediatelysurroundingwords,and
what words occur within the phrase. For a word
inside the phrasewe determinewhether it starts
with andupperor lower casecharacter(or neither),
whetherit containsany uppercaseor lower case
characters(or neither),and we also usethe entire
orthographicstringwith accentsremoved.

Fortunately, thesefeaturescarry over fairly well
to Dutch, the secondlanguageof the SharedTask,
andmayalsohavebeensufficient for Frenchor En-
glish, but would probably fall short for German.
Needlessto say, radically different orthographic
systemsmay requireentirely differentapproaches,
so the multilingual scopeof our proposalis fairly
limited.

3 Extraction
The extractioncomponentdiscardsthe specificla-
belsLOC, ORG, etc.(from now on we referto these
as sort labels) and only predictswhethera token
is at the beginning of (B), inside (I), or outside
(O) a phrase(we will call thesebarelabelsphrase
tags). While thismoveis notunproblematic,wede-
terminedempirically that overall performancewas
higherusingonly barephrasetagswithout sort la-
bels, comparedwith a single-phaseapproachthat
tries to predictphrasetagsandsort labelstogether
usinga single(conditionalor joint) Markov model.
The underlyingrationalewasto enablethe extrac-
tor to concentrateon any morpho-syntacticregular-
itiesacrossdifferentsortsof phraseswithouthaving
to determinethe sort label yet, which may require



morecontext: for example,Spanishnamedentities
cancontainde, andthis is thecaseacrossall sorts;
or certainnameslike Holanda are ambiguousbe-
tweenLOC andORG dependingon whetherthey re-
fer to countrieson the one hand,or their govern-
mentsor nationalsoccerteamsontheother. In light
of this it makes senseto delay the assignmentof
sort labelsandconcentrateon extractingcandidate
phrasesfirst.

OurextractionapproachusesconditionalMarkov
models,andwe shall illustrateit usinga first order
model. Generalizationsto higherordermodelsare
straightforwardly possible.Theproblemwearetry-
ing to solve is this: we want to find a sequenceof
phrasetagst givena sequenceof wordsw. We find
theoptimalt
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wheretheconditionalmodelP is expressedin terms
of ajoint generativemodelG of tagsandwords,and
a languagemodelW.

Sincet andw have thesamelengthn, we regard
thetrainingdataasa sequenceof pairs,ratherthan
apairof sequences(thetwo representationsareiso-
morphicvia a zip operationfamiliar to Pythonor
Haskell programmers),anddecomposethegenera-
tivemodelG usingafirst orderMarkov assumption:
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Doing thesamefor W andusinga designatedstart
event
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w0 � t0 � insteadof the startdistribution S we

obtain:
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We further decomposethe conditionaldistribution
G1 asfollows:
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In addition to the first order assumptionabove,
the only other assumption we make is that
U
�
wi �wi � 1 � ti � 1 � � U
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�

W1, and so our conditionalse-
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This is startingto look familiar: T is a conditional
distribution over a finite set of phrasetags,so in
principle any probabilisticclassifierthat uses(fea-
turesderived from) the variablesthat T is condi-
tioned on could be substitutedin its place. Ap-
proacheslike this have apparentlybeenusedinfor-
mally in practicefor sometime,perhapswith aclas-
sifier insteadof T thatdoesnot necessarilyreturna
properprobabilitydistribution over tags. Probabil-
ity modelsthat predict the next tag conditionalon
thecurrenttagandanobservedwordhavebeencrit-
icizedfor aweaknessknown astheLabelBiasProb-
lem (Lafferty et al., 2001); on the otherhand,the
practical effectivenessof approacheslike the one
proposedherefor a very similar taskwasdemon-
stratedby PunyakanokandRoth(2001).

Finding theoptimal tagsequencefor a given se-
quenceof wordscanbe donein the usualfashion
usingViterbidecoding.Trainingis fully supervised,
since we have labeledtraining data, but could in
principle be extendedto the (partly) unsupervised
case. We only implementedsupervisedtraining,
which is mostly trivial. Whenusinga simplecon-
ditional next-tagmodelit is especiallyimportantto
havegoodestimatesof T

�
ti �wi � wi � 1 � ti � 1 � . Weusea

strategy of backingoff to lessandlessinformative
contexts. In the worst case,T

�
ti � ti � 1 � canbe esti-

matedvery reliably from the training data(in fact,
goodestimatesfor muchlongertaghistoriescanbe
found). Whenconditioningon words,thesituation
is ratherdifferent. For example,we seerelatively
few eventsof theform

�
wi � wi � 1 � ti � 1 � in thetraining

data(out of thespaceof all possibleeventsof that
form), and so we may back off to

�
wi � ui � 1 � ti � 1 � ,

whereui � 1 is binary valuedand indicateswhether
the precedingword startedwith an uppercaselet-
ter. We have not determinedan optimal back-off
strategy, andfor now we usean intuitively plausi-
ble strategy that tries to useasmuchconditioning
informationaspossibleandbacksoff to strictly less
informative histories.In all casesit is importantto
alwaysconditionon the precedingtag ti � 1, or else
we would be left with no informationaboutlikely
tagsequences.

We usedfirst and secondorder modelsof this
form and manually searchedfor good parameter
settingson a held-outportion of the training data.
It turns out that the secondorder model performs
about the sameas the first order model, but is
at a disadvantage becauseof data sparseness.
Therefore we only consider first order models



in the rest of this paper. The performanceof
the first order model on the development data
sets is summarizedin Table 1. Note that these
figures can be obtained for any systemby first
piping its output throughsed usingthe command
s/-\(LOC\|MISC\|ORG\|PER\)/-FOO/g.
As will becomeclearer below, within each lan-
guageit so happensthat the extractioncomponent
performsbetterthan the classificationcomponent,
i.e. for now the performancebottleneck is the
classificationcomponent.

Spanishdev. precision recall Fβ � 1
overall 87.60% 86.86% 87.23

Dutchdevel. precision recall Fβ � 1
overall 85.84% 84.55% 85.19

Table1: Extractionresultsobtainedfor the devel-
opmentdatasetsfor thetwo languagesusedin this
sharedtask.

4 Classification
The candidatephrasesproposedby the extraction
componentaresubsequentlyannotatedwith sortla-
bels. The main advantageof dividing up the task
this way is thatwe cantake a lot morecontext into
accountfor classifyingphrases.For example,fea-
turesthat may be relevant now include: the length
of the phrase,the first/last k words in the phrase,
the positionof the phrasein the sentence,whether
thewordsfútbolor liga werementionedin thesame
sentence,etc. Such featureswould be awkward
to incorporateinto a single-phaseapproachusing
a Markov modelto predictphrasetagsat thesame
timeassortlabels.

We chosea fairly standardindependentfeature
(a.k.a.“naive Bayes”)model,mostlyasa matterof
convenience.Obviously any otherclassifierframe-
work could have beenusedinstead. For both lan-
guageswe useasfeaturesthe lengthof thephrase,
its distancefrom thestartof thesentence,theiden-
tity of the words inside the phraseviewing it as
a setof words(i.e., discardingpositionalinforma-
tion), the identity and other properties(including
whethera word startswith anupper/lower caselet-
ter)of thefirst k andlastk� wordsin thephrase,and
theidentity andotherpropertiesof theword(s)pre-
cedingand following the phrase.The optimal pa-
rametersettingsdiffer for SpanishandDutch. For

example,in Spanishthe identitiesof thefirst k
�

6
words is very important for classificationperfor-
mance,whereaslong precedingor trailing contexts
do not help much, if at all. For Dutch, the identi-
tiesof wordsinsidethephraseis lesshelpful (k

�
3

is optimal), and more precedingand trailing con-
text hasto be used. In addition,knowing whether
a sentence(or, ideally, a news article) is aboutsoc-
cerwashelpful for Spanish.A featurethat testsfor
thepresenceof fútbolandafew semanticallyrelated
words is the only aspectof the classificationcom-
ponentthatis particularto onelanguage.Otherlan-
guagespecificinformation, e.g.namesof Spanish
provinces,did not turn out to beuseful.

Table2 shows performancefiguresfor the clas-
sificationcomponenton theraw developmentdata.
Equivalentlyonecanthink of theseresultsasif we
hadappliedour classifiersto theoutputof a perfect
extractioncomponentthat doesnot make any mis-
takes. We canalreadyseefor Spanishthat perfor-
manceis lowest for the sort MISC, which doesnot
seemvery homogeneous,andmay perhapsbestbe
chosenby default if no otherclassapplies. Trying
to predictMISC directlyseemsto beamisguidedef-
fort. This will becomeevenclearerbelow whenwe
look at theoverall performanceof ourapproach.

Spanishdev. precision recall Fβ � 1
LOC 71.37% 87.82% 78.74
MISC 70.80% 79.55% 74.92
ORG 87.95% 78.18% 82.78
PER 91.05% 84.12% 87.45
overall 82.17% 82.17% 82.17

Dutchdevel. precision recall Fβ � 1
LOC 75.57% 70.17% 72.77
MISC 79.68% 80.43% 80.05
ORG 82.30% 66.42% 73.51
PER 70.21% 85.88% 77.26
overall 76.39% 76.39% 76.39

Table2: Classificationresultsobtainedfor the de-
velopmentdatasetsfor the two languagesusedin
thissharedtask.

5 Putting it all together
A theoreticalproblemwith our taskdecomposition
is how to train the classifiersusedin the second
phase. What they will eventually seeas input is
theoutputof theextractioncomponent,which may



containmistakes,e.g.,caseswherethebeginningor
endof a phrasewasmispredicted.Sincewe want
to build andrefinetheclassificationcomponentin-
dependentlyof the extractioncomponent,we have
to train theclassifierson thephrasesin the labeled
training data. It is not cleara priori that this kind
of independentdevelopmentcomeswithout a per-
formancepenalty, sincewe may have forgottento
show thesecond-phaseclassifiersexamplesof trun-
catedor badlymangledphrasesthatwereproduced
becauseof imperfectionsof the extractioncompo-
nentwhichmakesupthefirstphaseof ourapproach.
Basedon the independenceassumptionbehindthe
task decompositionwe would expect the overall
performanceon the Spanishdevelopmentdataset
to be

0	 8723 � 0	 8217  0	 7168	
As wecanseefrom theactualresultsin Table3, this
is not very far from theobserved performance.We
concludethat independentdevelopmentof the two
componentsdid not impactoverall performance.

6 Conclusion

We presenteda simple,knowledge-poornameden-
tity recognizerusing standardcomponents. Our
decompositioninto extraction and classification
phaseswasmotivatedby thecommonsyntacticreg-
ularitiesand the ambiguousstatusof somenamed
entities. We have shown that the conditionalnext-
tag model usedfor extraction is not unprincipled
(a criticism brought forward by McCallum et al.
(2000)againstnext-tag classifiersthat do not out-
putprobabilities),but arisesnaturallyfrom acondi-
tional sequencemodelandplausibleindependence
assumptions.This extractionmodelachievesfairly
highaccuracy (andjustasobservedby Punyakanok
and Roth (2001) it outperformsa joint genera-
tive Markov model). A separateclassificationstep
makes it easy to use sentence-level featuresand
large amountsof contexts. Suchfeatureswould be
difficult to integratedinto standardmodels,thema-
jor exceptionbeingconditionalrandomfields(Laf-
ferty et al., 2001),comparedto which theapproach
proposedhereis muchsimpler.
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